xref: /openbmc/linux/fs/f2fs/data.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 	struct address_space *mapping = page->mapping;
56 	struct inode *inode;
57 	struct f2fs_sb_info *sbi;
58 
59 	if (!mapping)
60 		return false;
61 
62 	inode = mapping->host;
63 	sbi = F2FS_I_SB(inode);
64 
65 	if (inode->i_ino == F2FS_META_INO(sbi) ||
66 			inode->i_ino == F2FS_NODE_INO(sbi) ||
67 			S_ISDIR(inode->i_mode))
68 		return true;
69 
70 	if (f2fs_is_compressed_page(page))
71 		return false;
72 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73 			page_private_gcing(page))
74 		return true;
75 	return false;
76 }
77 
78 static enum count_type __read_io_type(struct page *page)
79 {
80 	struct address_space *mapping = page_file_mapping(page);
81 
82 	if (mapping) {
83 		struct inode *inode = mapping->host;
84 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85 
86 		if (inode->i_ino == F2FS_META_INO(sbi))
87 			return F2FS_RD_META;
88 
89 		if (inode->i_ino == F2FS_NODE_INO(sbi))
90 			return F2FS_RD_NODE;
91 	}
92 	return F2FS_RD_DATA;
93 }
94 
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98 	STEP_DECRYPT	= 1 << 0,
99 #else
100 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 	STEP_DECOMPRESS	= 1 << 1,
104 #else
105 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108 	STEP_VERITY	= 1 << 2,
109 #else
110 	STEP_VERITY	= 0,	/* compile out the verity-related code */
111 #endif
112 };
113 
114 struct bio_post_read_ctx {
115 	struct bio *bio;
116 	struct f2fs_sb_info *sbi;
117 	struct work_struct work;
118 	unsigned int enabled_steps;
119 	block_t fs_blkaddr;
120 };
121 
122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
123 {
124 	struct bio_vec *bv;
125 	struct bvec_iter_all iter_all;
126 
127 	/*
128 	 * Update and unlock the bio's pagecache pages, and put the
129 	 * decompression context for any compressed pages.
130 	 */
131 	bio_for_each_segment_all(bv, bio, iter_all) {
132 		struct page *page = bv->bv_page;
133 
134 		if (f2fs_is_compressed_page(page)) {
135 			if (bio->bi_status)
136 				f2fs_end_read_compressed_page(page, true, 0,
137 							in_task);
138 			f2fs_put_page_dic(page, in_task);
139 			continue;
140 		}
141 
142 		/* PG_error was set if verity failed. */
143 		if (bio->bi_status || PageError(page)) {
144 			ClearPageUptodate(page);
145 			/* will re-read again later */
146 			ClearPageError(page);
147 		} else {
148 			SetPageUptodate(page);
149 		}
150 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 		unlock_page(page);
152 	}
153 
154 	if (bio->bi_private)
155 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 	bio_put(bio);
157 }
158 
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 	struct bio_post_read_ctx *ctx =
162 		container_of(work, struct bio_post_read_ctx, work);
163 	struct bio *bio = ctx->bio;
164 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165 
166 	/*
167 	 * fsverity_verify_bio() may call readahead() again, and while verity
168 	 * will be disabled for this, decryption and/or decompression may still
169 	 * be needed, resulting in another bio_post_read_ctx being allocated.
170 	 * So to prevent deadlocks we need to release the current ctx to the
171 	 * mempool first.  This assumes that verity is the last post-read step.
172 	 */
173 	mempool_free(ctx, bio_post_read_ctx_pool);
174 	bio->bi_private = NULL;
175 
176 	/*
177 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178 	 * as those were handled separately by f2fs_end_read_compressed_page().
179 	 */
180 	if (may_have_compressed_pages) {
181 		struct bio_vec *bv;
182 		struct bvec_iter_all iter_all;
183 
184 		bio_for_each_segment_all(bv, bio, iter_all) {
185 			struct page *page = bv->bv_page;
186 
187 			if (!f2fs_is_compressed_page(page) &&
188 			    !fsverity_verify_page(page))
189 				SetPageError(page);
190 		}
191 	} else {
192 		fsverity_verify_bio(bio);
193 	}
194 
195 	f2fs_finish_read_bio(bio, true);
196 }
197 
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
208 {
209 	struct bio_post_read_ctx *ctx = bio->bi_private;
210 
211 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 		INIT_WORK(&ctx->work, f2fs_verify_bio);
213 		fsverity_enqueue_verify_work(&ctx->work);
214 	} else {
215 		f2fs_finish_read_bio(bio, in_task);
216 	}
217 }
218 
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
229 		bool in_task)
230 {
231 	struct bio_vec *bv;
232 	struct bvec_iter_all iter_all;
233 	bool all_compressed = true;
234 	block_t blkaddr = ctx->fs_blkaddr;
235 
236 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
237 		struct page *page = bv->bv_page;
238 
239 		if (f2fs_is_compressed_page(page))
240 			f2fs_end_read_compressed_page(page, false, blkaddr,
241 						      in_task);
242 		else
243 			all_compressed = false;
244 
245 		blkaddr++;
246 	}
247 
248 	/*
249 	 * Optimization: if all the bio's pages are compressed, then scheduling
250 	 * the per-bio verity work is unnecessary, as verity will be fully
251 	 * handled at the compression cluster level.
252 	 */
253 	if (all_compressed)
254 		ctx->enabled_steps &= ~STEP_VERITY;
255 }
256 
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259 	struct bio_post_read_ctx *ctx =
260 		container_of(work, struct bio_post_read_ctx, work);
261 	struct bio *bio = ctx->bio;
262 
263 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
264 		f2fs_finish_read_bio(bio, true);
265 		return;
266 	}
267 
268 	if (ctx->enabled_steps & STEP_DECOMPRESS)
269 		f2fs_handle_step_decompress(ctx, true);
270 
271 	f2fs_verify_and_finish_bio(bio, true);
272 }
273 
274 static void f2fs_read_end_io(struct bio *bio)
275 {
276 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
277 	struct bio_post_read_ctx *ctx;
278 	bool intask = in_task();
279 
280 	iostat_update_and_unbind_ctx(bio, 0);
281 	ctx = bio->bi_private;
282 
283 	if (time_to_inject(sbi, FAULT_READ_IO)) {
284 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
285 		bio->bi_status = BLK_STS_IOERR;
286 	}
287 
288 	if (bio->bi_status) {
289 		f2fs_finish_read_bio(bio, intask);
290 		return;
291 	}
292 
293 	if (ctx) {
294 		unsigned int enabled_steps = ctx->enabled_steps &
295 					(STEP_DECRYPT | STEP_DECOMPRESS);
296 
297 		/*
298 		 * If we have only decompression step between decompression and
299 		 * decrypt, we don't need post processing for this.
300 		 */
301 		if (enabled_steps == STEP_DECOMPRESS &&
302 				!f2fs_low_mem_mode(sbi)) {
303 			f2fs_handle_step_decompress(ctx, intask);
304 		} else if (enabled_steps) {
305 			INIT_WORK(&ctx->work, f2fs_post_read_work);
306 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
307 			return;
308 		}
309 	}
310 
311 	f2fs_verify_and_finish_bio(bio, intask);
312 }
313 
314 static void f2fs_write_end_io(struct bio *bio)
315 {
316 	struct f2fs_sb_info *sbi;
317 	struct bio_vec *bvec;
318 	struct bvec_iter_all iter_all;
319 
320 	iostat_update_and_unbind_ctx(bio, 1);
321 	sbi = bio->bi_private;
322 
323 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
324 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
325 		bio->bi_status = BLK_STS_IOERR;
326 	}
327 
328 	bio_for_each_segment_all(bvec, bio, iter_all) {
329 		struct page *page = bvec->bv_page;
330 		enum count_type type = WB_DATA_TYPE(page);
331 
332 		if (page_private_dummy(page)) {
333 			clear_page_private_dummy(page);
334 			unlock_page(page);
335 			mempool_free(page, sbi->write_io_dummy);
336 
337 			if (unlikely(bio->bi_status))
338 				f2fs_stop_checkpoint(sbi, true,
339 						STOP_CP_REASON_WRITE_FAIL);
340 			continue;
341 		}
342 
343 		fscrypt_finalize_bounce_page(&page);
344 
345 #ifdef CONFIG_F2FS_FS_COMPRESSION
346 		if (f2fs_is_compressed_page(page)) {
347 			f2fs_compress_write_end_io(bio, page);
348 			continue;
349 		}
350 #endif
351 
352 		if (unlikely(bio->bi_status)) {
353 			mapping_set_error(page->mapping, -EIO);
354 			if (type == F2FS_WB_CP_DATA)
355 				f2fs_stop_checkpoint(sbi, true,
356 						STOP_CP_REASON_WRITE_FAIL);
357 		}
358 
359 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
360 					page->index != nid_of_node(page));
361 
362 		dec_page_count(sbi, type);
363 		if (f2fs_in_warm_node_list(sbi, page))
364 			f2fs_del_fsync_node_entry(sbi, page);
365 		clear_page_private_gcing(page);
366 		end_page_writeback(page);
367 	}
368 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
369 				wq_has_sleeper(&sbi->cp_wait))
370 		wake_up(&sbi->cp_wait);
371 
372 	bio_put(bio);
373 }
374 
375 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
376 		block_t blk_addr, sector_t *sector)
377 {
378 	struct block_device *bdev = sbi->sb->s_bdev;
379 	int i;
380 
381 	if (f2fs_is_multi_device(sbi)) {
382 		for (i = 0; i < sbi->s_ndevs; i++) {
383 			if (FDEV(i).start_blk <= blk_addr &&
384 			    FDEV(i).end_blk >= blk_addr) {
385 				blk_addr -= FDEV(i).start_blk;
386 				bdev = FDEV(i).bdev;
387 				break;
388 			}
389 		}
390 	}
391 
392 	if (sector)
393 		*sector = SECTOR_FROM_BLOCK(blk_addr);
394 	return bdev;
395 }
396 
397 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
398 {
399 	int i;
400 
401 	if (!f2fs_is_multi_device(sbi))
402 		return 0;
403 
404 	for (i = 0; i < sbi->s_ndevs; i++)
405 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
406 			return i;
407 	return 0;
408 }
409 
410 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
411 {
412 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
413 	unsigned int fua_flag, meta_flag, io_flag;
414 	blk_opf_t op_flags = 0;
415 
416 	if (fio->op != REQ_OP_WRITE)
417 		return 0;
418 	if (fio->type == DATA)
419 		io_flag = fio->sbi->data_io_flag;
420 	else if (fio->type == NODE)
421 		io_flag = fio->sbi->node_io_flag;
422 	else
423 		return 0;
424 
425 	fua_flag = io_flag & temp_mask;
426 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
427 
428 	/*
429 	 * data/node io flag bits per temp:
430 	 *      REQ_META     |      REQ_FUA      |
431 	 *    5 |    4 |   3 |    2 |    1 |   0 |
432 	 * Cold | Warm | Hot | Cold | Warm | Hot |
433 	 */
434 	if ((1 << fio->temp) & meta_flag)
435 		op_flags |= REQ_META;
436 	if ((1 << fio->temp) & fua_flag)
437 		op_flags |= REQ_FUA;
438 	return op_flags;
439 }
440 
441 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
442 {
443 	struct f2fs_sb_info *sbi = fio->sbi;
444 	struct block_device *bdev;
445 	sector_t sector;
446 	struct bio *bio;
447 
448 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
449 	bio = bio_alloc_bioset(bdev, npages,
450 				fio->op | fio->op_flags | f2fs_io_flags(fio),
451 				GFP_NOIO, &f2fs_bioset);
452 	bio->bi_iter.bi_sector = sector;
453 	if (is_read_io(fio->op)) {
454 		bio->bi_end_io = f2fs_read_end_io;
455 		bio->bi_private = NULL;
456 	} else {
457 		bio->bi_end_io = f2fs_write_end_io;
458 		bio->bi_private = sbi;
459 	}
460 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
461 
462 	if (fio->io_wbc)
463 		wbc_init_bio(fio->io_wbc, bio);
464 
465 	return bio;
466 }
467 
468 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
469 				  pgoff_t first_idx,
470 				  const struct f2fs_io_info *fio,
471 				  gfp_t gfp_mask)
472 {
473 	/*
474 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
475 	 * read/write raw data without encryption.
476 	 */
477 	if (!fio || !fio->encrypted_page)
478 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
479 }
480 
481 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
482 				     pgoff_t next_idx,
483 				     const struct f2fs_io_info *fio)
484 {
485 	/*
486 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
487 	 * read/write raw data without encryption.
488 	 */
489 	if (fio && fio->encrypted_page)
490 		return !bio_has_crypt_ctx(bio);
491 
492 	return fscrypt_mergeable_bio(bio, inode, next_idx);
493 }
494 
495 static inline void __submit_bio(struct f2fs_sb_info *sbi,
496 				struct bio *bio, enum page_type type)
497 {
498 	if (!is_read_io(bio_op(bio))) {
499 		unsigned int start;
500 
501 		if (type != DATA && type != NODE)
502 			goto submit_io;
503 
504 		if (f2fs_lfs_mode(sbi) && current->plug)
505 			blk_finish_plug(current->plug);
506 
507 		if (!F2FS_IO_ALIGNED(sbi))
508 			goto submit_io;
509 
510 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
511 		start %= F2FS_IO_SIZE(sbi);
512 
513 		if (start == 0)
514 			goto submit_io;
515 
516 		/* fill dummy pages */
517 		for (; start < F2FS_IO_SIZE(sbi); start++) {
518 			struct page *page =
519 				mempool_alloc(sbi->write_io_dummy,
520 					      GFP_NOIO | __GFP_NOFAIL);
521 			f2fs_bug_on(sbi, !page);
522 
523 			lock_page(page);
524 
525 			zero_user_segment(page, 0, PAGE_SIZE);
526 			set_page_private_dummy(page);
527 
528 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
529 				f2fs_bug_on(sbi, 1);
530 		}
531 		/*
532 		 * In the NODE case, we lose next block address chain. So, we
533 		 * need to do checkpoint in f2fs_sync_file.
534 		 */
535 		if (type == NODE)
536 			set_sbi_flag(sbi, SBI_NEED_CP);
537 	}
538 submit_io:
539 	if (is_read_io(bio_op(bio)))
540 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
541 	else
542 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
543 
544 	iostat_update_submit_ctx(bio, type);
545 	submit_bio(bio);
546 }
547 
548 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
549 				struct bio *bio, enum page_type type)
550 {
551 	__submit_bio(sbi, bio, type);
552 }
553 
554 static void __submit_merged_bio(struct f2fs_bio_info *io)
555 {
556 	struct f2fs_io_info *fio = &io->fio;
557 
558 	if (!io->bio)
559 		return;
560 
561 	if (is_read_io(fio->op))
562 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
563 	else
564 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
565 
566 	__submit_bio(io->sbi, io->bio, fio->type);
567 	io->bio = NULL;
568 }
569 
570 static bool __has_merged_page(struct bio *bio, struct inode *inode,
571 						struct page *page, nid_t ino)
572 {
573 	struct bio_vec *bvec;
574 	struct bvec_iter_all iter_all;
575 
576 	if (!bio)
577 		return false;
578 
579 	if (!inode && !page && !ino)
580 		return true;
581 
582 	bio_for_each_segment_all(bvec, bio, iter_all) {
583 		struct page *target = bvec->bv_page;
584 
585 		if (fscrypt_is_bounce_page(target)) {
586 			target = fscrypt_pagecache_page(target);
587 			if (IS_ERR(target))
588 				continue;
589 		}
590 		if (f2fs_is_compressed_page(target)) {
591 			target = f2fs_compress_control_page(target);
592 			if (IS_ERR(target))
593 				continue;
594 		}
595 
596 		if (inode && inode == target->mapping->host)
597 			return true;
598 		if (page && page == target)
599 			return true;
600 		if (ino && ino == ino_of_node(target))
601 			return true;
602 	}
603 
604 	return false;
605 }
606 
607 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
608 {
609 	int i;
610 
611 	for (i = 0; i < NR_PAGE_TYPE; i++) {
612 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
613 		int j;
614 
615 		sbi->write_io[i] = f2fs_kmalloc(sbi,
616 				array_size(n, sizeof(struct f2fs_bio_info)),
617 				GFP_KERNEL);
618 		if (!sbi->write_io[i])
619 			return -ENOMEM;
620 
621 		for (j = HOT; j < n; j++) {
622 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
623 			sbi->write_io[i][j].sbi = sbi;
624 			sbi->write_io[i][j].bio = NULL;
625 			spin_lock_init(&sbi->write_io[i][j].io_lock);
626 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
627 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
628 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
629 		}
630 	}
631 
632 	return 0;
633 }
634 
635 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
636 				enum page_type type, enum temp_type temp)
637 {
638 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
639 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
640 
641 	f2fs_down_write(&io->io_rwsem);
642 
643 	/* change META to META_FLUSH in the checkpoint procedure */
644 	if (type >= META_FLUSH) {
645 		io->fio.type = META_FLUSH;
646 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
647 		if (!test_opt(sbi, NOBARRIER))
648 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
649 	}
650 	__submit_merged_bio(io);
651 	f2fs_up_write(&io->io_rwsem);
652 }
653 
654 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
655 				struct inode *inode, struct page *page,
656 				nid_t ino, enum page_type type, bool force)
657 {
658 	enum temp_type temp;
659 	bool ret = true;
660 
661 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
662 		if (!force)	{
663 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
664 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
665 
666 			f2fs_down_read(&io->io_rwsem);
667 			ret = __has_merged_page(io->bio, inode, page, ino);
668 			f2fs_up_read(&io->io_rwsem);
669 		}
670 		if (ret)
671 			__f2fs_submit_merged_write(sbi, type, temp);
672 
673 		/* TODO: use HOT temp only for meta pages now. */
674 		if (type >= META)
675 			break;
676 	}
677 }
678 
679 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
680 {
681 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
682 }
683 
684 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
685 				struct inode *inode, struct page *page,
686 				nid_t ino, enum page_type type)
687 {
688 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
689 }
690 
691 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
692 {
693 	f2fs_submit_merged_write(sbi, DATA);
694 	f2fs_submit_merged_write(sbi, NODE);
695 	f2fs_submit_merged_write(sbi, META);
696 }
697 
698 /*
699  * Fill the locked page with data located in the block address.
700  * A caller needs to unlock the page on failure.
701  */
702 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
703 {
704 	struct bio *bio;
705 	struct page *page = fio->encrypted_page ?
706 			fio->encrypted_page : fio->page;
707 
708 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
709 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
710 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
711 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
712 		return -EFSCORRUPTED;
713 	}
714 
715 	trace_f2fs_submit_page_bio(page, fio);
716 
717 	/* Allocate a new bio */
718 	bio = __bio_alloc(fio, 1);
719 
720 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
721 			       fio->page->index, fio, GFP_NOIO);
722 
723 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
724 		bio_put(bio);
725 		return -EFAULT;
726 	}
727 
728 	if (fio->io_wbc && !is_read_io(fio->op))
729 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
730 
731 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
732 			__read_io_type(page) : WB_DATA_TYPE(fio->page));
733 
734 	__submit_bio(fio->sbi, bio, fio->type);
735 	return 0;
736 }
737 
738 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
739 				block_t last_blkaddr, block_t cur_blkaddr)
740 {
741 	if (unlikely(sbi->max_io_bytes &&
742 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
743 		return false;
744 	if (last_blkaddr + 1 != cur_blkaddr)
745 		return false;
746 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
747 }
748 
749 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
750 						struct f2fs_io_info *fio)
751 {
752 	if (io->fio.op != fio->op)
753 		return false;
754 	return io->fio.op_flags == fio->op_flags;
755 }
756 
757 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
758 					struct f2fs_bio_info *io,
759 					struct f2fs_io_info *fio,
760 					block_t last_blkaddr,
761 					block_t cur_blkaddr)
762 {
763 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
764 		unsigned int filled_blocks =
765 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
766 		unsigned int io_size = F2FS_IO_SIZE(sbi);
767 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
768 
769 		/* IOs in bio is aligned and left space of vectors is not enough */
770 		if (!(filled_blocks % io_size) && left_vecs < io_size)
771 			return false;
772 	}
773 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
774 		return false;
775 	return io_type_is_mergeable(io, fio);
776 }
777 
778 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
779 				struct page *page, enum temp_type temp)
780 {
781 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
782 	struct bio_entry *be;
783 
784 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
785 	be->bio = bio;
786 	bio_get(bio);
787 
788 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
789 		f2fs_bug_on(sbi, 1);
790 
791 	f2fs_down_write(&io->bio_list_lock);
792 	list_add_tail(&be->list, &io->bio_list);
793 	f2fs_up_write(&io->bio_list_lock);
794 }
795 
796 static void del_bio_entry(struct bio_entry *be)
797 {
798 	list_del(&be->list);
799 	kmem_cache_free(bio_entry_slab, be);
800 }
801 
802 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
803 							struct page *page)
804 {
805 	struct f2fs_sb_info *sbi = fio->sbi;
806 	enum temp_type temp;
807 	bool found = false;
808 	int ret = -EAGAIN;
809 
810 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
811 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
812 		struct list_head *head = &io->bio_list;
813 		struct bio_entry *be;
814 
815 		f2fs_down_write(&io->bio_list_lock);
816 		list_for_each_entry(be, head, list) {
817 			if (be->bio != *bio)
818 				continue;
819 
820 			found = true;
821 
822 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
823 							    *fio->last_block,
824 							    fio->new_blkaddr));
825 			if (f2fs_crypt_mergeable_bio(*bio,
826 					fio->page->mapping->host,
827 					fio->page->index, fio) &&
828 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
829 					PAGE_SIZE) {
830 				ret = 0;
831 				break;
832 			}
833 
834 			/* page can't be merged into bio; submit the bio */
835 			del_bio_entry(be);
836 			__submit_bio(sbi, *bio, DATA);
837 			break;
838 		}
839 		f2fs_up_write(&io->bio_list_lock);
840 	}
841 
842 	if (ret) {
843 		bio_put(*bio);
844 		*bio = NULL;
845 	}
846 
847 	return ret;
848 }
849 
850 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
851 					struct bio **bio, struct page *page)
852 {
853 	enum temp_type temp;
854 	bool found = false;
855 	struct bio *target = bio ? *bio : NULL;
856 
857 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
858 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
859 		struct list_head *head = &io->bio_list;
860 		struct bio_entry *be;
861 
862 		if (list_empty(head))
863 			continue;
864 
865 		f2fs_down_read(&io->bio_list_lock);
866 		list_for_each_entry(be, head, list) {
867 			if (target)
868 				found = (target == be->bio);
869 			else
870 				found = __has_merged_page(be->bio, NULL,
871 								page, 0);
872 			if (found)
873 				break;
874 		}
875 		f2fs_up_read(&io->bio_list_lock);
876 
877 		if (!found)
878 			continue;
879 
880 		found = false;
881 
882 		f2fs_down_write(&io->bio_list_lock);
883 		list_for_each_entry(be, head, list) {
884 			if (target)
885 				found = (target == be->bio);
886 			else
887 				found = __has_merged_page(be->bio, NULL,
888 								page, 0);
889 			if (found) {
890 				target = be->bio;
891 				del_bio_entry(be);
892 				break;
893 			}
894 		}
895 		f2fs_up_write(&io->bio_list_lock);
896 	}
897 
898 	if (found)
899 		__submit_bio(sbi, target, DATA);
900 	if (bio && *bio) {
901 		bio_put(*bio);
902 		*bio = NULL;
903 	}
904 }
905 
906 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
907 {
908 	struct bio *bio = *fio->bio;
909 	struct page *page = fio->encrypted_page ?
910 			fio->encrypted_page : fio->page;
911 
912 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
913 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
914 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
915 		return -EFSCORRUPTED;
916 	}
917 
918 	trace_f2fs_submit_page_bio(page, fio);
919 
920 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
921 						fio->new_blkaddr))
922 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
923 alloc_new:
924 	if (!bio) {
925 		bio = __bio_alloc(fio, BIO_MAX_VECS);
926 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
927 				       fio->page->index, fio, GFP_NOIO);
928 
929 		add_bio_entry(fio->sbi, bio, page, fio->temp);
930 	} else {
931 		if (add_ipu_page(fio, &bio, page))
932 			goto alloc_new;
933 	}
934 
935 	if (fio->io_wbc)
936 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
937 
938 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
939 
940 	*fio->last_block = fio->new_blkaddr;
941 	*fio->bio = bio;
942 
943 	return 0;
944 }
945 
946 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 {
948 	struct f2fs_sb_info *sbi = fio->sbi;
949 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951 	struct page *bio_page;
952 
953 	f2fs_bug_on(sbi, is_read_io(fio->op));
954 
955 	f2fs_down_write(&io->io_rwsem);
956 next:
957 	if (fio->in_list) {
958 		spin_lock(&io->io_lock);
959 		if (list_empty(&io->io_list)) {
960 			spin_unlock(&io->io_lock);
961 			goto out;
962 		}
963 		fio = list_first_entry(&io->io_list,
964 						struct f2fs_io_info, list);
965 		list_del(&fio->list);
966 		spin_unlock(&io->io_lock);
967 	}
968 
969 	verify_fio_blkaddr(fio);
970 
971 	if (fio->encrypted_page)
972 		bio_page = fio->encrypted_page;
973 	else if (fio->compressed_page)
974 		bio_page = fio->compressed_page;
975 	else
976 		bio_page = fio->page;
977 
978 	/* set submitted = true as a return value */
979 	fio->submitted = true;
980 
981 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
982 
983 	if (io->bio &&
984 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
985 			      fio->new_blkaddr) ||
986 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
987 				       bio_page->index, fio)))
988 		__submit_merged_bio(io);
989 alloc_new:
990 	if (io->bio == NULL) {
991 		if (F2FS_IO_ALIGNED(sbi) &&
992 				(fio->type == DATA || fio->type == NODE) &&
993 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
994 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
995 			fio->retry = true;
996 			goto skip;
997 		}
998 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
999 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1000 				       bio_page->index, fio, GFP_NOIO);
1001 		io->fio = *fio;
1002 	}
1003 
1004 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1005 		__submit_merged_bio(io);
1006 		goto alloc_new;
1007 	}
1008 
1009 	if (fio->io_wbc)
1010 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1011 
1012 	io->last_block_in_bio = fio->new_blkaddr;
1013 
1014 	trace_f2fs_submit_page_write(fio->page, fio);
1015 skip:
1016 	if (fio->in_list)
1017 		goto next;
1018 out:
1019 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1020 				!f2fs_is_checkpoint_ready(sbi))
1021 		__submit_merged_bio(io);
1022 	f2fs_up_write(&io->io_rwsem);
1023 }
1024 
1025 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1026 				      unsigned nr_pages, blk_opf_t op_flag,
1027 				      pgoff_t first_idx, bool for_write)
1028 {
1029 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1030 	struct bio *bio;
1031 	struct bio_post_read_ctx *ctx = NULL;
1032 	unsigned int post_read_steps = 0;
1033 	sector_t sector;
1034 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1035 
1036 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1037 			       REQ_OP_READ | op_flag,
1038 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1039 	if (!bio)
1040 		return ERR_PTR(-ENOMEM);
1041 	bio->bi_iter.bi_sector = sector;
1042 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1043 	bio->bi_end_io = f2fs_read_end_io;
1044 
1045 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1046 		post_read_steps |= STEP_DECRYPT;
1047 
1048 	if (f2fs_need_verity(inode, first_idx))
1049 		post_read_steps |= STEP_VERITY;
1050 
1051 	/*
1052 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1053 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1054 	 * bio_post_read_ctx if the file is compressed, but the caller is
1055 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1056 	 */
1057 
1058 	if (post_read_steps || f2fs_compressed_file(inode)) {
1059 		/* Due to the mempool, this never fails. */
1060 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1061 		ctx->bio = bio;
1062 		ctx->sbi = sbi;
1063 		ctx->enabled_steps = post_read_steps;
1064 		ctx->fs_blkaddr = blkaddr;
1065 		bio->bi_private = ctx;
1066 	}
1067 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1068 
1069 	return bio;
1070 }
1071 
1072 /* This can handle encryption stuffs */
1073 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1074 				 block_t blkaddr, blk_opf_t op_flags,
1075 				 bool for_write)
1076 {
1077 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1078 	struct bio *bio;
1079 
1080 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1081 					page->index, for_write);
1082 	if (IS_ERR(bio))
1083 		return PTR_ERR(bio);
1084 
1085 	/* wait for GCed page writeback via META_MAPPING */
1086 	f2fs_wait_on_block_writeback(inode, blkaddr);
1087 
1088 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1089 		bio_put(bio);
1090 		return -EFAULT;
1091 	}
1092 	ClearPageError(page);
1093 	inc_page_count(sbi, F2FS_RD_DATA);
1094 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1095 	__submit_bio(sbi, bio, DATA);
1096 	return 0;
1097 }
1098 
1099 static void __set_data_blkaddr(struct dnode_of_data *dn)
1100 {
1101 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1102 	__le32 *addr_array;
1103 	int base = 0;
1104 
1105 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1106 		base = get_extra_isize(dn->inode);
1107 
1108 	/* Get physical address of data block */
1109 	addr_array = blkaddr_in_node(rn);
1110 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1111 }
1112 
1113 /*
1114  * Lock ordering for the change of data block address:
1115  * ->data_page
1116  *  ->node_page
1117  *    update block addresses in the node page
1118  */
1119 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1120 {
1121 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1122 	__set_data_blkaddr(dn);
1123 	if (set_page_dirty(dn->node_page))
1124 		dn->node_changed = true;
1125 }
1126 
1127 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1128 {
1129 	dn->data_blkaddr = blkaddr;
1130 	f2fs_set_data_blkaddr(dn);
1131 	f2fs_update_extent_cache(dn);
1132 }
1133 
1134 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1135 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1136 {
1137 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1138 	int err;
1139 
1140 	if (!count)
1141 		return 0;
1142 
1143 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1144 		return -EPERM;
1145 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1146 		return err;
1147 
1148 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1149 						dn->ofs_in_node, count);
1150 
1151 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1152 
1153 	for (; count > 0; dn->ofs_in_node++) {
1154 		block_t blkaddr = f2fs_data_blkaddr(dn);
1155 
1156 		if (blkaddr == NULL_ADDR) {
1157 			dn->data_blkaddr = NEW_ADDR;
1158 			__set_data_blkaddr(dn);
1159 			count--;
1160 		}
1161 	}
1162 
1163 	if (set_page_dirty(dn->node_page))
1164 		dn->node_changed = true;
1165 	return 0;
1166 }
1167 
1168 /* Should keep dn->ofs_in_node unchanged */
1169 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1170 {
1171 	unsigned int ofs_in_node = dn->ofs_in_node;
1172 	int ret;
1173 
1174 	ret = f2fs_reserve_new_blocks(dn, 1);
1175 	dn->ofs_in_node = ofs_in_node;
1176 	return ret;
1177 }
1178 
1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1180 {
1181 	bool need_put = dn->inode_page ? false : true;
1182 	int err;
1183 
1184 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1185 	if (err)
1186 		return err;
1187 
1188 	if (dn->data_blkaddr == NULL_ADDR)
1189 		err = f2fs_reserve_new_block(dn);
1190 	if (err || need_put)
1191 		f2fs_put_dnode(dn);
1192 	return err;
1193 }
1194 
1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1196 {
1197 	struct extent_info ei = {0, };
1198 	struct inode *inode = dn->inode;
1199 
1200 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1201 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1202 		return 0;
1203 	}
1204 
1205 	return f2fs_reserve_block(dn, index);
1206 }
1207 
1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1209 				     blk_opf_t op_flags, bool for_write)
1210 {
1211 	struct address_space *mapping = inode->i_mapping;
1212 	struct dnode_of_data dn;
1213 	struct page *page;
1214 	struct extent_info ei = {0, };
1215 	int err;
1216 
1217 	page = f2fs_grab_cache_page(mapping, index, for_write);
1218 	if (!page)
1219 		return ERR_PTR(-ENOMEM);
1220 
1221 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1222 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1223 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1224 						DATA_GENERIC_ENHANCE_READ)) {
1225 			err = -EFSCORRUPTED;
1226 			f2fs_handle_error(F2FS_I_SB(inode),
1227 						ERROR_INVALID_BLKADDR);
1228 			goto put_err;
1229 		}
1230 		goto got_it;
1231 	}
1232 
1233 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1234 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1235 	if (err)
1236 		goto put_err;
1237 	f2fs_put_dnode(&dn);
1238 
1239 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1240 		err = -ENOENT;
1241 		goto put_err;
1242 	}
1243 	if (dn.data_blkaddr != NEW_ADDR &&
1244 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1245 						dn.data_blkaddr,
1246 						DATA_GENERIC_ENHANCE)) {
1247 		err = -EFSCORRUPTED;
1248 		f2fs_handle_error(F2FS_I_SB(inode),
1249 					ERROR_INVALID_BLKADDR);
1250 		goto put_err;
1251 	}
1252 got_it:
1253 	if (PageUptodate(page)) {
1254 		unlock_page(page);
1255 		return page;
1256 	}
1257 
1258 	/*
1259 	 * A new dentry page is allocated but not able to be written, since its
1260 	 * new inode page couldn't be allocated due to -ENOSPC.
1261 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1262 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1263 	 * f2fs_init_inode_metadata.
1264 	 */
1265 	if (dn.data_blkaddr == NEW_ADDR) {
1266 		zero_user_segment(page, 0, PAGE_SIZE);
1267 		if (!PageUptodate(page))
1268 			SetPageUptodate(page);
1269 		unlock_page(page);
1270 		return page;
1271 	}
1272 
1273 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1274 						op_flags, for_write);
1275 	if (err)
1276 		goto put_err;
1277 	return page;
1278 
1279 put_err:
1280 	f2fs_put_page(page, 1);
1281 	return ERR_PTR(err);
1282 }
1283 
1284 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1285 {
1286 	struct address_space *mapping = inode->i_mapping;
1287 	struct page *page;
1288 
1289 	page = find_get_page(mapping, index);
1290 	if (page && PageUptodate(page))
1291 		return page;
1292 	f2fs_put_page(page, 0);
1293 
1294 	page = f2fs_get_read_data_page(inode, index, 0, false);
1295 	if (IS_ERR(page))
1296 		return page;
1297 
1298 	if (PageUptodate(page))
1299 		return page;
1300 
1301 	wait_on_page_locked(page);
1302 	if (unlikely(!PageUptodate(page))) {
1303 		f2fs_put_page(page, 0);
1304 		return ERR_PTR(-EIO);
1305 	}
1306 	return page;
1307 }
1308 
1309 /*
1310  * If it tries to access a hole, return an error.
1311  * Because, the callers, functions in dir.c and GC, should be able to know
1312  * whether this page exists or not.
1313  */
1314 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1315 							bool for_write)
1316 {
1317 	struct address_space *mapping = inode->i_mapping;
1318 	struct page *page;
1319 repeat:
1320 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1321 	if (IS_ERR(page))
1322 		return page;
1323 
1324 	/* wait for read completion */
1325 	lock_page(page);
1326 	if (unlikely(page->mapping != mapping)) {
1327 		f2fs_put_page(page, 1);
1328 		goto repeat;
1329 	}
1330 	if (unlikely(!PageUptodate(page))) {
1331 		f2fs_put_page(page, 1);
1332 		return ERR_PTR(-EIO);
1333 	}
1334 	return page;
1335 }
1336 
1337 /*
1338  * Caller ensures that this data page is never allocated.
1339  * A new zero-filled data page is allocated in the page cache.
1340  *
1341  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1342  * f2fs_unlock_op().
1343  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1344  * ipage should be released by this function.
1345  */
1346 struct page *f2fs_get_new_data_page(struct inode *inode,
1347 		struct page *ipage, pgoff_t index, bool new_i_size)
1348 {
1349 	struct address_space *mapping = inode->i_mapping;
1350 	struct page *page;
1351 	struct dnode_of_data dn;
1352 	int err;
1353 
1354 	page = f2fs_grab_cache_page(mapping, index, true);
1355 	if (!page) {
1356 		/*
1357 		 * before exiting, we should make sure ipage will be released
1358 		 * if any error occur.
1359 		 */
1360 		f2fs_put_page(ipage, 1);
1361 		return ERR_PTR(-ENOMEM);
1362 	}
1363 
1364 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1365 	err = f2fs_reserve_block(&dn, index);
1366 	if (err) {
1367 		f2fs_put_page(page, 1);
1368 		return ERR_PTR(err);
1369 	}
1370 	if (!ipage)
1371 		f2fs_put_dnode(&dn);
1372 
1373 	if (PageUptodate(page))
1374 		goto got_it;
1375 
1376 	if (dn.data_blkaddr == NEW_ADDR) {
1377 		zero_user_segment(page, 0, PAGE_SIZE);
1378 		if (!PageUptodate(page))
1379 			SetPageUptodate(page);
1380 	} else {
1381 		f2fs_put_page(page, 1);
1382 
1383 		/* if ipage exists, blkaddr should be NEW_ADDR */
1384 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1385 		page = f2fs_get_lock_data_page(inode, index, true);
1386 		if (IS_ERR(page))
1387 			return page;
1388 	}
1389 got_it:
1390 	if (new_i_size && i_size_read(inode) <
1391 				((loff_t)(index + 1) << PAGE_SHIFT))
1392 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1393 	return page;
1394 }
1395 
1396 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1397 {
1398 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399 	struct f2fs_summary sum;
1400 	struct node_info ni;
1401 	block_t old_blkaddr;
1402 	blkcnt_t count = 1;
1403 	int err;
1404 
1405 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1406 		return -EPERM;
1407 
1408 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1409 	if (err)
1410 		return err;
1411 
1412 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1413 	if (dn->data_blkaddr != NULL_ADDR)
1414 		goto alloc;
1415 
1416 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1417 		return err;
1418 
1419 alloc:
1420 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1421 	old_blkaddr = dn->data_blkaddr;
1422 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1423 				&sum, seg_type, NULL);
1424 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1425 		invalidate_mapping_pages(META_MAPPING(sbi),
1426 					old_blkaddr, old_blkaddr);
1427 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1428 	}
1429 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1430 	return 0;
1431 }
1432 
1433 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1434 {
1435 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1436 		if (lock)
1437 			f2fs_down_read(&sbi->node_change);
1438 		else
1439 			f2fs_up_read(&sbi->node_change);
1440 	} else {
1441 		if (lock)
1442 			f2fs_lock_op(sbi);
1443 		else
1444 			f2fs_unlock_op(sbi);
1445 	}
1446 }
1447 
1448 /*
1449  * f2fs_map_blocks() tries to find or build mapping relationship which
1450  * maps continuous logical blocks to physical blocks, and return such
1451  * info via f2fs_map_blocks structure.
1452  */
1453 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1454 						int create, int flag)
1455 {
1456 	unsigned int maxblocks = map->m_len;
1457 	struct dnode_of_data dn;
1458 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1459 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1460 	pgoff_t pgofs, end_offset, end;
1461 	int err = 0, ofs = 1;
1462 	unsigned int ofs_in_node, last_ofs_in_node;
1463 	blkcnt_t prealloc;
1464 	struct extent_info ei = {0, };
1465 	block_t blkaddr;
1466 	unsigned int start_pgofs;
1467 	int bidx = 0;
1468 
1469 	if (!maxblocks)
1470 		return 0;
1471 
1472 	map->m_bdev = inode->i_sb->s_bdev;
1473 	map->m_multidev_dio =
1474 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1475 
1476 	map->m_len = 0;
1477 	map->m_flags = 0;
1478 
1479 	/* it only supports block size == page size */
1480 	pgofs =	(pgoff_t)map->m_lblk;
1481 	end = pgofs + maxblocks;
1482 
1483 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1484 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1485 							map->m_may_create)
1486 			goto next_dnode;
1487 
1488 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1489 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1490 		map->m_flags = F2FS_MAP_MAPPED;
1491 		if (map->m_next_extent)
1492 			*map->m_next_extent = pgofs + map->m_len;
1493 
1494 		/* for hardware encryption, but to avoid potential issue in future */
1495 		if (flag == F2FS_GET_BLOCK_DIO)
1496 			f2fs_wait_on_block_writeback_range(inode,
1497 						map->m_pblk, map->m_len);
1498 
1499 		if (map->m_multidev_dio) {
1500 			block_t blk_addr = map->m_pblk;
1501 
1502 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1503 
1504 			map->m_bdev = FDEV(bidx).bdev;
1505 			map->m_pblk -= FDEV(bidx).start_blk;
1506 			map->m_len = min(map->m_len,
1507 				FDEV(bidx).end_blk + 1 - map->m_pblk);
1508 
1509 			if (map->m_may_create)
1510 				f2fs_update_device_state(sbi, inode->i_ino,
1511 							blk_addr, map->m_len);
1512 		}
1513 		goto out;
1514 	}
1515 
1516 next_dnode:
1517 	if (map->m_may_create)
1518 		f2fs_do_map_lock(sbi, flag, true);
1519 
1520 	/* When reading holes, we need its node page */
1521 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1522 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1523 	if (err) {
1524 		if (flag == F2FS_GET_BLOCK_BMAP)
1525 			map->m_pblk = 0;
1526 
1527 		if (err == -ENOENT) {
1528 			/*
1529 			 * There is one exceptional case that read_node_page()
1530 			 * may return -ENOENT due to filesystem has been
1531 			 * shutdown or cp_error, so force to convert error
1532 			 * number to EIO for such case.
1533 			 */
1534 			if (map->m_may_create &&
1535 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1536 				f2fs_cp_error(sbi))) {
1537 				err = -EIO;
1538 				goto unlock_out;
1539 			}
1540 
1541 			err = 0;
1542 			if (map->m_next_pgofs)
1543 				*map->m_next_pgofs =
1544 					f2fs_get_next_page_offset(&dn, pgofs);
1545 			if (map->m_next_extent)
1546 				*map->m_next_extent =
1547 					f2fs_get_next_page_offset(&dn, pgofs);
1548 		}
1549 		goto unlock_out;
1550 	}
1551 
1552 	start_pgofs = pgofs;
1553 	prealloc = 0;
1554 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1555 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1556 
1557 next_block:
1558 	blkaddr = f2fs_data_blkaddr(&dn);
1559 
1560 	if (__is_valid_data_blkaddr(blkaddr) &&
1561 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1562 		err = -EFSCORRUPTED;
1563 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1564 		goto sync_out;
1565 	}
1566 
1567 	if (__is_valid_data_blkaddr(blkaddr)) {
1568 		/* use out-place-update for driect IO under LFS mode */
1569 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1570 							map->m_may_create) {
1571 			err = __allocate_data_block(&dn, map->m_seg_type);
1572 			if (err)
1573 				goto sync_out;
1574 			blkaddr = dn.data_blkaddr;
1575 			set_inode_flag(inode, FI_APPEND_WRITE);
1576 		}
1577 	} else {
1578 		if (create) {
1579 			if (unlikely(f2fs_cp_error(sbi))) {
1580 				err = -EIO;
1581 				goto sync_out;
1582 			}
1583 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1584 				if (blkaddr == NULL_ADDR) {
1585 					prealloc++;
1586 					last_ofs_in_node = dn.ofs_in_node;
1587 				}
1588 			} else {
1589 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1590 					flag != F2FS_GET_BLOCK_DIO);
1591 				err = __allocate_data_block(&dn,
1592 							map->m_seg_type);
1593 				if (!err) {
1594 					if (flag == F2FS_GET_BLOCK_PRE_DIO)
1595 						file_need_truncate(inode);
1596 					set_inode_flag(inode, FI_APPEND_WRITE);
1597 				}
1598 			}
1599 			if (err)
1600 				goto sync_out;
1601 			map->m_flags |= F2FS_MAP_NEW;
1602 			blkaddr = dn.data_blkaddr;
1603 		} else {
1604 			if (f2fs_compressed_file(inode) &&
1605 					f2fs_sanity_check_cluster(&dn) &&
1606 					(flag != F2FS_GET_BLOCK_FIEMAP ||
1607 					IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1608 				err = -EFSCORRUPTED;
1609 				f2fs_handle_error(sbi,
1610 						ERROR_CORRUPTED_CLUSTER);
1611 				goto sync_out;
1612 			}
1613 			if (flag == F2FS_GET_BLOCK_BMAP) {
1614 				map->m_pblk = 0;
1615 				goto sync_out;
1616 			}
1617 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1618 				goto sync_out;
1619 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1620 						blkaddr == NULL_ADDR) {
1621 				if (map->m_next_pgofs)
1622 					*map->m_next_pgofs = pgofs + 1;
1623 				goto sync_out;
1624 			}
1625 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1626 				/* for defragment case */
1627 				if (map->m_next_pgofs)
1628 					*map->m_next_pgofs = pgofs + 1;
1629 				goto sync_out;
1630 			}
1631 		}
1632 	}
1633 
1634 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1635 		goto skip;
1636 
1637 	if (map->m_multidev_dio)
1638 		bidx = f2fs_target_device_index(sbi, blkaddr);
1639 
1640 	if (map->m_len == 0) {
1641 		/* preallocated unwritten block should be mapped for fiemap. */
1642 		if (blkaddr == NEW_ADDR)
1643 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1644 		map->m_flags |= F2FS_MAP_MAPPED;
1645 
1646 		map->m_pblk = blkaddr;
1647 		map->m_len = 1;
1648 
1649 		if (map->m_multidev_dio)
1650 			map->m_bdev = FDEV(bidx).bdev;
1651 	} else if ((map->m_pblk != NEW_ADDR &&
1652 			blkaddr == (map->m_pblk + ofs)) ||
1653 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1654 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1655 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1656 			goto sync_out;
1657 		ofs++;
1658 		map->m_len++;
1659 	} else {
1660 		goto sync_out;
1661 	}
1662 
1663 skip:
1664 	dn.ofs_in_node++;
1665 	pgofs++;
1666 
1667 	/* preallocate blocks in batch for one dnode page */
1668 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1669 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1670 
1671 		dn.ofs_in_node = ofs_in_node;
1672 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1673 		if (err)
1674 			goto sync_out;
1675 
1676 		map->m_len += dn.ofs_in_node - ofs_in_node;
1677 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1678 			err = -ENOSPC;
1679 			goto sync_out;
1680 		}
1681 		dn.ofs_in_node = end_offset;
1682 	}
1683 
1684 	if (pgofs >= end)
1685 		goto sync_out;
1686 	else if (dn.ofs_in_node < end_offset)
1687 		goto next_block;
1688 
1689 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1690 		if (map->m_flags & F2FS_MAP_MAPPED) {
1691 			unsigned int ofs = start_pgofs - map->m_lblk;
1692 
1693 			f2fs_update_extent_cache_range(&dn,
1694 				start_pgofs, map->m_pblk + ofs,
1695 				map->m_len - ofs);
1696 		}
1697 	}
1698 
1699 	f2fs_put_dnode(&dn);
1700 
1701 	if (map->m_may_create) {
1702 		f2fs_do_map_lock(sbi, flag, false);
1703 		f2fs_balance_fs(sbi, dn.node_changed);
1704 	}
1705 	goto next_dnode;
1706 
1707 sync_out:
1708 
1709 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1710 		/*
1711 		 * for hardware encryption, but to avoid potential issue
1712 		 * in future
1713 		 */
1714 		f2fs_wait_on_block_writeback_range(inode,
1715 						map->m_pblk, map->m_len);
1716 
1717 		if (map->m_multidev_dio) {
1718 			block_t blk_addr = map->m_pblk;
1719 
1720 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1721 
1722 			map->m_bdev = FDEV(bidx).bdev;
1723 			map->m_pblk -= FDEV(bidx).start_blk;
1724 
1725 			if (map->m_may_create)
1726 				f2fs_update_device_state(sbi, inode->i_ino,
1727 							blk_addr, map->m_len);
1728 
1729 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1730 						FDEV(bidx).end_blk + 1);
1731 		}
1732 	}
1733 
1734 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1735 		if (map->m_flags & F2FS_MAP_MAPPED) {
1736 			unsigned int ofs = start_pgofs - map->m_lblk;
1737 
1738 			f2fs_update_extent_cache_range(&dn,
1739 				start_pgofs, map->m_pblk + ofs,
1740 				map->m_len - ofs);
1741 		}
1742 		if (map->m_next_extent)
1743 			*map->m_next_extent = pgofs + 1;
1744 	}
1745 	f2fs_put_dnode(&dn);
1746 unlock_out:
1747 	if (map->m_may_create) {
1748 		f2fs_do_map_lock(sbi, flag, false);
1749 		f2fs_balance_fs(sbi, dn.node_changed);
1750 	}
1751 out:
1752 	trace_f2fs_map_blocks(inode, map, create, flag, err);
1753 	return err;
1754 }
1755 
1756 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1757 {
1758 	struct f2fs_map_blocks map;
1759 	block_t last_lblk;
1760 	int err;
1761 
1762 	if (pos + len > i_size_read(inode))
1763 		return false;
1764 
1765 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1766 	map.m_next_pgofs = NULL;
1767 	map.m_next_extent = NULL;
1768 	map.m_seg_type = NO_CHECK_TYPE;
1769 	map.m_may_create = false;
1770 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1771 
1772 	while (map.m_lblk < last_lblk) {
1773 		map.m_len = last_lblk - map.m_lblk;
1774 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1775 		if (err || map.m_len == 0)
1776 			return false;
1777 		map.m_lblk += map.m_len;
1778 	}
1779 	return true;
1780 }
1781 
1782 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1783 {
1784 	return (bytes >> inode->i_blkbits);
1785 }
1786 
1787 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1788 {
1789 	return (blks << inode->i_blkbits);
1790 }
1791 
1792 static int f2fs_xattr_fiemap(struct inode *inode,
1793 				struct fiemap_extent_info *fieinfo)
1794 {
1795 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1796 	struct page *page;
1797 	struct node_info ni;
1798 	__u64 phys = 0, len;
1799 	__u32 flags;
1800 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1801 	int err = 0;
1802 
1803 	if (f2fs_has_inline_xattr(inode)) {
1804 		int offset;
1805 
1806 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1807 						inode->i_ino, false);
1808 		if (!page)
1809 			return -ENOMEM;
1810 
1811 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1812 		if (err) {
1813 			f2fs_put_page(page, 1);
1814 			return err;
1815 		}
1816 
1817 		phys = blks_to_bytes(inode, ni.blk_addr);
1818 		offset = offsetof(struct f2fs_inode, i_addr) +
1819 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1820 					get_inline_xattr_addrs(inode));
1821 
1822 		phys += offset;
1823 		len = inline_xattr_size(inode);
1824 
1825 		f2fs_put_page(page, 1);
1826 
1827 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1828 
1829 		if (!xnid)
1830 			flags |= FIEMAP_EXTENT_LAST;
1831 
1832 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1833 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1834 		if (err)
1835 			return err;
1836 	}
1837 
1838 	if (xnid) {
1839 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1840 		if (!page)
1841 			return -ENOMEM;
1842 
1843 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1844 		if (err) {
1845 			f2fs_put_page(page, 1);
1846 			return err;
1847 		}
1848 
1849 		phys = blks_to_bytes(inode, ni.blk_addr);
1850 		len = inode->i_sb->s_blocksize;
1851 
1852 		f2fs_put_page(page, 1);
1853 
1854 		flags = FIEMAP_EXTENT_LAST;
1855 	}
1856 
1857 	if (phys) {
1858 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1859 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1860 	}
1861 
1862 	return (err < 0 ? err : 0);
1863 }
1864 
1865 static loff_t max_inode_blocks(struct inode *inode)
1866 {
1867 	loff_t result = ADDRS_PER_INODE(inode);
1868 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1869 
1870 	/* two direct node blocks */
1871 	result += (leaf_count * 2);
1872 
1873 	/* two indirect node blocks */
1874 	leaf_count *= NIDS_PER_BLOCK;
1875 	result += (leaf_count * 2);
1876 
1877 	/* one double indirect node block */
1878 	leaf_count *= NIDS_PER_BLOCK;
1879 	result += leaf_count;
1880 
1881 	return result;
1882 }
1883 
1884 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1885 		u64 start, u64 len)
1886 {
1887 	struct f2fs_map_blocks map;
1888 	sector_t start_blk, last_blk;
1889 	pgoff_t next_pgofs;
1890 	u64 logical = 0, phys = 0, size = 0;
1891 	u32 flags = 0;
1892 	int ret = 0;
1893 	bool compr_cluster = false, compr_appended;
1894 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1895 	unsigned int count_in_cluster = 0;
1896 	loff_t maxbytes;
1897 
1898 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1899 		ret = f2fs_precache_extents(inode);
1900 		if (ret)
1901 			return ret;
1902 	}
1903 
1904 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1905 	if (ret)
1906 		return ret;
1907 
1908 	inode_lock(inode);
1909 
1910 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1911 	if (start > maxbytes) {
1912 		ret = -EFBIG;
1913 		goto out;
1914 	}
1915 
1916 	if (len > maxbytes || (maxbytes - len) < start)
1917 		len = maxbytes - start;
1918 
1919 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1920 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1921 		goto out;
1922 	}
1923 
1924 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1925 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1926 		if (ret != -EAGAIN)
1927 			goto out;
1928 	}
1929 
1930 	if (bytes_to_blks(inode, len) == 0)
1931 		len = blks_to_bytes(inode, 1);
1932 
1933 	start_blk = bytes_to_blks(inode, start);
1934 	last_blk = bytes_to_blks(inode, start + len - 1);
1935 
1936 next:
1937 	memset(&map, 0, sizeof(map));
1938 	map.m_lblk = start_blk;
1939 	map.m_len = bytes_to_blks(inode, len);
1940 	map.m_next_pgofs = &next_pgofs;
1941 	map.m_seg_type = NO_CHECK_TYPE;
1942 
1943 	if (compr_cluster) {
1944 		map.m_lblk += 1;
1945 		map.m_len = cluster_size - count_in_cluster;
1946 	}
1947 
1948 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1949 	if (ret)
1950 		goto out;
1951 
1952 	/* HOLE */
1953 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1954 		start_blk = next_pgofs;
1955 
1956 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1957 						max_inode_blocks(inode)))
1958 			goto prep_next;
1959 
1960 		flags |= FIEMAP_EXTENT_LAST;
1961 	}
1962 
1963 	compr_appended = false;
1964 	/* In a case of compressed cluster, append this to the last extent */
1965 	if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1966 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1967 		compr_appended = true;
1968 		goto skip_fill;
1969 	}
1970 
1971 	if (size) {
1972 		flags |= FIEMAP_EXTENT_MERGED;
1973 		if (IS_ENCRYPTED(inode))
1974 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1975 
1976 		ret = fiemap_fill_next_extent(fieinfo, logical,
1977 				phys, size, flags);
1978 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1979 		if (ret)
1980 			goto out;
1981 		size = 0;
1982 	}
1983 
1984 	if (start_blk > last_blk)
1985 		goto out;
1986 
1987 skip_fill:
1988 	if (map.m_pblk == COMPRESS_ADDR) {
1989 		compr_cluster = true;
1990 		count_in_cluster = 1;
1991 	} else if (compr_appended) {
1992 		unsigned int appended_blks = cluster_size -
1993 						count_in_cluster + 1;
1994 		size += blks_to_bytes(inode, appended_blks);
1995 		start_blk += appended_blks;
1996 		compr_cluster = false;
1997 	} else {
1998 		logical = blks_to_bytes(inode, start_blk);
1999 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2000 			blks_to_bytes(inode, map.m_pblk) : 0;
2001 		size = blks_to_bytes(inode, map.m_len);
2002 		flags = 0;
2003 
2004 		if (compr_cluster) {
2005 			flags = FIEMAP_EXTENT_ENCODED;
2006 			count_in_cluster += map.m_len;
2007 			if (count_in_cluster == cluster_size) {
2008 				compr_cluster = false;
2009 				size += blks_to_bytes(inode, 1);
2010 			}
2011 		} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2012 			flags = FIEMAP_EXTENT_UNWRITTEN;
2013 		}
2014 
2015 		start_blk += bytes_to_blks(inode, size);
2016 	}
2017 
2018 prep_next:
2019 	cond_resched();
2020 	if (fatal_signal_pending(current))
2021 		ret = -EINTR;
2022 	else
2023 		goto next;
2024 out:
2025 	if (ret == 1)
2026 		ret = 0;
2027 
2028 	inode_unlock(inode);
2029 	return ret;
2030 }
2031 
2032 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2033 {
2034 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2035 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2036 		return inode->i_sb->s_maxbytes;
2037 
2038 	return i_size_read(inode);
2039 }
2040 
2041 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2042 					unsigned nr_pages,
2043 					struct f2fs_map_blocks *map,
2044 					struct bio **bio_ret,
2045 					sector_t *last_block_in_bio,
2046 					bool is_readahead)
2047 {
2048 	struct bio *bio = *bio_ret;
2049 	const unsigned blocksize = blks_to_bytes(inode, 1);
2050 	sector_t block_in_file;
2051 	sector_t last_block;
2052 	sector_t last_block_in_file;
2053 	sector_t block_nr;
2054 	int ret = 0;
2055 
2056 	block_in_file = (sector_t)page_index(page);
2057 	last_block = block_in_file + nr_pages;
2058 	last_block_in_file = bytes_to_blks(inode,
2059 			f2fs_readpage_limit(inode) + blocksize - 1);
2060 	if (last_block > last_block_in_file)
2061 		last_block = last_block_in_file;
2062 
2063 	/* just zeroing out page which is beyond EOF */
2064 	if (block_in_file >= last_block)
2065 		goto zero_out;
2066 	/*
2067 	 * Map blocks using the previous result first.
2068 	 */
2069 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2070 			block_in_file > map->m_lblk &&
2071 			block_in_file < (map->m_lblk + map->m_len))
2072 		goto got_it;
2073 
2074 	/*
2075 	 * Then do more f2fs_map_blocks() calls until we are
2076 	 * done with this page.
2077 	 */
2078 	map->m_lblk = block_in_file;
2079 	map->m_len = last_block - block_in_file;
2080 
2081 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2082 	if (ret)
2083 		goto out;
2084 got_it:
2085 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2086 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2087 		SetPageMappedToDisk(page);
2088 
2089 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2090 						DATA_GENERIC_ENHANCE_READ)) {
2091 			ret = -EFSCORRUPTED;
2092 			f2fs_handle_error(F2FS_I_SB(inode),
2093 						ERROR_INVALID_BLKADDR);
2094 			goto out;
2095 		}
2096 	} else {
2097 zero_out:
2098 		zero_user_segment(page, 0, PAGE_SIZE);
2099 		if (f2fs_need_verity(inode, page->index) &&
2100 		    !fsverity_verify_page(page)) {
2101 			ret = -EIO;
2102 			goto out;
2103 		}
2104 		if (!PageUptodate(page))
2105 			SetPageUptodate(page);
2106 		unlock_page(page);
2107 		goto out;
2108 	}
2109 
2110 	/*
2111 	 * This page will go to BIO.  Do we need to send this
2112 	 * BIO off first?
2113 	 */
2114 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2115 				       *last_block_in_bio, block_nr) ||
2116 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2117 submit_and_realloc:
2118 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2119 		bio = NULL;
2120 	}
2121 	if (bio == NULL) {
2122 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2123 				is_readahead ? REQ_RAHEAD : 0, page->index,
2124 				false);
2125 		if (IS_ERR(bio)) {
2126 			ret = PTR_ERR(bio);
2127 			bio = NULL;
2128 			goto out;
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * If the page is under writeback, we need to wait for
2134 	 * its completion to see the correct decrypted data.
2135 	 */
2136 	f2fs_wait_on_block_writeback(inode, block_nr);
2137 
2138 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2139 		goto submit_and_realloc;
2140 
2141 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2142 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2143 							F2FS_BLKSIZE);
2144 	ClearPageError(page);
2145 	*last_block_in_bio = block_nr;
2146 	goto out;
2147 out:
2148 	*bio_ret = bio;
2149 	return ret;
2150 }
2151 
2152 #ifdef CONFIG_F2FS_FS_COMPRESSION
2153 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2154 				unsigned nr_pages, sector_t *last_block_in_bio,
2155 				bool is_readahead, bool for_write)
2156 {
2157 	struct dnode_of_data dn;
2158 	struct inode *inode = cc->inode;
2159 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2160 	struct bio *bio = *bio_ret;
2161 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2162 	sector_t last_block_in_file;
2163 	const unsigned blocksize = blks_to_bytes(inode, 1);
2164 	struct decompress_io_ctx *dic = NULL;
2165 	struct extent_info ei = {0, };
2166 	bool from_dnode = true;
2167 	int i;
2168 	int ret = 0;
2169 
2170 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2171 
2172 	last_block_in_file = bytes_to_blks(inode,
2173 			f2fs_readpage_limit(inode) + blocksize - 1);
2174 
2175 	/* get rid of pages beyond EOF */
2176 	for (i = 0; i < cc->cluster_size; i++) {
2177 		struct page *page = cc->rpages[i];
2178 
2179 		if (!page)
2180 			continue;
2181 		if ((sector_t)page->index >= last_block_in_file) {
2182 			zero_user_segment(page, 0, PAGE_SIZE);
2183 			if (!PageUptodate(page))
2184 				SetPageUptodate(page);
2185 		} else if (!PageUptodate(page)) {
2186 			continue;
2187 		}
2188 		unlock_page(page);
2189 		if (for_write)
2190 			put_page(page);
2191 		cc->rpages[i] = NULL;
2192 		cc->nr_rpages--;
2193 	}
2194 
2195 	/* we are done since all pages are beyond EOF */
2196 	if (f2fs_cluster_is_empty(cc))
2197 		goto out;
2198 
2199 	if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2200 		from_dnode = false;
2201 
2202 	if (!from_dnode)
2203 		goto skip_reading_dnode;
2204 
2205 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2206 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2207 	if (ret)
2208 		goto out;
2209 
2210 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2211 
2212 skip_reading_dnode:
2213 	for (i = 1; i < cc->cluster_size; i++) {
2214 		block_t blkaddr;
2215 
2216 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2217 					dn.ofs_in_node + i) :
2218 					ei.blk + i - 1;
2219 
2220 		if (!__is_valid_data_blkaddr(blkaddr))
2221 			break;
2222 
2223 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2224 			ret = -EFAULT;
2225 			goto out_put_dnode;
2226 		}
2227 		cc->nr_cpages++;
2228 
2229 		if (!from_dnode && i >= ei.c_len)
2230 			break;
2231 	}
2232 
2233 	/* nothing to decompress */
2234 	if (cc->nr_cpages == 0) {
2235 		ret = 0;
2236 		goto out_put_dnode;
2237 	}
2238 
2239 	dic = f2fs_alloc_dic(cc);
2240 	if (IS_ERR(dic)) {
2241 		ret = PTR_ERR(dic);
2242 		goto out_put_dnode;
2243 	}
2244 
2245 	for (i = 0; i < cc->nr_cpages; i++) {
2246 		struct page *page = dic->cpages[i];
2247 		block_t blkaddr;
2248 		struct bio_post_read_ctx *ctx;
2249 
2250 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2251 					dn.ofs_in_node + i + 1) :
2252 					ei.blk + i;
2253 
2254 		f2fs_wait_on_block_writeback(inode, blkaddr);
2255 
2256 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2257 			if (atomic_dec_and_test(&dic->remaining_pages))
2258 				f2fs_decompress_cluster(dic, true);
2259 			continue;
2260 		}
2261 
2262 		if (bio && (!page_is_mergeable(sbi, bio,
2263 					*last_block_in_bio, blkaddr) ||
2264 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2265 submit_and_realloc:
2266 			__submit_bio(sbi, bio, DATA);
2267 			bio = NULL;
2268 		}
2269 
2270 		if (!bio) {
2271 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2272 					is_readahead ? REQ_RAHEAD : 0,
2273 					page->index, for_write);
2274 			if (IS_ERR(bio)) {
2275 				ret = PTR_ERR(bio);
2276 				f2fs_decompress_end_io(dic, ret, true);
2277 				f2fs_put_dnode(&dn);
2278 				*bio_ret = NULL;
2279 				return ret;
2280 			}
2281 		}
2282 
2283 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2284 			goto submit_and_realloc;
2285 
2286 		ctx = get_post_read_ctx(bio);
2287 		ctx->enabled_steps |= STEP_DECOMPRESS;
2288 		refcount_inc(&dic->refcnt);
2289 
2290 		inc_page_count(sbi, F2FS_RD_DATA);
2291 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2292 		ClearPageError(page);
2293 		*last_block_in_bio = blkaddr;
2294 	}
2295 
2296 	if (from_dnode)
2297 		f2fs_put_dnode(&dn);
2298 
2299 	*bio_ret = bio;
2300 	return 0;
2301 
2302 out_put_dnode:
2303 	if (from_dnode)
2304 		f2fs_put_dnode(&dn);
2305 out:
2306 	for (i = 0; i < cc->cluster_size; i++) {
2307 		if (cc->rpages[i]) {
2308 			ClearPageUptodate(cc->rpages[i]);
2309 			ClearPageError(cc->rpages[i]);
2310 			unlock_page(cc->rpages[i]);
2311 		}
2312 	}
2313 	*bio_ret = bio;
2314 	return ret;
2315 }
2316 #endif
2317 
2318 /*
2319  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2320  * Major change was from block_size == page_size in f2fs by default.
2321  */
2322 static int f2fs_mpage_readpages(struct inode *inode,
2323 		struct readahead_control *rac, struct page *page)
2324 {
2325 	struct bio *bio = NULL;
2326 	sector_t last_block_in_bio = 0;
2327 	struct f2fs_map_blocks map;
2328 #ifdef CONFIG_F2FS_FS_COMPRESSION
2329 	struct compress_ctx cc = {
2330 		.inode = inode,
2331 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2332 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2333 		.cluster_idx = NULL_CLUSTER,
2334 		.rpages = NULL,
2335 		.cpages = NULL,
2336 		.nr_rpages = 0,
2337 		.nr_cpages = 0,
2338 	};
2339 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2340 #endif
2341 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2342 	unsigned max_nr_pages = nr_pages;
2343 	int ret = 0;
2344 
2345 	map.m_pblk = 0;
2346 	map.m_lblk = 0;
2347 	map.m_len = 0;
2348 	map.m_flags = 0;
2349 	map.m_next_pgofs = NULL;
2350 	map.m_next_extent = NULL;
2351 	map.m_seg_type = NO_CHECK_TYPE;
2352 	map.m_may_create = false;
2353 
2354 	for (; nr_pages; nr_pages--) {
2355 		if (rac) {
2356 			page = readahead_page(rac);
2357 			prefetchw(&page->flags);
2358 		}
2359 
2360 #ifdef CONFIG_F2FS_FS_COMPRESSION
2361 		if (f2fs_compressed_file(inode)) {
2362 			/* there are remained comressed pages, submit them */
2363 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2364 				ret = f2fs_read_multi_pages(&cc, &bio,
2365 							max_nr_pages,
2366 							&last_block_in_bio,
2367 							rac != NULL, false);
2368 				f2fs_destroy_compress_ctx(&cc, false);
2369 				if (ret)
2370 					goto set_error_page;
2371 			}
2372 			if (cc.cluster_idx == NULL_CLUSTER) {
2373 				if (nc_cluster_idx ==
2374 					page->index >> cc.log_cluster_size) {
2375 					goto read_single_page;
2376 				}
2377 
2378 				ret = f2fs_is_compressed_cluster(inode, page->index);
2379 				if (ret < 0)
2380 					goto set_error_page;
2381 				else if (!ret) {
2382 					nc_cluster_idx =
2383 						page->index >> cc.log_cluster_size;
2384 					goto read_single_page;
2385 				}
2386 
2387 				nc_cluster_idx = NULL_CLUSTER;
2388 			}
2389 			ret = f2fs_init_compress_ctx(&cc);
2390 			if (ret)
2391 				goto set_error_page;
2392 
2393 			f2fs_compress_ctx_add_page(&cc, page);
2394 
2395 			goto next_page;
2396 		}
2397 read_single_page:
2398 #endif
2399 
2400 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2401 					&bio, &last_block_in_bio, rac);
2402 		if (ret) {
2403 #ifdef CONFIG_F2FS_FS_COMPRESSION
2404 set_error_page:
2405 #endif
2406 			SetPageError(page);
2407 			zero_user_segment(page, 0, PAGE_SIZE);
2408 			unlock_page(page);
2409 		}
2410 #ifdef CONFIG_F2FS_FS_COMPRESSION
2411 next_page:
2412 #endif
2413 		if (rac)
2414 			put_page(page);
2415 
2416 #ifdef CONFIG_F2FS_FS_COMPRESSION
2417 		if (f2fs_compressed_file(inode)) {
2418 			/* last page */
2419 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2420 				ret = f2fs_read_multi_pages(&cc, &bio,
2421 							max_nr_pages,
2422 							&last_block_in_bio,
2423 							rac != NULL, false);
2424 				f2fs_destroy_compress_ctx(&cc, false);
2425 			}
2426 		}
2427 #endif
2428 	}
2429 	if (bio)
2430 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2431 	return ret;
2432 }
2433 
2434 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2435 {
2436 	struct page *page = &folio->page;
2437 	struct inode *inode = page_file_mapping(page)->host;
2438 	int ret = -EAGAIN;
2439 
2440 	trace_f2fs_readpage(page, DATA);
2441 
2442 	if (!f2fs_is_compress_backend_ready(inode)) {
2443 		unlock_page(page);
2444 		return -EOPNOTSUPP;
2445 	}
2446 
2447 	/* If the file has inline data, try to read it directly */
2448 	if (f2fs_has_inline_data(inode))
2449 		ret = f2fs_read_inline_data(inode, page);
2450 	if (ret == -EAGAIN)
2451 		ret = f2fs_mpage_readpages(inode, NULL, page);
2452 	return ret;
2453 }
2454 
2455 static void f2fs_readahead(struct readahead_control *rac)
2456 {
2457 	struct inode *inode = rac->mapping->host;
2458 
2459 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2460 
2461 	if (!f2fs_is_compress_backend_ready(inode))
2462 		return;
2463 
2464 	/* If the file has inline data, skip readahead */
2465 	if (f2fs_has_inline_data(inode))
2466 		return;
2467 
2468 	f2fs_mpage_readpages(inode, rac, NULL);
2469 }
2470 
2471 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2472 {
2473 	struct inode *inode = fio->page->mapping->host;
2474 	struct page *mpage, *page;
2475 	gfp_t gfp_flags = GFP_NOFS;
2476 
2477 	if (!f2fs_encrypted_file(inode))
2478 		return 0;
2479 
2480 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2481 
2482 	/* wait for GCed page writeback via META_MAPPING */
2483 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2484 
2485 	if (fscrypt_inode_uses_inline_crypto(inode))
2486 		return 0;
2487 
2488 retry_encrypt:
2489 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2490 					PAGE_SIZE, 0, gfp_flags);
2491 	if (IS_ERR(fio->encrypted_page)) {
2492 		/* flush pending IOs and wait for a while in the ENOMEM case */
2493 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2494 			f2fs_flush_merged_writes(fio->sbi);
2495 			memalloc_retry_wait(GFP_NOFS);
2496 			gfp_flags |= __GFP_NOFAIL;
2497 			goto retry_encrypt;
2498 		}
2499 		return PTR_ERR(fio->encrypted_page);
2500 	}
2501 
2502 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2503 	if (mpage) {
2504 		if (PageUptodate(mpage))
2505 			memcpy(page_address(mpage),
2506 				page_address(fio->encrypted_page), PAGE_SIZE);
2507 		f2fs_put_page(mpage, 1);
2508 	}
2509 	return 0;
2510 }
2511 
2512 static inline bool check_inplace_update_policy(struct inode *inode,
2513 				struct f2fs_io_info *fio)
2514 {
2515 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2516 	unsigned int policy = SM_I(sbi)->ipu_policy;
2517 
2518 	if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2519 			is_inode_flag_set(inode, FI_OPU_WRITE))
2520 		return false;
2521 	if (policy & (0x1 << F2FS_IPU_FORCE))
2522 		return true;
2523 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2524 		return true;
2525 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2526 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2527 		return true;
2528 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2529 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2530 		return true;
2531 
2532 	/*
2533 	 * IPU for rewrite async pages
2534 	 */
2535 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2536 			fio && fio->op == REQ_OP_WRITE &&
2537 			!(fio->op_flags & REQ_SYNC) &&
2538 			!IS_ENCRYPTED(inode))
2539 		return true;
2540 
2541 	/* this is only set during fdatasync */
2542 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2543 			is_inode_flag_set(inode, FI_NEED_IPU))
2544 		return true;
2545 
2546 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2547 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2548 		return true;
2549 
2550 	return false;
2551 }
2552 
2553 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2554 {
2555 	/* swap file is migrating in aligned write mode */
2556 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2557 		return false;
2558 
2559 	if (f2fs_is_pinned_file(inode))
2560 		return true;
2561 
2562 	/* if this is cold file, we should overwrite to avoid fragmentation */
2563 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2564 		return true;
2565 
2566 	return check_inplace_update_policy(inode, fio);
2567 }
2568 
2569 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2570 {
2571 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2572 
2573 	/* The below cases were checked when setting it. */
2574 	if (f2fs_is_pinned_file(inode))
2575 		return false;
2576 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2577 		return true;
2578 	if (f2fs_lfs_mode(sbi))
2579 		return true;
2580 	if (S_ISDIR(inode->i_mode))
2581 		return true;
2582 	if (IS_NOQUOTA(inode))
2583 		return true;
2584 	if (f2fs_is_atomic_file(inode))
2585 		return true;
2586 
2587 	/* swap file is migrating in aligned write mode */
2588 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2589 		return true;
2590 
2591 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2592 		return true;
2593 
2594 	if (fio) {
2595 		if (page_private_gcing(fio->page))
2596 			return true;
2597 		if (page_private_dummy(fio->page))
2598 			return true;
2599 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2600 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2601 			return true;
2602 	}
2603 	return false;
2604 }
2605 
2606 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2607 {
2608 	struct inode *inode = fio->page->mapping->host;
2609 
2610 	if (f2fs_should_update_outplace(inode, fio))
2611 		return false;
2612 
2613 	return f2fs_should_update_inplace(inode, fio);
2614 }
2615 
2616 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2617 {
2618 	struct page *page = fio->page;
2619 	struct inode *inode = page->mapping->host;
2620 	struct dnode_of_data dn;
2621 	struct extent_info ei = {0, };
2622 	struct node_info ni;
2623 	bool ipu_force = false;
2624 	int err = 0;
2625 
2626 	/* Use COW inode to make dnode_of_data for atomic write */
2627 	if (f2fs_is_atomic_file(inode))
2628 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2629 	else
2630 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2631 
2632 	if (need_inplace_update(fio) &&
2633 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2634 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2635 
2636 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2637 						DATA_GENERIC_ENHANCE)) {
2638 			f2fs_handle_error(fio->sbi,
2639 						ERROR_INVALID_BLKADDR);
2640 			return -EFSCORRUPTED;
2641 		}
2642 
2643 		ipu_force = true;
2644 		fio->need_lock = LOCK_DONE;
2645 		goto got_it;
2646 	}
2647 
2648 	/* Deadlock due to between page->lock and f2fs_lock_op */
2649 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2650 		return -EAGAIN;
2651 
2652 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2653 	if (err)
2654 		goto out;
2655 
2656 	fio->old_blkaddr = dn.data_blkaddr;
2657 
2658 	/* This page is already truncated */
2659 	if (fio->old_blkaddr == NULL_ADDR) {
2660 		ClearPageUptodate(page);
2661 		clear_page_private_gcing(page);
2662 		goto out_writepage;
2663 	}
2664 got_it:
2665 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2666 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2667 						DATA_GENERIC_ENHANCE)) {
2668 		err = -EFSCORRUPTED;
2669 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2670 		goto out_writepage;
2671 	}
2672 
2673 	/*
2674 	 * If current allocation needs SSR,
2675 	 * it had better in-place writes for updated data.
2676 	 */
2677 	if (ipu_force ||
2678 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2679 					need_inplace_update(fio))) {
2680 		err = f2fs_encrypt_one_page(fio);
2681 		if (err)
2682 			goto out_writepage;
2683 
2684 		set_page_writeback(page);
2685 		ClearPageError(page);
2686 		f2fs_put_dnode(&dn);
2687 		if (fio->need_lock == LOCK_REQ)
2688 			f2fs_unlock_op(fio->sbi);
2689 		err = f2fs_inplace_write_data(fio);
2690 		if (err) {
2691 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2692 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2693 			if (PageWriteback(page))
2694 				end_page_writeback(page);
2695 		} else {
2696 			set_inode_flag(inode, FI_UPDATE_WRITE);
2697 		}
2698 		trace_f2fs_do_write_data_page(fio->page, IPU);
2699 		return err;
2700 	}
2701 
2702 	if (fio->need_lock == LOCK_RETRY) {
2703 		if (!f2fs_trylock_op(fio->sbi)) {
2704 			err = -EAGAIN;
2705 			goto out_writepage;
2706 		}
2707 		fio->need_lock = LOCK_REQ;
2708 	}
2709 
2710 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2711 	if (err)
2712 		goto out_writepage;
2713 
2714 	fio->version = ni.version;
2715 
2716 	err = f2fs_encrypt_one_page(fio);
2717 	if (err)
2718 		goto out_writepage;
2719 
2720 	set_page_writeback(page);
2721 	ClearPageError(page);
2722 
2723 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2724 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2725 
2726 	/* LFS mode write path */
2727 	f2fs_outplace_write_data(&dn, fio);
2728 	trace_f2fs_do_write_data_page(page, OPU);
2729 	set_inode_flag(inode, FI_APPEND_WRITE);
2730 	if (page->index == 0)
2731 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2732 out_writepage:
2733 	f2fs_put_dnode(&dn);
2734 out:
2735 	if (fio->need_lock == LOCK_REQ)
2736 		f2fs_unlock_op(fio->sbi);
2737 	return err;
2738 }
2739 
2740 int f2fs_write_single_data_page(struct page *page, int *submitted,
2741 				struct bio **bio,
2742 				sector_t *last_block,
2743 				struct writeback_control *wbc,
2744 				enum iostat_type io_type,
2745 				int compr_blocks,
2746 				bool allow_balance)
2747 {
2748 	struct inode *inode = page->mapping->host;
2749 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2750 	loff_t i_size = i_size_read(inode);
2751 	const pgoff_t end_index = ((unsigned long long)i_size)
2752 							>> PAGE_SHIFT;
2753 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2754 	unsigned offset = 0;
2755 	bool need_balance_fs = false;
2756 	int err = 0;
2757 	struct f2fs_io_info fio = {
2758 		.sbi = sbi,
2759 		.ino = inode->i_ino,
2760 		.type = DATA,
2761 		.op = REQ_OP_WRITE,
2762 		.op_flags = wbc_to_write_flags(wbc),
2763 		.old_blkaddr = NULL_ADDR,
2764 		.page = page,
2765 		.encrypted_page = NULL,
2766 		.submitted = false,
2767 		.compr_blocks = compr_blocks,
2768 		.need_lock = LOCK_RETRY,
2769 		.post_read = f2fs_post_read_required(inode),
2770 		.io_type = io_type,
2771 		.io_wbc = wbc,
2772 		.bio = bio,
2773 		.last_block = last_block,
2774 	};
2775 
2776 	trace_f2fs_writepage(page, DATA);
2777 
2778 	/* we should bypass data pages to proceed the kworkder jobs */
2779 	if (unlikely(f2fs_cp_error(sbi))) {
2780 		mapping_set_error(page->mapping, -EIO);
2781 		/*
2782 		 * don't drop any dirty dentry pages for keeping lastest
2783 		 * directory structure.
2784 		 */
2785 		if (S_ISDIR(inode->i_mode))
2786 			goto redirty_out;
2787 		goto out;
2788 	}
2789 
2790 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2791 		goto redirty_out;
2792 
2793 	if (page->index < end_index ||
2794 			f2fs_verity_in_progress(inode) ||
2795 			compr_blocks)
2796 		goto write;
2797 
2798 	/*
2799 	 * If the offset is out-of-range of file size,
2800 	 * this page does not have to be written to disk.
2801 	 */
2802 	offset = i_size & (PAGE_SIZE - 1);
2803 	if ((page->index >= end_index + 1) || !offset)
2804 		goto out;
2805 
2806 	zero_user_segment(page, offset, PAGE_SIZE);
2807 write:
2808 	if (f2fs_is_drop_cache(inode))
2809 		goto out;
2810 
2811 	/* Dentry/quota blocks are controlled by checkpoint */
2812 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2813 		/*
2814 		 * We need to wait for node_write to avoid block allocation during
2815 		 * checkpoint. This can only happen to quota writes which can cause
2816 		 * the below discard race condition.
2817 		 */
2818 		if (IS_NOQUOTA(inode))
2819 			f2fs_down_read(&sbi->node_write);
2820 
2821 		fio.need_lock = LOCK_DONE;
2822 		err = f2fs_do_write_data_page(&fio);
2823 
2824 		if (IS_NOQUOTA(inode))
2825 			f2fs_up_read(&sbi->node_write);
2826 
2827 		goto done;
2828 	}
2829 
2830 	if (!wbc->for_reclaim)
2831 		need_balance_fs = true;
2832 	else if (has_not_enough_free_secs(sbi, 0, 0))
2833 		goto redirty_out;
2834 	else
2835 		set_inode_flag(inode, FI_HOT_DATA);
2836 
2837 	err = -EAGAIN;
2838 	if (f2fs_has_inline_data(inode)) {
2839 		err = f2fs_write_inline_data(inode, page);
2840 		if (!err)
2841 			goto out;
2842 	}
2843 
2844 	if (err == -EAGAIN) {
2845 		err = f2fs_do_write_data_page(&fio);
2846 		if (err == -EAGAIN) {
2847 			fio.need_lock = LOCK_REQ;
2848 			err = f2fs_do_write_data_page(&fio);
2849 		}
2850 	}
2851 
2852 	if (err) {
2853 		file_set_keep_isize(inode);
2854 	} else {
2855 		spin_lock(&F2FS_I(inode)->i_size_lock);
2856 		if (F2FS_I(inode)->last_disk_size < psize)
2857 			F2FS_I(inode)->last_disk_size = psize;
2858 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2859 	}
2860 
2861 done:
2862 	if (err && err != -ENOENT)
2863 		goto redirty_out;
2864 
2865 out:
2866 	inode_dec_dirty_pages(inode);
2867 	if (err) {
2868 		ClearPageUptodate(page);
2869 		clear_page_private_gcing(page);
2870 	}
2871 
2872 	if (wbc->for_reclaim) {
2873 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2874 		clear_inode_flag(inode, FI_HOT_DATA);
2875 		f2fs_remove_dirty_inode(inode);
2876 		submitted = NULL;
2877 	}
2878 	unlock_page(page);
2879 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2880 			!F2FS_I(inode)->wb_task && allow_balance)
2881 		f2fs_balance_fs(sbi, need_balance_fs);
2882 
2883 	if (unlikely(f2fs_cp_error(sbi))) {
2884 		f2fs_submit_merged_write(sbi, DATA);
2885 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2886 		submitted = NULL;
2887 	}
2888 
2889 	if (submitted)
2890 		*submitted = fio.submitted ? 1 : 0;
2891 
2892 	return 0;
2893 
2894 redirty_out:
2895 	redirty_page_for_writepage(wbc, page);
2896 	/*
2897 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2898 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2899 	 * file_write_and_wait_range() will see EIO error, which is critical
2900 	 * to return value of fsync() followed by atomic_write failure to user.
2901 	 */
2902 	if (!err || wbc->for_reclaim)
2903 		return AOP_WRITEPAGE_ACTIVATE;
2904 	unlock_page(page);
2905 	return err;
2906 }
2907 
2908 static int f2fs_write_data_page(struct page *page,
2909 					struct writeback_control *wbc)
2910 {
2911 #ifdef CONFIG_F2FS_FS_COMPRESSION
2912 	struct inode *inode = page->mapping->host;
2913 
2914 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2915 		goto out;
2916 
2917 	if (f2fs_compressed_file(inode)) {
2918 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2919 			redirty_page_for_writepage(wbc, page);
2920 			return AOP_WRITEPAGE_ACTIVATE;
2921 		}
2922 	}
2923 out:
2924 #endif
2925 
2926 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2927 						wbc, FS_DATA_IO, 0, true);
2928 }
2929 
2930 /*
2931  * This function was copied from write_cche_pages from mm/page-writeback.c.
2932  * The major change is making write step of cold data page separately from
2933  * warm/hot data page.
2934  */
2935 static int f2fs_write_cache_pages(struct address_space *mapping,
2936 					struct writeback_control *wbc,
2937 					enum iostat_type io_type)
2938 {
2939 	int ret = 0;
2940 	int done = 0, retry = 0;
2941 	struct page *pages[F2FS_ONSTACK_PAGES];
2942 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2943 	struct bio *bio = NULL;
2944 	sector_t last_block;
2945 #ifdef CONFIG_F2FS_FS_COMPRESSION
2946 	struct inode *inode = mapping->host;
2947 	struct compress_ctx cc = {
2948 		.inode = inode,
2949 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2950 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2951 		.cluster_idx = NULL_CLUSTER,
2952 		.rpages = NULL,
2953 		.nr_rpages = 0,
2954 		.cpages = NULL,
2955 		.valid_nr_cpages = 0,
2956 		.rbuf = NULL,
2957 		.cbuf = NULL,
2958 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2959 		.private = NULL,
2960 	};
2961 #endif
2962 	int nr_pages;
2963 	pgoff_t index;
2964 	pgoff_t end;		/* Inclusive */
2965 	pgoff_t done_index;
2966 	int range_whole = 0;
2967 	xa_mark_t tag;
2968 	int nwritten = 0;
2969 	int submitted = 0;
2970 	int i;
2971 
2972 	if (get_dirty_pages(mapping->host) <=
2973 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2974 		set_inode_flag(mapping->host, FI_HOT_DATA);
2975 	else
2976 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2977 
2978 	if (wbc->range_cyclic) {
2979 		index = mapping->writeback_index; /* prev offset */
2980 		end = -1;
2981 	} else {
2982 		index = wbc->range_start >> PAGE_SHIFT;
2983 		end = wbc->range_end >> PAGE_SHIFT;
2984 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2985 			range_whole = 1;
2986 	}
2987 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2988 		tag = PAGECACHE_TAG_TOWRITE;
2989 	else
2990 		tag = PAGECACHE_TAG_DIRTY;
2991 retry:
2992 	retry = 0;
2993 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2994 		tag_pages_for_writeback(mapping, index, end);
2995 	done_index = index;
2996 	while (!done && !retry && (index <= end)) {
2997 		nr_pages = find_get_pages_range_tag(mapping, &index, end,
2998 				tag, F2FS_ONSTACK_PAGES, pages);
2999 		if (nr_pages == 0)
3000 			break;
3001 
3002 		for (i = 0; i < nr_pages; i++) {
3003 			struct page *page = pages[i];
3004 			bool need_readd;
3005 readd:
3006 			need_readd = false;
3007 #ifdef CONFIG_F2FS_FS_COMPRESSION
3008 			if (f2fs_compressed_file(inode)) {
3009 				void *fsdata = NULL;
3010 				struct page *pagep;
3011 				int ret2;
3012 
3013 				ret = f2fs_init_compress_ctx(&cc);
3014 				if (ret) {
3015 					done = 1;
3016 					break;
3017 				}
3018 
3019 				if (!f2fs_cluster_can_merge_page(&cc,
3020 								page->index)) {
3021 					ret = f2fs_write_multi_pages(&cc,
3022 						&submitted, wbc, io_type);
3023 					if (!ret)
3024 						need_readd = true;
3025 					goto result;
3026 				}
3027 
3028 				if (unlikely(f2fs_cp_error(sbi)))
3029 					goto lock_page;
3030 
3031 				if (!f2fs_cluster_is_empty(&cc))
3032 					goto lock_page;
3033 
3034 				if (f2fs_all_cluster_page_ready(&cc,
3035 					pages, i, nr_pages, true))
3036 					goto lock_page;
3037 
3038 				ret2 = f2fs_prepare_compress_overwrite(
3039 							inode, &pagep,
3040 							page->index, &fsdata);
3041 				if (ret2 < 0) {
3042 					ret = ret2;
3043 					done = 1;
3044 					break;
3045 				} else if (ret2 &&
3046 					(!f2fs_compress_write_end(inode,
3047 						fsdata, page->index, 1) ||
3048 					 !f2fs_all_cluster_page_ready(&cc,
3049 						pages, i, nr_pages, false))) {
3050 					retry = 1;
3051 					break;
3052 				}
3053 			}
3054 #endif
3055 			/* give a priority to WB_SYNC threads */
3056 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3057 					wbc->sync_mode == WB_SYNC_NONE) {
3058 				done = 1;
3059 				break;
3060 			}
3061 #ifdef CONFIG_F2FS_FS_COMPRESSION
3062 lock_page:
3063 #endif
3064 			done_index = page->index;
3065 retry_write:
3066 			lock_page(page);
3067 
3068 			if (unlikely(page->mapping != mapping)) {
3069 continue_unlock:
3070 				unlock_page(page);
3071 				continue;
3072 			}
3073 
3074 			if (!PageDirty(page)) {
3075 				/* someone wrote it for us */
3076 				goto continue_unlock;
3077 			}
3078 
3079 			if (PageWriteback(page)) {
3080 				if (wbc->sync_mode != WB_SYNC_NONE)
3081 					f2fs_wait_on_page_writeback(page,
3082 							DATA, true, true);
3083 				else
3084 					goto continue_unlock;
3085 			}
3086 
3087 			if (!clear_page_dirty_for_io(page))
3088 				goto continue_unlock;
3089 
3090 #ifdef CONFIG_F2FS_FS_COMPRESSION
3091 			if (f2fs_compressed_file(inode)) {
3092 				get_page(page);
3093 				f2fs_compress_ctx_add_page(&cc, page);
3094 				continue;
3095 			}
3096 #endif
3097 			ret = f2fs_write_single_data_page(page, &submitted,
3098 					&bio, &last_block, wbc, io_type,
3099 					0, true);
3100 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3101 				unlock_page(page);
3102 #ifdef CONFIG_F2FS_FS_COMPRESSION
3103 result:
3104 #endif
3105 			nwritten += submitted;
3106 			wbc->nr_to_write -= submitted;
3107 
3108 			if (unlikely(ret)) {
3109 				/*
3110 				 * keep nr_to_write, since vfs uses this to
3111 				 * get # of written pages.
3112 				 */
3113 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3114 					ret = 0;
3115 					goto next;
3116 				} else if (ret == -EAGAIN) {
3117 					ret = 0;
3118 					if (wbc->sync_mode == WB_SYNC_ALL) {
3119 						f2fs_io_schedule_timeout(
3120 							DEFAULT_IO_TIMEOUT);
3121 						goto retry_write;
3122 					}
3123 					goto next;
3124 				}
3125 				done_index = page->index + 1;
3126 				done = 1;
3127 				break;
3128 			}
3129 
3130 			if (wbc->nr_to_write <= 0 &&
3131 					wbc->sync_mode == WB_SYNC_NONE) {
3132 				done = 1;
3133 				break;
3134 			}
3135 next:
3136 			if (need_readd)
3137 				goto readd;
3138 		}
3139 		release_pages(pages, nr_pages);
3140 		cond_resched();
3141 	}
3142 #ifdef CONFIG_F2FS_FS_COMPRESSION
3143 	/* flush remained pages in compress cluster */
3144 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3145 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3146 		nwritten += submitted;
3147 		wbc->nr_to_write -= submitted;
3148 		if (ret) {
3149 			done = 1;
3150 			retry = 0;
3151 		}
3152 	}
3153 	if (f2fs_compressed_file(inode))
3154 		f2fs_destroy_compress_ctx(&cc, false);
3155 #endif
3156 	if (retry) {
3157 		index = 0;
3158 		end = -1;
3159 		goto retry;
3160 	}
3161 	if (wbc->range_cyclic && !done)
3162 		done_index = 0;
3163 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3164 		mapping->writeback_index = done_index;
3165 
3166 	if (nwritten)
3167 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3168 								NULL, 0, DATA);
3169 	/* submit cached bio of IPU write */
3170 	if (bio)
3171 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3172 
3173 	return ret;
3174 }
3175 
3176 static inline bool __should_serialize_io(struct inode *inode,
3177 					struct writeback_control *wbc)
3178 {
3179 	/* to avoid deadlock in path of data flush */
3180 	if (F2FS_I(inode)->wb_task)
3181 		return false;
3182 
3183 	if (!S_ISREG(inode->i_mode))
3184 		return false;
3185 	if (IS_NOQUOTA(inode))
3186 		return false;
3187 
3188 	if (f2fs_need_compress_data(inode))
3189 		return true;
3190 	if (wbc->sync_mode != WB_SYNC_ALL)
3191 		return true;
3192 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3193 		return true;
3194 	return false;
3195 }
3196 
3197 static int __f2fs_write_data_pages(struct address_space *mapping,
3198 						struct writeback_control *wbc,
3199 						enum iostat_type io_type)
3200 {
3201 	struct inode *inode = mapping->host;
3202 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3203 	struct blk_plug plug;
3204 	int ret;
3205 	bool locked = false;
3206 
3207 	/* deal with chardevs and other special file */
3208 	if (!mapping->a_ops->writepage)
3209 		return 0;
3210 
3211 	/* skip writing if there is no dirty page in this inode */
3212 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3213 		return 0;
3214 
3215 	/* during POR, we don't need to trigger writepage at all. */
3216 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3217 		goto skip_write;
3218 
3219 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3220 			wbc->sync_mode == WB_SYNC_NONE &&
3221 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3222 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3223 		goto skip_write;
3224 
3225 	/* skip writing in file defragment preparing stage */
3226 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3227 		goto skip_write;
3228 
3229 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3230 
3231 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3232 	if (wbc->sync_mode == WB_SYNC_ALL)
3233 		atomic_inc(&sbi->wb_sync_req[DATA]);
3234 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3235 		/* to avoid potential deadlock */
3236 		if (current->plug)
3237 			blk_finish_plug(current->plug);
3238 		goto skip_write;
3239 	}
3240 
3241 	if (__should_serialize_io(inode, wbc)) {
3242 		mutex_lock(&sbi->writepages);
3243 		locked = true;
3244 	}
3245 
3246 	blk_start_plug(&plug);
3247 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3248 	blk_finish_plug(&plug);
3249 
3250 	if (locked)
3251 		mutex_unlock(&sbi->writepages);
3252 
3253 	if (wbc->sync_mode == WB_SYNC_ALL)
3254 		atomic_dec(&sbi->wb_sync_req[DATA]);
3255 	/*
3256 	 * if some pages were truncated, we cannot guarantee its mapping->host
3257 	 * to detect pending bios.
3258 	 */
3259 
3260 	f2fs_remove_dirty_inode(inode);
3261 	return ret;
3262 
3263 skip_write:
3264 	wbc->pages_skipped += get_dirty_pages(inode);
3265 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3266 	return 0;
3267 }
3268 
3269 static int f2fs_write_data_pages(struct address_space *mapping,
3270 			    struct writeback_control *wbc)
3271 {
3272 	struct inode *inode = mapping->host;
3273 
3274 	return __f2fs_write_data_pages(mapping, wbc,
3275 			F2FS_I(inode)->cp_task == current ?
3276 			FS_CP_DATA_IO : FS_DATA_IO);
3277 }
3278 
3279 void f2fs_write_failed(struct inode *inode, loff_t to)
3280 {
3281 	loff_t i_size = i_size_read(inode);
3282 
3283 	if (IS_NOQUOTA(inode))
3284 		return;
3285 
3286 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3287 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3288 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3289 		filemap_invalidate_lock(inode->i_mapping);
3290 
3291 		truncate_pagecache(inode, i_size);
3292 		f2fs_truncate_blocks(inode, i_size, true);
3293 
3294 		filemap_invalidate_unlock(inode->i_mapping);
3295 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3296 	}
3297 }
3298 
3299 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3300 			struct page *page, loff_t pos, unsigned len,
3301 			block_t *blk_addr, bool *node_changed)
3302 {
3303 	struct inode *inode = page->mapping->host;
3304 	pgoff_t index = page->index;
3305 	struct dnode_of_data dn;
3306 	struct page *ipage;
3307 	bool locked = false;
3308 	struct extent_info ei = {0, };
3309 	int err = 0;
3310 	int flag;
3311 
3312 	/*
3313 	 * If a whole page is being written and we already preallocated all the
3314 	 * blocks, then there is no need to get a block address now.
3315 	 */
3316 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3317 		return 0;
3318 
3319 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3320 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3321 		flag = F2FS_GET_BLOCK_DEFAULT;
3322 	else
3323 		flag = F2FS_GET_BLOCK_PRE_AIO;
3324 
3325 	if (f2fs_has_inline_data(inode) ||
3326 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3327 		f2fs_do_map_lock(sbi, flag, true);
3328 		locked = true;
3329 	}
3330 
3331 restart:
3332 	/* check inline_data */
3333 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3334 	if (IS_ERR(ipage)) {
3335 		err = PTR_ERR(ipage);
3336 		goto unlock_out;
3337 	}
3338 
3339 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3340 
3341 	if (f2fs_has_inline_data(inode)) {
3342 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3343 			f2fs_do_read_inline_data(page, ipage);
3344 			set_inode_flag(inode, FI_DATA_EXIST);
3345 			if (inode->i_nlink)
3346 				set_page_private_inline(ipage);
3347 		} else {
3348 			err = f2fs_convert_inline_page(&dn, page);
3349 			if (err)
3350 				goto out;
3351 			if (dn.data_blkaddr == NULL_ADDR)
3352 				err = f2fs_get_block(&dn, index);
3353 		}
3354 	} else if (locked) {
3355 		err = f2fs_get_block(&dn, index);
3356 	} else {
3357 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3358 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3359 		} else {
3360 			/* hole case */
3361 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3362 			if (err || dn.data_blkaddr == NULL_ADDR) {
3363 				f2fs_put_dnode(&dn);
3364 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3365 								true);
3366 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3367 				locked = true;
3368 				goto restart;
3369 			}
3370 		}
3371 	}
3372 
3373 	/* convert_inline_page can make node_changed */
3374 	*blk_addr = dn.data_blkaddr;
3375 	*node_changed = dn.node_changed;
3376 out:
3377 	f2fs_put_dnode(&dn);
3378 unlock_out:
3379 	if (locked)
3380 		f2fs_do_map_lock(sbi, flag, false);
3381 	return err;
3382 }
3383 
3384 static int __find_data_block(struct inode *inode, pgoff_t index,
3385 				block_t *blk_addr)
3386 {
3387 	struct dnode_of_data dn;
3388 	struct page *ipage;
3389 	struct extent_info ei = {0, };
3390 	int err = 0;
3391 
3392 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3393 	if (IS_ERR(ipage))
3394 		return PTR_ERR(ipage);
3395 
3396 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3397 
3398 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3399 		dn.data_blkaddr = ei.blk + index - ei.fofs;
3400 	} else {
3401 		/* hole case */
3402 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3403 		if (err) {
3404 			dn.data_blkaddr = NULL_ADDR;
3405 			err = 0;
3406 		}
3407 	}
3408 	*blk_addr = dn.data_blkaddr;
3409 	f2fs_put_dnode(&dn);
3410 	return err;
3411 }
3412 
3413 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3414 				block_t *blk_addr, bool *node_changed)
3415 {
3416 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3417 	struct dnode_of_data dn;
3418 	struct page *ipage;
3419 	int err = 0;
3420 
3421 	f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3422 
3423 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3424 	if (IS_ERR(ipage)) {
3425 		err = PTR_ERR(ipage);
3426 		goto unlock_out;
3427 	}
3428 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3429 
3430 	err = f2fs_get_block(&dn, index);
3431 
3432 	*blk_addr = dn.data_blkaddr;
3433 	*node_changed = dn.node_changed;
3434 	f2fs_put_dnode(&dn);
3435 
3436 unlock_out:
3437 	f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3438 	return err;
3439 }
3440 
3441 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3442 			struct page *page, loff_t pos, unsigned int len,
3443 			block_t *blk_addr, bool *node_changed)
3444 {
3445 	struct inode *inode = page->mapping->host;
3446 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3447 	pgoff_t index = page->index;
3448 	int err = 0;
3449 	block_t ori_blk_addr = NULL_ADDR;
3450 
3451 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3452 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3453 		goto reserve_block;
3454 
3455 	/* Look for the block in COW inode first */
3456 	err = __find_data_block(cow_inode, index, blk_addr);
3457 	if (err)
3458 		return err;
3459 	else if (*blk_addr != NULL_ADDR)
3460 		return 0;
3461 
3462 	/* Look for the block in the original inode */
3463 	err = __find_data_block(inode, index, &ori_blk_addr);
3464 	if (err)
3465 		return err;
3466 
3467 reserve_block:
3468 	/* Finally, we should reserve a new block in COW inode for the update */
3469 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3470 	if (err)
3471 		return err;
3472 	inc_atomic_write_cnt(inode);
3473 
3474 	if (ori_blk_addr != NULL_ADDR)
3475 		*blk_addr = ori_blk_addr;
3476 	return 0;
3477 }
3478 
3479 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3480 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3481 {
3482 	struct inode *inode = mapping->host;
3483 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3484 	struct page *page = NULL;
3485 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3486 	bool need_balance = false;
3487 	block_t blkaddr = NULL_ADDR;
3488 	int err = 0;
3489 
3490 	trace_f2fs_write_begin(inode, pos, len);
3491 
3492 	if (!f2fs_is_checkpoint_ready(sbi)) {
3493 		err = -ENOSPC;
3494 		goto fail;
3495 	}
3496 
3497 	/*
3498 	 * We should check this at this moment to avoid deadlock on inode page
3499 	 * and #0 page. The locking rule for inline_data conversion should be:
3500 	 * lock_page(page #0) -> lock_page(inode_page)
3501 	 */
3502 	if (index != 0) {
3503 		err = f2fs_convert_inline_inode(inode);
3504 		if (err)
3505 			goto fail;
3506 	}
3507 
3508 #ifdef CONFIG_F2FS_FS_COMPRESSION
3509 	if (f2fs_compressed_file(inode)) {
3510 		int ret;
3511 
3512 		*fsdata = NULL;
3513 
3514 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3515 			goto repeat;
3516 
3517 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3518 							index, fsdata);
3519 		if (ret < 0) {
3520 			err = ret;
3521 			goto fail;
3522 		} else if (ret) {
3523 			return 0;
3524 		}
3525 	}
3526 #endif
3527 
3528 repeat:
3529 	/*
3530 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3531 	 * wait_for_stable_page. Will wait that below with our IO control.
3532 	 */
3533 	page = f2fs_pagecache_get_page(mapping, index,
3534 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3535 	if (!page) {
3536 		err = -ENOMEM;
3537 		goto fail;
3538 	}
3539 
3540 	/* TODO: cluster can be compressed due to race with .writepage */
3541 
3542 	*pagep = page;
3543 
3544 	if (f2fs_is_atomic_file(inode))
3545 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3546 					&blkaddr, &need_balance);
3547 	else
3548 		err = prepare_write_begin(sbi, page, pos, len,
3549 					&blkaddr, &need_balance);
3550 	if (err)
3551 		goto fail;
3552 
3553 	if (need_balance && !IS_NOQUOTA(inode) &&
3554 			has_not_enough_free_secs(sbi, 0, 0)) {
3555 		unlock_page(page);
3556 		f2fs_balance_fs(sbi, true);
3557 		lock_page(page);
3558 		if (page->mapping != mapping) {
3559 			/* The page got truncated from under us */
3560 			f2fs_put_page(page, 1);
3561 			goto repeat;
3562 		}
3563 	}
3564 
3565 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3566 
3567 	if (len == PAGE_SIZE || PageUptodate(page))
3568 		return 0;
3569 
3570 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3571 	    !f2fs_verity_in_progress(inode)) {
3572 		zero_user_segment(page, len, PAGE_SIZE);
3573 		return 0;
3574 	}
3575 
3576 	if (blkaddr == NEW_ADDR) {
3577 		zero_user_segment(page, 0, PAGE_SIZE);
3578 		SetPageUptodate(page);
3579 	} else {
3580 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3581 				DATA_GENERIC_ENHANCE_READ)) {
3582 			err = -EFSCORRUPTED;
3583 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3584 			goto fail;
3585 		}
3586 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3587 		if (err)
3588 			goto fail;
3589 
3590 		lock_page(page);
3591 		if (unlikely(page->mapping != mapping)) {
3592 			f2fs_put_page(page, 1);
3593 			goto repeat;
3594 		}
3595 		if (unlikely(!PageUptodate(page))) {
3596 			err = -EIO;
3597 			goto fail;
3598 		}
3599 	}
3600 	return 0;
3601 
3602 fail:
3603 	f2fs_put_page(page, 1);
3604 	f2fs_write_failed(inode, pos + len);
3605 	return err;
3606 }
3607 
3608 static int f2fs_write_end(struct file *file,
3609 			struct address_space *mapping,
3610 			loff_t pos, unsigned len, unsigned copied,
3611 			struct page *page, void *fsdata)
3612 {
3613 	struct inode *inode = page->mapping->host;
3614 
3615 	trace_f2fs_write_end(inode, pos, len, copied);
3616 
3617 	/*
3618 	 * This should be come from len == PAGE_SIZE, and we expect copied
3619 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3620 	 * let generic_perform_write() try to copy data again through copied=0.
3621 	 */
3622 	if (!PageUptodate(page)) {
3623 		if (unlikely(copied != len))
3624 			copied = 0;
3625 		else
3626 			SetPageUptodate(page);
3627 	}
3628 
3629 #ifdef CONFIG_F2FS_FS_COMPRESSION
3630 	/* overwrite compressed file */
3631 	if (f2fs_compressed_file(inode) && fsdata) {
3632 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3633 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3634 
3635 		if (pos + copied > i_size_read(inode) &&
3636 				!f2fs_verity_in_progress(inode))
3637 			f2fs_i_size_write(inode, pos + copied);
3638 		return copied;
3639 	}
3640 #endif
3641 
3642 	if (!copied)
3643 		goto unlock_out;
3644 
3645 	set_page_dirty(page);
3646 
3647 	if (pos + copied > i_size_read(inode) &&
3648 	    !f2fs_verity_in_progress(inode)) {
3649 		f2fs_i_size_write(inode, pos + copied);
3650 		if (f2fs_is_atomic_file(inode))
3651 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3652 					pos + copied);
3653 	}
3654 unlock_out:
3655 	f2fs_put_page(page, 1);
3656 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3657 	return copied;
3658 }
3659 
3660 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3661 {
3662 	struct inode *inode = folio->mapping->host;
3663 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3664 
3665 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3666 				(offset || length != folio_size(folio)))
3667 		return;
3668 
3669 	if (folio_test_dirty(folio)) {
3670 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3671 			dec_page_count(sbi, F2FS_DIRTY_META);
3672 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3673 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3674 		} else {
3675 			inode_dec_dirty_pages(inode);
3676 			f2fs_remove_dirty_inode(inode);
3677 		}
3678 	}
3679 
3680 	clear_page_private_gcing(&folio->page);
3681 
3682 	if (test_opt(sbi, COMPRESS_CACHE) &&
3683 			inode->i_ino == F2FS_COMPRESS_INO(sbi))
3684 		clear_page_private_data(&folio->page);
3685 
3686 	folio_detach_private(folio);
3687 }
3688 
3689 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3690 {
3691 	struct f2fs_sb_info *sbi;
3692 
3693 	/* If this is dirty folio, keep private data */
3694 	if (folio_test_dirty(folio))
3695 		return false;
3696 
3697 	sbi = F2FS_M_SB(folio->mapping);
3698 	if (test_opt(sbi, COMPRESS_CACHE)) {
3699 		struct inode *inode = folio->mapping->host;
3700 
3701 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3702 			clear_page_private_data(&folio->page);
3703 	}
3704 
3705 	clear_page_private_gcing(&folio->page);
3706 
3707 	folio_detach_private(folio);
3708 	return true;
3709 }
3710 
3711 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3712 		struct folio *folio)
3713 {
3714 	struct inode *inode = mapping->host;
3715 
3716 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3717 
3718 	if (!folio_test_uptodate(folio))
3719 		folio_mark_uptodate(folio);
3720 	BUG_ON(folio_test_swapcache(folio));
3721 
3722 	if (filemap_dirty_folio(mapping, folio)) {
3723 		f2fs_update_dirty_folio(inode, folio);
3724 		return true;
3725 	}
3726 	return false;
3727 }
3728 
3729 
3730 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3731 {
3732 #ifdef CONFIG_F2FS_FS_COMPRESSION
3733 	struct dnode_of_data dn;
3734 	sector_t start_idx, blknr = 0;
3735 	int ret;
3736 
3737 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3738 
3739 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3740 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3741 	if (ret)
3742 		return 0;
3743 
3744 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3745 		dn.ofs_in_node += block - start_idx;
3746 		blknr = f2fs_data_blkaddr(&dn);
3747 		if (!__is_valid_data_blkaddr(blknr))
3748 			blknr = 0;
3749 	}
3750 
3751 	f2fs_put_dnode(&dn);
3752 	return blknr;
3753 #else
3754 	return 0;
3755 #endif
3756 }
3757 
3758 
3759 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3760 {
3761 	struct inode *inode = mapping->host;
3762 	sector_t blknr = 0;
3763 
3764 	if (f2fs_has_inline_data(inode))
3765 		goto out;
3766 
3767 	/* make sure allocating whole blocks */
3768 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3769 		filemap_write_and_wait(mapping);
3770 
3771 	/* Block number less than F2FS MAX BLOCKS */
3772 	if (unlikely(block >= max_file_blocks(inode)))
3773 		goto out;
3774 
3775 	if (f2fs_compressed_file(inode)) {
3776 		blknr = f2fs_bmap_compress(inode, block);
3777 	} else {
3778 		struct f2fs_map_blocks map;
3779 
3780 		memset(&map, 0, sizeof(map));
3781 		map.m_lblk = block;
3782 		map.m_len = 1;
3783 		map.m_next_pgofs = NULL;
3784 		map.m_seg_type = NO_CHECK_TYPE;
3785 
3786 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3787 			blknr = map.m_pblk;
3788 	}
3789 out:
3790 	trace_f2fs_bmap(inode, block, blknr);
3791 	return blknr;
3792 }
3793 
3794 #ifdef CONFIG_SWAP
3795 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3796 							unsigned int blkcnt)
3797 {
3798 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3799 	unsigned int blkofs;
3800 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3801 	unsigned int secidx = start_blk / blk_per_sec;
3802 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3803 	int ret = 0;
3804 
3805 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3806 	filemap_invalidate_lock(inode->i_mapping);
3807 
3808 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3809 	set_inode_flag(inode, FI_OPU_WRITE);
3810 
3811 	for (; secidx < end_sec; secidx++) {
3812 		f2fs_down_write(&sbi->pin_sem);
3813 
3814 		f2fs_lock_op(sbi);
3815 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3816 		f2fs_unlock_op(sbi);
3817 
3818 		set_inode_flag(inode, FI_SKIP_WRITES);
3819 
3820 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3821 			struct page *page;
3822 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3823 
3824 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3825 			if (IS_ERR(page)) {
3826 				f2fs_up_write(&sbi->pin_sem);
3827 				ret = PTR_ERR(page);
3828 				goto done;
3829 			}
3830 
3831 			set_page_dirty(page);
3832 			f2fs_put_page(page, 1);
3833 		}
3834 
3835 		clear_inode_flag(inode, FI_SKIP_WRITES);
3836 
3837 		ret = filemap_fdatawrite(inode->i_mapping);
3838 
3839 		f2fs_up_write(&sbi->pin_sem);
3840 
3841 		if (ret)
3842 			break;
3843 	}
3844 
3845 done:
3846 	clear_inode_flag(inode, FI_SKIP_WRITES);
3847 	clear_inode_flag(inode, FI_OPU_WRITE);
3848 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3849 
3850 	filemap_invalidate_unlock(inode->i_mapping);
3851 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3852 
3853 	return ret;
3854 }
3855 
3856 static int check_swap_activate(struct swap_info_struct *sis,
3857 				struct file *swap_file, sector_t *span)
3858 {
3859 	struct address_space *mapping = swap_file->f_mapping;
3860 	struct inode *inode = mapping->host;
3861 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3862 	sector_t cur_lblock;
3863 	sector_t last_lblock;
3864 	sector_t pblock;
3865 	sector_t lowest_pblock = -1;
3866 	sector_t highest_pblock = 0;
3867 	int nr_extents = 0;
3868 	unsigned long nr_pblocks;
3869 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3870 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3871 	unsigned int not_aligned = 0;
3872 	int ret = 0;
3873 
3874 	/*
3875 	 * Map all the blocks into the extent list.  This code doesn't try
3876 	 * to be very smart.
3877 	 */
3878 	cur_lblock = 0;
3879 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3880 
3881 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3882 		struct f2fs_map_blocks map;
3883 retry:
3884 		cond_resched();
3885 
3886 		memset(&map, 0, sizeof(map));
3887 		map.m_lblk = cur_lblock;
3888 		map.m_len = last_lblock - cur_lblock;
3889 		map.m_next_pgofs = NULL;
3890 		map.m_next_extent = NULL;
3891 		map.m_seg_type = NO_CHECK_TYPE;
3892 		map.m_may_create = false;
3893 
3894 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3895 		if (ret)
3896 			goto out;
3897 
3898 		/* hole */
3899 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3900 			f2fs_err(sbi, "Swapfile has holes");
3901 			ret = -EINVAL;
3902 			goto out;
3903 		}
3904 
3905 		pblock = map.m_pblk;
3906 		nr_pblocks = map.m_len;
3907 
3908 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3909 				nr_pblocks & sec_blks_mask) {
3910 			not_aligned++;
3911 
3912 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3913 			if (cur_lblock + nr_pblocks > sis->max)
3914 				nr_pblocks -= blks_per_sec;
3915 
3916 			if (!nr_pblocks) {
3917 				/* this extent is last one */
3918 				nr_pblocks = map.m_len;
3919 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3920 				goto next;
3921 			}
3922 
3923 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3924 							nr_pblocks);
3925 			if (ret)
3926 				goto out;
3927 			goto retry;
3928 		}
3929 next:
3930 		if (cur_lblock + nr_pblocks >= sis->max)
3931 			nr_pblocks = sis->max - cur_lblock;
3932 
3933 		if (cur_lblock) {	/* exclude the header page */
3934 			if (pblock < lowest_pblock)
3935 				lowest_pblock = pblock;
3936 			if (pblock + nr_pblocks - 1 > highest_pblock)
3937 				highest_pblock = pblock + nr_pblocks - 1;
3938 		}
3939 
3940 		/*
3941 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3942 		 */
3943 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3944 		if (ret < 0)
3945 			goto out;
3946 		nr_extents += ret;
3947 		cur_lblock += nr_pblocks;
3948 	}
3949 	ret = nr_extents;
3950 	*span = 1 + highest_pblock - lowest_pblock;
3951 	if (cur_lblock == 0)
3952 		cur_lblock = 1;	/* force Empty message */
3953 	sis->max = cur_lblock;
3954 	sis->pages = cur_lblock - 1;
3955 	sis->highest_bit = cur_lblock - 1;
3956 out:
3957 	if (not_aligned)
3958 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3959 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
3960 	return ret;
3961 }
3962 
3963 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3964 				sector_t *span)
3965 {
3966 	struct inode *inode = file_inode(file);
3967 	int ret;
3968 
3969 	if (!S_ISREG(inode->i_mode))
3970 		return -EINVAL;
3971 
3972 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3973 		return -EROFS;
3974 
3975 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3976 		f2fs_err(F2FS_I_SB(inode),
3977 			"Swapfile not supported in LFS mode");
3978 		return -EINVAL;
3979 	}
3980 
3981 	ret = f2fs_convert_inline_inode(inode);
3982 	if (ret)
3983 		return ret;
3984 
3985 	if (!f2fs_disable_compressed_file(inode))
3986 		return -EINVAL;
3987 
3988 	f2fs_precache_extents(inode);
3989 
3990 	ret = check_swap_activate(sis, file, span);
3991 	if (ret < 0)
3992 		return ret;
3993 
3994 	stat_inc_swapfile_inode(inode);
3995 	set_inode_flag(inode, FI_PIN_FILE);
3996 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3997 	return ret;
3998 }
3999 
4000 static void f2fs_swap_deactivate(struct file *file)
4001 {
4002 	struct inode *inode = file_inode(file);
4003 
4004 	stat_dec_swapfile_inode(inode);
4005 	clear_inode_flag(inode, FI_PIN_FILE);
4006 }
4007 #else
4008 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4009 				sector_t *span)
4010 {
4011 	return -EOPNOTSUPP;
4012 }
4013 
4014 static void f2fs_swap_deactivate(struct file *file)
4015 {
4016 }
4017 #endif
4018 
4019 const struct address_space_operations f2fs_dblock_aops = {
4020 	.read_folio	= f2fs_read_data_folio,
4021 	.readahead	= f2fs_readahead,
4022 	.writepage	= f2fs_write_data_page,
4023 	.writepages	= f2fs_write_data_pages,
4024 	.write_begin	= f2fs_write_begin,
4025 	.write_end	= f2fs_write_end,
4026 	.dirty_folio	= f2fs_dirty_data_folio,
4027 	.migrate_folio	= filemap_migrate_folio,
4028 	.invalidate_folio = f2fs_invalidate_folio,
4029 	.release_folio	= f2fs_release_folio,
4030 	.direct_IO	= noop_direct_IO,
4031 	.bmap		= f2fs_bmap,
4032 	.swap_activate  = f2fs_swap_activate,
4033 	.swap_deactivate = f2fs_swap_deactivate,
4034 };
4035 
4036 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4037 {
4038 	struct address_space *mapping = page_mapping(page);
4039 	unsigned long flags;
4040 
4041 	xa_lock_irqsave(&mapping->i_pages, flags);
4042 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4043 						PAGECACHE_TAG_DIRTY);
4044 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4045 }
4046 
4047 int __init f2fs_init_post_read_processing(void)
4048 {
4049 	bio_post_read_ctx_cache =
4050 		kmem_cache_create("f2fs_bio_post_read_ctx",
4051 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4052 	if (!bio_post_read_ctx_cache)
4053 		goto fail;
4054 	bio_post_read_ctx_pool =
4055 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4056 					 bio_post_read_ctx_cache);
4057 	if (!bio_post_read_ctx_pool)
4058 		goto fail_free_cache;
4059 	return 0;
4060 
4061 fail_free_cache:
4062 	kmem_cache_destroy(bio_post_read_ctx_cache);
4063 fail:
4064 	return -ENOMEM;
4065 }
4066 
4067 void f2fs_destroy_post_read_processing(void)
4068 {
4069 	mempool_destroy(bio_post_read_ctx_pool);
4070 	kmem_cache_destroy(bio_post_read_ctx_cache);
4071 }
4072 
4073 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4074 {
4075 	if (!f2fs_sb_has_encrypt(sbi) &&
4076 		!f2fs_sb_has_verity(sbi) &&
4077 		!f2fs_sb_has_compression(sbi))
4078 		return 0;
4079 
4080 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4081 						 WQ_UNBOUND | WQ_HIGHPRI,
4082 						 num_online_cpus());
4083 	if (!sbi->post_read_wq)
4084 		return -ENOMEM;
4085 	return 0;
4086 }
4087 
4088 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4089 {
4090 	if (sbi->post_read_wq)
4091 		destroy_workqueue(sbi->post_read_wq);
4092 }
4093 
4094 int __init f2fs_init_bio_entry_cache(void)
4095 {
4096 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4097 			sizeof(struct bio_entry));
4098 	if (!bio_entry_slab)
4099 		return -ENOMEM;
4100 	return 0;
4101 }
4102 
4103 void f2fs_destroy_bio_entry_cache(void)
4104 {
4105 	kmem_cache_destroy(bio_entry_slab);
4106 }
4107 
4108 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4109 			    unsigned int flags, struct iomap *iomap,
4110 			    struct iomap *srcmap)
4111 {
4112 	struct f2fs_map_blocks map = {};
4113 	pgoff_t next_pgofs = 0;
4114 	int err;
4115 
4116 	map.m_lblk = bytes_to_blks(inode, offset);
4117 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4118 	map.m_next_pgofs = &next_pgofs;
4119 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4120 	if (flags & IOMAP_WRITE)
4121 		map.m_may_create = true;
4122 
4123 	err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4124 			      F2FS_GET_BLOCK_DIO);
4125 	if (err)
4126 		return err;
4127 
4128 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4129 
4130 	/*
4131 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4132 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4133 	 * limiting the length of the mapping returned.
4134 	 */
4135 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4136 
4137 	if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4138 		iomap->length = blks_to_bytes(inode, map.m_len);
4139 		if (map.m_flags & F2FS_MAP_MAPPED) {
4140 			iomap->type = IOMAP_MAPPED;
4141 			iomap->flags |= IOMAP_F_MERGED;
4142 		} else {
4143 			iomap->type = IOMAP_UNWRITTEN;
4144 		}
4145 		if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4146 			return -EINVAL;
4147 
4148 		iomap->bdev = map.m_bdev;
4149 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4150 	} else {
4151 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4152 				iomap->offset;
4153 		iomap->type = IOMAP_HOLE;
4154 		iomap->addr = IOMAP_NULL_ADDR;
4155 	}
4156 
4157 	if (map.m_flags & F2FS_MAP_NEW)
4158 		iomap->flags |= IOMAP_F_NEW;
4159 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4160 	    offset + length > i_size_read(inode))
4161 		iomap->flags |= IOMAP_F_DIRTY;
4162 
4163 	return 0;
4164 }
4165 
4166 const struct iomap_ops f2fs_iomap_ops = {
4167 	.iomap_begin	= f2fs_iomap_begin,
4168 };
4169