xref: /openbmc/linux/fs/f2fs/data.c (revision b4646da0573fae9dfa2b8f1f10936cb6eedd7230)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS);
44 }
45 
46 void f2fs_destroy_bioset(void)
47 {
48 	bioset_exit(&f2fs_bioset);
49 }
50 
51 static bool __is_cp_guaranteed(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct inode *inode;
55 	struct f2fs_sb_info *sbi;
56 
57 	if (!mapping)
58 		return false;
59 
60 	inode = mapping->host;
61 	sbi = F2FS_I_SB(inode);
62 
63 	if (inode->i_ino == F2FS_META_INO(sbi) ||
64 			inode->i_ino == F2FS_NODE_INO(sbi) ||
65 			S_ISDIR(inode->i_mode))
66 		return true;
67 
68 	if (f2fs_is_compressed_page(page))
69 		return false;
70 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 			page_private_gcing(page))
72 		return true;
73 	return false;
74 }
75 
76 static enum count_type __read_io_type(struct page *page)
77 {
78 	struct address_space *mapping = page_file_mapping(page);
79 
80 	if (mapping) {
81 		struct inode *inode = mapping->host;
82 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83 
84 		if (inode->i_ino == F2FS_META_INO(sbi))
85 			return F2FS_RD_META;
86 
87 		if (inode->i_ino == F2FS_NODE_INO(sbi))
88 			return F2FS_RD_NODE;
89 	}
90 	return F2FS_RD_DATA;
91 }
92 
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96 	STEP_DECRYPT	= BIT(0),
97 #else
98 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 	STEP_DECOMPRESS	= BIT(1),
102 #else
103 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106 	STEP_VERITY	= BIT(2),
107 #else
108 	STEP_VERITY	= 0,	/* compile out the verity-related code */
109 #endif
110 };
111 
112 struct bio_post_read_ctx {
113 	struct bio *bio;
114 	struct f2fs_sb_info *sbi;
115 	struct work_struct work;
116 	unsigned int enabled_steps;
117 	/*
118 	 * decompression_attempted keeps track of whether
119 	 * f2fs_end_read_compressed_page() has been called on the pages in the
120 	 * bio that belong to a compressed cluster yet.
121 	 */
122 	bool decompression_attempted;
123 	block_t fs_blkaddr;
124 };
125 
126 /*
127  * Update and unlock a bio's pages, and free the bio.
128  *
129  * This marks pages up-to-date only if there was no error in the bio (I/O error,
130  * decryption error, or verity error), as indicated by bio->bi_status.
131  *
132  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133  * aren't marked up-to-date here, as decompression is done on a per-compression-
134  * cluster basis rather than a per-bio basis.  Instead, we only must do two
135  * things for each compressed page here: call f2fs_end_read_compressed_page()
136  * with failed=true if an error occurred before it would have normally gotten
137  * called (i.e., I/O error or decryption error, but *not* verity error), and
138  * release the bio's reference to the decompress_io_ctx of the page's cluster.
139  */
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142 	struct bio_vec *bv;
143 	struct bvec_iter_all iter_all;
144 	struct bio_post_read_ctx *ctx = bio->bi_private;
145 
146 	bio_for_each_segment_all(bv, bio, iter_all) {
147 		struct page *page = bv->bv_page;
148 
149 		if (f2fs_is_compressed_page(page)) {
150 			if (ctx && !ctx->decompression_attempted)
151 				f2fs_end_read_compressed_page(page, true, 0,
152 							in_task);
153 			f2fs_put_page_dic(page, in_task);
154 			continue;
155 		}
156 
157 		if (bio->bi_status)
158 			ClearPageUptodate(page);
159 		else
160 			SetPageUptodate(page);
161 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 		unlock_page(page);
163 	}
164 
165 	if (ctx)
166 		mempool_free(ctx, bio_post_read_ctx_pool);
167 	bio_put(bio);
168 }
169 
170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172 	struct bio_post_read_ctx *ctx =
173 		container_of(work, struct bio_post_read_ctx, work);
174 	struct bio *bio = ctx->bio;
175 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176 
177 	/*
178 	 * fsverity_verify_bio() may call readahead() again, and while verity
179 	 * will be disabled for this, decryption and/or decompression may still
180 	 * be needed, resulting in another bio_post_read_ctx being allocated.
181 	 * So to prevent deadlocks we need to release the current ctx to the
182 	 * mempool first.  This assumes that verity is the last post-read step.
183 	 */
184 	mempool_free(ctx, bio_post_read_ctx_pool);
185 	bio->bi_private = NULL;
186 
187 	/*
188 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
189 	 * as those were handled separately by f2fs_end_read_compressed_page().
190 	 */
191 	if (may_have_compressed_pages) {
192 		struct bio_vec *bv;
193 		struct bvec_iter_all iter_all;
194 
195 		bio_for_each_segment_all(bv, bio, iter_all) {
196 			struct page *page = bv->bv_page;
197 
198 			if (!f2fs_is_compressed_page(page) &&
199 			    !fsverity_verify_page(page)) {
200 				bio->bi_status = BLK_STS_IOERR;
201 				break;
202 			}
203 		}
204 	} else {
205 		fsverity_verify_bio(bio);
206 	}
207 
208 	f2fs_finish_read_bio(bio, true);
209 }
210 
211 /*
212  * If the bio's data needs to be verified with fs-verity, then enqueue the
213  * verity work for the bio.  Otherwise finish the bio now.
214  *
215  * Note that to avoid deadlocks, the verity work can't be done on the
216  * decryption/decompression workqueue.  This is because verifying the data pages
217  * can involve reading verity metadata pages from the file, and these verity
218  * metadata pages may be encrypted and/or compressed.
219  */
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222 	struct bio_post_read_ctx *ctx = bio->bi_private;
223 
224 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 		INIT_WORK(&ctx->work, f2fs_verify_bio);
226 		fsverity_enqueue_verify_work(&ctx->work);
227 	} else {
228 		f2fs_finish_read_bio(bio, in_task);
229 	}
230 }
231 
232 /*
233  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234  * remaining page was read by @ctx->bio.
235  *
236  * Note that a bio may span clusters (even a mix of compressed and uncompressed
237  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
238  * that the bio includes at least one compressed page.  The actual decompression
239  * is done on a per-cluster basis, not a per-bio basis.
240  */
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 		bool in_task)
243 {
244 	struct bio_vec *bv;
245 	struct bvec_iter_all iter_all;
246 	bool all_compressed = true;
247 	block_t blkaddr = ctx->fs_blkaddr;
248 
249 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 		struct page *page = bv->bv_page;
251 
252 		if (f2fs_is_compressed_page(page))
253 			f2fs_end_read_compressed_page(page, false, blkaddr,
254 						      in_task);
255 		else
256 			all_compressed = false;
257 
258 		blkaddr++;
259 	}
260 
261 	ctx->decompression_attempted = true;
262 
263 	/*
264 	 * Optimization: if all the bio's pages are compressed, then scheduling
265 	 * the per-bio verity work is unnecessary, as verity will be fully
266 	 * handled at the compression cluster level.
267 	 */
268 	if (all_compressed)
269 		ctx->enabled_steps &= ~STEP_VERITY;
270 }
271 
272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274 	struct bio_post_read_ctx *ctx =
275 		container_of(work, struct bio_post_read_ctx, work);
276 	struct bio *bio = ctx->bio;
277 
278 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 		f2fs_finish_read_bio(bio, true);
280 		return;
281 	}
282 
283 	if (ctx->enabled_steps & STEP_DECOMPRESS)
284 		f2fs_handle_step_decompress(ctx, true);
285 
286 	f2fs_verify_and_finish_bio(bio, true);
287 }
288 
289 static void f2fs_read_end_io(struct bio *bio)
290 {
291 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 	struct bio_post_read_ctx *ctx;
293 	bool intask = in_task();
294 
295 	iostat_update_and_unbind_ctx(bio);
296 	ctx = bio->bi_private;
297 
298 	if (time_to_inject(sbi, FAULT_READ_IO))
299 		bio->bi_status = BLK_STS_IOERR;
300 
301 	if (bio->bi_status) {
302 		f2fs_finish_read_bio(bio, intask);
303 		return;
304 	}
305 
306 	if (ctx) {
307 		unsigned int enabled_steps = ctx->enabled_steps &
308 					(STEP_DECRYPT | STEP_DECOMPRESS);
309 
310 		/*
311 		 * If we have only decompression step between decompression and
312 		 * decrypt, we don't need post processing for this.
313 		 */
314 		if (enabled_steps == STEP_DECOMPRESS &&
315 				!f2fs_low_mem_mode(sbi)) {
316 			f2fs_handle_step_decompress(ctx, intask);
317 		} else if (enabled_steps) {
318 			INIT_WORK(&ctx->work, f2fs_post_read_work);
319 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 			return;
321 		}
322 	}
323 
324 	f2fs_verify_and_finish_bio(bio, intask);
325 }
326 
327 static void f2fs_write_end_io(struct bio *bio)
328 {
329 	struct f2fs_sb_info *sbi;
330 	struct bio_vec *bvec;
331 	struct bvec_iter_all iter_all;
332 
333 	iostat_update_and_unbind_ctx(bio);
334 	sbi = bio->bi_private;
335 
336 	if (time_to_inject(sbi, FAULT_WRITE_IO))
337 		bio->bi_status = BLK_STS_IOERR;
338 
339 	bio_for_each_segment_all(bvec, bio, iter_all) {
340 		struct page *page = bvec->bv_page;
341 		enum count_type type = WB_DATA_TYPE(page);
342 
343 		if (page_private_dummy(page)) {
344 			clear_page_private_dummy(page);
345 			unlock_page(page);
346 			mempool_free(page, sbi->write_io_dummy);
347 
348 			if (unlikely(bio->bi_status))
349 				f2fs_stop_checkpoint(sbi, true,
350 						STOP_CP_REASON_WRITE_FAIL);
351 			continue;
352 		}
353 
354 		fscrypt_finalize_bounce_page(&page);
355 
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357 		if (f2fs_is_compressed_page(page)) {
358 			f2fs_compress_write_end_io(bio, page);
359 			continue;
360 		}
361 #endif
362 
363 		if (unlikely(bio->bi_status)) {
364 			mapping_set_error(page->mapping, -EIO);
365 			if (type == F2FS_WB_CP_DATA)
366 				f2fs_stop_checkpoint(sbi, true,
367 						STOP_CP_REASON_WRITE_FAIL);
368 		}
369 
370 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 					page->index != nid_of_node(page));
372 
373 		dec_page_count(sbi, type);
374 		if (f2fs_in_warm_node_list(sbi, page))
375 			f2fs_del_fsync_node_entry(sbi, page);
376 		clear_page_private_gcing(page);
377 		end_page_writeback(page);
378 	}
379 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 				wq_has_sleeper(&sbi->cp_wait))
381 		wake_up(&sbi->cp_wait);
382 
383 	bio_put(bio);
384 }
385 
386 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
387 		block_t blk_addr, sector_t *sector)
388 {
389 	struct block_device *bdev = sbi->sb->s_bdev;
390 	int i;
391 
392 	if (f2fs_is_multi_device(sbi)) {
393 		for (i = 0; i < sbi->s_ndevs; i++) {
394 			if (FDEV(i).start_blk <= blk_addr &&
395 			    FDEV(i).end_blk >= blk_addr) {
396 				blk_addr -= FDEV(i).start_blk;
397 				bdev = FDEV(i).bdev;
398 				break;
399 			}
400 		}
401 	}
402 
403 	if (sector)
404 		*sector = SECTOR_FROM_BLOCK(blk_addr);
405 	return bdev;
406 }
407 
408 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
409 {
410 	int i;
411 
412 	if (!f2fs_is_multi_device(sbi))
413 		return 0;
414 
415 	for (i = 0; i < sbi->s_ndevs; i++)
416 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
417 			return i;
418 	return 0;
419 }
420 
421 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
422 {
423 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
424 	unsigned int fua_flag, meta_flag, io_flag;
425 	blk_opf_t op_flags = 0;
426 
427 	if (fio->op != REQ_OP_WRITE)
428 		return 0;
429 	if (fio->type == DATA)
430 		io_flag = fio->sbi->data_io_flag;
431 	else if (fio->type == NODE)
432 		io_flag = fio->sbi->node_io_flag;
433 	else
434 		return 0;
435 
436 	fua_flag = io_flag & temp_mask;
437 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
438 
439 	/*
440 	 * data/node io flag bits per temp:
441 	 *      REQ_META     |      REQ_FUA      |
442 	 *    5 |    4 |   3 |    2 |    1 |   0 |
443 	 * Cold | Warm | Hot | Cold | Warm | Hot |
444 	 */
445 	if (BIT(fio->temp) & meta_flag)
446 		op_flags |= REQ_META;
447 	if (BIT(fio->temp) & fua_flag)
448 		op_flags |= REQ_FUA;
449 	return op_flags;
450 }
451 
452 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
453 {
454 	struct f2fs_sb_info *sbi = fio->sbi;
455 	struct block_device *bdev;
456 	sector_t sector;
457 	struct bio *bio;
458 
459 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
460 	bio = bio_alloc_bioset(bdev, npages,
461 				fio->op | fio->op_flags | f2fs_io_flags(fio),
462 				GFP_NOIO, &f2fs_bioset);
463 	bio->bi_iter.bi_sector = sector;
464 	if (is_read_io(fio->op)) {
465 		bio->bi_end_io = f2fs_read_end_io;
466 		bio->bi_private = NULL;
467 	} else {
468 		bio->bi_end_io = f2fs_write_end_io;
469 		bio->bi_private = sbi;
470 	}
471 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
472 
473 	if (fio->io_wbc)
474 		wbc_init_bio(fio->io_wbc, bio);
475 
476 	return bio;
477 }
478 
479 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
480 				  pgoff_t first_idx,
481 				  const struct f2fs_io_info *fio,
482 				  gfp_t gfp_mask)
483 {
484 	/*
485 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
486 	 * read/write raw data without encryption.
487 	 */
488 	if (!fio || !fio->encrypted_page)
489 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
490 }
491 
492 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
493 				     pgoff_t next_idx,
494 				     const struct f2fs_io_info *fio)
495 {
496 	/*
497 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
498 	 * read/write raw data without encryption.
499 	 */
500 	if (fio && fio->encrypted_page)
501 		return !bio_has_crypt_ctx(bio);
502 
503 	return fscrypt_mergeable_bio(bio, inode, next_idx);
504 }
505 
506 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
507 				 enum page_type type)
508 {
509 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
510 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
511 
512 	iostat_update_submit_ctx(bio, type);
513 	submit_bio(bio);
514 }
515 
516 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
517 {
518 	unsigned int start =
519 		(bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
520 
521 	if (start == 0)
522 		return;
523 
524 	/* fill dummy pages */
525 	for (; start < F2FS_IO_SIZE(sbi); start++) {
526 		struct page *page =
527 			mempool_alloc(sbi->write_io_dummy,
528 				      GFP_NOIO | __GFP_NOFAIL);
529 		f2fs_bug_on(sbi, !page);
530 
531 		lock_page(page);
532 
533 		zero_user_segment(page, 0, PAGE_SIZE);
534 		set_page_private_dummy(page);
535 
536 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
537 			f2fs_bug_on(sbi, 1);
538 	}
539 }
540 
541 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
542 				  enum page_type type)
543 {
544 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
545 
546 	if (type == DATA || type == NODE) {
547 		if (f2fs_lfs_mode(sbi) && current->plug)
548 			blk_finish_plug(current->plug);
549 
550 		if (F2FS_IO_ALIGNED(sbi)) {
551 			f2fs_align_write_bio(sbi, bio);
552 			/*
553 			 * In the NODE case, we lose next block address chain.
554 			 * So, we need to do checkpoint in f2fs_sync_file.
555 			 */
556 			if (type == NODE)
557 				set_sbi_flag(sbi, SBI_NEED_CP);
558 		}
559 	}
560 
561 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
562 	iostat_update_submit_ctx(bio, type);
563 	submit_bio(bio);
564 }
565 
566 static void __submit_merged_bio(struct f2fs_bio_info *io)
567 {
568 	struct f2fs_io_info *fio = &io->fio;
569 
570 	if (!io->bio)
571 		return;
572 
573 	if (is_read_io(fio->op)) {
574 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
575 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
576 	} else {
577 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
578 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
579 	}
580 	io->bio = NULL;
581 }
582 
583 static bool __has_merged_page(struct bio *bio, struct inode *inode,
584 						struct page *page, nid_t ino)
585 {
586 	struct bio_vec *bvec;
587 	struct bvec_iter_all iter_all;
588 
589 	if (!bio)
590 		return false;
591 
592 	if (!inode && !page && !ino)
593 		return true;
594 
595 	bio_for_each_segment_all(bvec, bio, iter_all) {
596 		struct page *target = bvec->bv_page;
597 
598 		if (fscrypt_is_bounce_page(target)) {
599 			target = fscrypt_pagecache_page(target);
600 			if (IS_ERR(target))
601 				continue;
602 		}
603 		if (f2fs_is_compressed_page(target)) {
604 			target = f2fs_compress_control_page(target);
605 			if (IS_ERR(target))
606 				continue;
607 		}
608 
609 		if (inode && inode == target->mapping->host)
610 			return true;
611 		if (page && page == target)
612 			return true;
613 		if (ino && ino == ino_of_node(target))
614 			return true;
615 	}
616 
617 	return false;
618 }
619 
620 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
621 {
622 	int i;
623 
624 	for (i = 0; i < NR_PAGE_TYPE; i++) {
625 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
626 		int j;
627 
628 		sbi->write_io[i] = f2fs_kmalloc(sbi,
629 				array_size(n, sizeof(struct f2fs_bio_info)),
630 				GFP_KERNEL);
631 		if (!sbi->write_io[i])
632 			return -ENOMEM;
633 
634 		for (j = HOT; j < n; j++) {
635 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
636 			sbi->write_io[i][j].sbi = sbi;
637 			sbi->write_io[i][j].bio = NULL;
638 			spin_lock_init(&sbi->write_io[i][j].io_lock);
639 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
640 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
641 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
642 		}
643 	}
644 
645 	return 0;
646 }
647 
648 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
649 				enum page_type type, enum temp_type temp)
650 {
651 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
652 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
653 
654 	f2fs_down_write(&io->io_rwsem);
655 
656 	if (!io->bio)
657 		goto unlock_out;
658 
659 	/* change META to META_FLUSH in the checkpoint procedure */
660 	if (type >= META_FLUSH) {
661 		io->fio.type = META_FLUSH;
662 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
663 		if (!test_opt(sbi, NOBARRIER))
664 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
665 	}
666 	__submit_merged_bio(io);
667 unlock_out:
668 	f2fs_up_write(&io->io_rwsem);
669 }
670 
671 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
672 				struct inode *inode, struct page *page,
673 				nid_t ino, enum page_type type, bool force)
674 {
675 	enum temp_type temp;
676 	bool ret = true;
677 
678 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
679 		if (!force)	{
680 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
681 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
682 
683 			f2fs_down_read(&io->io_rwsem);
684 			ret = __has_merged_page(io->bio, inode, page, ino);
685 			f2fs_up_read(&io->io_rwsem);
686 		}
687 		if (ret)
688 			__f2fs_submit_merged_write(sbi, type, temp);
689 
690 		/* TODO: use HOT temp only for meta pages now. */
691 		if (type >= META)
692 			break;
693 	}
694 }
695 
696 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
697 {
698 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
699 }
700 
701 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
702 				struct inode *inode, struct page *page,
703 				nid_t ino, enum page_type type)
704 {
705 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
706 }
707 
708 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
709 {
710 	f2fs_submit_merged_write(sbi, DATA);
711 	f2fs_submit_merged_write(sbi, NODE);
712 	f2fs_submit_merged_write(sbi, META);
713 }
714 
715 /*
716  * Fill the locked page with data located in the block address.
717  * A caller needs to unlock the page on failure.
718  */
719 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
720 {
721 	struct bio *bio;
722 	struct page *page = fio->encrypted_page ?
723 			fio->encrypted_page : fio->page;
724 
725 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
726 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
727 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
728 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
729 		return -EFSCORRUPTED;
730 	}
731 
732 	trace_f2fs_submit_page_bio(page, fio);
733 
734 	/* Allocate a new bio */
735 	bio = __bio_alloc(fio, 1);
736 
737 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
738 			       fio->page->index, fio, GFP_NOIO);
739 
740 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
741 		bio_put(bio);
742 		return -EFAULT;
743 	}
744 
745 	if (fio->io_wbc && !is_read_io(fio->op))
746 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
747 
748 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
749 			__read_io_type(page) : WB_DATA_TYPE(fio->page));
750 
751 	if (is_read_io(bio_op(bio)))
752 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
753 	else
754 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
755 	return 0;
756 }
757 
758 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
759 				block_t last_blkaddr, block_t cur_blkaddr)
760 {
761 	if (unlikely(sbi->max_io_bytes &&
762 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
763 		return false;
764 	if (last_blkaddr + 1 != cur_blkaddr)
765 		return false;
766 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
767 }
768 
769 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
770 						struct f2fs_io_info *fio)
771 {
772 	if (io->fio.op != fio->op)
773 		return false;
774 	return io->fio.op_flags == fio->op_flags;
775 }
776 
777 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
778 					struct f2fs_bio_info *io,
779 					struct f2fs_io_info *fio,
780 					block_t last_blkaddr,
781 					block_t cur_blkaddr)
782 {
783 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
784 		unsigned int filled_blocks =
785 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
786 		unsigned int io_size = F2FS_IO_SIZE(sbi);
787 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
788 
789 		/* IOs in bio is aligned and left space of vectors is not enough */
790 		if (!(filled_blocks % io_size) && left_vecs < io_size)
791 			return false;
792 	}
793 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
794 		return false;
795 	return io_type_is_mergeable(io, fio);
796 }
797 
798 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
799 				struct page *page, enum temp_type temp)
800 {
801 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
802 	struct bio_entry *be;
803 
804 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
805 	be->bio = bio;
806 	bio_get(bio);
807 
808 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
809 		f2fs_bug_on(sbi, 1);
810 
811 	f2fs_down_write(&io->bio_list_lock);
812 	list_add_tail(&be->list, &io->bio_list);
813 	f2fs_up_write(&io->bio_list_lock);
814 }
815 
816 static void del_bio_entry(struct bio_entry *be)
817 {
818 	list_del(&be->list);
819 	kmem_cache_free(bio_entry_slab, be);
820 }
821 
822 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
823 							struct page *page)
824 {
825 	struct f2fs_sb_info *sbi = fio->sbi;
826 	enum temp_type temp;
827 	bool found = false;
828 	int ret = -EAGAIN;
829 
830 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
831 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
832 		struct list_head *head = &io->bio_list;
833 		struct bio_entry *be;
834 
835 		f2fs_down_write(&io->bio_list_lock);
836 		list_for_each_entry(be, head, list) {
837 			if (be->bio != *bio)
838 				continue;
839 
840 			found = true;
841 
842 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
843 							    *fio->last_block,
844 							    fio->new_blkaddr));
845 			if (f2fs_crypt_mergeable_bio(*bio,
846 					fio->page->mapping->host,
847 					fio->page->index, fio) &&
848 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
849 					PAGE_SIZE) {
850 				ret = 0;
851 				break;
852 			}
853 
854 			/* page can't be merged into bio; submit the bio */
855 			del_bio_entry(be);
856 			f2fs_submit_write_bio(sbi, *bio, DATA);
857 			break;
858 		}
859 		f2fs_up_write(&io->bio_list_lock);
860 	}
861 
862 	if (ret) {
863 		bio_put(*bio);
864 		*bio = NULL;
865 	}
866 
867 	return ret;
868 }
869 
870 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
871 					struct bio **bio, struct page *page)
872 {
873 	enum temp_type temp;
874 	bool found = false;
875 	struct bio *target = bio ? *bio : NULL;
876 
877 	f2fs_bug_on(sbi, !target && !page);
878 
879 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
880 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
881 		struct list_head *head = &io->bio_list;
882 		struct bio_entry *be;
883 
884 		if (list_empty(head))
885 			continue;
886 
887 		f2fs_down_read(&io->bio_list_lock);
888 		list_for_each_entry(be, head, list) {
889 			if (target)
890 				found = (target == be->bio);
891 			else
892 				found = __has_merged_page(be->bio, NULL,
893 								page, 0);
894 			if (found)
895 				break;
896 		}
897 		f2fs_up_read(&io->bio_list_lock);
898 
899 		if (!found)
900 			continue;
901 
902 		found = false;
903 
904 		f2fs_down_write(&io->bio_list_lock);
905 		list_for_each_entry(be, head, list) {
906 			if (target)
907 				found = (target == be->bio);
908 			else
909 				found = __has_merged_page(be->bio, NULL,
910 								page, 0);
911 			if (found) {
912 				target = be->bio;
913 				del_bio_entry(be);
914 				break;
915 			}
916 		}
917 		f2fs_up_write(&io->bio_list_lock);
918 	}
919 
920 	if (found)
921 		f2fs_submit_write_bio(sbi, target, DATA);
922 	if (bio && *bio) {
923 		bio_put(*bio);
924 		*bio = NULL;
925 	}
926 }
927 
928 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
929 {
930 	struct bio *bio = *fio->bio;
931 	struct page *page = fio->encrypted_page ?
932 			fio->encrypted_page : fio->page;
933 
934 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
935 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
936 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
937 		return -EFSCORRUPTED;
938 	}
939 
940 	trace_f2fs_submit_page_bio(page, fio);
941 
942 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
943 						fio->new_blkaddr))
944 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
945 alloc_new:
946 	if (!bio) {
947 		bio = __bio_alloc(fio, BIO_MAX_VECS);
948 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
949 				       fio->page->index, fio, GFP_NOIO);
950 
951 		add_bio_entry(fio->sbi, bio, page, fio->temp);
952 	} else {
953 		if (add_ipu_page(fio, &bio, page))
954 			goto alloc_new;
955 	}
956 
957 	if (fio->io_wbc)
958 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
959 
960 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
961 
962 	*fio->last_block = fio->new_blkaddr;
963 	*fio->bio = bio;
964 
965 	return 0;
966 }
967 
968 void f2fs_submit_page_write(struct f2fs_io_info *fio)
969 {
970 	struct f2fs_sb_info *sbi = fio->sbi;
971 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
972 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
973 	struct page *bio_page;
974 
975 	f2fs_bug_on(sbi, is_read_io(fio->op));
976 
977 	f2fs_down_write(&io->io_rwsem);
978 next:
979 	if (fio->in_list) {
980 		spin_lock(&io->io_lock);
981 		if (list_empty(&io->io_list)) {
982 			spin_unlock(&io->io_lock);
983 			goto out;
984 		}
985 		fio = list_first_entry(&io->io_list,
986 						struct f2fs_io_info, list);
987 		list_del(&fio->list);
988 		spin_unlock(&io->io_lock);
989 	}
990 
991 	verify_fio_blkaddr(fio);
992 
993 	if (fio->encrypted_page)
994 		bio_page = fio->encrypted_page;
995 	else if (fio->compressed_page)
996 		bio_page = fio->compressed_page;
997 	else
998 		bio_page = fio->page;
999 
1000 	/* set submitted = true as a return value */
1001 	fio->submitted = 1;
1002 
1003 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1004 
1005 	if (io->bio &&
1006 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1007 			      fio->new_blkaddr) ||
1008 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1009 				       bio_page->index, fio)))
1010 		__submit_merged_bio(io);
1011 alloc_new:
1012 	if (io->bio == NULL) {
1013 		if (F2FS_IO_ALIGNED(sbi) &&
1014 				(fio->type == DATA || fio->type == NODE) &&
1015 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1016 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1017 			fio->retry = 1;
1018 			goto skip;
1019 		}
1020 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1021 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1022 				       bio_page->index, fio, GFP_NOIO);
1023 		io->fio = *fio;
1024 	}
1025 
1026 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1027 		__submit_merged_bio(io);
1028 		goto alloc_new;
1029 	}
1030 
1031 	if (fio->io_wbc)
1032 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1033 
1034 	io->last_block_in_bio = fio->new_blkaddr;
1035 
1036 	trace_f2fs_submit_page_write(fio->page, fio);
1037 skip:
1038 	if (fio->in_list)
1039 		goto next;
1040 out:
1041 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1042 				!f2fs_is_checkpoint_ready(sbi))
1043 		__submit_merged_bio(io);
1044 	f2fs_up_write(&io->io_rwsem);
1045 }
1046 
1047 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1048 				      unsigned nr_pages, blk_opf_t op_flag,
1049 				      pgoff_t first_idx, bool for_write)
1050 {
1051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1052 	struct bio *bio;
1053 	struct bio_post_read_ctx *ctx = NULL;
1054 	unsigned int post_read_steps = 0;
1055 	sector_t sector;
1056 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1057 
1058 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1059 			       REQ_OP_READ | op_flag,
1060 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1061 	if (!bio)
1062 		return ERR_PTR(-ENOMEM);
1063 	bio->bi_iter.bi_sector = sector;
1064 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1065 	bio->bi_end_io = f2fs_read_end_io;
1066 
1067 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1068 		post_read_steps |= STEP_DECRYPT;
1069 
1070 	if (f2fs_need_verity(inode, first_idx))
1071 		post_read_steps |= STEP_VERITY;
1072 
1073 	/*
1074 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1075 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1076 	 * bio_post_read_ctx if the file is compressed, but the caller is
1077 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1078 	 */
1079 
1080 	if (post_read_steps || f2fs_compressed_file(inode)) {
1081 		/* Due to the mempool, this never fails. */
1082 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1083 		ctx->bio = bio;
1084 		ctx->sbi = sbi;
1085 		ctx->enabled_steps = post_read_steps;
1086 		ctx->fs_blkaddr = blkaddr;
1087 		ctx->decompression_attempted = false;
1088 		bio->bi_private = ctx;
1089 	}
1090 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1091 
1092 	return bio;
1093 }
1094 
1095 /* This can handle encryption stuffs */
1096 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1097 				 block_t blkaddr, blk_opf_t op_flags,
1098 				 bool for_write)
1099 {
1100 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1101 	struct bio *bio;
1102 
1103 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1104 					page->index, for_write);
1105 	if (IS_ERR(bio))
1106 		return PTR_ERR(bio);
1107 
1108 	/* wait for GCed page writeback via META_MAPPING */
1109 	f2fs_wait_on_block_writeback(inode, blkaddr);
1110 
1111 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1112 		bio_put(bio);
1113 		return -EFAULT;
1114 	}
1115 	inc_page_count(sbi, F2FS_RD_DATA);
1116 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1117 	f2fs_submit_read_bio(sbi, bio, DATA);
1118 	return 0;
1119 }
1120 
1121 static void __set_data_blkaddr(struct dnode_of_data *dn)
1122 {
1123 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1124 	__le32 *addr_array;
1125 	int base = 0;
1126 
1127 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1128 		base = get_extra_isize(dn->inode);
1129 
1130 	/* Get physical address of data block */
1131 	addr_array = blkaddr_in_node(rn);
1132 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1133 }
1134 
1135 /*
1136  * Lock ordering for the change of data block address:
1137  * ->data_page
1138  *  ->node_page
1139  *    update block addresses in the node page
1140  */
1141 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1142 {
1143 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1144 	__set_data_blkaddr(dn);
1145 	if (set_page_dirty(dn->node_page))
1146 		dn->node_changed = true;
1147 }
1148 
1149 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1150 {
1151 	dn->data_blkaddr = blkaddr;
1152 	f2fs_set_data_blkaddr(dn);
1153 	f2fs_update_read_extent_cache(dn);
1154 }
1155 
1156 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1157 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1158 {
1159 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1160 	int err;
1161 
1162 	if (!count)
1163 		return 0;
1164 
1165 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1166 		return -EPERM;
1167 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1168 		return err;
1169 
1170 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1171 						dn->ofs_in_node, count);
1172 
1173 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1174 
1175 	for (; count > 0; dn->ofs_in_node++) {
1176 		block_t blkaddr = f2fs_data_blkaddr(dn);
1177 
1178 		if (blkaddr == NULL_ADDR) {
1179 			dn->data_blkaddr = NEW_ADDR;
1180 			__set_data_blkaddr(dn);
1181 			count--;
1182 		}
1183 	}
1184 
1185 	if (set_page_dirty(dn->node_page))
1186 		dn->node_changed = true;
1187 	return 0;
1188 }
1189 
1190 /* Should keep dn->ofs_in_node unchanged */
1191 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1192 {
1193 	unsigned int ofs_in_node = dn->ofs_in_node;
1194 	int ret;
1195 
1196 	ret = f2fs_reserve_new_blocks(dn, 1);
1197 	dn->ofs_in_node = ofs_in_node;
1198 	return ret;
1199 }
1200 
1201 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1202 {
1203 	bool need_put = dn->inode_page ? false : true;
1204 	int err;
1205 
1206 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1207 	if (err)
1208 		return err;
1209 
1210 	if (dn->data_blkaddr == NULL_ADDR)
1211 		err = f2fs_reserve_new_block(dn);
1212 	if (err || need_put)
1213 		f2fs_put_dnode(dn);
1214 	return err;
1215 }
1216 
1217 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1218 				     blk_opf_t op_flags, bool for_write,
1219 				     pgoff_t *next_pgofs)
1220 {
1221 	struct address_space *mapping = inode->i_mapping;
1222 	struct dnode_of_data dn;
1223 	struct page *page;
1224 	int err;
1225 
1226 	page = f2fs_grab_cache_page(mapping, index, for_write);
1227 	if (!page)
1228 		return ERR_PTR(-ENOMEM);
1229 
1230 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1231 						&dn.data_blkaddr)) {
1232 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1233 						DATA_GENERIC_ENHANCE_READ)) {
1234 			err = -EFSCORRUPTED;
1235 			f2fs_handle_error(F2FS_I_SB(inode),
1236 						ERROR_INVALID_BLKADDR);
1237 			goto put_err;
1238 		}
1239 		goto got_it;
1240 	}
1241 
1242 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1243 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1244 	if (err) {
1245 		if (err == -ENOENT && next_pgofs)
1246 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1247 		goto put_err;
1248 	}
1249 	f2fs_put_dnode(&dn);
1250 
1251 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1252 		err = -ENOENT;
1253 		if (next_pgofs)
1254 			*next_pgofs = index + 1;
1255 		goto put_err;
1256 	}
1257 	if (dn.data_blkaddr != NEW_ADDR &&
1258 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1259 						dn.data_blkaddr,
1260 						DATA_GENERIC_ENHANCE)) {
1261 		err = -EFSCORRUPTED;
1262 		f2fs_handle_error(F2FS_I_SB(inode),
1263 					ERROR_INVALID_BLKADDR);
1264 		goto put_err;
1265 	}
1266 got_it:
1267 	if (PageUptodate(page)) {
1268 		unlock_page(page);
1269 		return page;
1270 	}
1271 
1272 	/*
1273 	 * A new dentry page is allocated but not able to be written, since its
1274 	 * new inode page couldn't be allocated due to -ENOSPC.
1275 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1276 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1277 	 * f2fs_init_inode_metadata.
1278 	 */
1279 	if (dn.data_blkaddr == NEW_ADDR) {
1280 		zero_user_segment(page, 0, PAGE_SIZE);
1281 		if (!PageUptodate(page))
1282 			SetPageUptodate(page);
1283 		unlock_page(page);
1284 		return page;
1285 	}
1286 
1287 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1288 						op_flags, for_write);
1289 	if (err)
1290 		goto put_err;
1291 	return page;
1292 
1293 put_err:
1294 	f2fs_put_page(page, 1);
1295 	return ERR_PTR(err);
1296 }
1297 
1298 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1299 					pgoff_t *next_pgofs)
1300 {
1301 	struct address_space *mapping = inode->i_mapping;
1302 	struct page *page;
1303 
1304 	page = find_get_page(mapping, index);
1305 	if (page && PageUptodate(page))
1306 		return page;
1307 	f2fs_put_page(page, 0);
1308 
1309 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1310 	if (IS_ERR(page))
1311 		return page;
1312 
1313 	if (PageUptodate(page))
1314 		return page;
1315 
1316 	wait_on_page_locked(page);
1317 	if (unlikely(!PageUptodate(page))) {
1318 		f2fs_put_page(page, 0);
1319 		return ERR_PTR(-EIO);
1320 	}
1321 	return page;
1322 }
1323 
1324 /*
1325  * If it tries to access a hole, return an error.
1326  * Because, the callers, functions in dir.c and GC, should be able to know
1327  * whether this page exists or not.
1328  */
1329 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1330 							bool for_write)
1331 {
1332 	struct address_space *mapping = inode->i_mapping;
1333 	struct page *page;
1334 repeat:
1335 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1336 	if (IS_ERR(page))
1337 		return page;
1338 
1339 	/* wait for read completion */
1340 	lock_page(page);
1341 	if (unlikely(page->mapping != mapping)) {
1342 		f2fs_put_page(page, 1);
1343 		goto repeat;
1344 	}
1345 	if (unlikely(!PageUptodate(page))) {
1346 		f2fs_put_page(page, 1);
1347 		return ERR_PTR(-EIO);
1348 	}
1349 	return page;
1350 }
1351 
1352 /*
1353  * Caller ensures that this data page is never allocated.
1354  * A new zero-filled data page is allocated in the page cache.
1355  *
1356  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1357  * f2fs_unlock_op().
1358  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1359  * ipage should be released by this function.
1360  */
1361 struct page *f2fs_get_new_data_page(struct inode *inode,
1362 		struct page *ipage, pgoff_t index, bool new_i_size)
1363 {
1364 	struct address_space *mapping = inode->i_mapping;
1365 	struct page *page;
1366 	struct dnode_of_data dn;
1367 	int err;
1368 
1369 	page = f2fs_grab_cache_page(mapping, index, true);
1370 	if (!page) {
1371 		/*
1372 		 * before exiting, we should make sure ipage will be released
1373 		 * if any error occur.
1374 		 */
1375 		f2fs_put_page(ipage, 1);
1376 		return ERR_PTR(-ENOMEM);
1377 	}
1378 
1379 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1380 	err = f2fs_reserve_block(&dn, index);
1381 	if (err) {
1382 		f2fs_put_page(page, 1);
1383 		return ERR_PTR(err);
1384 	}
1385 	if (!ipage)
1386 		f2fs_put_dnode(&dn);
1387 
1388 	if (PageUptodate(page))
1389 		goto got_it;
1390 
1391 	if (dn.data_blkaddr == NEW_ADDR) {
1392 		zero_user_segment(page, 0, PAGE_SIZE);
1393 		if (!PageUptodate(page))
1394 			SetPageUptodate(page);
1395 	} else {
1396 		f2fs_put_page(page, 1);
1397 
1398 		/* if ipage exists, blkaddr should be NEW_ADDR */
1399 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1400 		page = f2fs_get_lock_data_page(inode, index, true);
1401 		if (IS_ERR(page))
1402 			return page;
1403 	}
1404 got_it:
1405 	if (new_i_size && i_size_read(inode) <
1406 				((loff_t)(index + 1) << PAGE_SHIFT))
1407 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1408 	return page;
1409 }
1410 
1411 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1412 {
1413 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1414 	struct f2fs_summary sum;
1415 	struct node_info ni;
1416 	block_t old_blkaddr;
1417 	blkcnt_t count = 1;
1418 	int err;
1419 
1420 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1421 		return -EPERM;
1422 
1423 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1424 	if (err)
1425 		return err;
1426 
1427 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1428 	if (dn->data_blkaddr == NULL_ADDR) {
1429 		err = inc_valid_block_count(sbi, dn->inode, &count);
1430 		if (unlikely(err))
1431 			return err;
1432 	}
1433 
1434 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1435 	old_blkaddr = dn->data_blkaddr;
1436 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1437 				&sum, seg_type, NULL);
1438 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1439 		invalidate_mapping_pages(META_MAPPING(sbi),
1440 					old_blkaddr, old_blkaddr);
1441 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1442 	}
1443 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1444 	return 0;
1445 }
1446 
1447 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1448 {
1449 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1450 		f2fs_down_read(&sbi->node_change);
1451 	else
1452 		f2fs_lock_op(sbi);
1453 }
1454 
1455 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1456 {
1457 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1458 		f2fs_up_read(&sbi->node_change);
1459 	else
1460 		f2fs_unlock_op(sbi);
1461 }
1462 
1463 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1464 {
1465 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1466 	int err = 0;
1467 
1468 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1469 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1470 						&dn->data_blkaddr))
1471 		err = f2fs_reserve_block(dn, index);
1472 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1473 
1474 	return err;
1475 }
1476 
1477 static int f2fs_map_no_dnode(struct inode *inode,
1478 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1479 		pgoff_t pgoff)
1480 {
1481 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1482 
1483 	/*
1484 	 * There is one exceptional case that read_node_page() may return
1485 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1486 	 * -EIO in that case.
1487 	 */
1488 	if (map->m_may_create &&
1489 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1490 		return -EIO;
1491 
1492 	if (map->m_next_pgofs)
1493 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1494 	if (map->m_next_extent)
1495 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1496 	return 0;
1497 }
1498 
1499 static bool f2fs_map_blocks_cached(struct inode *inode,
1500 		struct f2fs_map_blocks *map, int flag)
1501 {
1502 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1503 	unsigned int maxblocks = map->m_len;
1504 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1505 	struct extent_info ei = {};
1506 
1507 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1508 		return false;
1509 
1510 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1511 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1512 	map->m_flags = F2FS_MAP_MAPPED;
1513 	if (map->m_next_extent)
1514 		*map->m_next_extent = pgoff + map->m_len;
1515 
1516 	/* for hardware encryption, but to avoid potential issue in future */
1517 	if (flag == F2FS_GET_BLOCK_DIO)
1518 		f2fs_wait_on_block_writeback_range(inode,
1519 					map->m_pblk, map->m_len);
1520 
1521 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1522 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1523 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1524 
1525 		map->m_bdev = dev->bdev;
1526 		map->m_pblk -= dev->start_blk;
1527 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1528 	} else {
1529 		map->m_bdev = inode->i_sb->s_bdev;
1530 	}
1531 	return true;
1532 }
1533 
1534 /*
1535  * f2fs_map_blocks() tries to find or build mapping relationship which
1536  * maps continuous logical blocks to physical blocks, and return such
1537  * info via f2fs_map_blocks structure.
1538  */
1539 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1540 {
1541 	unsigned int maxblocks = map->m_len;
1542 	struct dnode_of_data dn;
1543 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1544 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1545 	pgoff_t pgofs, end_offset, end;
1546 	int err = 0, ofs = 1;
1547 	unsigned int ofs_in_node, last_ofs_in_node;
1548 	blkcnt_t prealloc;
1549 	block_t blkaddr;
1550 	unsigned int start_pgofs;
1551 	int bidx = 0;
1552 	bool is_hole;
1553 
1554 	if (!maxblocks)
1555 		return 0;
1556 
1557 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1558 		goto out;
1559 
1560 	map->m_bdev = inode->i_sb->s_bdev;
1561 	map->m_multidev_dio =
1562 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1563 
1564 	map->m_len = 0;
1565 	map->m_flags = 0;
1566 
1567 	/* it only supports block size == page size */
1568 	pgofs =	(pgoff_t)map->m_lblk;
1569 	end = pgofs + maxblocks;
1570 
1571 next_dnode:
1572 	if (map->m_may_create)
1573 		f2fs_map_lock(sbi, flag);
1574 
1575 	/* When reading holes, we need its node page */
1576 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1577 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1578 	if (err) {
1579 		if (flag == F2FS_GET_BLOCK_BMAP)
1580 			map->m_pblk = 0;
1581 		if (err == -ENOENT)
1582 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1583 		goto unlock_out;
1584 	}
1585 
1586 	start_pgofs = pgofs;
1587 	prealloc = 0;
1588 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1589 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1590 
1591 next_block:
1592 	blkaddr = f2fs_data_blkaddr(&dn);
1593 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1594 	if (!is_hole &&
1595 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1596 		err = -EFSCORRUPTED;
1597 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1598 		goto sync_out;
1599 	}
1600 
1601 	/* use out-place-update for direct IO under LFS mode */
1602 	if (map->m_may_create &&
1603 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1604 		if (unlikely(f2fs_cp_error(sbi))) {
1605 			err = -EIO;
1606 			goto sync_out;
1607 		}
1608 
1609 		switch (flag) {
1610 		case F2FS_GET_BLOCK_PRE_AIO:
1611 			if (blkaddr == NULL_ADDR) {
1612 				prealloc++;
1613 				last_ofs_in_node = dn.ofs_in_node;
1614 			}
1615 			break;
1616 		case F2FS_GET_BLOCK_PRE_DIO:
1617 		case F2FS_GET_BLOCK_DIO:
1618 			err = __allocate_data_block(&dn, map->m_seg_type);
1619 			if (err)
1620 				goto sync_out;
1621 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1622 				file_need_truncate(inode);
1623 			set_inode_flag(inode, FI_APPEND_WRITE);
1624 			break;
1625 		default:
1626 			WARN_ON_ONCE(1);
1627 			err = -EIO;
1628 			goto sync_out;
1629 		}
1630 
1631 		blkaddr = dn.data_blkaddr;
1632 		if (is_hole)
1633 			map->m_flags |= F2FS_MAP_NEW;
1634 	} else if (is_hole) {
1635 		if (f2fs_compressed_file(inode) &&
1636 		    f2fs_sanity_check_cluster(&dn) &&
1637 		    (flag != F2FS_GET_BLOCK_FIEMAP ||
1638 		     IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1639 			err = -EFSCORRUPTED;
1640 			f2fs_handle_error(sbi,
1641 					ERROR_CORRUPTED_CLUSTER);
1642 			goto sync_out;
1643 		}
1644 
1645 		switch (flag) {
1646 		case F2FS_GET_BLOCK_PRECACHE:
1647 			goto sync_out;
1648 		case F2FS_GET_BLOCK_BMAP:
1649 			map->m_pblk = 0;
1650 			goto sync_out;
1651 		case F2FS_GET_BLOCK_FIEMAP:
1652 			if (blkaddr == NULL_ADDR) {
1653 				if (map->m_next_pgofs)
1654 					*map->m_next_pgofs = pgofs + 1;
1655 				goto sync_out;
1656 			}
1657 			break;
1658 		default:
1659 			/* for defragment case */
1660 			if (map->m_next_pgofs)
1661 				*map->m_next_pgofs = pgofs + 1;
1662 			goto sync_out;
1663 		}
1664 	}
1665 
1666 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1667 		goto skip;
1668 
1669 	if (map->m_multidev_dio)
1670 		bidx = f2fs_target_device_index(sbi, blkaddr);
1671 
1672 	if (map->m_len == 0) {
1673 		/* reserved delalloc block should be mapped for fiemap. */
1674 		if (blkaddr == NEW_ADDR)
1675 			map->m_flags |= F2FS_MAP_DELALLOC;
1676 		map->m_flags |= F2FS_MAP_MAPPED;
1677 
1678 		map->m_pblk = blkaddr;
1679 		map->m_len = 1;
1680 
1681 		if (map->m_multidev_dio)
1682 			map->m_bdev = FDEV(bidx).bdev;
1683 	} else if ((map->m_pblk != NEW_ADDR &&
1684 			blkaddr == (map->m_pblk + ofs)) ||
1685 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1686 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1687 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1688 			goto sync_out;
1689 		ofs++;
1690 		map->m_len++;
1691 	} else {
1692 		goto sync_out;
1693 	}
1694 
1695 skip:
1696 	dn.ofs_in_node++;
1697 	pgofs++;
1698 
1699 	/* preallocate blocks in batch for one dnode page */
1700 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1701 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1702 
1703 		dn.ofs_in_node = ofs_in_node;
1704 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1705 		if (err)
1706 			goto sync_out;
1707 
1708 		map->m_len += dn.ofs_in_node - ofs_in_node;
1709 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1710 			err = -ENOSPC;
1711 			goto sync_out;
1712 		}
1713 		dn.ofs_in_node = end_offset;
1714 	}
1715 
1716 	if (pgofs >= end)
1717 		goto sync_out;
1718 	else if (dn.ofs_in_node < end_offset)
1719 		goto next_block;
1720 
1721 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1722 		if (map->m_flags & F2FS_MAP_MAPPED) {
1723 			unsigned int ofs = start_pgofs - map->m_lblk;
1724 
1725 			f2fs_update_read_extent_cache_range(&dn,
1726 				start_pgofs, map->m_pblk + ofs,
1727 				map->m_len - ofs);
1728 		}
1729 	}
1730 
1731 	f2fs_put_dnode(&dn);
1732 
1733 	if (map->m_may_create) {
1734 		f2fs_map_unlock(sbi, flag);
1735 		f2fs_balance_fs(sbi, dn.node_changed);
1736 	}
1737 	goto next_dnode;
1738 
1739 sync_out:
1740 
1741 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1742 		/*
1743 		 * for hardware encryption, but to avoid potential issue
1744 		 * in future
1745 		 */
1746 		f2fs_wait_on_block_writeback_range(inode,
1747 						map->m_pblk, map->m_len);
1748 
1749 		if (map->m_multidev_dio) {
1750 			block_t blk_addr = map->m_pblk;
1751 
1752 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1753 
1754 			map->m_bdev = FDEV(bidx).bdev;
1755 			map->m_pblk -= FDEV(bidx).start_blk;
1756 
1757 			if (map->m_may_create)
1758 				f2fs_update_device_state(sbi, inode->i_ino,
1759 							blk_addr, map->m_len);
1760 
1761 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1762 						FDEV(bidx).end_blk + 1);
1763 		}
1764 	}
1765 
1766 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1767 		if (map->m_flags & F2FS_MAP_MAPPED) {
1768 			unsigned int ofs = start_pgofs - map->m_lblk;
1769 
1770 			f2fs_update_read_extent_cache_range(&dn,
1771 				start_pgofs, map->m_pblk + ofs,
1772 				map->m_len - ofs);
1773 		}
1774 		if (map->m_next_extent)
1775 			*map->m_next_extent = pgofs + 1;
1776 	}
1777 	f2fs_put_dnode(&dn);
1778 unlock_out:
1779 	if (map->m_may_create) {
1780 		f2fs_map_unlock(sbi, flag);
1781 		f2fs_balance_fs(sbi, dn.node_changed);
1782 	}
1783 out:
1784 	trace_f2fs_map_blocks(inode, map, flag, err);
1785 	return err;
1786 }
1787 
1788 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1789 {
1790 	struct f2fs_map_blocks map;
1791 	block_t last_lblk;
1792 	int err;
1793 
1794 	if (pos + len > i_size_read(inode))
1795 		return false;
1796 
1797 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1798 	map.m_next_pgofs = NULL;
1799 	map.m_next_extent = NULL;
1800 	map.m_seg_type = NO_CHECK_TYPE;
1801 	map.m_may_create = false;
1802 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1803 
1804 	while (map.m_lblk < last_lblk) {
1805 		map.m_len = last_lblk - map.m_lblk;
1806 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1807 		if (err || map.m_len == 0)
1808 			return false;
1809 		map.m_lblk += map.m_len;
1810 	}
1811 	return true;
1812 }
1813 
1814 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1815 {
1816 	return (bytes >> inode->i_blkbits);
1817 }
1818 
1819 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1820 {
1821 	return (blks << inode->i_blkbits);
1822 }
1823 
1824 static int f2fs_xattr_fiemap(struct inode *inode,
1825 				struct fiemap_extent_info *fieinfo)
1826 {
1827 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1828 	struct page *page;
1829 	struct node_info ni;
1830 	__u64 phys = 0, len;
1831 	__u32 flags;
1832 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1833 	int err = 0;
1834 
1835 	if (f2fs_has_inline_xattr(inode)) {
1836 		int offset;
1837 
1838 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1839 						inode->i_ino, false);
1840 		if (!page)
1841 			return -ENOMEM;
1842 
1843 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1844 		if (err) {
1845 			f2fs_put_page(page, 1);
1846 			return err;
1847 		}
1848 
1849 		phys = blks_to_bytes(inode, ni.blk_addr);
1850 		offset = offsetof(struct f2fs_inode, i_addr) +
1851 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1852 					get_inline_xattr_addrs(inode));
1853 
1854 		phys += offset;
1855 		len = inline_xattr_size(inode);
1856 
1857 		f2fs_put_page(page, 1);
1858 
1859 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1860 
1861 		if (!xnid)
1862 			flags |= FIEMAP_EXTENT_LAST;
1863 
1864 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1865 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1866 		if (err)
1867 			return err;
1868 	}
1869 
1870 	if (xnid) {
1871 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1872 		if (!page)
1873 			return -ENOMEM;
1874 
1875 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1876 		if (err) {
1877 			f2fs_put_page(page, 1);
1878 			return err;
1879 		}
1880 
1881 		phys = blks_to_bytes(inode, ni.blk_addr);
1882 		len = inode->i_sb->s_blocksize;
1883 
1884 		f2fs_put_page(page, 1);
1885 
1886 		flags = FIEMAP_EXTENT_LAST;
1887 	}
1888 
1889 	if (phys) {
1890 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1891 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1892 	}
1893 
1894 	return (err < 0 ? err : 0);
1895 }
1896 
1897 static loff_t max_inode_blocks(struct inode *inode)
1898 {
1899 	loff_t result = ADDRS_PER_INODE(inode);
1900 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1901 
1902 	/* two direct node blocks */
1903 	result += (leaf_count * 2);
1904 
1905 	/* two indirect node blocks */
1906 	leaf_count *= NIDS_PER_BLOCK;
1907 	result += (leaf_count * 2);
1908 
1909 	/* one double indirect node block */
1910 	leaf_count *= NIDS_PER_BLOCK;
1911 	result += leaf_count;
1912 
1913 	return result;
1914 }
1915 
1916 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1917 		u64 start, u64 len)
1918 {
1919 	struct f2fs_map_blocks map;
1920 	sector_t start_blk, last_blk;
1921 	pgoff_t next_pgofs;
1922 	u64 logical = 0, phys = 0, size = 0;
1923 	u32 flags = 0;
1924 	int ret = 0;
1925 	bool compr_cluster = false, compr_appended;
1926 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1927 	unsigned int count_in_cluster = 0;
1928 	loff_t maxbytes;
1929 
1930 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1931 		ret = f2fs_precache_extents(inode);
1932 		if (ret)
1933 			return ret;
1934 	}
1935 
1936 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1937 	if (ret)
1938 		return ret;
1939 
1940 	inode_lock(inode);
1941 
1942 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1943 	if (start > maxbytes) {
1944 		ret = -EFBIG;
1945 		goto out;
1946 	}
1947 
1948 	if (len > maxbytes || (maxbytes - len) < start)
1949 		len = maxbytes - start;
1950 
1951 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1952 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1953 		goto out;
1954 	}
1955 
1956 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1957 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1958 		if (ret != -EAGAIN)
1959 			goto out;
1960 	}
1961 
1962 	if (bytes_to_blks(inode, len) == 0)
1963 		len = blks_to_bytes(inode, 1);
1964 
1965 	start_blk = bytes_to_blks(inode, start);
1966 	last_blk = bytes_to_blks(inode, start + len - 1);
1967 
1968 next:
1969 	memset(&map, 0, sizeof(map));
1970 	map.m_lblk = start_blk;
1971 	map.m_len = bytes_to_blks(inode, len);
1972 	map.m_next_pgofs = &next_pgofs;
1973 	map.m_seg_type = NO_CHECK_TYPE;
1974 
1975 	if (compr_cluster) {
1976 		map.m_lblk += 1;
1977 		map.m_len = cluster_size - count_in_cluster;
1978 	}
1979 
1980 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1981 	if (ret)
1982 		goto out;
1983 
1984 	/* HOLE */
1985 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1986 		start_blk = next_pgofs;
1987 
1988 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1989 						max_inode_blocks(inode)))
1990 			goto prep_next;
1991 
1992 		flags |= FIEMAP_EXTENT_LAST;
1993 	}
1994 
1995 	compr_appended = false;
1996 	/* In a case of compressed cluster, append this to the last extent */
1997 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1998 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1999 		compr_appended = true;
2000 		goto skip_fill;
2001 	}
2002 
2003 	if (size) {
2004 		flags |= FIEMAP_EXTENT_MERGED;
2005 		if (IS_ENCRYPTED(inode))
2006 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2007 
2008 		ret = fiemap_fill_next_extent(fieinfo, logical,
2009 				phys, size, flags);
2010 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2011 		if (ret)
2012 			goto out;
2013 		size = 0;
2014 	}
2015 
2016 	if (start_blk > last_blk)
2017 		goto out;
2018 
2019 skip_fill:
2020 	if (map.m_pblk == COMPRESS_ADDR) {
2021 		compr_cluster = true;
2022 		count_in_cluster = 1;
2023 	} else if (compr_appended) {
2024 		unsigned int appended_blks = cluster_size -
2025 						count_in_cluster + 1;
2026 		size += blks_to_bytes(inode, appended_blks);
2027 		start_blk += appended_blks;
2028 		compr_cluster = false;
2029 	} else {
2030 		logical = blks_to_bytes(inode, start_blk);
2031 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2032 			blks_to_bytes(inode, map.m_pblk) : 0;
2033 		size = blks_to_bytes(inode, map.m_len);
2034 		flags = 0;
2035 
2036 		if (compr_cluster) {
2037 			flags = FIEMAP_EXTENT_ENCODED;
2038 			count_in_cluster += map.m_len;
2039 			if (count_in_cluster == cluster_size) {
2040 				compr_cluster = false;
2041 				size += blks_to_bytes(inode, 1);
2042 			}
2043 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2044 			flags = FIEMAP_EXTENT_UNWRITTEN;
2045 		}
2046 
2047 		start_blk += bytes_to_blks(inode, size);
2048 	}
2049 
2050 prep_next:
2051 	cond_resched();
2052 	if (fatal_signal_pending(current))
2053 		ret = -EINTR;
2054 	else
2055 		goto next;
2056 out:
2057 	if (ret == 1)
2058 		ret = 0;
2059 
2060 	inode_unlock(inode);
2061 	return ret;
2062 }
2063 
2064 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2065 {
2066 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2067 		return inode->i_sb->s_maxbytes;
2068 
2069 	return i_size_read(inode);
2070 }
2071 
2072 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2073 					unsigned nr_pages,
2074 					struct f2fs_map_blocks *map,
2075 					struct bio **bio_ret,
2076 					sector_t *last_block_in_bio,
2077 					bool is_readahead)
2078 {
2079 	struct bio *bio = *bio_ret;
2080 	const unsigned blocksize = blks_to_bytes(inode, 1);
2081 	sector_t block_in_file;
2082 	sector_t last_block;
2083 	sector_t last_block_in_file;
2084 	sector_t block_nr;
2085 	int ret = 0;
2086 
2087 	block_in_file = (sector_t)page_index(page);
2088 	last_block = block_in_file + nr_pages;
2089 	last_block_in_file = bytes_to_blks(inode,
2090 			f2fs_readpage_limit(inode) + blocksize - 1);
2091 	if (last_block > last_block_in_file)
2092 		last_block = last_block_in_file;
2093 
2094 	/* just zeroing out page which is beyond EOF */
2095 	if (block_in_file >= last_block)
2096 		goto zero_out;
2097 	/*
2098 	 * Map blocks using the previous result first.
2099 	 */
2100 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2101 			block_in_file > map->m_lblk &&
2102 			block_in_file < (map->m_lblk + map->m_len))
2103 		goto got_it;
2104 
2105 	/*
2106 	 * Then do more f2fs_map_blocks() calls until we are
2107 	 * done with this page.
2108 	 */
2109 	map->m_lblk = block_in_file;
2110 	map->m_len = last_block - block_in_file;
2111 
2112 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2113 	if (ret)
2114 		goto out;
2115 got_it:
2116 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2117 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2118 		SetPageMappedToDisk(page);
2119 
2120 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2121 						DATA_GENERIC_ENHANCE_READ)) {
2122 			ret = -EFSCORRUPTED;
2123 			f2fs_handle_error(F2FS_I_SB(inode),
2124 						ERROR_INVALID_BLKADDR);
2125 			goto out;
2126 		}
2127 	} else {
2128 zero_out:
2129 		zero_user_segment(page, 0, PAGE_SIZE);
2130 		if (f2fs_need_verity(inode, page->index) &&
2131 		    !fsverity_verify_page(page)) {
2132 			ret = -EIO;
2133 			goto out;
2134 		}
2135 		if (!PageUptodate(page))
2136 			SetPageUptodate(page);
2137 		unlock_page(page);
2138 		goto out;
2139 	}
2140 
2141 	/*
2142 	 * This page will go to BIO.  Do we need to send this
2143 	 * BIO off first?
2144 	 */
2145 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2146 				       *last_block_in_bio, block_nr) ||
2147 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2148 submit_and_realloc:
2149 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2150 		bio = NULL;
2151 	}
2152 	if (bio == NULL) {
2153 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2154 				is_readahead ? REQ_RAHEAD : 0, page->index,
2155 				false);
2156 		if (IS_ERR(bio)) {
2157 			ret = PTR_ERR(bio);
2158 			bio = NULL;
2159 			goto out;
2160 		}
2161 	}
2162 
2163 	/*
2164 	 * If the page is under writeback, we need to wait for
2165 	 * its completion to see the correct decrypted data.
2166 	 */
2167 	f2fs_wait_on_block_writeback(inode, block_nr);
2168 
2169 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2170 		goto submit_and_realloc;
2171 
2172 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2173 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2174 							F2FS_BLKSIZE);
2175 	*last_block_in_bio = block_nr;
2176 	goto out;
2177 out:
2178 	*bio_ret = bio;
2179 	return ret;
2180 }
2181 
2182 #ifdef CONFIG_F2FS_FS_COMPRESSION
2183 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2184 				unsigned nr_pages, sector_t *last_block_in_bio,
2185 				bool is_readahead, bool for_write)
2186 {
2187 	struct dnode_of_data dn;
2188 	struct inode *inode = cc->inode;
2189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2190 	struct bio *bio = *bio_ret;
2191 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2192 	sector_t last_block_in_file;
2193 	const unsigned blocksize = blks_to_bytes(inode, 1);
2194 	struct decompress_io_ctx *dic = NULL;
2195 	struct extent_info ei = {};
2196 	bool from_dnode = true;
2197 	int i;
2198 	int ret = 0;
2199 
2200 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2201 
2202 	last_block_in_file = bytes_to_blks(inode,
2203 			f2fs_readpage_limit(inode) + blocksize - 1);
2204 
2205 	/* get rid of pages beyond EOF */
2206 	for (i = 0; i < cc->cluster_size; i++) {
2207 		struct page *page = cc->rpages[i];
2208 
2209 		if (!page)
2210 			continue;
2211 		if ((sector_t)page->index >= last_block_in_file) {
2212 			zero_user_segment(page, 0, PAGE_SIZE);
2213 			if (!PageUptodate(page))
2214 				SetPageUptodate(page);
2215 		} else if (!PageUptodate(page)) {
2216 			continue;
2217 		}
2218 		unlock_page(page);
2219 		if (for_write)
2220 			put_page(page);
2221 		cc->rpages[i] = NULL;
2222 		cc->nr_rpages--;
2223 	}
2224 
2225 	/* we are done since all pages are beyond EOF */
2226 	if (f2fs_cluster_is_empty(cc))
2227 		goto out;
2228 
2229 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2230 		from_dnode = false;
2231 
2232 	if (!from_dnode)
2233 		goto skip_reading_dnode;
2234 
2235 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2236 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2237 	if (ret)
2238 		goto out;
2239 
2240 	if (unlikely(f2fs_cp_error(sbi))) {
2241 		ret = -EIO;
2242 		goto out_put_dnode;
2243 	}
2244 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2245 
2246 skip_reading_dnode:
2247 	for (i = 1; i < cc->cluster_size; i++) {
2248 		block_t blkaddr;
2249 
2250 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2251 					dn.ofs_in_node + i) :
2252 					ei.blk + i - 1;
2253 
2254 		if (!__is_valid_data_blkaddr(blkaddr))
2255 			break;
2256 
2257 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2258 			ret = -EFAULT;
2259 			goto out_put_dnode;
2260 		}
2261 		cc->nr_cpages++;
2262 
2263 		if (!from_dnode && i >= ei.c_len)
2264 			break;
2265 	}
2266 
2267 	/* nothing to decompress */
2268 	if (cc->nr_cpages == 0) {
2269 		ret = 0;
2270 		goto out_put_dnode;
2271 	}
2272 
2273 	dic = f2fs_alloc_dic(cc);
2274 	if (IS_ERR(dic)) {
2275 		ret = PTR_ERR(dic);
2276 		goto out_put_dnode;
2277 	}
2278 
2279 	for (i = 0; i < cc->nr_cpages; i++) {
2280 		struct page *page = dic->cpages[i];
2281 		block_t blkaddr;
2282 		struct bio_post_read_ctx *ctx;
2283 
2284 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2285 					dn.ofs_in_node + i + 1) :
2286 					ei.blk + i;
2287 
2288 		f2fs_wait_on_block_writeback(inode, blkaddr);
2289 
2290 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2291 			if (atomic_dec_and_test(&dic->remaining_pages))
2292 				f2fs_decompress_cluster(dic, true);
2293 			continue;
2294 		}
2295 
2296 		if (bio && (!page_is_mergeable(sbi, bio,
2297 					*last_block_in_bio, blkaddr) ||
2298 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2299 submit_and_realloc:
2300 			f2fs_submit_read_bio(sbi, bio, DATA);
2301 			bio = NULL;
2302 		}
2303 
2304 		if (!bio) {
2305 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2306 					is_readahead ? REQ_RAHEAD : 0,
2307 					page->index, for_write);
2308 			if (IS_ERR(bio)) {
2309 				ret = PTR_ERR(bio);
2310 				f2fs_decompress_end_io(dic, ret, true);
2311 				f2fs_put_dnode(&dn);
2312 				*bio_ret = NULL;
2313 				return ret;
2314 			}
2315 		}
2316 
2317 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2318 			goto submit_and_realloc;
2319 
2320 		ctx = get_post_read_ctx(bio);
2321 		ctx->enabled_steps |= STEP_DECOMPRESS;
2322 		refcount_inc(&dic->refcnt);
2323 
2324 		inc_page_count(sbi, F2FS_RD_DATA);
2325 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2326 		*last_block_in_bio = blkaddr;
2327 	}
2328 
2329 	if (from_dnode)
2330 		f2fs_put_dnode(&dn);
2331 
2332 	*bio_ret = bio;
2333 	return 0;
2334 
2335 out_put_dnode:
2336 	if (from_dnode)
2337 		f2fs_put_dnode(&dn);
2338 out:
2339 	for (i = 0; i < cc->cluster_size; i++) {
2340 		if (cc->rpages[i]) {
2341 			ClearPageUptodate(cc->rpages[i]);
2342 			unlock_page(cc->rpages[i]);
2343 		}
2344 	}
2345 	*bio_ret = bio;
2346 	return ret;
2347 }
2348 #endif
2349 
2350 /*
2351  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2352  * Major change was from block_size == page_size in f2fs by default.
2353  */
2354 static int f2fs_mpage_readpages(struct inode *inode,
2355 		struct readahead_control *rac, struct page *page)
2356 {
2357 	struct bio *bio = NULL;
2358 	sector_t last_block_in_bio = 0;
2359 	struct f2fs_map_blocks map;
2360 #ifdef CONFIG_F2FS_FS_COMPRESSION
2361 	struct compress_ctx cc = {
2362 		.inode = inode,
2363 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2364 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2365 		.cluster_idx = NULL_CLUSTER,
2366 		.rpages = NULL,
2367 		.cpages = NULL,
2368 		.nr_rpages = 0,
2369 		.nr_cpages = 0,
2370 	};
2371 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2372 #endif
2373 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2374 	unsigned max_nr_pages = nr_pages;
2375 	int ret = 0;
2376 
2377 	map.m_pblk = 0;
2378 	map.m_lblk = 0;
2379 	map.m_len = 0;
2380 	map.m_flags = 0;
2381 	map.m_next_pgofs = NULL;
2382 	map.m_next_extent = NULL;
2383 	map.m_seg_type = NO_CHECK_TYPE;
2384 	map.m_may_create = false;
2385 
2386 	for (; nr_pages; nr_pages--) {
2387 		if (rac) {
2388 			page = readahead_page(rac);
2389 			prefetchw(&page->flags);
2390 		}
2391 
2392 #ifdef CONFIG_F2FS_FS_COMPRESSION
2393 		if (f2fs_compressed_file(inode)) {
2394 			/* there are remained compressed pages, submit them */
2395 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2396 				ret = f2fs_read_multi_pages(&cc, &bio,
2397 							max_nr_pages,
2398 							&last_block_in_bio,
2399 							rac != NULL, false);
2400 				f2fs_destroy_compress_ctx(&cc, false);
2401 				if (ret)
2402 					goto set_error_page;
2403 			}
2404 			if (cc.cluster_idx == NULL_CLUSTER) {
2405 				if (nc_cluster_idx ==
2406 					page->index >> cc.log_cluster_size) {
2407 					goto read_single_page;
2408 				}
2409 
2410 				ret = f2fs_is_compressed_cluster(inode, page->index);
2411 				if (ret < 0)
2412 					goto set_error_page;
2413 				else if (!ret) {
2414 					nc_cluster_idx =
2415 						page->index >> cc.log_cluster_size;
2416 					goto read_single_page;
2417 				}
2418 
2419 				nc_cluster_idx = NULL_CLUSTER;
2420 			}
2421 			ret = f2fs_init_compress_ctx(&cc);
2422 			if (ret)
2423 				goto set_error_page;
2424 
2425 			f2fs_compress_ctx_add_page(&cc, page);
2426 
2427 			goto next_page;
2428 		}
2429 read_single_page:
2430 #endif
2431 
2432 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2433 					&bio, &last_block_in_bio, rac);
2434 		if (ret) {
2435 #ifdef CONFIG_F2FS_FS_COMPRESSION
2436 set_error_page:
2437 #endif
2438 			zero_user_segment(page, 0, PAGE_SIZE);
2439 			unlock_page(page);
2440 		}
2441 #ifdef CONFIG_F2FS_FS_COMPRESSION
2442 next_page:
2443 #endif
2444 		if (rac)
2445 			put_page(page);
2446 
2447 #ifdef CONFIG_F2FS_FS_COMPRESSION
2448 		if (f2fs_compressed_file(inode)) {
2449 			/* last page */
2450 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2451 				ret = f2fs_read_multi_pages(&cc, &bio,
2452 							max_nr_pages,
2453 							&last_block_in_bio,
2454 							rac != NULL, false);
2455 				f2fs_destroy_compress_ctx(&cc, false);
2456 			}
2457 		}
2458 #endif
2459 	}
2460 	if (bio)
2461 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2462 	return ret;
2463 }
2464 
2465 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2466 {
2467 	struct page *page = &folio->page;
2468 	struct inode *inode = page_file_mapping(page)->host;
2469 	int ret = -EAGAIN;
2470 
2471 	trace_f2fs_readpage(page, DATA);
2472 
2473 	if (!f2fs_is_compress_backend_ready(inode)) {
2474 		unlock_page(page);
2475 		return -EOPNOTSUPP;
2476 	}
2477 
2478 	/* If the file has inline data, try to read it directly */
2479 	if (f2fs_has_inline_data(inode))
2480 		ret = f2fs_read_inline_data(inode, page);
2481 	if (ret == -EAGAIN)
2482 		ret = f2fs_mpage_readpages(inode, NULL, page);
2483 	return ret;
2484 }
2485 
2486 static void f2fs_readahead(struct readahead_control *rac)
2487 {
2488 	struct inode *inode = rac->mapping->host;
2489 
2490 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2491 
2492 	if (!f2fs_is_compress_backend_ready(inode))
2493 		return;
2494 
2495 	/* If the file has inline data, skip readahead */
2496 	if (f2fs_has_inline_data(inode))
2497 		return;
2498 
2499 	f2fs_mpage_readpages(inode, rac, NULL);
2500 }
2501 
2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2503 {
2504 	struct inode *inode = fio->page->mapping->host;
2505 	struct page *mpage, *page;
2506 	gfp_t gfp_flags = GFP_NOFS;
2507 
2508 	if (!f2fs_encrypted_file(inode))
2509 		return 0;
2510 
2511 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2512 
2513 	/* wait for GCed page writeback via META_MAPPING */
2514 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2515 
2516 	if (fscrypt_inode_uses_inline_crypto(inode))
2517 		return 0;
2518 
2519 retry_encrypt:
2520 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2521 					PAGE_SIZE, 0, gfp_flags);
2522 	if (IS_ERR(fio->encrypted_page)) {
2523 		/* flush pending IOs and wait for a while in the ENOMEM case */
2524 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2525 			f2fs_flush_merged_writes(fio->sbi);
2526 			memalloc_retry_wait(GFP_NOFS);
2527 			gfp_flags |= __GFP_NOFAIL;
2528 			goto retry_encrypt;
2529 		}
2530 		return PTR_ERR(fio->encrypted_page);
2531 	}
2532 
2533 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2534 	if (mpage) {
2535 		if (PageUptodate(mpage))
2536 			memcpy(page_address(mpage),
2537 				page_address(fio->encrypted_page), PAGE_SIZE);
2538 		f2fs_put_page(mpage, 1);
2539 	}
2540 	return 0;
2541 }
2542 
2543 static inline bool check_inplace_update_policy(struct inode *inode,
2544 				struct f2fs_io_info *fio)
2545 {
2546 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2547 
2548 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2549 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2550 		return false;
2551 	if (IS_F2FS_IPU_FORCE(sbi))
2552 		return true;
2553 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2554 		return true;
2555 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2556 		return true;
2557 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2558 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2559 		return true;
2560 
2561 	/*
2562 	 * IPU for rewrite async pages
2563 	 */
2564 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2565 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2566 		return true;
2567 
2568 	/* this is only set during fdatasync */
2569 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2570 		return true;
2571 
2572 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2573 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2574 		return true;
2575 
2576 	return false;
2577 }
2578 
2579 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2580 {
2581 	/* swap file is migrating in aligned write mode */
2582 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2583 		return false;
2584 
2585 	if (f2fs_is_pinned_file(inode))
2586 		return true;
2587 
2588 	/* if this is cold file, we should overwrite to avoid fragmentation */
2589 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2590 		return true;
2591 
2592 	return check_inplace_update_policy(inode, fio);
2593 }
2594 
2595 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2596 {
2597 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2598 
2599 	/* The below cases were checked when setting it. */
2600 	if (f2fs_is_pinned_file(inode))
2601 		return false;
2602 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2603 		return true;
2604 	if (f2fs_lfs_mode(sbi))
2605 		return true;
2606 	if (S_ISDIR(inode->i_mode))
2607 		return true;
2608 	if (IS_NOQUOTA(inode))
2609 		return true;
2610 	if (f2fs_is_atomic_file(inode))
2611 		return true;
2612 
2613 	/* swap file is migrating in aligned write mode */
2614 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2615 		return true;
2616 
2617 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2618 		return true;
2619 
2620 	if (fio) {
2621 		if (page_private_gcing(fio->page))
2622 			return true;
2623 		if (page_private_dummy(fio->page))
2624 			return true;
2625 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2626 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2627 			return true;
2628 	}
2629 	return false;
2630 }
2631 
2632 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2633 {
2634 	struct inode *inode = fio->page->mapping->host;
2635 
2636 	if (f2fs_should_update_outplace(inode, fio))
2637 		return false;
2638 
2639 	return f2fs_should_update_inplace(inode, fio);
2640 }
2641 
2642 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2643 {
2644 	struct page *page = fio->page;
2645 	struct inode *inode = page->mapping->host;
2646 	struct dnode_of_data dn;
2647 	struct node_info ni;
2648 	bool ipu_force = false;
2649 	int err = 0;
2650 
2651 	/* Use COW inode to make dnode_of_data for atomic write */
2652 	if (f2fs_is_atomic_file(inode))
2653 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2654 	else
2655 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2656 
2657 	if (need_inplace_update(fio) &&
2658 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2659 						&fio->old_blkaddr)) {
2660 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2661 						DATA_GENERIC_ENHANCE)) {
2662 			f2fs_handle_error(fio->sbi,
2663 						ERROR_INVALID_BLKADDR);
2664 			return -EFSCORRUPTED;
2665 		}
2666 
2667 		ipu_force = true;
2668 		fio->need_lock = LOCK_DONE;
2669 		goto got_it;
2670 	}
2671 
2672 	/* Deadlock due to between page->lock and f2fs_lock_op */
2673 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2674 		return -EAGAIN;
2675 
2676 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2677 	if (err)
2678 		goto out;
2679 
2680 	fio->old_blkaddr = dn.data_blkaddr;
2681 
2682 	/* This page is already truncated */
2683 	if (fio->old_blkaddr == NULL_ADDR) {
2684 		ClearPageUptodate(page);
2685 		clear_page_private_gcing(page);
2686 		goto out_writepage;
2687 	}
2688 got_it:
2689 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2690 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2691 						DATA_GENERIC_ENHANCE)) {
2692 		err = -EFSCORRUPTED;
2693 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2694 		goto out_writepage;
2695 	}
2696 
2697 	/*
2698 	 * If current allocation needs SSR,
2699 	 * it had better in-place writes for updated data.
2700 	 */
2701 	if (ipu_force ||
2702 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2703 					need_inplace_update(fio))) {
2704 		err = f2fs_encrypt_one_page(fio);
2705 		if (err)
2706 			goto out_writepage;
2707 
2708 		set_page_writeback(page);
2709 		f2fs_put_dnode(&dn);
2710 		if (fio->need_lock == LOCK_REQ)
2711 			f2fs_unlock_op(fio->sbi);
2712 		err = f2fs_inplace_write_data(fio);
2713 		if (err) {
2714 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2715 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2716 			if (PageWriteback(page))
2717 				end_page_writeback(page);
2718 		} else {
2719 			set_inode_flag(inode, FI_UPDATE_WRITE);
2720 		}
2721 		trace_f2fs_do_write_data_page(fio->page, IPU);
2722 		return err;
2723 	}
2724 
2725 	if (fio->need_lock == LOCK_RETRY) {
2726 		if (!f2fs_trylock_op(fio->sbi)) {
2727 			err = -EAGAIN;
2728 			goto out_writepage;
2729 		}
2730 		fio->need_lock = LOCK_REQ;
2731 	}
2732 
2733 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2734 	if (err)
2735 		goto out_writepage;
2736 
2737 	fio->version = ni.version;
2738 
2739 	err = f2fs_encrypt_one_page(fio);
2740 	if (err)
2741 		goto out_writepage;
2742 
2743 	set_page_writeback(page);
2744 
2745 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2746 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2747 
2748 	/* LFS mode write path */
2749 	f2fs_outplace_write_data(&dn, fio);
2750 	trace_f2fs_do_write_data_page(page, OPU);
2751 	set_inode_flag(inode, FI_APPEND_WRITE);
2752 	if (page->index == 0)
2753 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2754 out_writepage:
2755 	f2fs_put_dnode(&dn);
2756 out:
2757 	if (fio->need_lock == LOCK_REQ)
2758 		f2fs_unlock_op(fio->sbi);
2759 	return err;
2760 }
2761 
2762 int f2fs_write_single_data_page(struct page *page, int *submitted,
2763 				struct bio **bio,
2764 				sector_t *last_block,
2765 				struct writeback_control *wbc,
2766 				enum iostat_type io_type,
2767 				int compr_blocks,
2768 				bool allow_balance)
2769 {
2770 	struct inode *inode = page->mapping->host;
2771 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2772 	loff_t i_size = i_size_read(inode);
2773 	const pgoff_t end_index = ((unsigned long long)i_size)
2774 							>> PAGE_SHIFT;
2775 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2776 	unsigned offset = 0;
2777 	bool need_balance_fs = false;
2778 	int err = 0;
2779 	struct f2fs_io_info fio = {
2780 		.sbi = sbi,
2781 		.ino = inode->i_ino,
2782 		.type = DATA,
2783 		.op = REQ_OP_WRITE,
2784 		.op_flags = wbc_to_write_flags(wbc),
2785 		.old_blkaddr = NULL_ADDR,
2786 		.page = page,
2787 		.encrypted_page = NULL,
2788 		.submitted = 0,
2789 		.compr_blocks = compr_blocks,
2790 		.need_lock = LOCK_RETRY,
2791 		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2792 		.io_type = io_type,
2793 		.io_wbc = wbc,
2794 		.bio = bio,
2795 		.last_block = last_block,
2796 	};
2797 
2798 	trace_f2fs_writepage(page, DATA);
2799 
2800 	/* we should bypass data pages to proceed the kworker jobs */
2801 	if (unlikely(f2fs_cp_error(sbi))) {
2802 		mapping_set_error(page->mapping, -EIO);
2803 		/*
2804 		 * don't drop any dirty dentry pages for keeping lastest
2805 		 * directory structure.
2806 		 */
2807 		if (S_ISDIR(inode->i_mode) &&
2808 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2809 			goto redirty_out;
2810 		goto out;
2811 	}
2812 
2813 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2814 		goto redirty_out;
2815 
2816 	if (page->index < end_index ||
2817 			f2fs_verity_in_progress(inode) ||
2818 			compr_blocks)
2819 		goto write;
2820 
2821 	/*
2822 	 * If the offset is out-of-range of file size,
2823 	 * this page does not have to be written to disk.
2824 	 */
2825 	offset = i_size & (PAGE_SIZE - 1);
2826 	if ((page->index >= end_index + 1) || !offset)
2827 		goto out;
2828 
2829 	zero_user_segment(page, offset, PAGE_SIZE);
2830 write:
2831 	if (f2fs_is_drop_cache(inode))
2832 		goto out;
2833 
2834 	/* Dentry/quota blocks are controlled by checkpoint */
2835 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2836 		/*
2837 		 * We need to wait for node_write to avoid block allocation during
2838 		 * checkpoint. This can only happen to quota writes which can cause
2839 		 * the below discard race condition.
2840 		 */
2841 		if (IS_NOQUOTA(inode))
2842 			f2fs_down_read(&sbi->node_write);
2843 
2844 		fio.need_lock = LOCK_DONE;
2845 		err = f2fs_do_write_data_page(&fio);
2846 
2847 		if (IS_NOQUOTA(inode))
2848 			f2fs_up_read(&sbi->node_write);
2849 
2850 		goto done;
2851 	}
2852 
2853 	if (!wbc->for_reclaim)
2854 		need_balance_fs = true;
2855 	else if (has_not_enough_free_secs(sbi, 0, 0))
2856 		goto redirty_out;
2857 	else
2858 		set_inode_flag(inode, FI_HOT_DATA);
2859 
2860 	err = -EAGAIN;
2861 	if (f2fs_has_inline_data(inode)) {
2862 		err = f2fs_write_inline_data(inode, page);
2863 		if (!err)
2864 			goto out;
2865 	}
2866 
2867 	if (err == -EAGAIN) {
2868 		err = f2fs_do_write_data_page(&fio);
2869 		if (err == -EAGAIN) {
2870 			fio.need_lock = LOCK_REQ;
2871 			err = f2fs_do_write_data_page(&fio);
2872 		}
2873 	}
2874 
2875 	if (err) {
2876 		file_set_keep_isize(inode);
2877 	} else {
2878 		spin_lock(&F2FS_I(inode)->i_size_lock);
2879 		if (F2FS_I(inode)->last_disk_size < psize)
2880 			F2FS_I(inode)->last_disk_size = psize;
2881 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2882 	}
2883 
2884 done:
2885 	if (err && err != -ENOENT)
2886 		goto redirty_out;
2887 
2888 out:
2889 	inode_dec_dirty_pages(inode);
2890 	if (err) {
2891 		ClearPageUptodate(page);
2892 		clear_page_private_gcing(page);
2893 	}
2894 
2895 	if (wbc->for_reclaim) {
2896 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2897 		clear_inode_flag(inode, FI_HOT_DATA);
2898 		f2fs_remove_dirty_inode(inode);
2899 		submitted = NULL;
2900 	}
2901 	unlock_page(page);
2902 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2903 			!F2FS_I(inode)->wb_task && allow_balance)
2904 		f2fs_balance_fs(sbi, need_balance_fs);
2905 
2906 	if (unlikely(f2fs_cp_error(sbi))) {
2907 		f2fs_submit_merged_write(sbi, DATA);
2908 		if (bio && *bio)
2909 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2910 		submitted = NULL;
2911 	}
2912 
2913 	if (submitted)
2914 		*submitted = fio.submitted;
2915 
2916 	return 0;
2917 
2918 redirty_out:
2919 	redirty_page_for_writepage(wbc, page);
2920 	/*
2921 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2922 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2923 	 * file_write_and_wait_range() will see EIO error, which is critical
2924 	 * to return value of fsync() followed by atomic_write failure to user.
2925 	 */
2926 	if (!err || wbc->for_reclaim)
2927 		return AOP_WRITEPAGE_ACTIVATE;
2928 	unlock_page(page);
2929 	return err;
2930 }
2931 
2932 static int f2fs_write_data_page(struct page *page,
2933 					struct writeback_control *wbc)
2934 {
2935 #ifdef CONFIG_F2FS_FS_COMPRESSION
2936 	struct inode *inode = page->mapping->host;
2937 
2938 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2939 		goto out;
2940 
2941 	if (f2fs_compressed_file(inode)) {
2942 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2943 			redirty_page_for_writepage(wbc, page);
2944 			return AOP_WRITEPAGE_ACTIVATE;
2945 		}
2946 	}
2947 out:
2948 #endif
2949 
2950 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2951 						wbc, FS_DATA_IO, 0, true);
2952 }
2953 
2954 /*
2955  * This function was copied from write_cache_pages from mm/page-writeback.c.
2956  * The major change is making write step of cold data page separately from
2957  * warm/hot data page.
2958  */
2959 static int f2fs_write_cache_pages(struct address_space *mapping,
2960 					struct writeback_control *wbc,
2961 					enum iostat_type io_type)
2962 {
2963 	int ret = 0;
2964 	int done = 0, retry = 0;
2965 	struct page *pages[F2FS_ONSTACK_PAGES];
2966 	struct folio_batch fbatch;
2967 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2968 	struct bio *bio = NULL;
2969 	sector_t last_block;
2970 #ifdef CONFIG_F2FS_FS_COMPRESSION
2971 	struct inode *inode = mapping->host;
2972 	struct compress_ctx cc = {
2973 		.inode = inode,
2974 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2975 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2976 		.cluster_idx = NULL_CLUSTER,
2977 		.rpages = NULL,
2978 		.nr_rpages = 0,
2979 		.cpages = NULL,
2980 		.valid_nr_cpages = 0,
2981 		.rbuf = NULL,
2982 		.cbuf = NULL,
2983 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2984 		.private = NULL,
2985 	};
2986 #endif
2987 	int nr_folios, p, idx;
2988 	int nr_pages;
2989 	pgoff_t index;
2990 	pgoff_t end;		/* Inclusive */
2991 	pgoff_t done_index;
2992 	int range_whole = 0;
2993 	xa_mark_t tag;
2994 	int nwritten = 0;
2995 	int submitted = 0;
2996 	int i;
2997 
2998 	folio_batch_init(&fbatch);
2999 
3000 	if (get_dirty_pages(mapping->host) <=
3001 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3002 		set_inode_flag(mapping->host, FI_HOT_DATA);
3003 	else
3004 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3005 
3006 	if (wbc->range_cyclic) {
3007 		index = mapping->writeback_index; /* prev offset */
3008 		end = -1;
3009 	} else {
3010 		index = wbc->range_start >> PAGE_SHIFT;
3011 		end = wbc->range_end >> PAGE_SHIFT;
3012 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3013 			range_whole = 1;
3014 	}
3015 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3016 		tag = PAGECACHE_TAG_TOWRITE;
3017 	else
3018 		tag = PAGECACHE_TAG_DIRTY;
3019 retry:
3020 	retry = 0;
3021 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3022 		tag_pages_for_writeback(mapping, index, end);
3023 	done_index = index;
3024 	while (!done && !retry && (index <= end)) {
3025 		nr_pages = 0;
3026 again:
3027 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3028 				tag, &fbatch);
3029 		if (nr_folios == 0) {
3030 			if (nr_pages)
3031 				goto write;
3032 			break;
3033 		}
3034 
3035 		for (i = 0; i < nr_folios; i++) {
3036 			struct folio *folio = fbatch.folios[i];
3037 
3038 			idx = 0;
3039 			p = folio_nr_pages(folio);
3040 add_more:
3041 			pages[nr_pages] = folio_page(folio, idx);
3042 			folio_get(folio);
3043 			if (++nr_pages == F2FS_ONSTACK_PAGES) {
3044 				index = folio->index + idx + 1;
3045 				folio_batch_release(&fbatch);
3046 				goto write;
3047 			}
3048 			if (++idx < p)
3049 				goto add_more;
3050 		}
3051 		folio_batch_release(&fbatch);
3052 		goto again;
3053 write:
3054 		for (i = 0; i < nr_pages; i++) {
3055 			struct page *page = pages[i];
3056 			struct folio *folio = page_folio(page);
3057 			bool need_readd;
3058 readd:
3059 			need_readd = false;
3060 #ifdef CONFIG_F2FS_FS_COMPRESSION
3061 			if (f2fs_compressed_file(inode)) {
3062 				void *fsdata = NULL;
3063 				struct page *pagep;
3064 				int ret2;
3065 
3066 				ret = f2fs_init_compress_ctx(&cc);
3067 				if (ret) {
3068 					done = 1;
3069 					break;
3070 				}
3071 
3072 				if (!f2fs_cluster_can_merge_page(&cc,
3073 								folio->index)) {
3074 					ret = f2fs_write_multi_pages(&cc,
3075 						&submitted, wbc, io_type);
3076 					if (!ret)
3077 						need_readd = true;
3078 					goto result;
3079 				}
3080 
3081 				if (unlikely(f2fs_cp_error(sbi)))
3082 					goto lock_folio;
3083 
3084 				if (!f2fs_cluster_is_empty(&cc))
3085 					goto lock_folio;
3086 
3087 				if (f2fs_all_cluster_page_ready(&cc,
3088 					pages, i, nr_pages, true))
3089 					goto lock_folio;
3090 
3091 				ret2 = f2fs_prepare_compress_overwrite(
3092 							inode, &pagep,
3093 							folio->index, &fsdata);
3094 				if (ret2 < 0) {
3095 					ret = ret2;
3096 					done = 1;
3097 					break;
3098 				} else if (ret2 &&
3099 					(!f2fs_compress_write_end(inode,
3100 						fsdata, folio->index, 1) ||
3101 					 !f2fs_all_cluster_page_ready(&cc,
3102 						pages, i, nr_pages,
3103 						false))) {
3104 					retry = 1;
3105 					break;
3106 				}
3107 			}
3108 #endif
3109 			/* give a priority to WB_SYNC threads */
3110 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3111 					wbc->sync_mode == WB_SYNC_NONE) {
3112 				done = 1;
3113 				break;
3114 			}
3115 #ifdef CONFIG_F2FS_FS_COMPRESSION
3116 lock_folio:
3117 #endif
3118 			done_index = folio->index;
3119 retry_write:
3120 			folio_lock(folio);
3121 
3122 			if (unlikely(folio->mapping != mapping)) {
3123 continue_unlock:
3124 				folio_unlock(folio);
3125 				continue;
3126 			}
3127 
3128 			if (!folio_test_dirty(folio)) {
3129 				/* someone wrote it for us */
3130 				goto continue_unlock;
3131 			}
3132 
3133 			if (folio_test_writeback(folio)) {
3134 				if (wbc->sync_mode == WB_SYNC_NONE)
3135 					goto continue_unlock;
3136 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3137 			}
3138 
3139 			if (!folio_clear_dirty_for_io(folio))
3140 				goto continue_unlock;
3141 
3142 #ifdef CONFIG_F2FS_FS_COMPRESSION
3143 			if (f2fs_compressed_file(inode)) {
3144 				folio_get(folio);
3145 				f2fs_compress_ctx_add_page(&cc, &folio->page);
3146 				continue;
3147 			}
3148 #endif
3149 			ret = f2fs_write_single_data_page(&folio->page,
3150 					&submitted, &bio, &last_block,
3151 					wbc, io_type, 0, true);
3152 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3153 				folio_unlock(folio);
3154 #ifdef CONFIG_F2FS_FS_COMPRESSION
3155 result:
3156 #endif
3157 			nwritten += submitted;
3158 			wbc->nr_to_write -= submitted;
3159 
3160 			if (unlikely(ret)) {
3161 				/*
3162 				 * keep nr_to_write, since vfs uses this to
3163 				 * get # of written pages.
3164 				 */
3165 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3166 					ret = 0;
3167 					goto next;
3168 				} else if (ret == -EAGAIN) {
3169 					ret = 0;
3170 					if (wbc->sync_mode == WB_SYNC_ALL) {
3171 						f2fs_io_schedule_timeout(
3172 							DEFAULT_IO_TIMEOUT);
3173 						goto retry_write;
3174 					}
3175 					goto next;
3176 				}
3177 				done_index = folio->index +
3178 					folio_nr_pages(folio);
3179 				done = 1;
3180 				break;
3181 			}
3182 
3183 			if (wbc->nr_to_write <= 0 &&
3184 					wbc->sync_mode == WB_SYNC_NONE) {
3185 				done = 1;
3186 				break;
3187 			}
3188 next:
3189 			if (need_readd)
3190 				goto readd;
3191 		}
3192 		release_pages(pages, nr_pages);
3193 		cond_resched();
3194 	}
3195 #ifdef CONFIG_F2FS_FS_COMPRESSION
3196 	/* flush remained pages in compress cluster */
3197 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3198 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3199 		nwritten += submitted;
3200 		wbc->nr_to_write -= submitted;
3201 		if (ret) {
3202 			done = 1;
3203 			retry = 0;
3204 		}
3205 	}
3206 	if (f2fs_compressed_file(inode))
3207 		f2fs_destroy_compress_ctx(&cc, false);
3208 #endif
3209 	if (retry) {
3210 		index = 0;
3211 		end = -1;
3212 		goto retry;
3213 	}
3214 	if (wbc->range_cyclic && !done)
3215 		done_index = 0;
3216 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3217 		mapping->writeback_index = done_index;
3218 
3219 	if (nwritten)
3220 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3221 								NULL, 0, DATA);
3222 	/* submit cached bio of IPU write */
3223 	if (bio)
3224 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3225 
3226 	return ret;
3227 }
3228 
3229 static inline bool __should_serialize_io(struct inode *inode,
3230 					struct writeback_control *wbc)
3231 {
3232 	/* to avoid deadlock in path of data flush */
3233 	if (F2FS_I(inode)->wb_task)
3234 		return false;
3235 
3236 	if (!S_ISREG(inode->i_mode))
3237 		return false;
3238 	if (IS_NOQUOTA(inode))
3239 		return false;
3240 
3241 	if (f2fs_need_compress_data(inode))
3242 		return true;
3243 	if (wbc->sync_mode != WB_SYNC_ALL)
3244 		return true;
3245 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3246 		return true;
3247 	return false;
3248 }
3249 
3250 static int __f2fs_write_data_pages(struct address_space *mapping,
3251 						struct writeback_control *wbc,
3252 						enum iostat_type io_type)
3253 {
3254 	struct inode *inode = mapping->host;
3255 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3256 	struct blk_plug plug;
3257 	int ret;
3258 	bool locked = false;
3259 
3260 	/* deal with chardevs and other special file */
3261 	if (!mapping->a_ops->writepage)
3262 		return 0;
3263 
3264 	/* skip writing if there is no dirty page in this inode */
3265 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3266 		return 0;
3267 
3268 	/* during POR, we don't need to trigger writepage at all. */
3269 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3270 		goto skip_write;
3271 
3272 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3273 			wbc->sync_mode == WB_SYNC_NONE &&
3274 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3275 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3276 		goto skip_write;
3277 
3278 	/* skip writing in file defragment preparing stage */
3279 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3280 		goto skip_write;
3281 
3282 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3283 
3284 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3285 	if (wbc->sync_mode == WB_SYNC_ALL)
3286 		atomic_inc(&sbi->wb_sync_req[DATA]);
3287 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3288 		/* to avoid potential deadlock */
3289 		if (current->plug)
3290 			blk_finish_plug(current->plug);
3291 		goto skip_write;
3292 	}
3293 
3294 	if (__should_serialize_io(inode, wbc)) {
3295 		mutex_lock(&sbi->writepages);
3296 		locked = true;
3297 	}
3298 
3299 	blk_start_plug(&plug);
3300 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3301 	blk_finish_plug(&plug);
3302 
3303 	if (locked)
3304 		mutex_unlock(&sbi->writepages);
3305 
3306 	if (wbc->sync_mode == WB_SYNC_ALL)
3307 		atomic_dec(&sbi->wb_sync_req[DATA]);
3308 	/*
3309 	 * if some pages were truncated, we cannot guarantee its mapping->host
3310 	 * to detect pending bios.
3311 	 */
3312 
3313 	f2fs_remove_dirty_inode(inode);
3314 	return ret;
3315 
3316 skip_write:
3317 	wbc->pages_skipped += get_dirty_pages(inode);
3318 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3319 	return 0;
3320 }
3321 
3322 static int f2fs_write_data_pages(struct address_space *mapping,
3323 			    struct writeback_control *wbc)
3324 {
3325 	struct inode *inode = mapping->host;
3326 
3327 	return __f2fs_write_data_pages(mapping, wbc,
3328 			F2FS_I(inode)->cp_task == current ?
3329 			FS_CP_DATA_IO : FS_DATA_IO);
3330 }
3331 
3332 void f2fs_write_failed(struct inode *inode, loff_t to)
3333 {
3334 	loff_t i_size = i_size_read(inode);
3335 
3336 	if (IS_NOQUOTA(inode))
3337 		return;
3338 
3339 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3340 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3341 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3342 		filemap_invalidate_lock(inode->i_mapping);
3343 
3344 		truncate_pagecache(inode, i_size);
3345 		f2fs_truncate_blocks(inode, i_size, true);
3346 
3347 		filemap_invalidate_unlock(inode->i_mapping);
3348 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3349 	}
3350 }
3351 
3352 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3353 			struct page *page, loff_t pos, unsigned len,
3354 			block_t *blk_addr, bool *node_changed)
3355 {
3356 	struct inode *inode = page->mapping->host;
3357 	pgoff_t index = page->index;
3358 	struct dnode_of_data dn;
3359 	struct page *ipage;
3360 	bool locked = false;
3361 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3362 	int err = 0;
3363 
3364 	/*
3365 	 * If a whole page is being written and we already preallocated all the
3366 	 * blocks, then there is no need to get a block address now.
3367 	 */
3368 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3369 		return 0;
3370 
3371 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3372 	if (f2fs_has_inline_data(inode)) {
3373 		if (pos + len > MAX_INLINE_DATA(inode))
3374 			flag = F2FS_GET_BLOCK_DEFAULT;
3375 		f2fs_map_lock(sbi, flag);
3376 		locked = true;
3377 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3378 		f2fs_map_lock(sbi, flag);
3379 		locked = true;
3380 	}
3381 
3382 restart:
3383 	/* check inline_data */
3384 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3385 	if (IS_ERR(ipage)) {
3386 		err = PTR_ERR(ipage);
3387 		goto unlock_out;
3388 	}
3389 
3390 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3391 
3392 	if (f2fs_has_inline_data(inode)) {
3393 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3394 			f2fs_do_read_inline_data(page, ipage);
3395 			set_inode_flag(inode, FI_DATA_EXIST);
3396 			if (inode->i_nlink)
3397 				set_page_private_inline(ipage);
3398 			goto out;
3399 		}
3400 		err = f2fs_convert_inline_page(&dn, page);
3401 		if (err || dn.data_blkaddr != NULL_ADDR)
3402 			goto out;
3403 	}
3404 
3405 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3406 						 &dn.data_blkaddr)) {
3407 		if (locked) {
3408 			err = f2fs_reserve_block(&dn, index);
3409 			goto out;
3410 		}
3411 
3412 		/* hole case */
3413 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3414 		if (!err && dn.data_blkaddr != NULL_ADDR)
3415 			goto out;
3416 		f2fs_put_dnode(&dn);
3417 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3418 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3419 		locked = true;
3420 		goto restart;
3421 	}
3422 out:
3423 	if (!err) {
3424 		/* convert_inline_page can make node_changed */
3425 		*blk_addr = dn.data_blkaddr;
3426 		*node_changed = dn.node_changed;
3427 	}
3428 	f2fs_put_dnode(&dn);
3429 unlock_out:
3430 	if (locked)
3431 		f2fs_map_unlock(sbi, flag);
3432 	return err;
3433 }
3434 
3435 static int __find_data_block(struct inode *inode, pgoff_t index,
3436 				block_t *blk_addr)
3437 {
3438 	struct dnode_of_data dn;
3439 	struct page *ipage;
3440 	int err = 0;
3441 
3442 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3443 	if (IS_ERR(ipage))
3444 		return PTR_ERR(ipage);
3445 
3446 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3447 
3448 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3449 						 &dn.data_blkaddr)) {
3450 		/* hole case */
3451 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3452 		if (err) {
3453 			dn.data_blkaddr = NULL_ADDR;
3454 			err = 0;
3455 		}
3456 	}
3457 	*blk_addr = dn.data_blkaddr;
3458 	f2fs_put_dnode(&dn);
3459 	return err;
3460 }
3461 
3462 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3463 				block_t *blk_addr, bool *node_changed)
3464 {
3465 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3466 	struct dnode_of_data dn;
3467 	struct page *ipage;
3468 	int err = 0;
3469 
3470 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3471 
3472 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3473 	if (IS_ERR(ipage)) {
3474 		err = PTR_ERR(ipage);
3475 		goto unlock_out;
3476 	}
3477 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3478 
3479 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3480 						&dn.data_blkaddr))
3481 		err = f2fs_reserve_block(&dn, index);
3482 
3483 	*blk_addr = dn.data_blkaddr;
3484 	*node_changed = dn.node_changed;
3485 	f2fs_put_dnode(&dn);
3486 
3487 unlock_out:
3488 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3489 	return err;
3490 }
3491 
3492 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3493 			struct page *page, loff_t pos, unsigned int len,
3494 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3495 {
3496 	struct inode *inode = page->mapping->host;
3497 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3498 	pgoff_t index = page->index;
3499 	int err = 0;
3500 	block_t ori_blk_addr = NULL_ADDR;
3501 
3502 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3503 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3504 		goto reserve_block;
3505 
3506 	/* Look for the block in COW inode first */
3507 	err = __find_data_block(cow_inode, index, blk_addr);
3508 	if (err) {
3509 		return err;
3510 	} else if (*blk_addr != NULL_ADDR) {
3511 		*use_cow = true;
3512 		return 0;
3513 	}
3514 
3515 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3516 		goto reserve_block;
3517 
3518 	/* Look for the block in the original inode */
3519 	err = __find_data_block(inode, index, &ori_blk_addr);
3520 	if (err)
3521 		return err;
3522 
3523 reserve_block:
3524 	/* Finally, we should reserve a new block in COW inode for the update */
3525 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3526 	if (err)
3527 		return err;
3528 	inc_atomic_write_cnt(inode);
3529 
3530 	if (ori_blk_addr != NULL_ADDR)
3531 		*blk_addr = ori_blk_addr;
3532 	return 0;
3533 }
3534 
3535 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3536 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3537 {
3538 	struct inode *inode = mapping->host;
3539 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3540 	struct page *page = NULL;
3541 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3542 	bool need_balance = false;
3543 	bool use_cow = false;
3544 	block_t blkaddr = NULL_ADDR;
3545 	int err = 0;
3546 
3547 	trace_f2fs_write_begin(inode, pos, len);
3548 
3549 	if (!f2fs_is_checkpoint_ready(sbi)) {
3550 		err = -ENOSPC;
3551 		goto fail;
3552 	}
3553 
3554 	/*
3555 	 * We should check this at this moment to avoid deadlock on inode page
3556 	 * and #0 page. The locking rule for inline_data conversion should be:
3557 	 * lock_page(page #0) -> lock_page(inode_page)
3558 	 */
3559 	if (index != 0) {
3560 		err = f2fs_convert_inline_inode(inode);
3561 		if (err)
3562 			goto fail;
3563 	}
3564 
3565 #ifdef CONFIG_F2FS_FS_COMPRESSION
3566 	if (f2fs_compressed_file(inode)) {
3567 		int ret;
3568 
3569 		*fsdata = NULL;
3570 
3571 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3572 			goto repeat;
3573 
3574 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3575 							index, fsdata);
3576 		if (ret < 0) {
3577 			err = ret;
3578 			goto fail;
3579 		} else if (ret) {
3580 			return 0;
3581 		}
3582 	}
3583 #endif
3584 
3585 repeat:
3586 	/*
3587 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3588 	 * wait_for_stable_page. Will wait that below with our IO control.
3589 	 */
3590 	page = f2fs_pagecache_get_page(mapping, index,
3591 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3592 	if (!page) {
3593 		err = -ENOMEM;
3594 		goto fail;
3595 	}
3596 
3597 	/* TODO: cluster can be compressed due to race with .writepage */
3598 
3599 	*pagep = page;
3600 
3601 	if (f2fs_is_atomic_file(inode))
3602 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3603 					&blkaddr, &need_balance, &use_cow);
3604 	else
3605 		err = prepare_write_begin(sbi, page, pos, len,
3606 					&blkaddr, &need_balance);
3607 	if (err)
3608 		goto fail;
3609 
3610 	if (need_balance && !IS_NOQUOTA(inode) &&
3611 			has_not_enough_free_secs(sbi, 0, 0)) {
3612 		unlock_page(page);
3613 		f2fs_balance_fs(sbi, true);
3614 		lock_page(page);
3615 		if (page->mapping != mapping) {
3616 			/* The page got truncated from under us */
3617 			f2fs_put_page(page, 1);
3618 			goto repeat;
3619 		}
3620 	}
3621 
3622 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3623 
3624 	if (len == PAGE_SIZE || PageUptodate(page))
3625 		return 0;
3626 
3627 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3628 	    !f2fs_verity_in_progress(inode)) {
3629 		zero_user_segment(page, len, PAGE_SIZE);
3630 		return 0;
3631 	}
3632 
3633 	if (blkaddr == NEW_ADDR) {
3634 		zero_user_segment(page, 0, PAGE_SIZE);
3635 		SetPageUptodate(page);
3636 	} else {
3637 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3638 				DATA_GENERIC_ENHANCE_READ)) {
3639 			err = -EFSCORRUPTED;
3640 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3641 			goto fail;
3642 		}
3643 		err = f2fs_submit_page_read(use_cow ?
3644 				F2FS_I(inode)->cow_inode : inode, page,
3645 				blkaddr, 0, true);
3646 		if (err)
3647 			goto fail;
3648 
3649 		lock_page(page);
3650 		if (unlikely(page->mapping != mapping)) {
3651 			f2fs_put_page(page, 1);
3652 			goto repeat;
3653 		}
3654 		if (unlikely(!PageUptodate(page))) {
3655 			err = -EIO;
3656 			goto fail;
3657 		}
3658 	}
3659 	return 0;
3660 
3661 fail:
3662 	f2fs_put_page(page, 1);
3663 	f2fs_write_failed(inode, pos + len);
3664 	return err;
3665 }
3666 
3667 static int f2fs_write_end(struct file *file,
3668 			struct address_space *mapping,
3669 			loff_t pos, unsigned len, unsigned copied,
3670 			struct page *page, void *fsdata)
3671 {
3672 	struct inode *inode = page->mapping->host;
3673 
3674 	trace_f2fs_write_end(inode, pos, len, copied);
3675 
3676 	/*
3677 	 * This should be come from len == PAGE_SIZE, and we expect copied
3678 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3679 	 * let generic_perform_write() try to copy data again through copied=0.
3680 	 */
3681 	if (!PageUptodate(page)) {
3682 		if (unlikely(copied != len))
3683 			copied = 0;
3684 		else
3685 			SetPageUptodate(page);
3686 	}
3687 
3688 #ifdef CONFIG_F2FS_FS_COMPRESSION
3689 	/* overwrite compressed file */
3690 	if (f2fs_compressed_file(inode) && fsdata) {
3691 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3692 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3693 
3694 		if (pos + copied > i_size_read(inode) &&
3695 				!f2fs_verity_in_progress(inode))
3696 			f2fs_i_size_write(inode, pos + copied);
3697 		return copied;
3698 	}
3699 #endif
3700 
3701 	if (!copied)
3702 		goto unlock_out;
3703 
3704 	set_page_dirty(page);
3705 
3706 	if (pos + copied > i_size_read(inode) &&
3707 	    !f2fs_verity_in_progress(inode)) {
3708 		f2fs_i_size_write(inode, pos + copied);
3709 		if (f2fs_is_atomic_file(inode))
3710 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3711 					pos + copied);
3712 	}
3713 unlock_out:
3714 	f2fs_put_page(page, 1);
3715 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3716 	return copied;
3717 }
3718 
3719 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3720 {
3721 	struct inode *inode = folio->mapping->host;
3722 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3723 
3724 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3725 				(offset || length != folio_size(folio)))
3726 		return;
3727 
3728 	if (folio_test_dirty(folio)) {
3729 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3730 			dec_page_count(sbi, F2FS_DIRTY_META);
3731 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3732 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3733 		} else {
3734 			inode_dec_dirty_pages(inode);
3735 			f2fs_remove_dirty_inode(inode);
3736 		}
3737 	}
3738 	clear_page_private_all(&folio->page);
3739 }
3740 
3741 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3742 {
3743 	/* If this is dirty folio, keep private data */
3744 	if (folio_test_dirty(folio))
3745 		return false;
3746 
3747 	clear_page_private_all(&folio->page);
3748 	return true;
3749 }
3750 
3751 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3752 		struct folio *folio)
3753 {
3754 	struct inode *inode = mapping->host;
3755 
3756 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3757 
3758 	if (!folio_test_uptodate(folio))
3759 		folio_mark_uptodate(folio);
3760 	BUG_ON(folio_test_swapcache(folio));
3761 
3762 	if (filemap_dirty_folio(mapping, folio)) {
3763 		f2fs_update_dirty_folio(inode, folio);
3764 		return true;
3765 	}
3766 	return false;
3767 }
3768 
3769 
3770 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3771 {
3772 #ifdef CONFIG_F2FS_FS_COMPRESSION
3773 	struct dnode_of_data dn;
3774 	sector_t start_idx, blknr = 0;
3775 	int ret;
3776 
3777 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3778 
3779 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3780 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3781 	if (ret)
3782 		return 0;
3783 
3784 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3785 		dn.ofs_in_node += block - start_idx;
3786 		blknr = f2fs_data_blkaddr(&dn);
3787 		if (!__is_valid_data_blkaddr(blknr))
3788 			blknr = 0;
3789 	}
3790 
3791 	f2fs_put_dnode(&dn);
3792 	return blknr;
3793 #else
3794 	return 0;
3795 #endif
3796 }
3797 
3798 
3799 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3800 {
3801 	struct inode *inode = mapping->host;
3802 	sector_t blknr = 0;
3803 
3804 	if (f2fs_has_inline_data(inode))
3805 		goto out;
3806 
3807 	/* make sure allocating whole blocks */
3808 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3809 		filemap_write_and_wait(mapping);
3810 
3811 	/* Block number less than F2FS MAX BLOCKS */
3812 	if (unlikely(block >= max_file_blocks(inode)))
3813 		goto out;
3814 
3815 	if (f2fs_compressed_file(inode)) {
3816 		blknr = f2fs_bmap_compress(inode, block);
3817 	} else {
3818 		struct f2fs_map_blocks map;
3819 
3820 		memset(&map, 0, sizeof(map));
3821 		map.m_lblk = block;
3822 		map.m_len = 1;
3823 		map.m_next_pgofs = NULL;
3824 		map.m_seg_type = NO_CHECK_TYPE;
3825 
3826 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3827 			blknr = map.m_pblk;
3828 	}
3829 out:
3830 	trace_f2fs_bmap(inode, block, blknr);
3831 	return blknr;
3832 }
3833 
3834 #ifdef CONFIG_SWAP
3835 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3836 							unsigned int blkcnt)
3837 {
3838 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3839 	unsigned int blkofs;
3840 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3841 	unsigned int secidx = start_blk / blk_per_sec;
3842 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3843 	int ret = 0;
3844 
3845 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3846 	filemap_invalidate_lock(inode->i_mapping);
3847 
3848 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3849 	set_inode_flag(inode, FI_OPU_WRITE);
3850 
3851 	for (; secidx < end_sec; secidx++) {
3852 		f2fs_down_write(&sbi->pin_sem);
3853 
3854 		f2fs_lock_op(sbi);
3855 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3856 		f2fs_unlock_op(sbi);
3857 
3858 		set_inode_flag(inode, FI_SKIP_WRITES);
3859 
3860 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3861 			struct page *page;
3862 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3863 
3864 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3865 			if (IS_ERR(page)) {
3866 				f2fs_up_write(&sbi->pin_sem);
3867 				ret = PTR_ERR(page);
3868 				goto done;
3869 			}
3870 
3871 			set_page_dirty(page);
3872 			f2fs_put_page(page, 1);
3873 		}
3874 
3875 		clear_inode_flag(inode, FI_SKIP_WRITES);
3876 
3877 		ret = filemap_fdatawrite(inode->i_mapping);
3878 
3879 		f2fs_up_write(&sbi->pin_sem);
3880 
3881 		if (ret)
3882 			break;
3883 	}
3884 
3885 done:
3886 	clear_inode_flag(inode, FI_SKIP_WRITES);
3887 	clear_inode_flag(inode, FI_OPU_WRITE);
3888 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3889 
3890 	filemap_invalidate_unlock(inode->i_mapping);
3891 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3892 
3893 	return ret;
3894 }
3895 
3896 static int check_swap_activate(struct swap_info_struct *sis,
3897 				struct file *swap_file, sector_t *span)
3898 {
3899 	struct address_space *mapping = swap_file->f_mapping;
3900 	struct inode *inode = mapping->host;
3901 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3902 	sector_t cur_lblock;
3903 	sector_t last_lblock;
3904 	sector_t pblock;
3905 	sector_t lowest_pblock = -1;
3906 	sector_t highest_pblock = 0;
3907 	int nr_extents = 0;
3908 	unsigned long nr_pblocks;
3909 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3910 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3911 	unsigned int not_aligned = 0;
3912 	int ret = 0;
3913 
3914 	/*
3915 	 * Map all the blocks into the extent list.  This code doesn't try
3916 	 * to be very smart.
3917 	 */
3918 	cur_lblock = 0;
3919 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3920 
3921 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3922 		struct f2fs_map_blocks map;
3923 retry:
3924 		cond_resched();
3925 
3926 		memset(&map, 0, sizeof(map));
3927 		map.m_lblk = cur_lblock;
3928 		map.m_len = last_lblock - cur_lblock;
3929 		map.m_next_pgofs = NULL;
3930 		map.m_next_extent = NULL;
3931 		map.m_seg_type = NO_CHECK_TYPE;
3932 		map.m_may_create = false;
3933 
3934 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3935 		if (ret)
3936 			goto out;
3937 
3938 		/* hole */
3939 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3940 			f2fs_err(sbi, "Swapfile has holes");
3941 			ret = -EINVAL;
3942 			goto out;
3943 		}
3944 
3945 		pblock = map.m_pblk;
3946 		nr_pblocks = map.m_len;
3947 
3948 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3949 				nr_pblocks & sec_blks_mask) {
3950 			not_aligned++;
3951 
3952 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3953 			if (cur_lblock + nr_pblocks > sis->max)
3954 				nr_pblocks -= blks_per_sec;
3955 
3956 			if (!nr_pblocks) {
3957 				/* this extent is last one */
3958 				nr_pblocks = map.m_len;
3959 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3960 				goto next;
3961 			}
3962 
3963 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3964 							nr_pblocks);
3965 			if (ret)
3966 				goto out;
3967 			goto retry;
3968 		}
3969 next:
3970 		if (cur_lblock + nr_pblocks >= sis->max)
3971 			nr_pblocks = sis->max - cur_lblock;
3972 
3973 		if (cur_lblock) {	/* exclude the header page */
3974 			if (pblock < lowest_pblock)
3975 				lowest_pblock = pblock;
3976 			if (pblock + nr_pblocks - 1 > highest_pblock)
3977 				highest_pblock = pblock + nr_pblocks - 1;
3978 		}
3979 
3980 		/*
3981 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3982 		 */
3983 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3984 		if (ret < 0)
3985 			goto out;
3986 		nr_extents += ret;
3987 		cur_lblock += nr_pblocks;
3988 	}
3989 	ret = nr_extents;
3990 	*span = 1 + highest_pblock - lowest_pblock;
3991 	if (cur_lblock == 0)
3992 		cur_lblock = 1;	/* force Empty message */
3993 	sis->max = cur_lblock;
3994 	sis->pages = cur_lblock - 1;
3995 	sis->highest_bit = cur_lblock - 1;
3996 out:
3997 	if (not_aligned)
3998 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3999 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4000 	return ret;
4001 }
4002 
4003 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4004 				sector_t *span)
4005 {
4006 	struct inode *inode = file_inode(file);
4007 	int ret;
4008 
4009 	if (!S_ISREG(inode->i_mode))
4010 		return -EINVAL;
4011 
4012 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4013 		return -EROFS;
4014 
4015 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4016 		f2fs_err(F2FS_I_SB(inode),
4017 			"Swapfile not supported in LFS mode");
4018 		return -EINVAL;
4019 	}
4020 
4021 	ret = f2fs_convert_inline_inode(inode);
4022 	if (ret)
4023 		return ret;
4024 
4025 	if (!f2fs_disable_compressed_file(inode))
4026 		return -EINVAL;
4027 
4028 	f2fs_precache_extents(inode);
4029 
4030 	ret = check_swap_activate(sis, file, span);
4031 	if (ret < 0)
4032 		return ret;
4033 
4034 	stat_inc_swapfile_inode(inode);
4035 	set_inode_flag(inode, FI_PIN_FILE);
4036 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4037 	return ret;
4038 }
4039 
4040 static void f2fs_swap_deactivate(struct file *file)
4041 {
4042 	struct inode *inode = file_inode(file);
4043 
4044 	stat_dec_swapfile_inode(inode);
4045 	clear_inode_flag(inode, FI_PIN_FILE);
4046 }
4047 #else
4048 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4049 				sector_t *span)
4050 {
4051 	return -EOPNOTSUPP;
4052 }
4053 
4054 static void f2fs_swap_deactivate(struct file *file)
4055 {
4056 }
4057 #endif
4058 
4059 const struct address_space_operations f2fs_dblock_aops = {
4060 	.read_folio	= f2fs_read_data_folio,
4061 	.readahead	= f2fs_readahead,
4062 	.writepage	= f2fs_write_data_page,
4063 	.writepages	= f2fs_write_data_pages,
4064 	.write_begin	= f2fs_write_begin,
4065 	.write_end	= f2fs_write_end,
4066 	.dirty_folio	= f2fs_dirty_data_folio,
4067 	.migrate_folio	= filemap_migrate_folio,
4068 	.invalidate_folio = f2fs_invalidate_folio,
4069 	.release_folio	= f2fs_release_folio,
4070 	.direct_IO	= noop_direct_IO,
4071 	.bmap		= f2fs_bmap,
4072 	.swap_activate  = f2fs_swap_activate,
4073 	.swap_deactivate = f2fs_swap_deactivate,
4074 };
4075 
4076 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4077 {
4078 	struct address_space *mapping = page_mapping(page);
4079 	unsigned long flags;
4080 
4081 	xa_lock_irqsave(&mapping->i_pages, flags);
4082 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4083 						PAGECACHE_TAG_DIRTY);
4084 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4085 }
4086 
4087 int __init f2fs_init_post_read_processing(void)
4088 {
4089 	bio_post_read_ctx_cache =
4090 		kmem_cache_create("f2fs_bio_post_read_ctx",
4091 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4092 	if (!bio_post_read_ctx_cache)
4093 		goto fail;
4094 	bio_post_read_ctx_pool =
4095 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4096 					 bio_post_read_ctx_cache);
4097 	if (!bio_post_read_ctx_pool)
4098 		goto fail_free_cache;
4099 	return 0;
4100 
4101 fail_free_cache:
4102 	kmem_cache_destroy(bio_post_read_ctx_cache);
4103 fail:
4104 	return -ENOMEM;
4105 }
4106 
4107 void f2fs_destroy_post_read_processing(void)
4108 {
4109 	mempool_destroy(bio_post_read_ctx_pool);
4110 	kmem_cache_destroy(bio_post_read_ctx_cache);
4111 }
4112 
4113 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4114 {
4115 	if (!f2fs_sb_has_encrypt(sbi) &&
4116 		!f2fs_sb_has_verity(sbi) &&
4117 		!f2fs_sb_has_compression(sbi))
4118 		return 0;
4119 
4120 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4121 						 WQ_UNBOUND | WQ_HIGHPRI,
4122 						 num_online_cpus());
4123 	return sbi->post_read_wq ? 0 : -ENOMEM;
4124 }
4125 
4126 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4127 {
4128 	if (sbi->post_read_wq)
4129 		destroy_workqueue(sbi->post_read_wq);
4130 }
4131 
4132 int __init f2fs_init_bio_entry_cache(void)
4133 {
4134 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4135 			sizeof(struct bio_entry));
4136 	return bio_entry_slab ? 0 : -ENOMEM;
4137 }
4138 
4139 void f2fs_destroy_bio_entry_cache(void)
4140 {
4141 	kmem_cache_destroy(bio_entry_slab);
4142 }
4143 
4144 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4145 			    unsigned int flags, struct iomap *iomap,
4146 			    struct iomap *srcmap)
4147 {
4148 	struct f2fs_map_blocks map = {};
4149 	pgoff_t next_pgofs = 0;
4150 	int err;
4151 
4152 	map.m_lblk = bytes_to_blks(inode, offset);
4153 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4154 	map.m_next_pgofs = &next_pgofs;
4155 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4156 	if (flags & IOMAP_WRITE)
4157 		map.m_may_create = true;
4158 
4159 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4160 	if (err)
4161 		return err;
4162 
4163 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4164 
4165 	/*
4166 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4167 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4168 	 * limiting the length of the mapping returned.
4169 	 */
4170 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4171 
4172 	/*
4173 	 * We should never see delalloc or compressed extents here based on
4174 	 * prior flushing and checks.
4175 	 */
4176 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4177 		return -EINVAL;
4178 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4179 		return -EINVAL;
4180 
4181 	if (map.m_pblk != NULL_ADDR) {
4182 		iomap->length = blks_to_bytes(inode, map.m_len);
4183 		iomap->type = IOMAP_MAPPED;
4184 		iomap->flags |= IOMAP_F_MERGED;
4185 		iomap->bdev = map.m_bdev;
4186 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4187 	} else {
4188 		if (flags & IOMAP_WRITE)
4189 			return -ENOTBLK;
4190 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4191 				iomap->offset;
4192 		iomap->type = IOMAP_HOLE;
4193 		iomap->addr = IOMAP_NULL_ADDR;
4194 	}
4195 
4196 	if (map.m_flags & F2FS_MAP_NEW)
4197 		iomap->flags |= IOMAP_F_NEW;
4198 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4199 	    offset + length > i_size_read(inode))
4200 		iomap->flags |= IOMAP_F_DIRTY;
4201 
4202 	return 0;
4203 }
4204 
4205 const struct iomap_ops f2fs_iomap_ops = {
4206 	.iomap_begin	= f2fs_iomap_begin,
4207 };
4208