1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 73 page_private_gcing(page)) 74 return true; 75 return false; 76 } 77 78 static enum count_type __read_io_type(struct page *page) 79 { 80 struct address_space *mapping = page_file_mapping(page); 81 82 if (mapping) { 83 struct inode *inode = mapping->host; 84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 85 86 if (inode->i_ino == F2FS_META_INO(sbi)) 87 return F2FS_RD_META; 88 89 if (inode->i_ino == F2FS_NODE_INO(sbi)) 90 return F2FS_RD_NODE; 91 } 92 return F2FS_RD_DATA; 93 } 94 95 /* postprocessing steps for read bios */ 96 enum bio_post_read_step { 97 #ifdef CONFIG_FS_ENCRYPTION 98 STEP_DECRYPT = 1 << 0, 99 #else 100 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 101 #endif 102 #ifdef CONFIG_F2FS_FS_COMPRESSION 103 STEP_DECOMPRESS = 1 << 1, 104 #else 105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 106 #endif 107 #ifdef CONFIG_FS_VERITY 108 STEP_VERITY = 1 << 2, 109 #else 110 STEP_VERITY = 0, /* compile out the verity-related code */ 111 #endif 112 }; 113 114 struct bio_post_read_ctx { 115 struct bio *bio; 116 struct f2fs_sb_info *sbi; 117 struct work_struct work; 118 unsigned int enabled_steps; 119 block_t fs_blkaddr; 120 }; 121 122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 123 { 124 struct bio_vec *bv; 125 struct bvec_iter_all iter_all; 126 127 /* 128 * Update and unlock the bio's pagecache pages, and put the 129 * decompression context for any compressed pages. 130 */ 131 bio_for_each_segment_all(bv, bio, iter_all) { 132 struct page *page = bv->bv_page; 133 134 if (f2fs_is_compressed_page(page)) { 135 if (bio->bi_status) 136 f2fs_end_read_compressed_page(page, true, 0, 137 in_task); 138 f2fs_put_page_dic(page, in_task); 139 continue; 140 } 141 142 /* PG_error was set if verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readahead() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio, true); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio, in_task); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 229 bool in_task) 230 { 231 struct bio_vec *bv; 232 struct bvec_iter_all iter_all; 233 bool all_compressed = true; 234 block_t blkaddr = ctx->fs_blkaddr; 235 236 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 237 struct page *page = bv->bv_page; 238 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, false, blkaddr, 241 in_task); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 struct bio *bio = ctx->bio; 262 263 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 264 f2fs_finish_read_bio(bio, true); 265 return; 266 } 267 268 if (ctx->enabled_steps & STEP_DECOMPRESS) 269 f2fs_handle_step_decompress(ctx, true); 270 271 f2fs_verify_and_finish_bio(bio, true); 272 } 273 274 static void f2fs_read_end_io(struct bio *bio) 275 { 276 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 277 struct bio_post_read_ctx *ctx; 278 bool intask = in_task(); 279 280 iostat_update_and_unbind_ctx(bio, 0); 281 ctx = bio->bi_private; 282 283 if (time_to_inject(sbi, FAULT_READ_IO)) { 284 f2fs_show_injection_info(sbi, FAULT_READ_IO); 285 bio->bi_status = BLK_STS_IOERR; 286 } 287 288 if (bio->bi_status) { 289 f2fs_finish_read_bio(bio, intask); 290 return; 291 } 292 293 if (ctx) { 294 unsigned int enabled_steps = ctx->enabled_steps & 295 (STEP_DECRYPT | STEP_DECOMPRESS); 296 297 /* 298 * If we have only decompression step between decompression and 299 * decrypt, we don't need post processing for this. 300 */ 301 if (enabled_steps == STEP_DECOMPRESS && 302 !f2fs_low_mem_mode(sbi)) { 303 f2fs_handle_step_decompress(ctx, intask); 304 } else if (enabled_steps) { 305 INIT_WORK(&ctx->work, f2fs_post_read_work); 306 queue_work(ctx->sbi->post_read_wq, &ctx->work); 307 return; 308 } 309 } 310 311 f2fs_verify_and_finish_bio(bio, intask); 312 } 313 314 static void f2fs_write_end_io(struct bio *bio) 315 { 316 struct f2fs_sb_info *sbi; 317 struct bio_vec *bvec; 318 struct bvec_iter_all iter_all; 319 320 iostat_update_and_unbind_ctx(bio, 1); 321 sbi = bio->bi_private; 322 323 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 324 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 325 bio->bi_status = BLK_STS_IOERR; 326 } 327 328 bio_for_each_segment_all(bvec, bio, iter_all) { 329 struct page *page = bvec->bv_page; 330 enum count_type type = WB_DATA_TYPE(page); 331 332 if (page_private_dummy(page)) { 333 clear_page_private_dummy(page); 334 unlock_page(page); 335 mempool_free(page, sbi->write_io_dummy); 336 337 if (unlikely(bio->bi_status)) 338 f2fs_stop_checkpoint(sbi, true, 339 STOP_CP_REASON_WRITE_FAIL); 340 continue; 341 } 342 343 fscrypt_finalize_bounce_page(&page); 344 345 #ifdef CONFIG_F2FS_FS_COMPRESSION 346 if (f2fs_is_compressed_page(page)) { 347 f2fs_compress_write_end_io(bio, page); 348 continue; 349 } 350 #endif 351 352 if (unlikely(bio->bi_status)) { 353 mapping_set_error(page->mapping, -EIO); 354 if (type == F2FS_WB_CP_DATA) 355 f2fs_stop_checkpoint(sbi, true, 356 STOP_CP_REASON_WRITE_FAIL); 357 } 358 359 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 360 page->index != nid_of_node(page)); 361 362 dec_page_count(sbi, type); 363 if (f2fs_in_warm_node_list(sbi, page)) 364 f2fs_del_fsync_node_entry(sbi, page); 365 clear_page_private_gcing(page); 366 end_page_writeback(page); 367 } 368 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 369 wq_has_sleeper(&sbi->cp_wait)) 370 wake_up(&sbi->cp_wait); 371 372 bio_put(bio); 373 } 374 375 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 376 block_t blk_addr, sector_t *sector) 377 { 378 struct block_device *bdev = sbi->sb->s_bdev; 379 int i; 380 381 if (f2fs_is_multi_device(sbi)) { 382 for (i = 0; i < sbi->s_ndevs; i++) { 383 if (FDEV(i).start_blk <= blk_addr && 384 FDEV(i).end_blk >= blk_addr) { 385 blk_addr -= FDEV(i).start_blk; 386 bdev = FDEV(i).bdev; 387 break; 388 } 389 } 390 } 391 392 if (sector) 393 *sector = SECTOR_FROM_BLOCK(blk_addr); 394 return bdev; 395 } 396 397 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 398 { 399 int i; 400 401 if (!f2fs_is_multi_device(sbi)) 402 return 0; 403 404 for (i = 0; i < sbi->s_ndevs; i++) 405 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 406 return i; 407 return 0; 408 } 409 410 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 411 { 412 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 413 unsigned int fua_flag, meta_flag, io_flag; 414 blk_opf_t op_flags = 0; 415 416 if (fio->op != REQ_OP_WRITE) 417 return 0; 418 if (fio->type == DATA) 419 io_flag = fio->sbi->data_io_flag; 420 else if (fio->type == NODE) 421 io_flag = fio->sbi->node_io_flag; 422 else 423 return 0; 424 425 fua_flag = io_flag & temp_mask; 426 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 427 428 /* 429 * data/node io flag bits per temp: 430 * REQ_META | REQ_FUA | 431 * 5 | 4 | 3 | 2 | 1 | 0 | 432 * Cold | Warm | Hot | Cold | Warm | Hot | 433 */ 434 if ((1 << fio->temp) & meta_flag) 435 op_flags |= REQ_META; 436 if ((1 << fio->temp) & fua_flag) 437 op_flags |= REQ_FUA; 438 return op_flags; 439 } 440 441 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 442 { 443 struct f2fs_sb_info *sbi = fio->sbi; 444 struct block_device *bdev; 445 sector_t sector; 446 struct bio *bio; 447 448 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 449 bio = bio_alloc_bioset(bdev, npages, 450 fio->op | fio->op_flags | f2fs_io_flags(fio), 451 GFP_NOIO, &f2fs_bioset); 452 bio->bi_iter.bi_sector = sector; 453 if (is_read_io(fio->op)) { 454 bio->bi_end_io = f2fs_read_end_io; 455 bio->bi_private = NULL; 456 } else { 457 bio->bi_end_io = f2fs_write_end_io; 458 bio->bi_private = sbi; 459 } 460 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 461 462 if (fio->io_wbc) 463 wbc_init_bio(fio->io_wbc, bio); 464 465 return bio; 466 } 467 468 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 469 pgoff_t first_idx, 470 const struct f2fs_io_info *fio, 471 gfp_t gfp_mask) 472 { 473 /* 474 * The f2fs garbage collector sets ->encrypted_page when it wants to 475 * read/write raw data without encryption. 476 */ 477 if (!fio || !fio->encrypted_page) 478 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 479 } 480 481 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 482 pgoff_t next_idx, 483 const struct f2fs_io_info *fio) 484 { 485 /* 486 * The f2fs garbage collector sets ->encrypted_page when it wants to 487 * read/write raw data without encryption. 488 */ 489 if (fio && fio->encrypted_page) 490 return !bio_has_crypt_ctx(bio); 491 492 return fscrypt_mergeable_bio(bio, inode, next_idx); 493 } 494 495 static inline void __submit_bio(struct f2fs_sb_info *sbi, 496 struct bio *bio, enum page_type type) 497 { 498 if (!is_read_io(bio_op(bio))) { 499 unsigned int start; 500 501 if (type != DATA && type != NODE) 502 goto submit_io; 503 504 if (f2fs_lfs_mode(sbi) && current->plug) 505 blk_finish_plug(current->plug); 506 507 if (!F2FS_IO_ALIGNED(sbi)) 508 goto submit_io; 509 510 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 511 start %= F2FS_IO_SIZE(sbi); 512 513 if (start == 0) 514 goto submit_io; 515 516 /* fill dummy pages */ 517 for (; start < F2FS_IO_SIZE(sbi); start++) { 518 struct page *page = 519 mempool_alloc(sbi->write_io_dummy, 520 GFP_NOIO | __GFP_NOFAIL); 521 f2fs_bug_on(sbi, !page); 522 523 lock_page(page); 524 525 zero_user_segment(page, 0, PAGE_SIZE); 526 set_page_private_dummy(page); 527 528 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 529 f2fs_bug_on(sbi, 1); 530 } 531 /* 532 * In the NODE case, we lose next block address chain. So, we 533 * need to do checkpoint in f2fs_sync_file. 534 */ 535 if (type == NODE) 536 set_sbi_flag(sbi, SBI_NEED_CP); 537 } 538 submit_io: 539 if (is_read_io(bio_op(bio))) 540 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 541 else 542 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 543 544 iostat_update_submit_ctx(bio, type); 545 submit_bio(bio); 546 } 547 548 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 549 struct bio *bio, enum page_type type) 550 { 551 __submit_bio(sbi, bio, type); 552 } 553 554 static void __submit_merged_bio(struct f2fs_bio_info *io) 555 { 556 struct f2fs_io_info *fio = &io->fio; 557 558 if (!io->bio) 559 return; 560 561 if (is_read_io(fio->op)) 562 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 563 else 564 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 565 566 __submit_bio(io->sbi, io->bio, fio->type); 567 io->bio = NULL; 568 } 569 570 static bool __has_merged_page(struct bio *bio, struct inode *inode, 571 struct page *page, nid_t ino) 572 { 573 struct bio_vec *bvec; 574 struct bvec_iter_all iter_all; 575 576 if (!bio) 577 return false; 578 579 if (!inode && !page && !ino) 580 return true; 581 582 bio_for_each_segment_all(bvec, bio, iter_all) { 583 struct page *target = bvec->bv_page; 584 585 if (fscrypt_is_bounce_page(target)) { 586 target = fscrypt_pagecache_page(target); 587 if (IS_ERR(target)) 588 continue; 589 } 590 if (f2fs_is_compressed_page(target)) { 591 target = f2fs_compress_control_page(target); 592 if (IS_ERR(target)) 593 continue; 594 } 595 596 if (inode && inode == target->mapping->host) 597 return true; 598 if (page && page == target) 599 return true; 600 if (ino && ino == ino_of_node(target)) 601 return true; 602 } 603 604 return false; 605 } 606 607 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 608 { 609 int i; 610 611 for (i = 0; i < NR_PAGE_TYPE; i++) { 612 int n = (i == META) ? 1 : NR_TEMP_TYPE; 613 int j; 614 615 sbi->write_io[i] = f2fs_kmalloc(sbi, 616 array_size(n, sizeof(struct f2fs_bio_info)), 617 GFP_KERNEL); 618 if (!sbi->write_io[i]) 619 return -ENOMEM; 620 621 for (j = HOT; j < n; j++) { 622 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 623 sbi->write_io[i][j].sbi = sbi; 624 sbi->write_io[i][j].bio = NULL; 625 spin_lock_init(&sbi->write_io[i][j].io_lock); 626 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 627 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 628 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 629 } 630 } 631 632 return 0; 633 } 634 635 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 636 enum page_type type, enum temp_type temp) 637 { 638 enum page_type btype = PAGE_TYPE_OF_BIO(type); 639 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 640 641 f2fs_down_write(&io->io_rwsem); 642 643 /* change META to META_FLUSH in the checkpoint procedure */ 644 if (type >= META_FLUSH) { 645 io->fio.type = META_FLUSH; 646 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 647 if (!test_opt(sbi, NOBARRIER)) 648 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 649 } 650 __submit_merged_bio(io); 651 f2fs_up_write(&io->io_rwsem); 652 } 653 654 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 655 struct inode *inode, struct page *page, 656 nid_t ino, enum page_type type, bool force) 657 { 658 enum temp_type temp; 659 bool ret = true; 660 661 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 662 if (!force) { 663 enum page_type btype = PAGE_TYPE_OF_BIO(type); 664 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 665 666 f2fs_down_read(&io->io_rwsem); 667 ret = __has_merged_page(io->bio, inode, page, ino); 668 f2fs_up_read(&io->io_rwsem); 669 } 670 if (ret) 671 __f2fs_submit_merged_write(sbi, type, temp); 672 673 /* TODO: use HOT temp only for meta pages now. */ 674 if (type >= META) 675 break; 676 } 677 } 678 679 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 680 { 681 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 682 } 683 684 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 685 struct inode *inode, struct page *page, 686 nid_t ino, enum page_type type) 687 { 688 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 689 } 690 691 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 692 { 693 f2fs_submit_merged_write(sbi, DATA); 694 f2fs_submit_merged_write(sbi, NODE); 695 f2fs_submit_merged_write(sbi, META); 696 } 697 698 /* 699 * Fill the locked page with data located in the block address. 700 * A caller needs to unlock the page on failure. 701 */ 702 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 703 { 704 struct bio *bio; 705 struct page *page = fio->encrypted_page ? 706 fio->encrypted_page : fio->page; 707 708 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 709 fio->is_por ? META_POR : (__is_meta_io(fio) ? 710 META_GENERIC : DATA_GENERIC_ENHANCE))) { 711 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 712 return -EFSCORRUPTED; 713 } 714 715 trace_f2fs_submit_page_bio(page, fio); 716 717 /* Allocate a new bio */ 718 bio = __bio_alloc(fio, 1); 719 720 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 721 fio->page->index, fio, GFP_NOIO); 722 723 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 724 bio_put(bio); 725 return -EFAULT; 726 } 727 728 if (fio->io_wbc && !is_read_io(fio->op)) 729 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 730 731 inc_page_count(fio->sbi, is_read_io(fio->op) ? 732 __read_io_type(page) : WB_DATA_TYPE(fio->page)); 733 734 __submit_bio(fio->sbi, bio, fio->type); 735 return 0; 736 } 737 738 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 739 block_t last_blkaddr, block_t cur_blkaddr) 740 { 741 if (unlikely(sbi->max_io_bytes && 742 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 743 return false; 744 if (last_blkaddr + 1 != cur_blkaddr) 745 return false; 746 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 747 } 748 749 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 750 struct f2fs_io_info *fio) 751 { 752 if (io->fio.op != fio->op) 753 return false; 754 return io->fio.op_flags == fio->op_flags; 755 } 756 757 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 758 struct f2fs_bio_info *io, 759 struct f2fs_io_info *fio, 760 block_t last_blkaddr, 761 block_t cur_blkaddr) 762 { 763 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 764 unsigned int filled_blocks = 765 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 766 unsigned int io_size = F2FS_IO_SIZE(sbi); 767 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 768 769 /* IOs in bio is aligned and left space of vectors is not enough */ 770 if (!(filled_blocks % io_size) && left_vecs < io_size) 771 return false; 772 } 773 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 774 return false; 775 return io_type_is_mergeable(io, fio); 776 } 777 778 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 779 struct page *page, enum temp_type temp) 780 { 781 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 782 struct bio_entry *be; 783 784 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 785 be->bio = bio; 786 bio_get(bio); 787 788 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 789 f2fs_bug_on(sbi, 1); 790 791 f2fs_down_write(&io->bio_list_lock); 792 list_add_tail(&be->list, &io->bio_list); 793 f2fs_up_write(&io->bio_list_lock); 794 } 795 796 static void del_bio_entry(struct bio_entry *be) 797 { 798 list_del(&be->list); 799 kmem_cache_free(bio_entry_slab, be); 800 } 801 802 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 803 struct page *page) 804 { 805 struct f2fs_sb_info *sbi = fio->sbi; 806 enum temp_type temp; 807 bool found = false; 808 int ret = -EAGAIN; 809 810 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 811 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 812 struct list_head *head = &io->bio_list; 813 struct bio_entry *be; 814 815 f2fs_down_write(&io->bio_list_lock); 816 list_for_each_entry(be, head, list) { 817 if (be->bio != *bio) 818 continue; 819 820 found = true; 821 822 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 823 *fio->last_block, 824 fio->new_blkaddr)); 825 if (f2fs_crypt_mergeable_bio(*bio, 826 fio->page->mapping->host, 827 fio->page->index, fio) && 828 bio_add_page(*bio, page, PAGE_SIZE, 0) == 829 PAGE_SIZE) { 830 ret = 0; 831 break; 832 } 833 834 /* page can't be merged into bio; submit the bio */ 835 del_bio_entry(be); 836 __submit_bio(sbi, *bio, DATA); 837 break; 838 } 839 f2fs_up_write(&io->bio_list_lock); 840 } 841 842 if (ret) { 843 bio_put(*bio); 844 *bio = NULL; 845 } 846 847 return ret; 848 } 849 850 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 851 struct bio **bio, struct page *page) 852 { 853 enum temp_type temp; 854 bool found = false; 855 struct bio *target = bio ? *bio : NULL; 856 857 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 858 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 859 struct list_head *head = &io->bio_list; 860 struct bio_entry *be; 861 862 if (list_empty(head)) 863 continue; 864 865 f2fs_down_read(&io->bio_list_lock); 866 list_for_each_entry(be, head, list) { 867 if (target) 868 found = (target == be->bio); 869 else 870 found = __has_merged_page(be->bio, NULL, 871 page, 0); 872 if (found) 873 break; 874 } 875 f2fs_up_read(&io->bio_list_lock); 876 877 if (!found) 878 continue; 879 880 found = false; 881 882 f2fs_down_write(&io->bio_list_lock); 883 list_for_each_entry(be, head, list) { 884 if (target) 885 found = (target == be->bio); 886 else 887 found = __has_merged_page(be->bio, NULL, 888 page, 0); 889 if (found) { 890 target = be->bio; 891 del_bio_entry(be); 892 break; 893 } 894 } 895 f2fs_up_write(&io->bio_list_lock); 896 } 897 898 if (found) 899 __submit_bio(sbi, target, DATA); 900 if (bio && *bio) { 901 bio_put(*bio); 902 *bio = NULL; 903 } 904 } 905 906 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 907 { 908 struct bio *bio = *fio->bio; 909 struct page *page = fio->encrypted_page ? 910 fio->encrypted_page : fio->page; 911 912 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 913 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { 914 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 915 return -EFSCORRUPTED; 916 } 917 918 trace_f2fs_submit_page_bio(page, fio); 919 920 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 921 fio->new_blkaddr)) 922 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 923 alloc_new: 924 if (!bio) { 925 bio = __bio_alloc(fio, BIO_MAX_VECS); 926 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 927 fio->page->index, fio, GFP_NOIO); 928 929 add_bio_entry(fio->sbi, bio, page, fio->temp); 930 } else { 931 if (add_ipu_page(fio, &bio, page)) 932 goto alloc_new; 933 } 934 935 if (fio->io_wbc) 936 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 937 938 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 939 940 *fio->last_block = fio->new_blkaddr; 941 *fio->bio = bio; 942 943 return 0; 944 } 945 946 void f2fs_submit_page_write(struct f2fs_io_info *fio) 947 { 948 struct f2fs_sb_info *sbi = fio->sbi; 949 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 950 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 951 struct page *bio_page; 952 953 f2fs_bug_on(sbi, is_read_io(fio->op)); 954 955 f2fs_down_write(&io->io_rwsem); 956 next: 957 if (fio->in_list) { 958 spin_lock(&io->io_lock); 959 if (list_empty(&io->io_list)) { 960 spin_unlock(&io->io_lock); 961 goto out; 962 } 963 fio = list_first_entry(&io->io_list, 964 struct f2fs_io_info, list); 965 list_del(&fio->list); 966 spin_unlock(&io->io_lock); 967 } 968 969 verify_fio_blkaddr(fio); 970 971 if (fio->encrypted_page) 972 bio_page = fio->encrypted_page; 973 else if (fio->compressed_page) 974 bio_page = fio->compressed_page; 975 else 976 bio_page = fio->page; 977 978 /* set submitted = true as a return value */ 979 fio->submitted = true; 980 981 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 982 983 if (io->bio && 984 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 985 fio->new_blkaddr) || 986 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 987 bio_page->index, fio))) 988 __submit_merged_bio(io); 989 alloc_new: 990 if (io->bio == NULL) { 991 if (F2FS_IO_ALIGNED(sbi) && 992 (fio->type == DATA || fio->type == NODE) && 993 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 994 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 995 fio->retry = true; 996 goto skip; 997 } 998 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 999 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1000 bio_page->index, fio, GFP_NOIO); 1001 io->fio = *fio; 1002 } 1003 1004 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1005 __submit_merged_bio(io); 1006 goto alloc_new; 1007 } 1008 1009 if (fio->io_wbc) 1010 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 1011 1012 io->last_block_in_bio = fio->new_blkaddr; 1013 1014 trace_f2fs_submit_page_write(fio->page, fio); 1015 skip: 1016 if (fio->in_list) 1017 goto next; 1018 out: 1019 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1020 !f2fs_is_checkpoint_ready(sbi)) 1021 __submit_merged_bio(io); 1022 f2fs_up_write(&io->io_rwsem); 1023 } 1024 1025 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1026 unsigned nr_pages, blk_opf_t op_flag, 1027 pgoff_t first_idx, bool for_write) 1028 { 1029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1030 struct bio *bio; 1031 struct bio_post_read_ctx *ctx = NULL; 1032 unsigned int post_read_steps = 0; 1033 sector_t sector; 1034 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1035 1036 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1037 REQ_OP_READ | op_flag, 1038 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1039 if (!bio) 1040 return ERR_PTR(-ENOMEM); 1041 bio->bi_iter.bi_sector = sector; 1042 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1043 bio->bi_end_io = f2fs_read_end_io; 1044 1045 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1046 post_read_steps |= STEP_DECRYPT; 1047 1048 if (f2fs_need_verity(inode, first_idx)) 1049 post_read_steps |= STEP_VERITY; 1050 1051 /* 1052 * STEP_DECOMPRESS is handled specially, since a compressed file might 1053 * contain both compressed and uncompressed clusters. We'll allocate a 1054 * bio_post_read_ctx if the file is compressed, but the caller is 1055 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1056 */ 1057 1058 if (post_read_steps || f2fs_compressed_file(inode)) { 1059 /* Due to the mempool, this never fails. */ 1060 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1061 ctx->bio = bio; 1062 ctx->sbi = sbi; 1063 ctx->enabled_steps = post_read_steps; 1064 ctx->fs_blkaddr = blkaddr; 1065 bio->bi_private = ctx; 1066 } 1067 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1068 1069 return bio; 1070 } 1071 1072 /* This can handle encryption stuffs */ 1073 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1074 block_t blkaddr, blk_opf_t op_flags, 1075 bool for_write) 1076 { 1077 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1078 struct bio *bio; 1079 1080 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1081 page->index, for_write); 1082 if (IS_ERR(bio)) 1083 return PTR_ERR(bio); 1084 1085 /* wait for GCed page writeback via META_MAPPING */ 1086 f2fs_wait_on_block_writeback(inode, blkaddr); 1087 1088 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1089 bio_put(bio); 1090 return -EFAULT; 1091 } 1092 ClearPageError(page); 1093 inc_page_count(sbi, F2FS_RD_DATA); 1094 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1095 __submit_bio(sbi, bio, DATA); 1096 return 0; 1097 } 1098 1099 static void __set_data_blkaddr(struct dnode_of_data *dn) 1100 { 1101 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1102 __le32 *addr_array; 1103 int base = 0; 1104 1105 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1106 base = get_extra_isize(dn->inode); 1107 1108 /* Get physical address of data block */ 1109 addr_array = blkaddr_in_node(rn); 1110 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1111 } 1112 1113 /* 1114 * Lock ordering for the change of data block address: 1115 * ->data_page 1116 * ->node_page 1117 * update block addresses in the node page 1118 */ 1119 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1120 { 1121 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1122 __set_data_blkaddr(dn); 1123 if (set_page_dirty(dn->node_page)) 1124 dn->node_changed = true; 1125 } 1126 1127 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1128 { 1129 dn->data_blkaddr = blkaddr; 1130 f2fs_set_data_blkaddr(dn); 1131 f2fs_update_extent_cache(dn); 1132 } 1133 1134 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1135 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1136 { 1137 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1138 int err; 1139 1140 if (!count) 1141 return 0; 1142 1143 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1144 return -EPERM; 1145 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1146 return err; 1147 1148 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1149 dn->ofs_in_node, count); 1150 1151 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1152 1153 for (; count > 0; dn->ofs_in_node++) { 1154 block_t blkaddr = f2fs_data_blkaddr(dn); 1155 1156 if (blkaddr == NULL_ADDR) { 1157 dn->data_blkaddr = NEW_ADDR; 1158 __set_data_blkaddr(dn); 1159 count--; 1160 } 1161 } 1162 1163 if (set_page_dirty(dn->node_page)) 1164 dn->node_changed = true; 1165 return 0; 1166 } 1167 1168 /* Should keep dn->ofs_in_node unchanged */ 1169 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1170 { 1171 unsigned int ofs_in_node = dn->ofs_in_node; 1172 int ret; 1173 1174 ret = f2fs_reserve_new_blocks(dn, 1); 1175 dn->ofs_in_node = ofs_in_node; 1176 return ret; 1177 } 1178 1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1180 { 1181 bool need_put = dn->inode_page ? false : true; 1182 int err; 1183 1184 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1185 if (err) 1186 return err; 1187 1188 if (dn->data_blkaddr == NULL_ADDR) 1189 err = f2fs_reserve_new_block(dn); 1190 if (err || need_put) 1191 f2fs_put_dnode(dn); 1192 return err; 1193 } 1194 1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1196 { 1197 struct extent_info ei = {0, }; 1198 struct inode *inode = dn->inode; 1199 1200 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1201 dn->data_blkaddr = ei.blk + index - ei.fofs; 1202 return 0; 1203 } 1204 1205 return f2fs_reserve_block(dn, index); 1206 } 1207 1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1209 blk_opf_t op_flags, bool for_write) 1210 { 1211 struct address_space *mapping = inode->i_mapping; 1212 struct dnode_of_data dn; 1213 struct page *page; 1214 struct extent_info ei = {0, }; 1215 int err; 1216 1217 page = f2fs_grab_cache_page(mapping, index, for_write); 1218 if (!page) 1219 return ERR_PTR(-ENOMEM); 1220 1221 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1222 dn.data_blkaddr = ei.blk + index - ei.fofs; 1223 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1224 DATA_GENERIC_ENHANCE_READ)) { 1225 err = -EFSCORRUPTED; 1226 f2fs_handle_error(F2FS_I_SB(inode), 1227 ERROR_INVALID_BLKADDR); 1228 goto put_err; 1229 } 1230 goto got_it; 1231 } 1232 1233 set_new_dnode(&dn, inode, NULL, NULL, 0); 1234 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1235 if (err) 1236 goto put_err; 1237 f2fs_put_dnode(&dn); 1238 1239 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1240 err = -ENOENT; 1241 goto put_err; 1242 } 1243 if (dn.data_blkaddr != NEW_ADDR && 1244 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1245 dn.data_blkaddr, 1246 DATA_GENERIC_ENHANCE)) { 1247 err = -EFSCORRUPTED; 1248 f2fs_handle_error(F2FS_I_SB(inode), 1249 ERROR_INVALID_BLKADDR); 1250 goto put_err; 1251 } 1252 got_it: 1253 if (PageUptodate(page)) { 1254 unlock_page(page); 1255 return page; 1256 } 1257 1258 /* 1259 * A new dentry page is allocated but not able to be written, since its 1260 * new inode page couldn't be allocated due to -ENOSPC. 1261 * In such the case, its blkaddr can be remained as NEW_ADDR. 1262 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1263 * f2fs_init_inode_metadata. 1264 */ 1265 if (dn.data_blkaddr == NEW_ADDR) { 1266 zero_user_segment(page, 0, PAGE_SIZE); 1267 if (!PageUptodate(page)) 1268 SetPageUptodate(page); 1269 unlock_page(page); 1270 return page; 1271 } 1272 1273 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1274 op_flags, for_write); 1275 if (err) 1276 goto put_err; 1277 return page; 1278 1279 put_err: 1280 f2fs_put_page(page, 1); 1281 return ERR_PTR(err); 1282 } 1283 1284 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1285 { 1286 struct address_space *mapping = inode->i_mapping; 1287 struct page *page; 1288 1289 page = find_get_page(mapping, index); 1290 if (page && PageUptodate(page)) 1291 return page; 1292 f2fs_put_page(page, 0); 1293 1294 page = f2fs_get_read_data_page(inode, index, 0, false); 1295 if (IS_ERR(page)) 1296 return page; 1297 1298 if (PageUptodate(page)) 1299 return page; 1300 1301 wait_on_page_locked(page); 1302 if (unlikely(!PageUptodate(page))) { 1303 f2fs_put_page(page, 0); 1304 return ERR_PTR(-EIO); 1305 } 1306 return page; 1307 } 1308 1309 /* 1310 * If it tries to access a hole, return an error. 1311 * Because, the callers, functions in dir.c and GC, should be able to know 1312 * whether this page exists or not. 1313 */ 1314 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1315 bool for_write) 1316 { 1317 struct address_space *mapping = inode->i_mapping; 1318 struct page *page; 1319 repeat: 1320 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1321 if (IS_ERR(page)) 1322 return page; 1323 1324 /* wait for read completion */ 1325 lock_page(page); 1326 if (unlikely(page->mapping != mapping)) { 1327 f2fs_put_page(page, 1); 1328 goto repeat; 1329 } 1330 if (unlikely(!PageUptodate(page))) { 1331 f2fs_put_page(page, 1); 1332 return ERR_PTR(-EIO); 1333 } 1334 return page; 1335 } 1336 1337 /* 1338 * Caller ensures that this data page is never allocated. 1339 * A new zero-filled data page is allocated in the page cache. 1340 * 1341 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1342 * f2fs_unlock_op(). 1343 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1344 * ipage should be released by this function. 1345 */ 1346 struct page *f2fs_get_new_data_page(struct inode *inode, 1347 struct page *ipage, pgoff_t index, bool new_i_size) 1348 { 1349 struct address_space *mapping = inode->i_mapping; 1350 struct page *page; 1351 struct dnode_of_data dn; 1352 int err; 1353 1354 page = f2fs_grab_cache_page(mapping, index, true); 1355 if (!page) { 1356 /* 1357 * before exiting, we should make sure ipage will be released 1358 * if any error occur. 1359 */ 1360 f2fs_put_page(ipage, 1); 1361 return ERR_PTR(-ENOMEM); 1362 } 1363 1364 set_new_dnode(&dn, inode, ipage, NULL, 0); 1365 err = f2fs_reserve_block(&dn, index); 1366 if (err) { 1367 f2fs_put_page(page, 1); 1368 return ERR_PTR(err); 1369 } 1370 if (!ipage) 1371 f2fs_put_dnode(&dn); 1372 1373 if (PageUptodate(page)) 1374 goto got_it; 1375 1376 if (dn.data_blkaddr == NEW_ADDR) { 1377 zero_user_segment(page, 0, PAGE_SIZE); 1378 if (!PageUptodate(page)) 1379 SetPageUptodate(page); 1380 } else { 1381 f2fs_put_page(page, 1); 1382 1383 /* if ipage exists, blkaddr should be NEW_ADDR */ 1384 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1385 page = f2fs_get_lock_data_page(inode, index, true); 1386 if (IS_ERR(page)) 1387 return page; 1388 } 1389 got_it: 1390 if (new_i_size && i_size_read(inode) < 1391 ((loff_t)(index + 1) << PAGE_SHIFT)) 1392 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1393 return page; 1394 } 1395 1396 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1397 { 1398 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1399 struct f2fs_summary sum; 1400 struct node_info ni; 1401 block_t old_blkaddr; 1402 blkcnt_t count = 1; 1403 int err; 1404 1405 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1406 return -EPERM; 1407 1408 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1409 if (err) 1410 return err; 1411 1412 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1413 if (dn->data_blkaddr != NULL_ADDR) 1414 goto alloc; 1415 1416 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1417 return err; 1418 1419 alloc: 1420 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1421 old_blkaddr = dn->data_blkaddr; 1422 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1423 &sum, seg_type, NULL); 1424 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1425 invalidate_mapping_pages(META_MAPPING(sbi), 1426 old_blkaddr, old_blkaddr); 1427 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1428 } 1429 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1430 return 0; 1431 } 1432 1433 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1434 { 1435 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1436 if (lock) 1437 f2fs_down_read(&sbi->node_change); 1438 else 1439 f2fs_up_read(&sbi->node_change); 1440 } else { 1441 if (lock) 1442 f2fs_lock_op(sbi); 1443 else 1444 f2fs_unlock_op(sbi); 1445 } 1446 } 1447 1448 /* 1449 * f2fs_map_blocks() tries to find or build mapping relationship which 1450 * maps continuous logical blocks to physical blocks, and return such 1451 * info via f2fs_map_blocks structure. 1452 */ 1453 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1454 int create, int flag) 1455 { 1456 unsigned int maxblocks = map->m_len; 1457 struct dnode_of_data dn; 1458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1459 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1460 pgoff_t pgofs, end_offset, end; 1461 int err = 0, ofs = 1; 1462 unsigned int ofs_in_node, last_ofs_in_node; 1463 blkcnt_t prealloc; 1464 struct extent_info ei = {0, }; 1465 block_t blkaddr; 1466 unsigned int start_pgofs; 1467 int bidx = 0; 1468 1469 if (!maxblocks) 1470 return 0; 1471 1472 map->m_bdev = inode->i_sb->s_bdev; 1473 map->m_multidev_dio = 1474 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1475 1476 map->m_len = 0; 1477 map->m_flags = 0; 1478 1479 /* it only supports block size == page size */ 1480 pgofs = (pgoff_t)map->m_lblk; 1481 end = pgofs + maxblocks; 1482 1483 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1484 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1485 map->m_may_create) 1486 goto next_dnode; 1487 1488 map->m_pblk = ei.blk + pgofs - ei.fofs; 1489 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1490 map->m_flags = F2FS_MAP_MAPPED; 1491 if (map->m_next_extent) 1492 *map->m_next_extent = pgofs + map->m_len; 1493 1494 /* for hardware encryption, but to avoid potential issue in future */ 1495 if (flag == F2FS_GET_BLOCK_DIO) 1496 f2fs_wait_on_block_writeback_range(inode, 1497 map->m_pblk, map->m_len); 1498 1499 if (map->m_multidev_dio) { 1500 block_t blk_addr = map->m_pblk; 1501 1502 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1503 1504 map->m_bdev = FDEV(bidx).bdev; 1505 map->m_pblk -= FDEV(bidx).start_blk; 1506 map->m_len = min(map->m_len, 1507 FDEV(bidx).end_blk + 1 - map->m_pblk); 1508 1509 if (map->m_may_create) 1510 f2fs_update_device_state(sbi, inode->i_ino, 1511 blk_addr, map->m_len); 1512 } 1513 goto out; 1514 } 1515 1516 next_dnode: 1517 if (map->m_may_create) 1518 f2fs_do_map_lock(sbi, flag, true); 1519 1520 /* When reading holes, we need its node page */ 1521 set_new_dnode(&dn, inode, NULL, NULL, 0); 1522 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1523 if (err) { 1524 if (flag == F2FS_GET_BLOCK_BMAP) 1525 map->m_pblk = 0; 1526 1527 if (err == -ENOENT) { 1528 /* 1529 * There is one exceptional case that read_node_page() 1530 * may return -ENOENT due to filesystem has been 1531 * shutdown or cp_error, so force to convert error 1532 * number to EIO for such case. 1533 */ 1534 if (map->m_may_create && 1535 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1536 f2fs_cp_error(sbi))) { 1537 err = -EIO; 1538 goto unlock_out; 1539 } 1540 1541 err = 0; 1542 if (map->m_next_pgofs) 1543 *map->m_next_pgofs = 1544 f2fs_get_next_page_offset(&dn, pgofs); 1545 if (map->m_next_extent) 1546 *map->m_next_extent = 1547 f2fs_get_next_page_offset(&dn, pgofs); 1548 } 1549 goto unlock_out; 1550 } 1551 1552 start_pgofs = pgofs; 1553 prealloc = 0; 1554 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1555 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1556 1557 next_block: 1558 blkaddr = f2fs_data_blkaddr(&dn); 1559 1560 if (__is_valid_data_blkaddr(blkaddr) && 1561 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1562 err = -EFSCORRUPTED; 1563 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1564 goto sync_out; 1565 } 1566 1567 if (__is_valid_data_blkaddr(blkaddr)) { 1568 /* use out-place-update for driect IO under LFS mode */ 1569 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1570 map->m_may_create) { 1571 err = __allocate_data_block(&dn, map->m_seg_type); 1572 if (err) 1573 goto sync_out; 1574 blkaddr = dn.data_blkaddr; 1575 set_inode_flag(inode, FI_APPEND_WRITE); 1576 } 1577 } else { 1578 if (create) { 1579 if (unlikely(f2fs_cp_error(sbi))) { 1580 err = -EIO; 1581 goto sync_out; 1582 } 1583 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1584 if (blkaddr == NULL_ADDR) { 1585 prealloc++; 1586 last_ofs_in_node = dn.ofs_in_node; 1587 } 1588 } else { 1589 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1590 flag != F2FS_GET_BLOCK_DIO); 1591 err = __allocate_data_block(&dn, 1592 map->m_seg_type); 1593 if (!err) { 1594 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1595 file_need_truncate(inode); 1596 set_inode_flag(inode, FI_APPEND_WRITE); 1597 } 1598 } 1599 if (err) 1600 goto sync_out; 1601 map->m_flags |= F2FS_MAP_NEW; 1602 blkaddr = dn.data_blkaddr; 1603 } else { 1604 if (f2fs_compressed_file(inode) && 1605 f2fs_sanity_check_cluster(&dn) && 1606 (flag != F2FS_GET_BLOCK_FIEMAP || 1607 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1608 err = -EFSCORRUPTED; 1609 f2fs_handle_error(sbi, 1610 ERROR_CORRUPTED_CLUSTER); 1611 goto sync_out; 1612 } 1613 if (flag == F2FS_GET_BLOCK_BMAP) { 1614 map->m_pblk = 0; 1615 goto sync_out; 1616 } 1617 if (flag == F2FS_GET_BLOCK_PRECACHE) 1618 goto sync_out; 1619 if (flag == F2FS_GET_BLOCK_FIEMAP && 1620 blkaddr == NULL_ADDR) { 1621 if (map->m_next_pgofs) 1622 *map->m_next_pgofs = pgofs + 1; 1623 goto sync_out; 1624 } 1625 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1626 /* for defragment case */ 1627 if (map->m_next_pgofs) 1628 *map->m_next_pgofs = pgofs + 1; 1629 goto sync_out; 1630 } 1631 } 1632 } 1633 1634 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1635 goto skip; 1636 1637 if (map->m_multidev_dio) 1638 bidx = f2fs_target_device_index(sbi, blkaddr); 1639 1640 if (map->m_len == 0) { 1641 /* preallocated unwritten block should be mapped for fiemap. */ 1642 if (blkaddr == NEW_ADDR) 1643 map->m_flags |= F2FS_MAP_UNWRITTEN; 1644 map->m_flags |= F2FS_MAP_MAPPED; 1645 1646 map->m_pblk = blkaddr; 1647 map->m_len = 1; 1648 1649 if (map->m_multidev_dio) 1650 map->m_bdev = FDEV(bidx).bdev; 1651 } else if ((map->m_pblk != NEW_ADDR && 1652 blkaddr == (map->m_pblk + ofs)) || 1653 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1654 flag == F2FS_GET_BLOCK_PRE_DIO) { 1655 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1656 goto sync_out; 1657 ofs++; 1658 map->m_len++; 1659 } else { 1660 goto sync_out; 1661 } 1662 1663 skip: 1664 dn.ofs_in_node++; 1665 pgofs++; 1666 1667 /* preallocate blocks in batch for one dnode page */ 1668 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1669 (pgofs == end || dn.ofs_in_node == end_offset)) { 1670 1671 dn.ofs_in_node = ofs_in_node; 1672 err = f2fs_reserve_new_blocks(&dn, prealloc); 1673 if (err) 1674 goto sync_out; 1675 1676 map->m_len += dn.ofs_in_node - ofs_in_node; 1677 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1678 err = -ENOSPC; 1679 goto sync_out; 1680 } 1681 dn.ofs_in_node = end_offset; 1682 } 1683 1684 if (pgofs >= end) 1685 goto sync_out; 1686 else if (dn.ofs_in_node < end_offset) 1687 goto next_block; 1688 1689 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1690 if (map->m_flags & F2FS_MAP_MAPPED) { 1691 unsigned int ofs = start_pgofs - map->m_lblk; 1692 1693 f2fs_update_extent_cache_range(&dn, 1694 start_pgofs, map->m_pblk + ofs, 1695 map->m_len - ofs); 1696 } 1697 } 1698 1699 f2fs_put_dnode(&dn); 1700 1701 if (map->m_may_create) { 1702 f2fs_do_map_lock(sbi, flag, false); 1703 f2fs_balance_fs(sbi, dn.node_changed); 1704 } 1705 goto next_dnode; 1706 1707 sync_out: 1708 1709 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1710 /* 1711 * for hardware encryption, but to avoid potential issue 1712 * in future 1713 */ 1714 f2fs_wait_on_block_writeback_range(inode, 1715 map->m_pblk, map->m_len); 1716 1717 if (map->m_multidev_dio) { 1718 block_t blk_addr = map->m_pblk; 1719 1720 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1721 1722 map->m_bdev = FDEV(bidx).bdev; 1723 map->m_pblk -= FDEV(bidx).start_blk; 1724 1725 if (map->m_may_create) 1726 f2fs_update_device_state(sbi, inode->i_ino, 1727 blk_addr, map->m_len); 1728 1729 f2fs_bug_on(sbi, blk_addr + map->m_len > 1730 FDEV(bidx).end_blk + 1); 1731 } 1732 } 1733 1734 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1735 if (map->m_flags & F2FS_MAP_MAPPED) { 1736 unsigned int ofs = start_pgofs - map->m_lblk; 1737 1738 f2fs_update_extent_cache_range(&dn, 1739 start_pgofs, map->m_pblk + ofs, 1740 map->m_len - ofs); 1741 } 1742 if (map->m_next_extent) 1743 *map->m_next_extent = pgofs + 1; 1744 } 1745 f2fs_put_dnode(&dn); 1746 unlock_out: 1747 if (map->m_may_create) { 1748 f2fs_do_map_lock(sbi, flag, false); 1749 f2fs_balance_fs(sbi, dn.node_changed); 1750 } 1751 out: 1752 trace_f2fs_map_blocks(inode, map, create, flag, err); 1753 return err; 1754 } 1755 1756 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1757 { 1758 struct f2fs_map_blocks map; 1759 block_t last_lblk; 1760 int err; 1761 1762 if (pos + len > i_size_read(inode)) 1763 return false; 1764 1765 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1766 map.m_next_pgofs = NULL; 1767 map.m_next_extent = NULL; 1768 map.m_seg_type = NO_CHECK_TYPE; 1769 map.m_may_create = false; 1770 last_lblk = F2FS_BLK_ALIGN(pos + len); 1771 1772 while (map.m_lblk < last_lblk) { 1773 map.m_len = last_lblk - map.m_lblk; 1774 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1775 if (err || map.m_len == 0) 1776 return false; 1777 map.m_lblk += map.m_len; 1778 } 1779 return true; 1780 } 1781 1782 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1783 { 1784 return (bytes >> inode->i_blkbits); 1785 } 1786 1787 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1788 { 1789 return (blks << inode->i_blkbits); 1790 } 1791 1792 static int f2fs_xattr_fiemap(struct inode *inode, 1793 struct fiemap_extent_info *fieinfo) 1794 { 1795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1796 struct page *page; 1797 struct node_info ni; 1798 __u64 phys = 0, len; 1799 __u32 flags; 1800 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1801 int err = 0; 1802 1803 if (f2fs_has_inline_xattr(inode)) { 1804 int offset; 1805 1806 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1807 inode->i_ino, false); 1808 if (!page) 1809 return -ENOMEM; 1810 1811 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1812 if (err) { 1813 f2fs_put_page(page, 1); 1814 return err; 1815 } 1816 1817 phys = blks_to_bytes(inode, ni.blk_addr); 1818 offset = offsetof(struct f2fs_inode, i_addr) + 1819 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1820 get_inline_xattr_addrs(inode)); 1821 1822 phys += offset; 1823 len = inline_xattr_size(inode); 1824 1825 f2fs_put_page(page, 1); 1826 1827 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1828 1829 if (!xnid) 1830 flags |= FIEMAP_EXTENT_LAST; 1831 1832 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1833 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1834 if (err) 1835 return err; 1836 } 1837 1838 if (xnid) { 1839 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1840 if (!page) 1841 return -ENOMEM; 1842 1843 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1844 if (err) { 1845 f2fs_put_page(page, 1); 1846 return err; 1847 } 1848 1849 phys = blks_to_bytes(inode, ni.blk_addr); 1850 len = inode->i_sb->s_blocksize; 1851 1852 f2fs_put_page(page, 1); 1853 1854 flags = FIEMAP_EXTENT_LAST; 1855 } 1856 1857 if (phys) { 1858 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1859 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1860 } 1861 1862 return (err < 0 ? err : 0); 1863 } 1864 1865 static loff_t max_inode_blocks(struct inode *inode) 1866 { 1867 loff_t result = ADDRS_PER_INODE(inode); 1868 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1869 1870 /* two direct node blocks */ 1871 result += (leaf_count * 2); 1872 1873 /* two indirect node blocks */ 1874 leaf_count *= NIDS_PER_BLOCK; 1875 result += (leaf_count * 2); 1876 1877 /* one double indirect node block */ 1878 leaf_count *= NIDS_PER_BLOCK; 1879 result += leaf_count; 1880 1881 return result; 1882 } 1883 1884 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1885 u64 start, u64 len) 1886 { 1887 struct f2fs_map_blocks map; 1888 sector_t start_blk, last_blk; 1889 pgoff_t next_pgofs; 1890 u64 logical = 0, phys = 0, size = 0; 1891 u32 flags = 0; 1892 int ret = 0; 1893 bool compr_cluster = false, compr_appended; 1894 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1895 unsigned int count_in_cluster = 0; 1896 loff_t maxbytes; 1897 1898 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1899 ret = f2fs_precache_extents(inode); 1900 if (ret) 1901 return ret; 1902 } 1903 1904 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1905 if (ret) 1906 return ret; 1907 1908 inode_lock(inode); 1909 1910 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1911 if (start > maxbytes) { 1912 ret = -EFBIG; 1913 goto out; 1914 } 1915 1916 if (len > maxbytes || (maxbytes - len) < start) 1917 len = maxbytes - start; 1918 1919 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1920 ret = f2fs_xattr_fiemap(inode, fieinfo); 1921 goto out; 1922 } 1923 1924 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1925 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1926 if (ret != -EAGAIN) 1927 goto out; 1928 } 1929 1930 if (bytes_to_blks(inode, len) == 0) 1931 len = blks_to_bytes(inode, 1); 1932 1933 start_blk = bytes_to_blks(inode, start); 1934 last_blk = bytes_to_blks(inode, start + len - 1); 1935 1936 next: 1937 memset(&map, 0, sizeof(map)); 1938 map.m_lblk = start_blk; 1939 map.m_len = bytes_to_blks(inode, len); 1940 map.m_next_pgofs = &next_pgofs; 1941 map.m_seg_type = NO_CHECK_TYPE; 1942 1943 if (compr_cluster) { 1944 map.m_lblk += 1; 1945 map.m_len = cluster_size - count_in_cluster; 1946 } 1947 1948 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1949 if (ret) 1950 goto out; 1951 1952 /* HOLE */ 1953 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1954 start_blk = next_pgofs; 1955 1956 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1957 max_inode_blocks(inode))) 1958 goto prep_next; 1959 1960 flags |= FIEMAP_EXTENT_LAST; 1961 } 1962 1963 compr_appended = false; 1964 /* In a case of compressed cluster, append this to the last extent */ 1965 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1966 !(map.m_flags & F2FS_MAP_FLAGS))) { 1967 compr_appended = true; 1968 goto skip_fill; 1969 } 1970 1971 if (size) { 1972 flags |= FIEMAP_EXTENT_MERGED; 1973 if (IS_ENCRYPTED(inode)) 1974 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1975 1976 ret = fiemap_fill_next_extent(fieinfo, logical, 1977 phys, size, flags); 1978 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1979 if (ret) 1980 goto out; 1981 size = 0; 1982 } 1983 1984 if (start_blk > last_blk) 1985 goto out; 1986 1987 skip_fill: 1988 if (map.m_pblk == COMPRESS_ADDR) { 1989 compr_cluster = true; 1990 count_in_cluster = 1; 1991 } else if (compr_appended) { 1992 unsigned int appended_blks = cluster_size - 1993 count_in_cluster + 1; 1994 size += blks_to_bytes(inode, appended_blks); 1995 start_blk += appended_blks; 1996 compr_cluster = false; 1997 } else { 1998 logical = blks_to_bytes(inode, start_blk); 1999 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2000 blks_to_bytes(inode, map.m_pblk) : 0; 2001 size = blks_to_bytes(inode, map.m_len); 2002 flags = 0; 2003 2004 if (compr_cluster) { 2005 flags = FIEMAP_EXTENT_ENCODED; 2006 count_in_cluster += map.m_len; 2007 if (count_in_cluster == cluster_size) { 2008 compr_cluster = false; 2009 size += blks_to_bytes(inode, 1); 2010 } 2011 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 2012 flags = FIEMAP_EXTENT_UNWRITTEN; 2013 } 2014 2015 start_blk += bytes_to_blks(inode, size); 2016 } 2017 2018 prep_next: 2019 cond_resched(); 2020 if (fatal_signal_pending(current)) 2021 ret = -EINTR; 2022 else 2023 goto next; 2024 out: 2025 if (ret == 1) 2026 ret = 0; 2027 2028 inode_unlock(inode); 2029 return ret; 2030 } 2031 2032 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2033 { 2034 if (IS_ENABLED(CONFIG_FS_VERITY) && 2035 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2036 return inode->i_sb->s_maxbytes; 2037 2038 return i_size_read(inode); 2039 } 2040 2041 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2042 unsigned nr_pages, 2043 struct f2fs_map_blocks *map, 2044 struct bio **bio_ret, 2045 sector_t *last_block_in_bio, 2046 bool is_readahead) 2047 { 2048 struct bio *bio = *bio_ret; 2049 const unsigned blocksize = blks_to_bytes(inode, 1); 2050 sector_t block_in_file; 2051 sector_t last_block; 2052 sector_t last_block_in_file; 2053 sector_t block_nr; 2054 int ret = 0; 2055 2056 block_in_file = (sector_t)page_index(page); 2057 last_block = block_in_file + nr_pages; 2058 last_block_in_file = bytes_to_blks(inode, 2059 f2fs_readpage_limit(inode) + blocksize - 1); 2060 if (last_block > last_block_in_file) 2061 last_block = last_block_in_file; 2062 2063 /* just zeroing out page which is beyond EOF */ 2064 if (block_in_file >= last_block) 2065 goto zero_out; 2066 /* 2067 * Map blocks using the previous result first. 2068 */ 2069 if ((map->m_flags & F2FS_MAP_MAPPED) && 2070 block_in_file > map->m_lblk && 2071 block_in_file < (map->m_lblk + map->m_len)) 2072 goto got_it; 2073 2074 /* 2075 * Then do more f2fs_map_blocks() calls until we are 2076 * done with this page. 2077 */ 2078 map->m_lblk = block_in_file; 2079 map->m_len = last_block - block_in_file; 2080 2081 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2082 if (ret) 2083 goto out; 2084 got_it: 2085 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2086 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2087 SetPageMappedToDisk(page); 2088 2089 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2090 DATA_GENERIC_ENHANCE_READ)) { 2091 ret = -EFSCORRUPTED; 2092 f2fs_handle_error(F2FS_I_SB(inode), 2093 ERROR_INVALID_BLKADDR); 2094 goto out; 2095 } 2096 } else { 2097 zero_out: 2098 zero_user_segment(page, 0, PAGE_SIZE); 2099 if (f2fs_need_verity(inode, page->index) && 2100 !fsverity_verify_page(page)) { 2101 ret = -EIO; 2102 goto out; 2103 } 2104 if (!PageUptodate(page)) 2105 SetPageUptodate(page); 2106 unlock_page(page); 2107 goto out; 2108 } 2109 2110 /* 2111 * This page will go to BIO. Do we need to send this 2112 * BIO off first? 2113 */ 2114 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2115 *last_block_in_bio, block_nr) || 2116 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2117 submit_and_realloc: 2118 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2119 bio = NULL; 2120 } 2121 if (bio == NULL) { 2122 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2123 is_readahead ? REQ_RAHEAD : 0, page->index, 2124 false); 2125 if (IS_ERR(bio)) { 2126 ret = PTR_ERR(bio); 2127 bio = NULL; 2128 goto out; 2129 } 2130 } 2131 2132 /* 2133 * If the page is under writeback, we need to wait for 2134 * its completion to see the correct decrypted data. 2135 */ 2136 f2fs_wait_on_block_writeback(inode, block_nr); 2137 2138 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2139 goto submit_and_realloc; 2140 2141 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2142 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2143 F2FS_BLKSIZE); 2144 ClearPageError(page); 2145 *last_block_in_bio = block_nr; 2146 goto out; 2147 out: 2148 *bio_ret = bio; 2149 return ret; 2150 } 2151 2152 #ifdef CONFIG_F2FS_FS_COMPRESSION 2153 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2154 unsigned nr_pages, sector_t *last_block_in_bio, 2155 bool is_readahead, bool for_write) 2156 { 2157 struct dnode_of_data dn; 2158 struct inode *inode = cc->inode; 2159 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2160 struct bio *bio = *bio_ret; 2161 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2162 sector_t last_block_in_file; 2163 const unsigned blocksize = blks_to_bytes(inode, 1); 2164 struct decompress_io_ctx *dic = NULL; 2165 struct extent_info ei = {0, }; 2166 bool from_dnode = true; 2167 int i; 2168 int ret = 0; 2169 2170 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2171 2172 last_block_in_file = bytes_to_blks(inode, 2173 f2fs_readpage_limit(inode) + blocksize - 1); 2174 2175 /* get rid of pages beyond EOF */ 2176 for (i = 0; i < cc->cluster_size; i++) { 2177 struct page *page = cc->rpages[i]; 2178 2179 if (!page) 2180 continue; 2181 if ((sector_t)page->index >= last_block_in_file) { 2182 zero_user_segment(page, 0, PAGE_SIZE); 2183 if (!PageUptodate(page)) 2184 SetPageUptodate(page); 2185 } else if (!PageUptodate(page)) { 2186 continue; 2187 } 2188 unlock_page(page); 2189 if (for_write) 2190 put_page(page); 2191 cc->rpages[i] = NULL; 2192 cc->nr_rpages--; 2193 } 2194 2195 /* we are done since all pages are beyond EOF */ 2196 if (f2fs_cluster_is_empty(cc)) 2197 goto out; 2198 2199 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2200 from_dnode = false; 2201 2202 if (!from_dnode) 2203 goto skip_reading_dnode; 2204 2205 set_new_dnode(&dn, inode, NULL, NULL, 0); 2206 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2207 if (ret) 2208 goto out; 2209 2210 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2211 2212 skip_reading_dnode: 2213 for (i = 1; i < cc->cluster_size; i++) { 2214 block_t blkaddr; 2215 2216 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2217 dn.ofs_in_node + i) : 2218 ei.blk + i - 1; 2219 2220 if (!__is_valid_data_blkaddr(blkaddr)) 2221 break; 2222 2223 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2224 ret = -EFAULT; 2225 goto out_put_dnode; 2226 } 2227 cc->nr_cpages++; 2228 2229 if (!from_dnode && i >= ei.c_len) 2230 break; 2231 } 2232 2233 /* nothing to decompress */ 2234 if (cc->nr_cpages == 0) { 2235 ret = 0; 2236 goto out_put_dnode; 2237 } 2238 2239 dic = f2fs_alloc_dic(cc); 2240 if (IS_ERR(dic)) { 2241 ret = PTR_ERR(dic); 2242 goto out_put_dnode; 2243 } 2244 2245 for (i = 0; i < cc->nr_cpages; i++) { 2246 struct page *page = dic->cpages[i]; 2247 block_t blkaddr; 2248 struct bio_post_read_ctx *ctx; 2249 2250 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2251 dn.ofs_in_node + i + 1) : 2252 ei.blk + i; 2253 2254 f2fs_wait_on_block_writeback(inode, blkaddr); 2255 2256 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2257 if (atomic_dec_and_test(&dic->remaining_pages)) 2258 f2fs_decompress_cluster(dic, true); 2259 continue; 2260 } 2261 2262 if (bio && (!page_is_mergeable(sbi, bio, 2263 *last_block_in_bio, blkaddr) || 2264 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2265 submit_and_realloc: 2266 __submit_bio(sbi, bio, DATA); 2267 bio = NULL; 2268 } 2269 2270 if (!bio) { 2271 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2272 is_readahead ? REQ_RAHEAD : 0, 2273 page->index, for_write); 2274 if (IS_ERR(bio)) { 2275 ret = PTR_ERR(bio); 2276 f2fs_decompress_end_io(dic, ret, true); 2277 f2fs_put_dnode(&dn); 2278 *bio_ret = NULL; 2279 return ret; 2280 } 2281 } 2282 2283 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2284 goto submit_and_realloc; 2285 2286 ctx = get_post_read_ctx(bio); 2287 ctx->enabled_steps |= STEP_DECOMPRESS; 2288 refcount_inc(&dic->refcnt); 2289 2290 inc_page_count(sbi, F2FS_RD_DATA); 2291 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2292 ClearPageError(page); 2293 *last_block_in_bio = blkaddr; 2294 } 2295 2296 if (from_dnode) 2297 f2fs_put_dnode(&dn); 2298 2299 *bio_ret = bio; 2300 return 0; 2301 2302 out_put_dnode: 2303 if (from_dnode) 2304 f2fs_put_dnode(&dn); 2305 out: 2306 for (i = 0; i < cc->cluster_size; i++) { 2307 if (cc->rpages[i]) { 2308 ClearPageUptodate(cc->rpages[i]); 2309 ClearPageError(cc->rpages[i]); 2310 unlock_page(cc->rpages[i]); 2311 } 2312 } 2313 *bio_ret = bio; 2314 return ret; 2315 } 2316 #endif 2317 2318 /* 2319 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2320 * Major change was from block_size == page_size in f2fs by default. 2321 */ 2322 static int f2fs_mpage_readpages(struct inode *inode, 2323 struct readahead_control *rac, struct page *page) 2324 { 2325 struct bio *bio = NULL; 2326 sector_t last_block_in_bio = 0; 2327 struct f2fs_map_blocks map; 2328 #ifdef CONFIG_F2FS_FS_COMPRESSION 2329 struct compress_ctx cc = { 2330 .inode = inode, 2331 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2332 .cluster_size = F2FS_I(inode)->i_cluster_size, 2333 .cluster_idx = NULL_CLUSTER, 2334 .rpages = NULL, 2335 .cpages = NULL, 2336 .nr_rpages = 0, 2337 .nr_cpages = 0, 2338 }; 2339 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2340 #endif 2341 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2342 unsigned max_nr_pages = nr_pages; 2343 int ret = 0; 2344 2345 map.m_pblk = 0; 2346 map.m_lblk = 0; 2347 map.m_len = 0; 2348 map.m_flags = 0; 2349 map.m_next_pgofs = NULL; 2350 map.m_next_extent = NULL; 2351 map.m_seg_type = NO_CHECK_TYPE; 2352 map.m_may_create = false; 2353 2354 for (; nr_pages; nr_pages--) { 2355 if (rac) { 2356 page = readahead_page(rac); 2357 prefetchw(&page->flags); 2358 } 2359 2360 #ifdef CONFIG_F2FS_FS_COMPRESSION 2361 if (f2fs_compressed_file(inode)) { 2362 /* there are remained comressed pages, submit them */ 2363 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2364 ret = f2fs_read_multi_pages(&cc, &bio, 2365 max_nr_pages, 2366 &last_block_in_bio, 2367 rac != NULL, false); 2368 f2fs_destroy_compress_ctx(&cc, false); 2369 if (ret) 2370 goto set_error_page; 2371 } 2372 if (cc.cluster_idx == NULL_CLUSTER) { 2373 if (nc_cluster_idx == 2374 page->index >> cc.log_cluster_size) { 2375 goto read_single_page; 2376 } 2377 2378 ret = f2fs_is_compressed_cluster(inode, page->index); 2379 if (ret < 0) 2380 goto set_error_page; 2381 else if (!ret) { 2382 nc_cluster_idx = 2383 page->index >> cc.log_cluster_size; 2384 goto read_single_page; 2385 } 2386 2387 nc_cluster_idx = NULL_CLUSTER; 2388 } 2389 ret = f2fs_init_compress_ctx(&cc); 2390 if (ret) 2391 goto set_error_page; 2392 2393 f2fs_compress_ctx_add_page(&cc, page); 2394 2395 goto next_page; 2396 } 2397 read_single_page: 2398 #endif 2399 2400 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2401 &bio, &last_block_in_bio, rac); 2402 if (ret) { 2403 #ifdef CONFIG_F2FS_FS_COMPRESSION 2404 set_error_page: 2405 #endif 2406 SetPageError(page); 2407 zero_user_segment(page, 0, PAGE_SIZE); 2408 unlock_page(page); 2409 } 2410 #ifdef CONFIG_F2FS_FS_COMPRESSION 2411 next_page: 2412 #endif 2413 if (rac) 2414 put_page(page); 2415 2416 #ifdef CONFIG_F2FS_FS_COMPRESSION 2417 if (f2fs_compressed_file(inode)) { 2418 /* last page */ 2419 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2420 ret = f2fs_read_multi_pages(&cc, &bio, 2421 max_nr_pages, 2422 &last_block_in_bio, 2423 rac != NULL, false); 2424 f2fs_destroy_compress_ctx(&cc, false); 2425 } 2426 } 2427 #endif 2428 } 2429 if (bio) 2430 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2431 return ret; 2432 } 2433 2434 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2435 { 2436 struct page *page = &folio->page; 2437 struct inode *inode = page_file_mapping(page)->host; 2438 int ret = -EAGAIN; 2439 2440 trace_f2fs_readpage(page, DATA); 2441 2442 if (!f2fs_is_compress_backend_ready(inode)) { 2443 unlock_page(page); 2444 return -EOPNOTSUPP; 2445 } 2446 2447 /* If the file has inline data, try to read it directly */ 2448 if (f2fs_has_inline_data(inode)) 2449 ret = f2fs_read_inline_data(inode, page); 2450 if (ret == -EAGAIN) 2451 ret = f2fs_mpage_readpages(inode, NULL, page); 2452 return ret; 2453 } 2454 2455 static void f2fs_readahead(struct readahead_control *rac) 2456 { 2457 struct inode *inode = rac->mapping->host; 2458 2459 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2460 2461 if (!f2fs_is_compress_backend_ready(inode)) 2462 return; 2463 2464 /* If the file has inline data, skip readahead */ 2465 if (f2fs_has_inline_data(inode)) 2466 return; 2467 2468 f2fs_mpage_readpages(inode, rac, NULL); 2469 } 2470 2471 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2472 { 2473 struct inode *inode = fio->page->mapping->host; 2474 struct page *mpage, *page; 2475 gfp_t gfp_flags = GFP_NOFS; 2476 2477 if (!f2fs_encrypted_file(inode)) 2478 return 0; 2479 2480 page = fio->compressed_page ? fio->compressed_page : fio->page; 2481 2482 /* wait for GCed page writeback via META_MAPPING */ 2483 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2484 2485 if (fscrypt_inode_uses_inline_crypto(inode)) 2486 return 0; 2487 2488 retry_encrypt: 2489 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2490 PAGE_SIZE, 0, gfp_flags); 2491 if (IS_ERR(fio->encrypted_page)) { 2492 /* flush pending IOs and wait for a while in the ENOMEM case */ 2493 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2494 f2fs_flush_merged_writes(fio->sbi); 2495 memalloc_retry_wait(GFP_NOFS); 2496 gfp_flags |= __GFP_NOFAIL; 2497 goto retry_encrypt; 2498 } 2499 return PTR_ERR(fio->encrypted_page); 2500 } 2501 2502 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2503 if (mpage) { 2504 if (PageUptodate(mpage)) 2505 memcpy(page_address(mpage), 2506 page_address(fio->encrypted_page), PAGE_SIZE); 2507 f2fs_put_page(mpage, 1); 2508 } 2509 return 0; 2510 } 2511 2512 static inline bool check_inplace_update_policy(struct inode *inode, 2513 struct f2fs_io_info *fio) 2514 { 2515 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2516 unsigned int policy = SM_I(sbi)->ipu_policy; 2517 2518 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) && 2519 is_inode_flag_set(inode, FI_OPU_WRITE)) 2520 return false; 2521 if (policy & (0x1 << F2FS_IPU_FORCE)) 2522 return true; 2523 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2524 return true; 2525 if (policy & (0x1 << F2FS_IPU_UTIL) && 2526 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2527 return true; 2528 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2529 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2530 return true; 2531 2532 /* 2533 * IPU for rewrite async pages 2534 */ 2535 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2536 fio && fio->op == REQ_OP_WRITE && 2537 !(fio->op_flags & REQ_SYNC) && 2538 !IS_ENCRYPTED(inode)) 2539 return true; 2540 2541 /* this is only set during fdatasync */ 2542 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2543 is_inode_flag_set(inode, FI_NEED_IPU)) 2544 return true; 2545 2546 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2547 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2548 return true; 2549 2550 return false; 2551 } 2552 2553 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2554 { 2555 /* swap file is migrating in aligned write mode */ 2556 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2557 return false; 2558 2559 if (f2fs_is_pinned_file(inode)) 2560 return true; 2561 2562 /* if this is cold file, we should overwrite to avoid fragmentation */ 2563 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2564 return true; 2565 2566 return check_inplace_update_policy(inode, fio); 2567 } 2568 2569 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2570 { 2571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2572 2573 /* The below cases were checked when setting it. */ 2574 if (f2fs_is_pinned_file(inode)) 2575 return false; 2576 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2577 return true; 2578 if (f2fs_lfs_mode(sbi)) 2579 return true; 2580 if (S_ISDIR(inode->i_mode)) 2581 return true; 2582 if (IS_NOQUOTA(inode)) 2583 return true; 2584 if (f2fs_is_atomic_file(inode)) 2585 return true; 2586 2587 /* swap file is migrating in aligned write mode */ 2588 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2589 return true; 2590 2591 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2592 return true; 2593 2594 if (fio) { 2595 if (page_private_gcing(fio->page)) 2596 return true; 2597 if (page_private_dummy(fio->page)) 2598 return true; 2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2600 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2601 return true; 2602 } 2603 return false; 2604 } 2605 2606 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2607 { 2608 struct inode *inode = fio->page->mapping->host; 2609 2610 if (f2fs_should_update_outplace(inode, fio)) 2611 return false; 2612 2613 return f2fs_should_update_inplace(inode, fio); 2614 } 2615 2616 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2617 { 2618 struct page *page = fio->page; 2619 struct inode *inode = page->mapping->host; 2620 struct dnode_of_data dn; 2621 struct extent_info ei = {0, }; 2622 struct node_info ni; 2623 bool ipu_force = false; 2624 int err = 0; 2625 2626 /* Use COW inode to make dnode_of_data for atomic write */ 2627 if (f2fs_is_atomic_file(inode)) 2628 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2629 else 2630 set_new_dnode(&dn, inode, NULL, NULL, 0); 2631 2632 if (need_inplace_update(fio) && 2633 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2634 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2635 2636 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2637 DATA_GENERIC_ENHANCE)) { 2638 f2fs_handle_error(fio->sbi, 2639 ERROR_INVALID_BLKADDR); 2640 return -EFSCORRUPTED; 2641 } 2642 2643 ipu_force = true; 2644 fio->need_lock = LOCK_DONE; 2645 goto got_it; 2646 } 2647 2648 /* Deadlock due to between page->lock and f2fs_lock_op */ 2649 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2650 return -EAGAIN; 2651 2652 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2653 if (err) 2654 goto out; 2655 2656 fio->old_blkaddr = dn.data_blkaddr; 2657 2658 /* This page is already truncated */ 2659 if (fio->old_blkaddr == NULL_ADDR) { 2660 ClearPageUptodate(page); 2661 clear_page_private_gcing(page); 2662 goto out_writepage; 2663 } 2664 got_it: 2665 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2666 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2667 DATA_GENERIC_ENHANCE)) { 2668 err = -EFSCORRUPTED; 2669 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 2670 goto out_writepage; 2671 } 2672 2673 /* 2674 * If current allocation needs SSR, 2675 * it had better in-place writes for updated data. 2676 */ 2677 if (ipu_force || 2678 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2679 need_inplace_update(fio))) { 2680 err = f2fs_encrypt_one_page(fio); 2681 if (err) 2682 goto out_writepage; 2683 2684 set_page_writeback(page); 2685 ClearPageError(page); 2686 f2fs_put_dnode(&dn); 2687 if (fio->need_lock == LOCK_REQ) 2688 f2fs_unlock_op(fio->sbi); 2689 err = f2fs_inplace_write_data(fio); 2690 if (err) { 2691 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2692 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2693 if (PageWriteback(page)) 2694 end_page_writeback(page); 2695 } else { 2696 set_inode_flag(inode, FI_UPDATE_WRITE); 2697 } 2698 trace_f2fs_do_write_data_page(fio->page, IPU); 2699 return err; 2700 } 2701 2702 if (fio->need_lock == LOCK_RETRY) { 2703 if (!f2fs_trylock_op(fio->sbi)) { 2704 err = -EAGAIN; 2705 goto out_writepage; 2706 } 2707 fio->need_lock = LOCK_REQ; 2708 } 2709 2710 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2711 if (err) 2712 goto out_writepage; 2713 2714 fio->version = ni.version; 2715 2716 err = f2fs_encrypt_one_page(fio); 2717 if (err) 2718 goto out_writepage; 2719 2720 set_page_writeback(page); 2721 ClearPageError(page); 2722 2723 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2724 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2725 2726 /* LFS mode write path */ 2727 f2fs_outplace_write_data(&dn, fio); 2728 trace_f2fs_do_write_data_page(page, OPU); 2729 set_inode_flag(inode, FI_APPEND_WRITE); 2730 if (page->index == 0) 2731 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2732 out_writepage: 2733 f2fs_put_dnode(&dn); 2734 out: 2735 if (fio->need_lock == LOCK_REQ) 2736 f2fs_unlock_op(fio->sbi); 2737 return err; 2738 } 2739 2740 int f2fs_write_single_data_page(struct page *page, int *submitted, 2741 struct bio **bio, 2742 sector_t *last_block, 2743 struct writeback_control *wbc, 2744 enum iostat_type io_type, 2745 int compr_blocks, 2746 bool allow_balance) 2747 { 2748 struct inode *inode = page->mapping->host; 2749 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2750 loff_t i_size = i_size_read(inode); 2751 const pgoff_t end_index = ((unsigned long long)i_size) 2752 >> PAGE_SHIFT; 2753 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2754 unsigned offset = 0; 2755 bool need_balance_fs = false; 2756 int err = 0; 2757 struct f2fs_io_info fio = { 2758 .sbi = sbi, 2759 .ino = inode->i_ino, 2760 .type = DATA, 2761 .op = REQ_OP_WRITE, 2762 .op_flags = wbc_to_write_flags(wbc), 2763 .old_blkaddr = NULL_ADDR, 2764 .page = page, 2765 .encrypted_page = NULL, 2766 .submitted = false, 2767 .compr_blocks = compr_blocks, 2768 .need_lock = LOCK_RETRY, 2769 .post_read = f2fs_post_read_required(inode), 2770 .io_type = io_type, 2771 .io_wbc = wbc, 2772 .bio = bio, 2773 .last_block = last_block, 2774 }; 2775 2776 trace_f2fs_writepage(page, DATA); 2777 2778 /* we should bypass data pages to proceed the kworkder jobs */ 2779 if (unlikely(f2fs_cp_error(sbi))) { 2780 mapping_set_error(page->mapping, -EIO); 2781 /* 2782 * don't drop any dirty dentry pages for keeping lastest 2783 * directory structure. 2784 */ 2785 if (S_ISDIR(inode->i_mode)) 2786 goto redirty_out; 2787 goto out; 2788 } 2789 2790 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2791 goto redirty_out; 2792 2793 if (page->index < end_index || 2794 f2fs_verity_in_progress(inode) || 2795 compr_blocks) 2796 goto write; 2797 2798 /* 2799 * If the offset is out-of-range of file size, 2800 * this page does not have to be written to disk. 2801 */ 2802 offset = i_size & (PAGE_SIZE - 1); 2803 if ((page->index >= end_index + 1) || !offset) 2804 goto out; 2805 2806 zero_user_segment(page, offset, PAGE_SIZE); 2807 write: 2808 if (f2fs_is_drop_cache(inode)) 2809 goto out; 2810 2811 /* Dentry/quota blocks are controlled by checkpoint */ 2812 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2813 /* 2814 * We need to wait for node_write to avoid block allocation during 2815 * checkpoint. This can only happen to quota writes which can cause 2816 * the below discard race condition. 2817 */ 2818 if (IS_NOQUOTA(inode)) 2819 f2fs_down_read(&sbi->node_write); 2820 2821 fio.need_lock = LOCK_DONE; 2822 err = f2fs_do_write_data_page(&fio); 2823 2824 if (IS_NOQUOTA(inode)) 2825 f2fs_up_read(&sbi->node_write); 2826 2827 goto done; 2828 } 2829 2830 if (!wbc->for_reclaim) 2831 need_balance_fs = true; 2832 else if (has_not_enough_free_secs(sbi, 0, 0)) 2833 goto redirty_out; 2834 else 2835 set_inode_flag(inode, FI_HOT_DATA); 2836 2837 err = -EAGAIN; 2838 if (f2fs_has_inline_data(inode)) { 2839 err = f2fs_write_inline_data(inode, page); 2840 if (!err) 2841 goto out; 2842 } 2843 2844 if (err == -EAGAIN) { 2845 err = f2fs_do_write_data_page(&fio); 2846 if (err == -EAGAIN) { 2847 fio.need_lock = LOCK_REQ; 2848 err = f2fs_do_write_data_page(&fio); 2849 } 2850 } 2851 2852 if (err) { 2853 file_set_keep_isize(inode); 2854 } else { 2855 spin_lock(&F2FS_I(inode)->i_size_lock); 2856 if (F2FS_I(inode)->last_disk_size < psize) 2857 F2FS_I(inode)->last_disk_size = psize; 2858 spin_unlock(&F2FS_I(inode)->i_size_lock); 2859 } 2860 2861 done: 2862 if (err && err != -ENOENT) 2863 goto redirty_out; 2864 2865 out: 2866 inode_dec_dirty_pages(inode); 2867 if (err) { 2868 ClearPageUptodate(page); 2869 clear_page_private_gcing(page); 2870 } 2871 2872 if (wbc->for_reclaim) { 2873 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2874 clear_inode_flag(inode, FI_HOT_DATA); 2875 f2fs_remove_dirty_inode(inode); 2876 submitted = NULL; 2877 } 2878 unlock_page(page); 2879 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2880 !F2FS_I(inode)->wb_task && allow_balance) 2881 f2fs_balance_fs(sbi, need_balance_fs); 2882 2883 if (unlikely(f2fs_cp_error(sbi))) { 2884 f2fs_submit_merged_write(sbi, DATA); 2885 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2886 submitted = NULL; 2887 } 2888 2889 if (submitted) 2890 *submitted = fio.submitted ? 1 : 0; 2891 2892 return 0; 2893 2894 redirty_out: 2895 redirty_page_for_writepage(wbc, page); 2896 /* 2897 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2898 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2899 * file_write_and_wait_range() will see EIO error, which is critical 2900 * to return value of fsync() followed by atomic_write failure to user. 2901 */ 2902 if (!err || wbc->for_reclaim) 2903 return AOP_WRITEPAGE_ACTIVATE; 2904 unlock_page(page); 2905 return err; 2906 } 2907 2908 static int f2fs_write_data_page(struct page *page, 2909 struct writeback_control *wbc) 2910 { 2911 #ifdef CONFIG_F2FS_FS_COMPRESSION 2912 struct inode *inode = page->mapping->host; 2913 2914 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2915 goto out; 2916 2917 if (f2fs_compressed_file(inode)) { 2918 if (f2fs_is_compressed_cluster(inode, page->index)) { 2919 redirty_page_for_writepage(wbc, page); 2920 return AOP_WRITEPAGE_ACTIVATE; 2921 } 2922 } 2923 out: 2924 #endif 2925 2926 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2927 wbc, FS_DATA_IO, 0, true); 2928 } 2929 2930 /* 2931 * This function was copied from write_cche_pages from mm/page-writeback.c. 2932 * The major change is making write step of cold data page separately from 2933 * warm/hot data page. 2934 */ 2935 static int f2fs_write_cache_pages(struct address_space *mapping, 2936 struct writeback_control *wbc, 2937 enum iostat_type io_type) 2938 { 2939 int ret = 0; 2940 int done = 0, retry = 0; 2941 struct page *pages[F2FS_ONSTACK_PAGES]; 2942 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2943 struct bio *bio = NULL; 2944 sector_t last_block; 2945 #ifdef CONFIG_F2FS_FS_COMPRESSION 2946 struct inode *inode = mapping->host; 2947 struct compress_ctx cc = { 2948 .inode = inode, 2949 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2950 .cluster_size = F2FS_I(inode)->i_cluster_size, 2951 .cluster_idx = NULL_CLUSTER, 2952 .rpages = NULL, 2953 .nr_rpages = 0, 2954 .cpages = NULL, 2955 .valid_nr_cpages = 0, 2956 .rbuf = NULL, 2957 .cbuf = NULL, 2958 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2959 .private = NULL, 2960 }; 2961 #endif 2962 int nr_pages; 2963 pgoff_t index; 2964 pgoff_t end; /* Inclusive */ 2965 pgoff_t done_index; 2966 int range_whole = 0; 2967 xa_mark_t tag; 2968 int nwritten = 0; 2969 int submitted = 0; 2970 int i; 2971 2972 if (get_dirty_pages(mapping->host) <= 2973 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2974 set_inode_flag(mapping->host, FI_HOT_DATA); 2975 else 2976 clear_inode_flag(mapping->host, FI_HOT_DATA); 2977 2978 if (wbc->range_cyclic) { 2979 index = mapping->writeback_index; /* prev offset */ 2980 end = -1; 2981 } else { 2982 index = wbc->range_start >> PAGE_SHIFT; 2983 end = wbc->range_end >> PAGE_SHIFT; 2984 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2985 range_whole = 1; 2986 } 2987 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2988 tag = PAGECACHE_TAG_TOWRITE; 2989 else 2990 tag = PAGECACHE_TAG_DIRTY; 2991 retry: 2992 retry = 0; 2993 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2994 tag_pages_for_writeback(mapping, index, end); 2995 done_index = index; 2996 while (!done && !retry && (index <= end)) { 2997 nr_pages = find_get_pages_range_tag(mapping, &index, end, 2998 tag, F2FS_ONSTACK_PAGES, pages); 2999 if (nr_pages == 0) 3000 break; 3001 3002 for (i = 0; i < nr_pages; i++) { 3003 struct page *page = pages[i]; 3004 bool need_readd; 3005 readd: 3006 need_readd = false; 3007 #ifdef CONFIG_F2FS_FS_COMPRESSION 3008 if (f2fs_compressed_file(inode)) { 3009 void *fsdata = NULL; 3010 struct page *pagep; 3011 int ret2; 3012 3013 ret = f2fs_init_compress_ctx(&cc); 3014 if (ret) { 3015 done = 1; 3016 break; 3017 } 3018 3019 if (!f2fs_cluster_can_merge_page(&cc, 3020 page->index)) { 3021 ret = f2fs_write_multi_pages(&cc, 3022 &submitted, wbc, io_type); 3023 if (!ret) 3024 need_readd = true; 3025 goto result; 3026 } 3027 3028 if (unlikely(f2fs_cp_error(sbi))) 3029 goto lock_page; 3030 3031 if (!f2fs_cluster_is_empty(&cc)) 3032 goto lock_page; 3033 3034 if (f2fs_all_cluster_page_ready(&cc, 3035 pages, i, nr_pages, true)) 3036 goto lock_page; 3037 3038 ret2 = f2fs_prepare_compress_overwrite( 3039 inode, &pagep, 3040 page->index, &fsdata); 3041 if (ret2 < 0) { 3042 ret = ret2; 3043 done = 1; 3044 break; 3045 } else if (ret2 && 3046 (!f2fs_compress_write_end(inode, 3047 fsdata, page->index, 1) || 3048 !f2fs_all_cluster_page_ready(&cc, 3049 pages, i, nr_pages, false))) { 3050 retry = 1; 3051 break; 3052 } 3053 } 3054 #endif 3055 /* give a priority to WB_SYNC threads */ 3056 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3057 wbc->sync_mode == WB_SYNC_NONE) { 3058 done = 1; 3059 break; 3060 } 3061 #ifdef CONFIG_F2FS_FS_COMPRESSION 3062 lock_page: 3063 #endif 3064 done_index = page->index; 3065 retry_write: 3066 lock_page(page); 3067 3068 if (unlikely(page->mapping != mapping)) { 3069 continue_unlock: 3070 unlock_page(page); 3071 continue; 3072 } 3073 3074 if (!PageDirty(page)) { 3075 /* someone wrote it for us */ 3076 goto continue_unlock; 3077 } 3078 3079 if (PageWriteback(page)) { 3080 if (wbc->sync_mode != WB_SYNC_NONE) 3081 f2fs_wait_on_page_writeback(page, 3082 DATA, true, true); 3083 else 3084 goto continue_unlock; 3085 } 3086 3087 if (!clear_page_dirty_for_io(page)) 3088 goto continue_unlock; 3089 3090 #ifdef CONFIG_F2FS_FS_COMPRESSION 3091 if (f2fs_compressed_file(inode)) { 3092 get_page(page); 3093 f2fs_compress_ctx_add_page(&cc, page); 3094 continue; 3095 } 3096 #endif 3097 ret = f2fs_write_single_data_page(page, &submitted, 3098 &bio, &last_block, wbc, io_type, 3099 0, true); 3100 if (ret == AOP_WRITEPAGE_ACTIVATE) 3101 unlock_page(page); 3102 #ifdef CONFIG_F2FS_FS_COMPRESSION 3103 result: 3104 #endif 3105 nwritten += submitted; 3106 wbc->nr_to_write -= submitted; 3107 3108 if (unlikely(ret)) { 3109 /* 3110 * keep nr_to_write, since vfs uses this to 3111 * get # of written pages. 3112 */ 3113 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3114 ret = 0; 3115 goto next; 3116 } else if (ret == -EAGAIN) { 3117 ret = 0; 3118 if (wbc->sync_mode == WB_SYNC_ALL) { 3119 f2fs_io_schedule_timeout( 3120 DEFAULT_IO_TIMEOUT); 3121 goto retry_write; 3122 } 3123 goto next; 3124 } 3125 done_index = page->index + 1; 3126 done = 1; 3127 break; 3128 } 3129 3130 if (wbc->nr_to_write <= 0 && 3131 wbc->sync_mode == WB_SYNC_NONE) { 3132 done = 1; 3133 break; 3134 } 3135 next: 3136 if (need_readd) 3137 goto readd; 3138 } 3139 release_pages(pages, nr_pages); 3140 cond_resched(); 3141 } 3142 #ifdef CONFIG_F2FS_FS_COMPRESSION 3143 /* flush remained pages in compress cluster */ 3144 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3145 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3146 nwritten += submitted; 3147 wbc->nr_to_write -= submitted; 3148 if (ret) { 3149 done = 1; 3150 retry = 0; 3151 } 3152 } 3153 if (f2fs_compressed_file(inode)) 3154 f2fs_destroy_compress_ctx(&cc, false); 3155 #endif 3156 if (retry) { 3157 index = 0; 3158 end = -1; 3159 goto retry; 3160 } 3161 if (wbc->range_cyclic && !done) 3162 done_index = 0; 3163 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3164 mapping->writeback_index = done_index; 3165 3166 if (nwritten) 3167 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3168 NULL, 0, DATA); 3169 /* submit cached bio of IPU write */ 3170 if (bio) 3171 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3172 3173 return ret; 3174 } 3175 3176 static inline bool __should_serialize_io(struct inode *inode, 3177 struct writeback_control *wbc) 3178 { 3179 /* to avoid deadlock in path of data flush */ 3180 if (F2FS_I(inode)->wb_task) 3181 return false; 3182 3183 if (!S_ISREG(inode->i_mode)) 3184 return false; 3185 if (IS_NOQUOTA(inode)) 3186 return false; 3187 3188 if (f2fs_need_compress_data(inode)) 3189 return true; 3190 if (wbc->sync_mode != WB_SYNC_ALL) 3191 return true; 3192 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3193 return true; 3194 return false; 3195 } 3196 3197 static int __f2fs_write_data_pages(struct address_space *mapping, 3198 struct writeback_control *wbc, 3199 enum iostat_type io_type) 3200 { 3201 struct inode *inode = mapping->host; 3202 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3203 struct blk_plug plug; 3204 int ret; 3205 bool locked = false; 3206 3207 /* deal with chardevs and other special file */ 3208 if (!mapping->a_ops->writepage) 3209 return 0; 3210 3211 /* skip writing if there is no dirty page in this inode */ 3212 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3213 return 0; 3214 3215 /* during POR, we don't need to trigger writepage at all. */ 3216 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3217 goto skip_write; 3218 3219 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3220 wbc->sync_mode == WB_SYNC_NONE && 3221 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3222 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3223 goto skip_write; 3224 3225 /* skip writing in file defragment preparing stage */ 3226 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3227 goto skip_write; 3228 3229 trace_f2fs_writepages(mapping->host, wbc, DATA); 3230 3231 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3232 if (wbc->sync_mode == WB_SYNC_ALL) 3233 atomic_inc(&sbi->wb_sync_req[DATA]); 3234 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3235 /* to avoid potential deadlock */ 3236 if (current->plug) 3237 blk_finish_plug(current->plug); 3238 goto skip_write; 3239 } 3240 3241 if (__should_serialize_io(inode, wbc)) { 3242 mutex_lock(&sbi->writepages); 3243 locked = true; 3244 } 3245 3246 blk_start_plug(&plug); 3247 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3248 blk_finish_plug(&plug); 3249 3250 if (locked) 3251 mutex_unlock(&sbi->writepages); 3252 3253 if (wbc->sync_mode == WB_SYNC_ALL) 3254 atomic_dec(&sbi->wb_sync_req[DATA]); 3255 /* 3256 * if some pages were truncated, we cannot guarantee its mapping->host 3257 * to detect pending bios. 3258 */ 3259 3260 f2fs_remove_dirty_inode(inode); 3261 return ret; 3262 3263 skip_write: 3264 wbc->pages_skipped += get_dirty_pages(inode); 3265 trace_f2fs_writepages(mapping->host, wbc, DATA); 3266 return 0; 3267 } 3268 3269 static int f2fs_write_data_pages(struct address_space *mapping, 3270 struct writeback_control *wbc) 3271 { 3272 struct inode *inode = mapping->host; 3273 3274 return __f2fs_write_data_pages(mapping, wbc, 3275 F2FS_I(inode)->cp_task == current ? 3276 FS_CP_DATA_IO : FS_DATA_IO); 3277 } 3278 3279 void f2fs_write_failed(struct inode *inode, loff_t to) 3280 { 3281 loff_t i_size = i_size_read(inode); 3282 3283 if (IS_NOQUOTA(inode)) 3284 return; 3285 3286 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3287 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3288 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3289 filemap_invalidate_lock(inode->i_mapping); 3290 3291 truncate_pagecache(inode, i_size); 3292 f2fs_truncate_blocks(inode, i_size, true); 3293 3294 filemap_invalidate_unlock(inode->i_mapping); 3295 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3296 } 3297 } 3298 3299 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3300 struct page *page, loff_t pos, unsigned len, 3301 block_t *blk_addr, bool *node_changed) 3302 { 3303 struct inode *inode = page->mapping->host; 3304 pgoff_t index = page->index; 3305 struct dnode_of_data dn; 3306 struct page *ipage; 3307 bool locked = false; 3308 struct extent_info ei = {0, }; 3309 int err = 0; 3310 int flag; 3311 3312 /* 3313 * If a whole page is being written and we already preallocated all the 3314 * blocks, then there is no need to get a block address now. 3315 */ 3316 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3317 return 0; 3318 3319 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3320 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3321 flag = F2FS_GET_BLOCK_DEFAULT; 3322 else 3323 flag = F2FS_GET_BLOCK_PRE_AIO; 3324 3325 if (f2fs_has_inline_data(inode) || 3326 (pos & PAGE_MASK) >= i_size_read(inode)) { 3327 f2fs_do_map_lock(sbi, flag, true); 3328 locked = true; 3329 } 3330 3331 restart: 3332 /* check inline_data */ 3333 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3334 if (IS_ERR(ipage)) { 3335 err = PTR_ERR(ipage); 3336 goto unlock_out; 3337 } 3338 3339 set_new_dnode(&dn, inode, ipage, ipage, 0); 3340 3341 if (f2fs_has_inline_data(inode)) { 3342 if (pos + len <= MAX_INLINE_DATA(inode)) { 3343 f2fs_do_read_inline_data(page, ipage); 3344 set_inode_flag(inode, FI_DATA_EXIST); 3345 if (inode->i_nlink) 3346 set_page_private_inline(ipage); 3347 } else { 3348 err = f2fs_convert_inline_page(&dn, page); 3349 if (err) 3350 goto out; 3351 if (dn.data_blkaddr == NULL_ADDR) 3352 err = f2fs_get_block(&dn, index); 3353 } 3354 } else if (locked) { 3355 err = f2fs_get_block(&dn, index); 3356 } else { 3357 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3358 dn.data_blkaddr = ei.blk + index - ei.fofs; 3359 } else { 3360 /* hole case */ 3361 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3362 if (err || dn.data_blkaddr == NULL_ADDR) { 3363 f2fs_put_dnode(&dn); 3364 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3365 true); 3366 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3367 locked = true; 3368 goto restart; 3369 } 3370 } 3371 } 3372 3373 /* convert_inline_page can make node_changed */ 3374 *blk_addr = dn.data_blkaddr; 3375 *node_changed = dn.node_changed; 3376 out: 3377 f2fs_put_dnode(&dn); 3378 unlock_out: 3379 if (locked) 3380 f2fs_do_map_lock(sbi, flag, false); 3381 return err; 3382 } 3383 3384 static int __find_data_block(struct inode *inode, pgoff_t index, 3385 block_t *blk_addr) 3386 { 3387 struct dnode_of_data dn; 3388 struct page *ipage; 3389 struct extent_info ei = {0, }; 3390 int err = 0; 3391 3392 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3393 if (IS_ERR(ipage)) 3394 return PTR_ERR(ipage); 3395 3396 set_new_dnode(&dn, inode, ipage, ipage, 0); 3397 3398 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3399 dn.data_blkaddr = ei.blk + index - ei.fofs; 3400 } else { 3401 /* hole case */ 3402 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3403 if (err) { 3404 dn.data_blkaddr = NULL_ADDR; 3405 err = 0; 3406 } 3407 } 3408 *blk_addr = dn.data_blkaddr; 3409 f2fs_put_dnode(&dn); 3410 return err; 3411 } 3412 3413 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3414 block_t *blk_addr, bool *node_changed) 3415 { 3416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3417 struct dnode_of_data dn; 3418 struct page *ipage; 3419 int err = 0; 3420 3421 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 3422 3423 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3424 if (IS_ERR(ipage)) { 3425 err = PTR_ERR(ipage); 3426 goto unlock_out; 3427 } 3428 set_new_dnode(&dn, inode, ipage, ipage, 0); 3429 3430 err = f2fs_get_block(&dn, index); 3431 3432 *blk_addr = dn.data_blkaddr; 3433 *node_changed = dn.node_changed; 3434 f2fs_put_dnode(&dn); 3435 3436 unlock_out: 3437 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 3438 return err; 3439 } 3440 3441 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3442 struct page *page, loff_t pos, unsigned int len, 3443 block_t *blk_addr, bool *node_changed) 3444 { 3445 struct inode *inode = page->mapping->host; 3446 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3447 pgoff_t index = page->index; 3448 int err = 0; 3449 block_t ori_blk_addr = NULL_ADDR; 3450 3451 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3452 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3453 goto reserve_block; 3454 3455 /* Look for the block in COW inode first */ 3456 err = __find_data_block(cow_inode, index, blk_addr); 3457 if (err) 3458 return err; 3459 else if (*blk_addr != NULL_ADDR) 3460 return 0; 3461 3462 /* Look for the block in the original inode */ 3463 err = __find_data_block(inode, index, &ori_blk_addr); 3464 if (err) 3465 return err; 3466 3467 reserve_block: 3468 /* Finally, we should reserve a new block in COW inode for the update */ 3469 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3470 if (err) 3471 return err; 3472 inc_atomic_write_cnt(inode); 3473 3474 if (ori_blk_addr != NULL_ADDR) 3475 *blk_addr = ori_blk_addr; 3476 return 0; 3477 } 3478 3479 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3480 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3481 { 3482 struct inode *inode = mapping->host; 3483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3484 struct page *page = NULL; 3485 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3486 bool need_balance = false; 3487 block_t blkaddr = NULL_ADDR; 3488 int err = 0; 3489 3490 trace_f2fs_write_begin(inode, pos, len); 3491 3492 if (!f2fs_is_checkpoint_ready(sbi)) { 3493 err = -ENOSPC; 3494 goto fail; 3495 } 3496 3497 /* 3498 * We should check this at this moment to avoid deadlock on inode page 3499 * and #0 page. The locking rule for inline_data conversion should be: 3500 * lock_page(page #0) -> lock_page(inode_page) 3501 */ 3502 if (index != 0) { 3503 err = f2fs_convert_inline_inode(inode); 3504 if (err) 3505 goto fail; 3506 } 3507 3508 #ifdef CONFIG_F2FS_FS_COMPRESSION 3509 if (f2fs_compressed_file(inode)) { 3510 int ret; 3511 3512 *fsdata = NULL; 3513 3514 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3515 goto repeat; 3516 3517 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3518 index, fsdata); 3519 if (ret < 0) { 3520 err = ret; 3521 goto fail; 3522 } else if (ret) { 3523 return 0; 3524 } 3525 } 3526 #endif 3527 3528 repeat: 3529 /* 3530 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3531 * wait_for_stable_page. Will wait that below with our IO control. 3532 */ 3533 page = f2fs_pagecache_get_page(mapping, index, 3534 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3535 if (!page) { 3536 err = -ENOMEM; 3537 goto fail; 3538 } 3539 3540 /* TODO: cluster can be compressed due to race with .writepage */ 3541 3542 *pagep = page; 3543 3544 if (f2fs_is_atomic_file(inode)) 3545 err = prepare_atomic_write_begin(sbi, page, pos, len, 3546 &blkaddr, &need_balance); 3547 else 3548 err = prepare_write_begin(sbi, page, pos, len, 3549 &blkaddr, &need_balance); 3550 if (err) 3551 goto fail; 3552 3553 if (need_balance && !IS_NOQUOTA(inode) && 3554 has_not_enough_free_secs(sbi, 0, 0)) { 3555 unlock_page(page); 3556 f2fs_balance_fs(sbi, true); 3557 lock_page(page); 3558 if (page->mapping != mapping) { 3559 /* The page got truncated from under us */ 3560 f2fs_put_page(page, 1); 3561 goto repeat; 3562 } 3563 } 3564 3565 f2fs_wait_on_page_writeback(page, DATA, false, true); 3566 3567 if (len == PAGE_SIZE || PageUptodate(page)) 3568 return 0; 3569 3570 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3571 !f2fs_verity_in_progress(inode)) { 3572 zero_user_segment(page, len, PAGE_SIZE); 3573 return 0; 3574 } 3575 3576 if (blkaddr == NEW_ADDR) { 3577 zero_user_segment(page, 0, PAGE_SIZE); 3578 SetPageUptodate(page); 3579 } else { 3580 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3581 DATA_GENERIC_ENHANCE_READ)) { 3582 err = -EFSCORRUPTED; 3583 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3584 goto fail; 3585 } 3586 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3587 if (err) 3588 goto fail; 3589 3590 lock_page(page); 3591 if (unlikely(page->mapping != mapping)) { 3592 f2fs_put_page(page, 1); 3593 goto repeat; 3594 } 3595 if (unlikely(!PageUptodate(page))) { 3596 err = -EIO; 3597 goto fail; 3598 } 3599 } 3600 return 0; 3601 3602 fail: 3603 f2fs_put_page(page, 1); 3604 f2fs_write_failed(inode, pos + len); 3605 return err; 3606 } 3607 3608 static int f2fs_write_end(struct file *file, 3609 struct address_space *mapping, 3610 loff_t pos, unsigned len, unsigned copied, 3611 struct page *page, void *fsdata) 3612 { 3613 struct inode *inode = page->mapping->host; 3614 3615 trace_f2fs_write_end(inode, pos, len, copied); 3616 3617 /* 3618 * This should be come from len == PAGE_SIZE, and we expect copied 3619 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3620 * let generic_perform_write() try to copy data again through copied=0. 3621 */ 3622 if (!PageUptodate(page)) { 3623 if (unlikely(copied != len)) 3624 copied = 0; 3625 else 3626 SetPageUptodate(page); 3627 } 3628 3629 #ifdef CONFIG_F2FS_FS_COMPRESSION 3630 /* overwrite compressed file */ 3631 if (f2fs_compressed_file(inode) && fsdata) { 3632 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3633 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3634 3635 if (pos + copied > i_size_read(inode) && 3636 !f2fs_verity_in_progress(inode)) 3637 f2fs_i_size_write(inode, pos + copied); 3638 return copied; 3639 } 3640 #endif 3641 3642 if (!copied) 3643 goto unlock_out; 3644 3645 set_page_dirty(page); 3646 3647 if (pos + copied > i_size_read(inode) && 3648 !f2fs_verity_in_progress(inode)) { 3649 f2fs_i_size_write(inode, pos + copied); 3650 if (f2fs_is_atomic_file(inode)) 3651 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3652 pos + copied); 3653 } 3654 unlock_out: 3655 f2fs_put_page(page, 1); 3656 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3657 return copied; 3658 } 3659 3660 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3661 { 3662 struct inode *inode = folio->mapping->host; 3663 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3664 3665 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3666 (offset || length != folio_size(folio))) 3667 return; 3668 3669 if (folio_test_dirty(folio)) { 3670 if (inode->i_ino == F2FS_META_INO(sbi)) { 3671 dec_page_count(sbi, F2FS_DIRTY_META); 3672 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3673 dec_page_count(sbi, F2FS_DIRTY_NODES); 3674 } else { 3675 inode_dec_dirty_pages(inode); 3676 f2fs_remove_dirty_inode(inode); 3677 } 3678 } 3679 3680 clear_page_private_gcing(&folio->page); 3681 3682 if (test_opt(sbi, COMPRESS_CACHE) && 3683 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3684 clear_page_private_data(&folio->page); 3685 3686 folio_detach_private(folio); 3687 } 3688 3689 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3690 { 3691 struct f2fs_sb_info *sbi; 3692 3693 /* If this is dirty folio, keep private data */ 3694 if (folio_test_dirty(folio)) 3695 return false; 3696 3697 sbi = F2FS_M_SB(folio->mapping); 3698 if (test_opt(sbi, COMPRESS_CACHE)) { 3699 struct inode *inode = folio->mapping->host; 3700 3701 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3702 clear_page_private_data(&folio->page); 3703 } 3704 3705 clear_page_private_gcing(&folio->page); 3706 3707 folio_detach_private(folio); 3708 return true; 3709 } 3710 3711 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3712 struct folio *folio) 3713 { 3714 struct inode *inode = mapping->host; 3715 3716 trace_f2fs_set_page_dirty(&folio->page, DATA); 3717 3718 if (!folio_test_uptodate(folio)) 3719 folio_mark_uptodate(folio); 3720 BUG_ON(folio_test_swapcache(folio)); 3721 3722 if (filemap_dirty_folio(mapping, folio)) { 3723 f2fs_update_dirty_folio(inode, folio); 3724 return true; 3725 } 3726 return false; 3727 } 3728 3729 3730 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3731 { 3732 #ifdef CONFIG_F2FS_FS_COMPRESSION 3733 struct dnode_of_data dn; 3734 sector_t start_idx, blknr = 0; 3735 int ret; 3736 3737 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3738 3739 set_new_dnode(&dn, inode, NULL, NULL, 0); 3740 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3741 if (ret) 3742 return 0; 3743 3744 if (dn.data_blkaddr != COMPRESS_ADDR) { 3745 dn.ofs_in_node += block - start_idx; 3746 blknr = f2fs_data_blkaddr(&dn); 3747 if (!__is_valid_data_blkaddr(blknr)) 3748 blknr = 0; 3749 } 3750 3751 f2fs_put_dnode(&dn); 3752 return blknr; 3753 #else 3754 return 0; 3755 #endif 3756 } 3757 3758 3759 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3760 { 3761 struct inode *inode = mapping->host; 3762 sector_t blknr = 0; 3763 3764 if (f2fs_has_inline_data(inode)) 3765 goto out; 3766 3767 /* make sure allocating whole blocks */ 3768 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3769 filemap_write_and_wait(mapping); 3770 3771 /* Block number less than F2FS MAX BLOCKS */ 3772 if (unlikely(block >= max_file_blocks(inode))) 3773 goto out; 3774 3775 if (f2fs_compressed_file(inode)) { 3776 blknr = f2fs_bmap_compress(inode, block); 3777 } else { 3778 struct f2fs_map_blocks map; 3779 3780 memset(&map, 0, sizeof(map)); 3781 map.m_lblk = block; 3782 map.m_len = 1; 3783 map.m_next_pgofs = NULL; 3784 map.m_seg_type = NO_CHECK_TYPE; 3785 3786 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3787 blknr = map.m_pblk; 3788 } 3789 out: 3790 trace_f2fs_bmap(inode, block, blknr); 3791 return blknr; 3792 } 3793 3794 #ifdef CONFIG_SWAP 3795 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3796 unsigned int blkcnt) 3797 { 3798 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3799 unsigned int blkofs; 3800 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3801 unsigned int secidx = start_blk / blk_per_sec; 3802 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3803 int ret = 0; 3804 3805 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3806 filemap_invalidate_lock(inode->i_mapping); 3807 3808 set_inode_flag(inode, FI_ALIGNED_WRITE); 3809 set_inode_flag(inode, FI_OPU_WRITE); 3810 3811 for (; secidx < end_sec; secidx++) { 3812 f2fs_down_write(&sbi->pin_sem); 3813 3814 f2fs_lock_op(sbi); 3815 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3816 f2fs_unlock_op(sbi); 3817 3818 set_inode_flag(inode, FI_SKIP_WRITES); 3819 3820 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3821 struct page *page; 3822 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3823 3824 page = f2fs_get_lock_data_page(inode, blkidx, true); 3825 if (IS_ERR(page)) { 3826 f2fs_up_write(&sbi->pin_sem); 3827 ret = PTR_ERR(page); 3828 goto done; 3829 } 3830 3831 set_page_dirty(page); 3832 f2fs_put_page(page, 1); 3833 } 3834 3835 clear_inode_flag(inode, FI_SKIP_WRITES); 3836 3837 ret = filemap_fdatawrite(inode->i_mapping); 3838 3839 f2fs_up_write(&sbi->pin_sem); 3840 3841 if (ret) 3842 break; 3843 } 3844 3845 done: 3846 clear_inode_flag(inode, FI_SKIP_WRITES); 3847 clear_inode_flag(inode, FI_OPU_WRITE); 3848 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3849 3850 filemap_invalidate_unlock(inode->i_mapping); 3851 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3852 3853 return ret; 3854 } 3855 3856 static int check_swap_activate(struct swap_info_struct *sis, 3857 struct file *swap_file, sector_t *span) 3858 { 3859 struct address_space *mapping = swap_file->f_mapping; 3860 struct inode *inode = mapping->host; 3861 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3862 sector_t cur_lblock; 3863 sector_t last_lblock; 3864 sector_t pblock; 3865 sector_t lowest_pblock = -1; 3866 sector_t highest_pblock = 0; 3867 int nr_extents = 0; 3868 unsigned long nr_pblocks; 3869 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3870 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3871 unsigned int not_aligned = 0; 3872 int ret = 0; 3873 3874 /* 3875 * Map all the blocks into the extent list. This code doesn't try 3876 * to be very smart. 3877 */ 3878 cur_lblock = 0; 3879 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3880 3881 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3882 struct f2fs_map_blocks map; 3883 retry: 3884 cond_resched(); 3885 3886 memset(&map, 0, sizeof(map)); 3887 map.m_lblk = cur_lblock; 3888 map.m_len = last_lblock - cur_lblock; 3889 map.m_next_pgofs = NULL; 3890 map.m_next_extent = NULL; 3891 map.m_seg_type = NO_CHECK_TYPE; 3892 map.m_may_create = false; 3893 3894 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3895 if (ret) 3896 goto out; 3897 3898 /* hole */ 3899 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3900 f2fs_err(sbi, "Swapfile has holes"); 3901 ret = -EINVAL; 3902 goto out; 3903 } 3904 3905 pblock = map.m_pblk; 3906 nr_pblocks = map.m_len; 3907 3908 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3909 nr_pblocks & sec_blks_mask) { 3910 not_aligned++; 3911 3912 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3913 if (cur_lblock + nr_pblocks > sis->max) 3914 nr_pblocks -= blks_per_sec; 3915 3916 if (!nr_pblocks) { 3917 /* this extent is last one */ 3918 nr_pblocks = map.m_len; 3919 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3920 goto next; 3921 } 3922 3923 ret = f2fs_migrate_blocks(inode, cur_lblock, 3924 nr_pblocks); 3925 if (ret) 3926 goto out; 3927 goto retry; 3928 } 3929 next: 3930 if (cur_lblock + nr_pblocks >= sis->max) 3931 nr_pblocks = sis->max - cur_lblock; 3932 3933 if (cur_lblock) { /* exclude the header page */ 3934 if (pblock < lowest_pblock) 3935 lowest_pblock = pblock; 3936 if (pblock + nr_pblocks - 1 > highest_pblock) 3937 highest_pblock = pblock + nr_pblocks - 1; 3938 } 3939 3940 /* 3941 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3942 */ 3943 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3944 if (ret < 0) 3945 goto out; 3946 nr_extents += ret; 3947 cur_lblock += nr_pblocks; 3948 } 3949 ret = nr_extents; 3950 *span = 1 + highest_pblock - lowest_pblock; 3951 if (cur_lblock == 0) 3952 cur_lblock = 1; /* force Empty message */ 3953 sis->max = cur_lblock; 3954 sis->pages = cur_lblock - 1; 3955 sis->highest_bit = cur_lblock - 1; 3956 out: 3957 if (not_aligned) 3958 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3959 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3960 return ret; 3961 } 3962 3963 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3964 sector_t *span) 3965 { 3966 struct inode *inode = file_inode(file); 3967 int ret; 3968 3969 if (!S_ISREG(inode->i_mode)) 3970 return -EINVAL; 3971 3972 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3973 return -EROFS; 3974 3975 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3976 f2fs_err(F2FS_I_SB(inode), 3977 "Swapfile not supported in LFS mode"); 3978 return -EINVAL; 3979 } 3980 3981 ret = f2fs_convert_inline_inode(inode); 3982 if (ret) 3983 return ret; 3984 3985 if (!f2fs_disable_compressed_file(inode)) 3986 return -EINVAL; 3987 3988 f2fs_precache_extents(inode); 3989 3990 ret = check_swap_activate(sis, file, span); 3991 if (ret < 0) 3992 return ret; 3993 3994 stat_inc_swapfile_inode(inode); 3995 set_inode_flag(inode, FI_PIN_FILE); 3996 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3997 return ret; 3998 } 3999 4000 static void f2fs_swap_deactivate(struct file *file) 4001 { 4002 struct inode *inode = file_inode(file); 4003 4004 stat_dec_swapfile_inode(inode); 4005 clear_inode_flag(inode, FI_PIN_FILE); 4006 } 4007 #else 4008 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4009 sector_t *span) 4010 { 4011 return -EOPNOTSUPP; 4012 } 4013 4014 static void f2fs_swap_deactivate(struct file *file) 4015 { 4016 } 4017 #endif 4018 4019 const struct address_space_operations f2fs_dblock_aops = { 4020 .read_folio = f2fs_read_data_folio, 4021 .readahead = f2fs_readahead, 4022 .writepage = f2fs_write_data_page, 4023 .writepages = f2fs_write_data_pages, 4024 .write_begin = f2fs_write_begin, 4025 .write_end = f2fs_write_end, 4026 .dirty_folio = f2fs_dirty_data_folio, 4027 .migrate_folio = filemap_migrate_folio, 4028 .invalidate_folio = f2fs_invalidate_folio, 4029 .release_folio = f2fs_release_folio, 4030 .direct_IO = noop_direct_IO, 4031 .bmap = f2fs_bmap, 4032 .swap_activate = f2fs_swap_activate, 4033 .swap_deactivate = f2fs_swap_deactivate, 4034 }; 4035 4036 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4037 { 4038 struct address_space *mapping = page_mapping(page); 4039 unsigned long flags; 4040 4041 xa_lock_irqsave(&mapping->i_pages, flags); 4042 __xa_clear_mark(&mapping->i_pages, page_index(page), 4043 PAGECACHE_TAG_DIRTY); 4044 xa_unlock_irqrestore(&mapping->i_pages, flags); 4045 } 4046 4047 int __init f2fs_init_post_read_processing(void) 4048 { 4049 bio_post_read_ctx_cache = 4050 kmem_cache_create("f2fs_bio_post_read_ctx", 4051 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4052 if (!bio_post_read_ctx_cache) 4053 goto fail; 4054 bio_post_read_ctx_pool = 4055 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4056 bio_post_read_ctx_cache); 4057 if (!bio_post_read_ctx_pool) 4058 goto fail_free_cache; 4059 return 0; 4060 4061 fail_free_cache: 4062 kmem_cache_destroy(bio_post_read_ctx_cache); 4063 fail: 4064 return -ENOMEM; 4065 } 4066 4067 void f2fs_destroy_post_read_processing(void) 4068 { 4069 mempool_destroy(bio_post_read_ctx_pool); 4070 kmem_cache_destroy(bio_post_read_ctx_cache); 4071 } 4072 4073 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4074 { 4075 if (!f2fs_sb_has_encrypt(sbi) && 4076 !f2fs_sb_has_verity(sbi) && 4077 !f2fs_sb_has_compression(sbi)) 4078 return 0; 4079 4080 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4081 WQ_UNBOUND | WQ_HIGHPRI, 4082 num_online_cpus()); 4083 if (!sbi->post_read_wq) 4084 return -ENOMEM; 4085 return 0; 4086 } 4087 4088 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4089 { 4090 if (sbi->post_read_wq) 4091 destroy_workqueue(sbi->post_read_wq); 4092 } 4093 4094 int __init f2fs_init_bio_entry_cache(void) 4095 { 4096 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4097 sizeof(struct bio_entry)); 4098 if (!bio_entry_slab) 4099 return -ENOMEM; 4100 return 0; 4101 } 4102 4103 void f2fs_destroy_bio_entry_cache(void) 4104 { 4105 kmem_cache_destroy(bio_entry_slab); 4106 } 4107 4108 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4109 unsigned int flags, struct iomap *iomap, 4110 struct iomap *srcmap) 4111 { 4112 struct f2fs_map_blocks map = {}; 4113 pgoff_t next_pgofs = 0; 4114 int err; 4115 4116 map.m_lblk = bytes_to_blks(inode, offset); 4117 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4118 map.m_next_pgofs = &next_pgofs; 4119 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4120 if (flags & IOMAP_WRITE) 4121 map.m_may_create = true; 4122 4123 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4124 F2FS_GET_BLOCK_DIO); 4125 if (err) 4126 return err; 4127 4128 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4129 4130 /* 4131 * When inline encryption is enabled, sometimes I/O to an encrypted file 4132 * has to be broken up to guarantee DUN contiguity. Handle this by 4133 * limiting the length of the mapping returned. 4134 */ 4135 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4136 4137 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4138 iomap->length = blks_to_bytes(inode, map.m_len); 4139 if (map.m_flags & F2FS_MAP_MAPPED) { 4140 iomap->type = IOMAP_MAPPED; 4141 iomap->flags |= IOMAP_F_MERGED; 4142 } else { 4143 iomap->type = IOMAP_UNWRITTEN; 4144 } 4145 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4146 return -EINVAL; 4147 4148 iomap->bdev = map.m_bdev; 4149 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4150 } else { 4151 iomap->length = blks_to_bytes(inode, next_pgofs) - 4152 iomap->offset; 4153 iomap->type = IOMAP_HOLE; 4154 iomap->addr = IOMAP_NULL_ADDR; 4155 } 4156 4157 if (map.m_flags & F2FS_MAP_NEW) 4158 iomap->flags |= IOMAP_F_NEW; 4159 if ((inode->i_state & I_DIRTY_DATASYNC) || 4160 offset + length > i_size_read(inode)) 4161 iomap->flags |= IOMAP_F_DIRTY; 4162 4163 return 0; 4164 } 4165 4166 const struct iomap_ops f2fs_iomap_ops = { 4167 .iomap_begin = f2fs_iomap_begin, 4168 }; 4169