1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/blkdev.h> 18 #include <linux/bio.h> 19 #include <linux/prefetch.h> 20 21 #include "f2fs.h" 22 #include "node.h" 23 #include "segment.h" 24 25 /* 26 * Lock ordering for the change of data block address: 27 * ->data_page 28 * ->node_page 29 * update block addresses in the node page 30 */ 31 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr) 32 { 33 struct f2fs_node *rn; 34 __le32 *addr_array; 35 struct page *node_page = dn->node_page; 36 unsigned int ofs_in_node = dn->ofs_in_node; 37 38 wait_on_page_writeback(node_page); 39 40 rn = (struct f2fs_node *)page_address(node_page); 41 42 /* Get physical address of data block */ 43 addr_array = blkaddr_in_node(rn); 44 addr_array[ofs_in_node] = cpu_to_le32(new_addr); 45 set_page_dirty(node_page); 46 } 47 48 int reserve_new_block(struct dnode_of_data *dn) 49 { 50 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 51 52 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) 53 return -EPERM; 54 if (!inc_valid_block_count(sbi, dn->inode, 1)) 55 return -ENOSPC; 56 57 __set_data_blkaddr(dn, NEW_ADDR); 58 dn->data_blkaddr = NEW_ADDR; 59 sync_inode_page(dn); 60 return 0; 61 } 62 63 static int check_extent_cache(struct inode *inode, pgoff_t pgofs, 64 struct buffer_head *bh_result) 65 { 66 struct f2fs_inode_info *fi = F2FS_I(inode); 67 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 68 pgoff_t start_fofs, end_fofs; 69 block_t start_blkaddr; 70 71 read_lock(&fi->ext.ext_lock); 72 if (fi->ext.len == 0) { 73 read_unlock(&fi->ext.ext_lock); 74 return 0; 75 } 76 77 sbi->total_hit_ext++; 78 start_fofs = fi->ext.fofs; 79 end_fofs = fi->ext.fofs + fi->ext.len - 1; 80 start_blkaddr = fi->ext.blk_addr; 81 82 if (pgofs >= start_fofs && pgofs <= end_fofs) { 83 unsigned int blkbits = inode->i_sb->s_blocksize_bits; 84 size_t count; 85 86 clear_buffer_new(bh_result); 87 map_bh(bh_result, inode->i_sb, 88 start_blkaddr + pgofs - start_fofs); 89 count = end_fofs - pgofs + 1; 90 if (count < (UINT_MAX >> blkbits)) 91 bh_result->b_size = (count << blkbits); 92 else 93 bh_result->b_size = UINT_MAX; 94 95 sbi->read_hit_ext++; 96 read_unlock(&fi->ext.ext_lock); 97 return 1; 98 } 99 read_unlock(&fi->ext.ext_lock); 100 return 0; 101 } 102 103 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn) 104 { 105 struct f2fs_inode_info *fi = F2FS_I(dn->inode); 106 pgoff_t fofs, start_fofs, end_fofs; 107 block_t start_blkaddr, end_blkaddr; 108 109 BUG_ON(blk_addr == NEW_ADDR); 110 fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node; 111 112 /* Update the page address in the parent node */ 113 __set_data_blkaddr(dn, blk_addr); 114 115 write_lock(&fi->ext.ext_lock); 116 117 start_fofs = fi->ext.fofs; 118 end_fofs = fi->ext.fofs + fi->ext.len - 1; 119 start_blkaddr = fi->ext.blk_addr; 120 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1; 121 122 /* Drop and initialize the matched extent */ 123 if (fi->ext.len == 1 && fofs == start_fofs) 124 fi->ext.len = 0; 125 126 /* Initial extent */ 127 if (fi->ext.len == 0) { 128 if (blk_addr != NULL_ADDR) { 129 fi->ext.fofs = fofs; 130 fi->ext.blk_addr = blk_addr; 131 fi->ext.len = 1; 132 } 133 goto end_update; 134 } 135 136 /* Frone merge */ 137 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) { 138 fi->ext.fofs--; 139 fi->ext.blk_addr--; 140 fi->ext.len++; 141 goto end_update; 142 } 143 144 /* Back merge */ 145 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) { 146 fi->ext.len++; 147 goto end_update; 148 } 149 150 /* Split the existing extent */ 151 if (fi->ext.len > 1 && 152 fofs >= start_fofs && fofs <= end_fofs) { 153 if ((end_fofs - fofs) < (fi->ext.len >> 1)) { 154 fi->ext.len = fofs - start_fofs; 155 } else { 156 fi->ext.fofs = fofs + 1; 157 fi->ext.blk_addr = start_blkaddr + 158 fofs - start_fofs + 1; 159 fi->ext.len -= fofs - start_fofs + 1; 160 } 161 goto end_update; 162 } 163 write_unlock(&fi->ext.ext_lock); 164 return; 165 166 end_update: 167 write_unlock(&fi->ext.ext_lock); 168 sync_inode_page(dn); 169 return; 170 } 171 172 struct page *find_data_page(struct inode *inode, pgoff_t index) 173 { 174 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 175 struct address_space *mapping = inode->i_mapping; 176 struct dnode_of_data dn; 177 struct page *page; 178 int err; 179 180 page = find_get_page(mapping, index); 181 if (page && PageUptodate(page)) 182 return page; 183 f2fs_put_page(page, 0); 184 185 set_new_dnode(&dn, inode, NULL, NULL, 0); 186 err = get_dnode_of_data(&dn, index, RDONLY_NODE); 187 if (err) 188 return ERR_PTR(err); 189 f2fs_put_dnode(&dn); 190 191 if (dn.data_blkaddr == NULL_ADDR) 192 return ERR_PTR(-ENOENT); 193 194 /* By fallocate(), there is no cached page, but with NEW_ADDR */ 195 if (dn.data_blkaddr == NEW_ADDR) 196 return ERR_PTR(-EINVAL); 197 198 page = grab_cache_page(mapping, index); 199 if (!page) 200 return ERR_PTR(-ENOMEM); 201 202 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); 203 if (err) { 204 f2fs_put_page(page, 1); 205 return ERR_PTR(err); 206 } 207 unlock_page(page); 208 return page; 209 } 210 211 /* 212 * If it tries to access a hole, return an error. 213 * Because, the callers, functions in dir.c and GC, should be able to know 214 * whether this page exists or not. 215 */ 216 struct page *get_lock_data_page(struct inode *inode, pgoff_t index) 217 { 218 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 219 struct address_space *mapping = inode->i_mapping; 220 struct dnode_of_data dn; 221 struct page *page; 222 int err; 223 224 set_new_dnode(&dn, inode, NULL, NULL, 0); 225 err = get_dnode_of_data(&dn, index, RDONLY_NODE); 226 if (err) 227 return ERR_PTR(err); 228 f2fs_put_dnode(&dn); 229 230 if (dn.data_blkaddr == NULL_ADDR) 231 return ERR_PTR(-ENOENT); 232 233 page = grab_cache_page(mapping, index); 234 if (!page) 235 return ERR_PTR(-ENOMEM); 236 237 if (PageUptodate(page)) 238 return page; 239 240 BUG_ON(dn.data_blkaddr == NEW_ADDR); 241 BUG_ON(dn.data_blkaddr == NULL_ADDR); 242 243 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); 244 if (err) { 245 f2fs_put_page(page, 1); 246 return ERR_PTR(err); 247 } 248 return page; 249 } 250 251 /* 252 * Caller ensures that this data page is never allocated. 253 * A new zero-filled data page is allocated in the page cache. 254 */ 255 struct page *get_new_data_page(struct inode *inode, pgoff_t index, 256 bool new_i_size) 257 { 258 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 259 struct address_space *mapping = inode->i_mapping; 260 struct page *page; 261 struct dnode_of_data dn; 262 int err; 263 264 set_new_dnode(&dn, inode, NULL, NULL, 0); 265 err = get_dnode_of_data(&dn, index, 0); 266 if (err) 267 return ERR_PTR(err); 268 269 if (dn.data_blkaddr == NULL_ADDR) { 270 if (reserve_new_block(&dn)) { 271 f2fs_put_dnode(&dn); 272 return ERR_PTR(-ENOSPC); 273 } 274 } 275 f2fs_put_dnode(&dn); 276 277 page = grab_cache_page(mapping, index); 278 if (!page) 279 return ERR_PTR(-ENOMEM); 280 281 if (PageUptodate(page)) 282 return page; 283 284 if (dn.data_blkaddr == NEW_ADDR) { 285 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 286 } else { 287 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); 288 if (err) { 289 f2fs_put_page(page, 1); 290 return ERR_PTR(err); 291 } 292 } 293 SetPageUptodate(page); 294 295 if (new_i_size && 296 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) { 297 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT)); 298 mark_inode_dirty_sync(inode); 299 } 300 return page; 301 } 302 303 static void read_end_io(struct bio *bio, int err) 304 { 305 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 307 308 do { 309 struct page *page = bvec->bv_page; 310 311 if (--bvec >= bio->bi_io_vec) 312 prefetchw(&bvec->bv_page->flags); 313 314 if (uptodate) { 315 SetPageUptodate(page); 316 } else { 317 ClearPageUptodate(page); 318 SetPageError(page); 319 } 320 unlock_page(page); 321 } while (bvec >= bio->bi_io_vec); 322 kfree(bio->bi_private); 323 bio_put(bio); 324 } 325 326 /* 327 * Fill the locked page with data located in the block address. 328 * Read operation is synchronous, and caller must unlock the page. 329 */ 330 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page, 331 block_t blk_addr, int type) 332 { 333 struct block_device *bdev = sbi->sb->s_bdev; 334 bool sync = (type == READ_SYNC); 335 struct bio *bio; 336 337 /* This page can be already read by other threads */ 338 if (PageUptodate(page)) { 339 if (!sync) 340 unlock_page(page); 341 return 0; 342 } 343 344 down_read(&sbi->bio_sem); 345 346 /* Allocate a new bio */ 347 bio = f2fs_bio_alloc(bdev, 1); 348 349 /* Initialize the bio */ 350 bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr); 351 bio->bi_end_io = read_end_io; 352 353 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { 354 kfree(bio->bi_private); 355 bio_put(bio); 356 up_read(&sbi->bio_sem); 357 return -EFAULT; 358 } 359 360 submit_bio(type, bio); 361 up_read(&sbi->bio_sem); 362 363 /* wait for read completion if sync */ 364 if (sync) { 365 lock_page(page); 366 if (PageError(page)) 367 return -EIO; 368 } 369 return 0; 370 } 371 372 /* 373 * This function should be used by the data read flow only where it 374 * does not check the "create" flag that indicates block allocation. 375 * The reason for this special functionality is to exploit VFS readahead 376 * mechanism. 377 */ 378 static int get_data_block_ro(struct inode *inode, sector_t iblock, 379 struct buffer_head *bh_result, int create) 380 { 381 unsigned int blkbits = inode->i_sb->s_blocksize_bits; 382 unsigned maxblocks = bh_result->b_size >> blkbits; 383 struct dnode_of_data dn; 384 pgoff_t pgofs; 385 int err; 386 387 /* Get the page offset from the block offset(iblock) */ 388 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits)); 389 390 if (check_extent_cache(inode, pgofs, bh_result)) 391 return 0; 392 393 /* When reading holes, we need its node page */ 394 set_new_dnode(&dn, inode, NULL, NULL, 0); 395 err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE); 396 if (err) 397 return (err == -ENOENT) ? 0 : err; 398 399 /* It does not support data allocation */ 400 BUG_ON(create); 401 402 if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) { 403 int i; 404 unsigned int end_offset; 405 406 end_offset = IS_INODE(dn.node_page) ? 407 ADDRS_PER_INODE : 408 ADDRS_PER_BLOCK; 409 410 clear_buffer_new(bh_result); 411 412 /* Give more consecutive addresses for the read ahead */ 413 for (i = 0; i < end_offset - dn.ofs_in_node; i++) 414 if (((datablock_addr(dn.node_page, 415 dn.ofs_in_node + i)) 416 != (dn.data_blkaddr + i)) || maxblocks == i) 417 break; 418 map_bh(bh_result, inode->i_sb, dn.data_blkaddr); 419 bh_result->b_size = (i << blkbits); 420 } 421 f2fs_put_dnode(&dn); 422 return 0; 423 } 424 425 static int f2fs_read_data_page(struct file *file, struct page *page) 426 { 427 return mpage_readpage(page, get_data_block_ro); 428 } 429 430 static int f2fs_read_data_pages(struct file *file, 431 struct address_space *mapping, 432 struct list_head *pages, unsigned nr_pages) 433 { 434 return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro); 435 } 436 437 int do_write_data_page(struct page *page) 438 { 439 struct inode *inode = page->mapping->host; 440 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 441 block_t old_blk_addr, new_blk_addr; 442 struct dnode_of_data dn; 443 int err = 0; 444 445 set_new_dnode(&dn, inode, NULL, NULL, 0); 446 err = get_dnode_of_data(&dn, page->index, RDONLY_NODE); 447 if (err) 448 return err; 449 450 old_blk_addr = dn.data_blkaddr; 451 452 /* This page is already truncated */ 453 if (old_blk_addr == NULL_ADDR) 454 goto out_writepage; 455 456 set_page_writeback(page); 457 458 /* 459 * If current allocation needs SSR, 460 * it had better in-place writes for updated data. 461 */ 462 if (old_blk_addr != NEW_ADDR && !is_cold_data(page) && 463 need_inplace_update(inode)) { 464 rewrite_data_page(F2FS_SB(inode->i_sb), page, 465 old_blk_addr); 466 } else { 467 write_data_page(inode, page, &dn, 468 old_blk_addr, &new_blk_addr); 469 update_extent_cache(new_blk_addr, &dn); 470 F2FS_I(inode)->data_version = 471 le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver); 472 } 473 out_writepage: 474 f2fs_put_dnode(&dn); 475 return err; 476 } 477 478 static int f2fs_write_data_page(struct page *page, 479 struct writeback_control *wbc) 480 { 481 struct inode *inode = page->mapping->host; 482 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 483 loff_t i_size = i_size_read(inode); 484 const pgoff_t end_index = ((unsigned long long) i_size) 485 >> PAGE_CACHE_SHIFT; 486 unsigned offset; 487 int err = 0; 488 489 if (page->index < end_index) 490 goto out; 491 492 /* 493 * If the offset is out-of-range of file size, 494 * this page does not have to be written to disk. 495 */ 496 offset = i_size & (PAGE_CACHE_SIZE - 1); 497 if ((page->index >= end_index + 1) || !offset) { 498 if (S_ISDIR(inode->i_mode)) { 499 dec_page_count(sbi, F2FS_DIRTY_DENTS); 500 inode_dec_dirty_dents(inode); 501 } 502 goto unlock_out; 503 } 504 505 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 506 out: 507 if (sbi->por_doing) 508 goto redirty_out; 509 510 if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page)) 511 goto redirty_out; 512 513 mutex_lock_op(sbi, DATA_WRITE); 514 if (S_ISDIR(inode->i_mode)) { 515 dec_page_count(sbi, F2FS_DIRTY_DENTS); 516 inode_dec_dirty_dents(inode); 517 } 518 err = do_write_data_page(page); 519 if (err && err != -ENOENT) { 520 wbc->pages_skipped++; 521 set_page_dirty(page); 522 } 523 mutex_unlock_op(sbi, DATA_WRITE); 524 525 if (wbc->for_reclaim) 526 f2fs_submit_bio(sbi, DATA, true); 527 528 if (err == -ENOENT) 529 goto unlock_out; 530 531 clear_cold_data(page); 532 unlock_page(page); 533 534 if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode)) 535 f2fs_balance_fs(sbi); 536 return 0; 537 538 unlock_out: 539 unlock_page(page); 540 return (err == -ENOENT) ? 0 : err; 541 542 redirty_out: 543 wbc->pages_skipped++; 544 set_page_dirty(page); 545 return AOP_WRITEPAGE_ACTIVATE; 546 } 547 548 #define MAX_DESIRED_PAGES_WP 4096 549 550 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc, 551 void *data) 552 { 553 struct address_space *mapping = data; 554 int ret = mapping->a_ops->writepage(page, wbc); 555 mapping_set_error(mapping, ret); 556 return ret; 557 } 558 559 static int f2fs_write_data_pages(struct address_space *mapping, 560 struct writeback_control *wbc) 561 { 562 struct inode *inode = mapping->host; 563 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 564 int ret; 565 long excess_nrtw = 0, desired_nrtw; 566 567 if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) { 568 desired_nrtw = MAX_DESIRED_PAGES_WP; 569 excess_nrtw = desired_nrtw - wbc->nr_to_write; 570 wbc->nr_to_write = desired_nrtw; 571 } 572 573 if (!S_ISDIR(inode->i_mode)) 574 mutex_lock(&sbi->writepages); 575 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping); 576 if (!S_ISDIR(inode->i_mode)) 577 mutex_unlock(&sbi->writepages); 578 f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL)); 579 580 remove_dirty_dir_inode(inode); 581 582 wbc->nr_to_write -= excess_nrtw; 583 return ret; 584 } 585 586 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 587 loff_t pos, unsigned len, unsigned flags, 588 struct page **pagep, void **fsdata) 589 { 590 struct inode *inode = mapping->host; 591 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 592 struct page *page; 593 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; 594 struct dnode_of_data dn; 595 int err = 0; 596 597 /* for nobh_write_end */ 598 *fsdata = NULL; 599 600 f2fs_balance_fs(sbi); 601 602 page = grab_cache_page_write_begin(mapping, index, flags); 603 if (!page) 604 return -ENOMEM; 605 *pagep = page; 606 607 mutex_lock_op(sbi, DATA_NEW); 608 609 set_new_dnode(&dn, inode, NULL, NULL, 0); 610 err = get_dnode_of_data(&dn, index, 0); 611 if (err) { 612 mutex_unlock_op(sbi, DATA_NEW); 613 f2fs_put_page(page, 1); 614 return err; 615 } 616 617 if (dn.data_blkaddr == NULL_ADDR) { 618 err = reserve_new_block(&dn); 619 if (err) { 620 f2fs_put_dnode(&dn); 621 mutex_unlock_op(sbi, DATA_NEW); 622 f2fs_put_page(page, 1); 623 return err; 624 } 625 } 626 f2fs_put_dnode(&dn); 627 628 mutex_unlock_op(sbi, DATA_NEW); 629 630 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) 631 return 0; 632 633 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { 634 unsigned start = pos & (PAGE_CACHE_SIZE - 1); 635 unsigned end = start + len; 636 637 /* Reading beyond i_size is simple: memset to zero */ 638 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); 639 return 0; 640 } 641 642 if (dn.data_blkaddr == NEW_ADDR) { 643 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 644 } else { 645 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC); 646 if (err) { 647 f2fs_put_page(page, 1); 648 return err; 649 } 650 } 651 SetPageUptodate(page); 652 clear_cold_data(page); 653 return 0; 654 } 655 656 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb, 657 const struct iovec *iov, loff_t offset, unsigned long nr_segs) 658 { 659 struct file *file = iocb->ki_filp; 660 struct inode *inode = file->f_mapping->host; 661 662 if (rw == WRITE) 663 return 0; 664 665 /* Needs synchronization with the cleaner */ 666 return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 667 get_data_block_ro); 668 } 669 670 static void f2fs_invalidate_data_page(struct page *page, unsigned long offset) 671 { 672 struct inode *inode = page->mapping->host; 673 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 674 if (S_ISDIR(inode->i_mode) && PageDirty(page)) { 675 dec_page_count(sbi, F2FS_DIRTY_DENTS); 676 inode_dec_dirty_dents(inode); 677 } 678 ClearPagePrivate(page); 679 } 680 681 static int f2fs_release_data_page(struct page *page, gfp_t wait) 682 { 683 ClearPagePrivate(page); 684 return 0; 685 } 686 687 static int f2fs_set_data_page_dirty(struct page *page) 688 { 689 struct address_space *mapping = page->mapping; 690 struct inode *inode = mapping->host; 691 692 SetPageUptodate(page); 693 if (!PageDirty(page)) { 694 __set_page_dirty_nobuffers(page); 695 set_dirty_dir_page(inode, page); 696 return 1; 697 } 698 return 0; 699 } 700 701 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 702 { 703 return generic_block_bmap(mapping, block, get_data_block_ro); 704 } 705 706 const struct address_space_operations f2fs_dblock_aops = { 707 .readpage = f2fs_read_data_page, 708 .readpages = f2fs_read_data_pages, 709 .writepage = f2fs_write_data_page, 710 .writepages = f2fs_write_data_pages, 711 .write_begin = f2fs_write_begin, 712 .write_end = nobh_write_end, 713 .set_page_dirty = f2fs_set_data_page_dirty, 714 .invalidatepage = f2fs_invalidate_data_page, 715 .releasepage = f2fs_release_data_page, 716 .direct_IO = f2fs_direct_IO, 717 .bmap = f2fs_bmap, 718 }; 719