1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 #include <linux/sched/signal.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 is_cold_data(page)) 49 return true; 50 return false; 51 } 52 53 static void f2fs_read_end_io(struct bio *bio) 54 { 55 struct bio_vec *bvec; 56 int i; 57 58 #ifdef CONFIG_F2FS_FAULT_INJECTION 59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) { 60 f2fs_show_injection_info(FAULT_IO); 61 bio->bi_error = -EIO; 62 } 63 #endif 64 65 if (f2fs_bio_encrypted(bio)) { 66 if (bio->bi_error) { 67 fscrypt_release_ctx(bio->bi_private); 68 } else { 69 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 70 return; 71 } 72 } 73 74 bio_for_each_segment_all(bvec, bio, i) { 75 struct page *page = bvec->bv_page; 76 77 if (!bio->bi_error) { 78 if (!PageUptodate(page)) 79 SetPageUptodate(page); 80 } else { 81 ClearPageUptodate(page); 82 SetPageError(page); 83 } 84 unlock_page(page); 85 } 86 bio_put(bio); 87 } 88 89 static void f2fs_write_end_io(struct bio *bio) 90 { 91 struct f2fs_sb_info *sbi = bio->bi_private; 92 struct bio_vec *bvec; 93 int i; 94 95 bio_for_each_segment_all(bvec, bio, i) { 96 struct page *page = bvec->bv_page; 97 enum count_type type = WB_DATA_TYPE(page); 98 99 if (IS_DUMMY_WRITTEN_PAGE(page)) { 100 set_page_private(page, (unsigned long)NULL); 101 ClearPagePrivate(page); 102 unlock_page(page); 103 mempool_free(page, sbi->write_io_dummy); 104 105 if (unlikely(bio->bi_error)) 106 f2fs_stop_checkpoint(sbi, true); 107 continue; 108 } 109 110 fscrypt_pullback_bio_page(&page, true); 111 112 if (unlikely(bio->bi_error)) { 113 mapping_set_error(page->mapping, -EIO); 114 f2fs_stop_checkpoint(sbi, true); 115 } 116 dec_page_count(sbi, type); 117 clear_cold_data(page); 118 end_page_writeback(page); 119 } 120 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 121 wq_has_sleeper(&sbi->cp_wait)) 122 wake_up(&sbi->cp_wait); 123 124 bio_put(bio); 125 } 126 127 /* 128 * Return true, if pre_bio's bdev is same as its target device. 129 */ 130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 131 block_t blk_addr, struct bio *bio) 132 { 133 struct block_device *bdev = sbi->sb->s_bdev; 134 int i; 135 136 for (i = 0; i < sbi->s_ndevs; i++) { 137 if (FDEV(i).start_blk <= blk_addr && 138 FDEV(i).end_blk >= blk_addr) { 139 blk_addr -= FDEV(i).start_blk; 140 bdev = FDEV(i).bdev; 141 break; 142 } 143 } 144 if (bio) { 145 bio->bi_bdev = bdev; 146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 147 } 148 return bdev; 149 } 150 151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 152 { 153 int i; 154 155 for (i = 0; i < sbi->s_ndevs; i++) 156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 157 return i; 158 return 0; 159 } 160 161 static bool __same_bdev(struct f2fs_sb_info *sbi, 162 block_t blk_addr, struct bio *bio) 163 { 164 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev; 165 } 166 167 /* 168 * Low-level block read/write IO operations. 169 */ 170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 171 int npages, bool is_read) 172 { 173 struct bio *bio; 174 175 bio = f2fs_bio_alloc(npages); 176 177 f2fs_target_device(sbi, blk_addr, bio); 178 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 179 bio->bi_private = is_read ? NULL : sbi; 180 181 return bio; 182 } 183 184 static inline void __submit_bio(struct f2fs_sb_info *sbi, 185 struct bio *bio, enum page_type type) 186 { 187 if (!is_read_io(bio_op(bio))) { 188 unsigned int start; 189 190 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 191 current->plug && (type == DATA || type == NODE)) 192 blk_finish_plug(current->plug); 193 194 if (type != DATA && type != NODE) 195 goto submit_io; 196 197 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 198 start %= F2FS_IO_SIZE(sbi); 199 200 if (start == 0) 201 goto submit_io; 202 203 /* fill dummy pages */ 204 for (; start < F2FS_IO_SIZE(sbi); start++) { 205 struct page *page = 206 mempool_alloc(sbi->write_io_dummy, 207 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 208 f2fs_bug_on(sbi, !page); 209 210 SetPagePrivate(page); 211 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 212 lock_page(page); 213 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 214 f2fs_bug_on(sbi, 1); 215 } 216 /* 217 * In the NODE case, we lose next block address chain. So, we 218 * need to do checkpoint in f2fs_sync_file. 219 */ 220 if (type == NODE) 221 set_sbi_flag(sbi, SBI_NEED_CP); 222 } 223 submit_io: 224 if (is_read_io(bio_op(bio))) 225 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 226 else 227 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 228 submit_bio(bio); 229 } 230 231 static void __submit_merged_bio(struct f2fs_bio_info *io) 232 { 233 struct f2fs_io_info *fio = &io->fio; 234 235 if (!io->bio) 236 return; 237 238 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 239 240 if (is_read_io(fio->op)) 241 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 242 else 243 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 244 245 __submit_bio(io->sbi, io->bio, fio->type); 246 io->bio = NULL; 247 } 248 249 static bool __has_merged_page(struct f2fs_bio_info *io, 250 struct inode *inode, nid_t ino, pgoff_t idx) 251 { 252 struct bio_vec *bvec; 253 struct page *target; 254 int i; 255 256 if (!io->bio) 257 return false; 258 259 if (!inode && !ino) 260 return true; 261 262 bio_for_each_segment_all(bvec, io->bio, i) { 263 264 if (bvec->bv_page->mapping) 265 target = bvec->bv_page; 266 else 267 target = fscrypt_control_page(bvec->bv_page); 268 269 if (idx != target->index) 270 continue; 271 272 if (inode && inode == target->mapping->host) 273 return true; 274 if (ino && ino == ino_of_node(target)) 275 return true; 276 } 277 278 return false; 279 } 280 281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 282 nid_t ino, pgoff_t idx, enum page_type type) 283 { 284 enum page_type btype = PAGE_TYPE_OF_BIO(type); 285 struct f2fs_bio_info *io = &sbi->write_io[btype]; 286 bool ret; 287 288 down_read(&io->io_rwsem); 289 ret = __has_merged_page(io, inode, ino, idx); 290 up_read(&io->io_rwsem); 291 return ret; 292 } 293 294 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 295 struct inode *inode, nid_t ino, pgoff_t idx, 296 enum page_type type, int rw) 297 { 298 enum page_type btype = PAGE_TYPE_OF_BIO(type); 299 struct f2fs_bio_info *io; 300 301 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 302 303 down_write(&io->io_rwsem); 304 305 if (!__has_merged_page(io, inode, ino, idx)) 306 goto out; 307 308 /* change META to META_FLUSH in the checkpoint procedure */ 309 if (type >= META_FLUSH) { 310 io->fio.type = META_FLUSH; 311 io->fio.op = REQ_OP_WRITE; 312 io->fio.op_flags = REQ_META | REQ_PRIO; 313 if (!test_opt(sbi, NOBARRIER)) 314 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 315 } 316 __submit_merged_bio(io); 317 out: 318 up_write(&io->io_rwsem); 319 } 320 321 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 322 int rw) 323 { 324 __f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw); 325 } 326 327 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 328 struct inode *inode, nid_t ino, pgoff_t idx, 329 enum page_type type, int rw) 330 { 331 if (has_merged_page(sbi, inode, ino, idx, type)) 332 __f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw); 333 } 334 335 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 336 { 337 f2fs_submit_merged_bio(sbi, DATA, WRITE); 338 f2fs_submit_merged_bio(sbi, NODE, WRITE); 339 f2fs_submit_merged_bio(sbi, META, WRITE); 340 } 341 342 /* 343 * Fill the locked page with data located in the block address. 344 * Return unlocked page. 345 */ 346 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 347 { 348 struct bio *bio; 349 struct page *page = fio->encrypted_page ? 350 fio->encrypted_page : fio->page; 351 352 trace_f2fs_submit_page_bio(page, fio); 353 f2fs_trace_ios(fio, 0); 354 355 /* Allocate a new bio */ 356 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 357 358 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 359 bio_put(bio); 360 return -EFAULT; 361 } 362 bio_set_op_attrs(bio, fio->op, fio->op_flags); 363 364 __submit_bio(fio->sbi, bio, fio->type); 365 return 0; 366 } 367 368 int f2fs_submit_page_mbio(struct f2fs_io_info *fio) 369 { 370 struct f2fs_sb_info *sbi = fio->sbi; 371 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 372 struct f2fs_bio_info *io; 373 bool is_read = is_read_io(fio->op); 374 struct page *bio_page; 375 int err = 0; 376 377 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 378 379 if (fio->old_blkaddr != NEW_ADDR) 380 verify_block_addr(sbi, fio->old_blkaddr); 381 verify_block_addr(sbi, fio->new_blkaddr); 382 383 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 384 385 /* set submitted = 1 as a return value */ 386 fio->submitted = 1; 387 388 if (!is_read) 389 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 390 391 down_write(&io->io_rwsem); 392 393 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 394 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 395 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 396 __submit_merged_bio(io); 397 alloc_new: 398 if (io->bio == NULL) { 399 if ((fio->type == DATA || fio->type == NODE) && 400 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 401 err = -EAGAIN; 402 if (!is_read) 403 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 404 goto out_fail; 405 } 406 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 407 BIO_MAX_PAGES, is_read); 408 io->fio = *fio; 409 } 410 411 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 412 PAGE_SIZE) { 413 __submit_merged_bio(io); 414 goto alloc_new; 415 } 416 417 io->last_block_in_bio = fio->new_blkaddr; 418 f2fs_trace_ios(fio, 0); 419 out_fail: 420 up_write(&io->io_rwsem); 421 trace_f2fs_submit_page_mbio(fio->page, fio); 422 return err; 423 } 424 425 static void __set_data_blkaddr(struct dnode_of_data *dn) 426 { 427 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 428 __le32 *addr_array; 429 430 /* Get physical address of data block */ 431 addr_array = blkaddr_in_node(rn); 432 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 433 } 434 435 /* 436 * Lock ordering for the change of data block address: 437 * ->data_page 438 * ->node_page 439 * update block addresses in the node page 440 */ 441 void set_data_blkaddr(struct dnode_of_data *dn) 442 { 443 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 444 __set_data_blkaddr(dn); 445 if (set_page_dirty(dn->node_page)) 446 dn->node_changed = true; 447 } 448 449 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 450 { 451 dn->data_blkaddr = blkaddr; 452 set_data_blkaddr(dn); 453 f2fs_update_extent_cache(dn); 454 } 455 456 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 457 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 458 { 459 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 460 461 if (!count) 462 return 0; 463 464 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 465 return -EPERM; 466 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 467 return -ENOSPC; 468 469 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 470 dn->ofs_in_node, count); 471 472 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 473 474 for (; count > 0; dn->ofs_in_node++) { 475 block_t blkaddr = 476 datablock_addr(dn->node_page, dn->ofs_in_node); 477 if (blkaddr == NULL_ADDR) { 478 dn->data_blkaddr = NEW_ADDR; 479 __set_data_blkaddr(dn); 480 count--; 481 } 482 } 483 484 if (set_page_dirty(dn->node_page)) 485 dn->node_changed = true; 486 return 0; 487 } 488 489 /* Should keep dn->ofs_in_node unchanged */ 490 int reserve_new_block(struct dnode_of_data *dn) 491 { 492 unsigned int ofs_in_node = dn->ofs_in_node; 493 int ret; 494 495 ret = reserve_new_blocks(dn, 1); 496 dn->ofs_in_node = ofs_in_node; 497 return ret; 498 } 499 500 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 501 { 502 bool need_put = dn->inode_page ? false : true; 503 int err; 504 505 err = get_dnode_of_data(dn, index, ALLOC_NODE); 506 if (err) 507 return err; 508 509 if (dn->data_blkaddr == NULL_ADDR) 510 err = reserve_new_block(dn); 511 if (err || need_put) 512 f2fs_put_dnode(dn); 513 return err; 514 } 515 516 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 517 { 518 struct extent_info ei = {0,0,0}; 519 struct inode *inode = dn->inode; 520 521 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 522 dn->data_blkaddr = ei.blk + index - ei.fofs; 523 return 0; 524 } 525 526 return f2fs_reserve_block(dn, index); 527 } 528 529 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 530 int op_flags, bool for_write) 531 { 532 struct address_space *mapping = inode->i_mapping; 533 struct dnode_of_data dn; 534 struct page *page; 535 struct extent_info ei = {0,0,0}; 536 int err; 537 struct f2fs_io_info fio = { 538 .sbi = F2FS_I_SB(inode), 539 .type = DATA, 540 .op = REQ_OP_READ, 541 .op_flags = op_flags, 542 .encrypted_page = NULL, 543 }; 544 545 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 546 return read_mapping_page(mapping, index, NULL); 547 548 page = f2fs_grab_cache_page(mapping, index, for_write); 549 if (!page) 550 return ERR_PTR(-ENOMEM); 551 552 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 553 dn.data_blkaddr = ei.blk + index - ei.fofs; 554 goto got_it; 555 } 556 557 set_new_dnode(&dn, inode, NULL, NULL, 0); 558 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 559 if (err) 560 goto put_err; 561 f2fs_put_dnode(&dn); 562 563 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 564 err = -ENOENT; 565 goto put_err; 566 } 567 got_it: 568 if (PageUptodate(page)) { 569 unlock_page(page); 570 return page; 571 } 572 573 /* 574 * A new dentry page is allocated but not able to be written, since its 575 * new inode page couldn't be allocated due to -ENOSPC. 576 * In such the case, its blkaddr can be remained as NEW_ADDR. 577 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 578 */ 579 if (dn.data_blkaddr == NEW_ADDR) { 580 zero_user_segment(page, 0, PAGE_SIZE); 581 if (!PageUptodate(page)) 582 SetPageUptodate(page); 583 unlock_page(page); 584 return page; 585 } 586 587 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 588 fio.page = page; 589 err = f2fs_submit_page_bio(&fio); 590 if (err) 591 goto put_err; 592 return page; 593 594 put_err: 595 f2fs_put_page(page, 1); 596 return ERR_PTR(err); 597 } 598 599 struct page *find_data_page(struct inode *inode, pgoff_t index) 600 { 601 struct address_space *mapping = inode->i_mapping; 602 struct page *page; 603 604 page = find_get_page(mapping, index); 605 if (page && PageUptodate(page)) 606 return page; 607 f2fs_put_page(page, 0); 608 609 page = get_read_data_page(inode, index, 0, false); 610 if (IS_ERR(page)) 611 return page; 612 613 if (PageUptodate(page)) 614 return page; 615 616 wait_on_page_locked(page); 617 if (unlikely(!PageUptodate(page))) { 618 f2fs_put_page(page, 0); 619 return ERR_PTR(-EIO); 620 } 621 return page; 622 } 623 624 /* 625 * If it tries to access a hole, return an error. 626 * Because, the callers, functions in dir.c and GC, should be able to know 627 * whether this page exists or not. 628 */ 629 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 630 bool for_write) 631 { 632 struct address_space *mapping = inode->i_mapping; 633 struct page *page; 634 repeat: 635 page = get_read_data_page(inode, index, 0, for_write); 636 if (IS_ERR(page)) 637 return page; 638 639 /* wait for read completion */ 640 lock_page(page); 641 if (unlikely(page->mapping != mapping)) { 642 f2fs_put_page(page, 1); 643 goto repeat; 644 } 645 if (unlikely(!PageUptodate(page))) { 646 f2fs_put_page(page, 1); 647 return ERR_PTR(-EIO); 648 } 649 return page; 650 } 651 652 /* 653 * Caller ensures that this data page is never allocated. 654 * A new zero-filled data page is allocated in the page cache. 655 * 656 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 657 * f2fs_unlock_op(). 658 * Note that, ipage is set only by make_empty_dir, and if any error occur, 659 * ipage should be released by this function. 660 */ 661 struct page *get_new_data_page(struct inode *inode, 662 struct page *ipage, pgoff_t index, bool new_i_size) 663 { 664 struct address_space *mapping = inode->i_mapping; 665 struct page *page; 666 struct dnode_of_data dn; 667 int err; 668 669 page = f2fs_grab_cache_page(mapping, index, true); 670 if (!page) { 671 /* 672 * before exiting, we should make sure ipage will be released 673 * if any error occur. 674 */ 675 f2fs_put_page(ipage, 1); 676 return ERR_PTR(-ENOMEM); 677 } 678 679 set_new_dnode(&dn, inode, ipage, NULL, 0); 680 err = f2fs_reserve_block(&dn, index); 681 if (err) { 682 f2fs_put_page(page, 1); 683 return ERR_PTR(err); 684 } 685 if (!ipage) 686 f2fs_put_dnode(&dn); 687 688 if (PageUptodate(page)) 689 goto got_it; 690 691 if (dn.data_blkaddr == NEW_ADDR) { 692 zero_user_segment(page, 0, PAGE_SIZE); 693 if (!PageUptodate(page)) 694 SetPageUptodate(page); 695 } else { 696 f2fs_put_page(page, 1); 697 698 /* if ipage exists, blkaddr should be NEW_ADDR */ 699 f2fs_bug_on(F2FS_I_SB(inode), ipage); 700 page = get_lock_data_page(inode, index, true); 701 if (IS_ERR(page)) 702 return page; 703 } 704 got_it: 705 if (new_i_size && i_size_read(inode) < 706 ((loff_t)(index + 1) << PAGE_SHIFT)) 707 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 708 return page; 709 } 710 711 static int __allocate_data_block(struct dnode_of_data *dn) 712 { 713 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 714 struct f2fs_summary sum; 715 struct node_info ni; 716 pgoff_t fofs; 717 blkcnt_t count = 1; 718 719 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 720 return -EPERM; 721 722 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 723 if (dn->data_blkaddr == NEW_ADDR) 724 goto alloc; 725 726 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 727 return -ENOSPC; 728 729 alloc: 730 get_node_info(sbi, dn->nid, &ni); 731 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 732 733 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 734 &sum, CURSEG_WARM_DATA); 735 set_data_blkaddr(dn); 736 737 /* update i_size */ 738 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 739 dn->ofs_in_node; 740 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 741 f2fs_i_size_write(dn->inode, 742 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 743 return 0; 744 } 745 746 static inline bool __force_buffered_io(struct inode *inode, int rw) 747 { 748 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) || 749 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 750 F2FS_I_SB(inode)->s_ndevs); 751 } 752 753 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 754 { 755 struct inode *inode = file_inode(iocb->ki_filp); 756 struct f2fs_map_blocks map; 757 int err = 0; 758 759 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 760 return 0; 761 762 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 763 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 764 if (map.m_len > map.m_lblk) 765 map.m_len -= map.m_lblk; 766 else 767 map.m_len = 0; 768 769 map.m_next_pgofs = NULL; 770 771 if (iocb->ki_flags & IOCB_DIRECT) { 772 err = f2fs_convert_inline_inode(inode); 773 if (err) 774 return err; 775 return f2fs_map_blocks(inode, &map, 1, 776 __force_buffered_io(inode, WRITE) ? 777 F2FS_GET_BLOCK_PRE_AIO : 778 F2FS_GET_BLOCK_PRE_DIO); 779 } 780 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 781 err = f2fs_convert_inline_inode(inode); 782 if (err) 783 return err; 784 } 785 if (!f2fs_has_inline_data(inode)) 786 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 787 return err; 788 } 789 790 /* 791 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 792 * f2fs_map_blocks structure. 793 * If original data blocks are allocated, then give them to blockdev. 794 * Otherwise, 795 * a. preallocate requested block addresses 796 * b. do not use extent cache for better performance 797 * c. give the block addresses to blockdev 798 */ 799 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 800 int create, int flag) 801 { 802 unsigned int maxblocks = map->m_len; 803 struct dnode_of_data dn; 804 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 805 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 806 pgoff_t pgofs, end_offset, end; 807 int err = 0, ofs = 1; 808 unsigned int ofs_in_node, last_ofs_in_node; 809 blkcnt_t prealloc; 810 struct extent_info ei = {0,0,0}; 811 block_t blkaddr; 812 813 if (!maxblocks) 814 return 0; 815 816 map->m_len = 0; 817 map->m_flags = 0; 818 819 /* it only supports block size == page size */ 820 pgofs = (pgoff_t)map->m_lblk; 821 end = pgofs + maxblocks; 822 823 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 824 map->m_pblk = ei.blk + pgofs - ei.fofs; 825 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 826 map->m_flags = F2FS_MAP_MAPPED; 827 goto out; 828 } 829 830 next_dnode: 831 if (create) 832 f2fs_lock_op(sbi); 833 834 /* When reading holes, we need its node page */ 835 set_new_dnode(&dn, inode, NULL, NULL, 0); 836 err = get_dnode_of_data(&dn, pgofs, mode); 837 if (err) { 838 if (flag == F2FS_GET_BLOCK_BMAP) 839 map->m_pblk = 0; 840 if (err == -ENOENT) { 841 err = 0; 842 if (map->m_next_pgofs) 843 *map->m_next_pgofs = 844 get_next_page_offset(&dn, pgofs); 845 } 846 goto unlock_out; 847 } 848 849 prealloc = 0; 850 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 851 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 852 853 next_block: 854 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 855 856 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 857 if (create) { 858 if (unlikely(f2fs_cp_error(sbi))) { 859 err = -EIO; 860 goto sync_out; 861 } 862 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 863 if (blkaddr == NULL_ADDR) { 864 prealloc++; 865 last_ofs_in_node = dn.ofs_in_node; 866 } 867 } else { 868 err = __allocate_data_block(&dn); 869 if (!err) 870 set_inode_flag(inode, FI_APPEND_WRITE); 871 } 872 if (err) 873 goto sync_out; 874 map->m_flags |= F2FS_MAP_NEW; 875 blkaddr = dn.data_blkaddr; 876 } else { 877 if (flag == F2FS_GET_BLOCK_BMAP) { 878 map->m_pblk = 0; 879 goto sync_out; 880 } 881 if (flag == F2FS_GET_BLOCK_FIEMAP && 882 blkaddr == NULL_ADDR) { 883 if (map->m_next_pgofs) 884 *map->m_next_pgofs = pgofs + 1; 885 } 886 if (flag != F2FS_GET_BLOCK_FIEMAP || 887 blkaddr != NEW_ADDR) 888 goto sync_out; 889 } 890 } 891 892 if (flag == F2FS_GET_BLOCK_PRE_AIO) 893 goto skip; 894 895 if (map->m_len == 0) { 896 /* preallocated unwritten block should be mapped for fiemap. */ 897 if (blkaddr == NEW_ADDR) 898 map->m_flags |= F2FS_MAP_UNWRITTEN; 899 map->m_flags |= F2FS_MAP_MAPPED; 900 901 map->m_pblk = blkaddr; 902 map->m_len = 1; 903 } else if ((map->m_pblk != NEW_ADDR && 904 blkaddr == (map->m_pblk + ofs)) || 905 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 906 flag == F2FS_GET_BLOCK_PRE_DIO) { 907 ofs++; 908 map->m_len++; 909 } else { 910 goto sync_out; 911 } 912 913 skip: 914 dn.ofs_in_node++; 915 pgofs++; 916 917 /* preallocate blocks in batch for one dnode page */ 918 if (flag == F2FS_GET_BLOCK_PRE_AIO && 919 (pgofs == end || dn.ofs_in_node == end_offset)) { 920 921 dn.ofs_in_node = ofs_in_node; 922 err = reserve_new_blocks(&dn, prealloc); 923 if (err) 924 goto sync_out; 925 926 map->m_len += dn.ofs_in_node - ofs_in_node; 927 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 928 err = -ENOSPC; 929 goto sync_out; 930 } 931 dn.ofs_in_node = end_offset; 932 } 933 934 if (pgofs >= end) 935 goto sync_out; 936 else if (dn.ofs_in_node < end_offset) 937 goto next_block; 938 939 f2fs_put_dnode(&dn); 940 941 if (create) { 942 f2fs_unlock_op(sbi); 943 f2fs_balance_fs(sbi, dn.node_changed); 944 } 945 goto next_dnode; 946 947 sync_out: 948 f2fs_put_dnode(&dn); 949 unlock_out: 950 if (create) { 951 f2fs_unlock_op(sbi); 952 f2fs_balance_fs(sbi, dn.node_changed); 953 } 954 out: 955 trace_f2fs_map_blocks(inode, map, err); 956 return err; 957 } 958 959 static int __get_data_block(struct inode *inode, sector_t iblock, 960 struct buffer_head *bh, int create, int flag, 961 pgoff_t *next_pgofs) 962 { 963 struct f2fs_map_blocks map; 964 int err; 965 966 map.m_lblk = iblock; 967 map.m_len = bh->b_size >> inode->i_blkbits; 968 map.m_next_pgofs = next_pgofs; 969 970 err = f2fs_map_blocks(inode, &map, create, flag); 971 if (!err) { 972 map_bh(bh, inode->i_sb, map.m_pblk); 973 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 974 bh->b_size = (u64)map.m_len << inode->i_blkbits; 975 } 976 return err; 977 } 978 979 static int get_data_block(struct inode *inode, sector_t iblock, 980 struct buffer_head *bh_result, int create, int flag, 981 pgoff_t *next_pgofs) 982 { 983 return __get_data_block(inode, iblock, bh_result, create, 984 flag, next_pgofs); 985 } 986 987 static int get_data_block_dio(struct inode *inode, sector_t iblock, 988 struct buffer_head *bh_result, int create) 989 { 990 return __get_data_block(inode, iblock, bh_result, create, 991 F2FS_GET_BLOCK_DIO, NULL); 992 } 993 994 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 995 struct buffer_head *bh_result, int create) 996 { 997 /* Block number less than F2FS MAX BLOCKS */ 998 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 999 return -EFBIG; 1000 1001 return __get_data_block(inode, iblock, bh_result, create, 1002 F2FS_GET_BLOCK_BMAP, NULL); 1003 } 1004 1005 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1006 { 1007 return (offset >> inode->i_blkbits); 1008 } 1009 1010 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1011 { 1012 return (blk << inode->i_blkbits); 1013 } 1014 1015 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1016 u64 start, u64 len) 1017 { 1018 struct buffer_head map_bh; 1019 sector_t start_blk, last_blk; 1020 pgoff_t next_pgofs; 1021 u64 logical = 0, phys = 0, size = 0; 1022 u32 flags = 0; 1023 int ret = 0; 1024 1025 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 1026 if (ret) 1027 return ret; 1028 1029 if (f2fs_has_inline_data(inode)) { 1030 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1031 if (ret != -EAGAIN) 1032 return ret; 1033 } 1034 1035 inode_lock(inode); 1036 1037 if (logical_to_blk(inode, len) == 0) 1038 len = blk_to_logical(inode, 1); 1039 1040 start_blk = logical_to_blk(inode, start); 1041 last_blk = logical_to_blk(inode, start + len - 1); 1042 1043 next: 1044 memset(&map_bh, 0, sizeof(struct buffer_head)); 1045 map_bh.b_size = len; 1046 1047 ret = get_data_block(inode, start_blk, &map_bh, 0, 1048 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1049 if (ret) 1050 goto out; 1051 1052 /* HOLE */ 1053 if (!buffer_mapped(&map_bh)) { 1054 start_blk = next_pgofs; 1055 1056 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1057 F2FS_I_SB(inode)->max_file_blocks)) 1058 goto prep_next; 1059 1060 flags |= FIEMAP_EXTENT_LAST; 1061 } 1062 1063 if (size) { 1064 if (f2fs_encrypted_inode(inode)) 1065 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1066 1067 ret = fiemap_fill_next_extent(fieinfo, logical, 1068 phys, size, flags); 1069 } 1070 1071 if (start_blk > last_blk || ret) 1072 goto out; 1073 1074 logical = blk_to_logical(inode, start_blk); 1075 phys = blk_to_logical(inode, map_bh.b_blocknr); 1076 size = map_bh.b_size; 1077 flags = 0; 1078 if (buffer_unwritten(&map_bh)) 1079 flags = FIEMAP_EXTENT_UNWRITTEN; 1080 1081 start_blk += logical_to_blk(inode, size); 1082 1083 prep_next: 1084 cond_resched(); 1085 if (fatal_signal_pending(current)) 1086 ret = -EINTR; 1087 else 1088 goto next; 1089 out: 1090 if (ret == 1) 1091 ret = 0; 1092 1093 inode_unlock(inode); 1094 return ret; 1095 } 1096 1097 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 1098 unsigned nr_pages) 1099 { 1100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1101 struct fscrypt_ctx *ctx = NULL; 1102 struct bio *bio; 1103 1104 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1105 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 1106 if (IS_ERR(ctx)) 1107 return ERR_CAST(ctx); 1108 1109 /* wait the page to be moved by cleaning */ 1110 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1111 } 1112 1113 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 1114 if (!bio) { 1115 if (ctx) 1116 fscrypt_release_ctx(ctx); 1117 return ERR_PTR(-ENOMEM); 1118 } 1119 f2fs_target_device(sbi, blkaddr, bio); 1120 bio->bi_end_io = f2fs_read_end_io; 1121 bio->bi_private = ctx; 1122 1123 return bio; 1124 } 1125 1126 /* 1127 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1128 * Major change was from block_size == page_size in f2fs by default. 1129 */ 1130 static int f2fs_mpage_readpages(struct address_space *mapping, 1131 struct list_head *pages, struct page *page, 1132 unsigned nr_pages) 1133 { 1134 struct bio *bio = NULL; 1135 unsigned page_idx; 1136 sector_t last_block_in_bio = 0; 1137 struct inode *inode = mapping->host; 1138 const unsigned blkbits = inode->i_blkbits; 1139 const unsigned blocksize = 1 << blkbits; 1140 sector_t block_in_file; 1141 sector_t last_block; 1142 sector_t last_block_in_file; 1143 sector_t block_nr; 1144 struct f2fs_map_blocks map; 1145 1146 map.m_pblk = 0; 1147 map.m_lblk = 0; 1148 map.m_len = 0; 1149 map.m_flags = 0; 1150 map.m_next_pgofs = NULL; 1151 1152 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1153 1154 prefetchw(&page->flags); 1155 if (pages) { 1156 page = list_last_entry(pages, struct page, lru); 1157 list_del(&page->lru); 1158 if (add_to_page_cache_lru(page, mapping, 1159 page->index, 1160 readahead_gfp_mask(mapping))) 1161 goto next_page; 1162 } 1163 1164 block_in_file = (sector_t)page->index; 1165 last_block = block_in_file + nr_pages; 1166 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1167 blkbits; 1168 if (last_block > last_block_in_file) 1169 last_block = last_block_in_file; 1170 1171 /* 1172 * Map blocks using the previous result first. 1173 */ 1174 if ((map.m_flags & F2FS_MAP_MAPPED) && 1175 block_in_file > map.m_lblk && 1176 block_in_file < (map.m_lblk + map.m_len)) 1177 goto got_it; 1178 1179 /* 1180 * Then do more f2fs_map_blocks() calls until we are 1181 * done with this page. 1182 */ 1183 map.m_flags = 0; 1184 1185 if (block_in_file < last_block) { 1186 map.m_lblk = block_in_file; 1187 map.m_len = last_block - block_in_file; 1188 1189 if (f2fs_map_blocks(inode, &map, 0, 1190 F2FS_GET_BLOCK_READ)) 1191 goto set_error_page; 1192 } 1193 got_it: 1194 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1195 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1196 SetPageMappedToDisk(page); 1197 1198 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1199 SetPageUptodate(page); 1200 goto confused; 1201 } 1202 } else { 1203 zero_user_segment(page, 0, PAGE_SIZE); 1204 if (!PageUptodate(page)) 1205 SetPageUptodate(page); 1206 unlock_page(page); 1207 goto next_page; 1208 } 1209 1210 /* 1211 * This page will go to BIO. Do we need to send this 1212 * BIO off first? 1213 */ 1214 if (bio && (last_block_in_bio != block_nr - 1 || 1215 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1216 submit_and_realloc: 1217 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1218 bio = NULL; 1219 } 1220 if (bio == NULL) { 1221 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1222 if (IS_ERR(bio)) { 1223 bio = NULL; 1224 goto set_error_page; 1225 } 1226 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1227 } 1228 1229 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1230 goto submit_and_realloc; 1231 1232 last_block_in_bio = block_nr; 1233 goto next_page; 1234 set_error_page: 1235 SetPageError(page); 1236 zero_user_segment(page, 0, PAGE_SIZE); 1237 unlock_page(page); 1238 goto next_page; 1239 confused: 1240 if (bio) { 1241 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1242 bio = NULL; 1243 } 1244 unlock_page(page); 1245 next_page: 1246 if (pages) 1247 put_page(page); 1248 } 1249 BUG_ON(pages && !list_empty(pages)); 1250 if (bio) 1251 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1252 return 0; 1253 } 1254 1255 static int f2fs_read_data_page(struct file *file, struct page *page) 1256 { 1257 struct inode *inode = page->mapping->host; 1258 int ret = -EAGAIN; 1259 1260 trace_f2fs_readpage(page, DATA); 1261 1262 /* If the file has inline data, try to read it directly */ 1263 if (f2fs_has_inline_data(inode)) 1264 ret = f2fs_read_inline_data(inode, page); 1265 if (ret == -EAGAIN) 1266 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1267 return ret; 1268 } 1269 1270 static int f2fs_read_data_pages(struct file *file, 1271 struct address_space *mapping, 1272 struct list_head *pages, unsigned nr_pages) 1273 { 1274 struct inode *inode = file->f_mapping->host; 1275 struct page *page = list_last_entry(pages, struct page, lru); 1276 1277 trace_f2fs_readpages(inode, page, nr_pages); 1278 1279 /* If the file has inline data, skip readpages */ 1280 if (f2fs_has_inline_data(inode)) 1281 return 0; 1282 1283 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1284 } 1285 1286 int do_write_data_page(struct f2fs_io_info *fio) 1287 { 1288 struct page *page = fio->page; 1289 struct inode *inode = page->mapping->host; 1290 struct dnode_of_data dn; 1291 int err = 0; 1292 1293 set_new_dnode(&dn, inode, NULL, NULL, 0); 1294 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1295 if (err) 1296 return err; 1297 1298 fio->old_blkaddr = dn.data_blkaddr; 1299 1300 /* This page is already truncated */ 1301 if (fio->old_blkaddr == NULL_ADDR) { 1302 ClearPageUptodate(page); 1303 goto out_writepage; 1304 } 1305 1306 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1307 gfp_t gfp_flags = GFP_NOFS; 1308 1309 /* wait for GCed encrypted page writeback */ 1310 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1311 fio->old_blkaddr); 1312 retry_encrypt: 1313 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1314 PAGE_SIZE, 0, 1315 fio->page->index, 1316 gfp_flags); 1317 if (IS_ERR(fio->encrypted_page)) { 1318 err = PTR_ERR(fio->encrypted_page); 1319 if (err == -ENOMEM) { 1320 /* flush pending ios and wait for a while */ 1321 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1322 congestion_wait(BLK_RW_ASYNC, HZ/50); 1323 gfp_flags |= __GFP_NOFAIL; 1324 err = 0; 1325 goto retry_encrypt; 1326 } 1327 goto out_writepage; 1328 } 1329 } 1330 1331 set_page_writeback(page); 1332 1333 /* 1334 * If current allocation needs SSR, 1335 * it had better in-place writes for updated data. 1336 */ 1337 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1338 !is_cold_data(page) && 1339 !IS_ATOMIC_WRITTEN_PAGE(page) && 1340 need_inplace_update(inode))) { 1341 rewrite_data_page(fio); 1342 set_inode_flag(inode, FI_UPDATE_WRITE); 1343 trace_f2fs_do_write_data_page(page, IPU); 1344 } else { 1345 write_data_page(&dn, fio); 1346 trace_f2fs_do_write_data_page(page, OPU); 1347 set_inode_flag(inode, FI_APPEND_WRITE); 1348 if (page->index == 0) 1349 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1350 } 1351 out_writepage: 1352 f2fs_put_dnode(&dn); 1353 return err; 1354 } 1355 1356 static int __write_data_page(struct page *page, bool *submitted, 1357 struct writeback_control *wbc) 1358 { 1359 struct inode *inode = page->mapping->host; 1360 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1361 loff_t i_size = i_size_read(inode); 1362 const pgoff_t end_index = ((unsigned long long) i_size) 1363 >> PAGE_SHIFT; 1364 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1365 unsigned offset = 0; 1366 bool need_balance_fs = false; 1367 int err = 0; 1368 struct f2fs_io_info fio = { 1369 .sbi = sbi, 1370 .type = DATA, 1371 .op = REQ_OP_WRITE, 1372 .op_flags = wbc_to_write_flags(wbc), 1373 .page = page, 1374 .encrypted_page = NULL, 1375 .submitted = false, 1376 }; 1377 1378 trace_f2fs_writepage(page, DATA); 1379 1380 if (page->index < end_index) 1381 goto write; 1382 1383 /* 1384 * If the offset is out-of-range of file size, 1385 * this page does not have to be written to disk. 1386 */ 1387 offset = i_size & (PAGE_SIZE - 1); 1388 if ((page->index >= end_index + 1) || !offset) 1389 goto out; 1390 1391 zero_user_segment(page, offset, PAGE_SIZE); 1392 write: 1393 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1394 goto redirty_out; 1395 if (f2fs_is_drop_cache(inode)) 1396 goto out; 1397 /* we should not write 0'th page having journal header */ 1398 if (f2fs_is_volatile_file(inode) && (!page->index || 1399 (!wbc->for_reclaim && 1400 available_free_memory(sbi, BASE_CHECK)))) 1401 goto redirty_out; 1402 1403 /* we should bypass data pages to proceed the kworkder jobs */ 1404 if (unlikely(f2fs_cp_error(sbi))) { 1405 mapping_set_error(page->mapping, -EIO); 1406 goto out; 1407 } 1408 1409 /* Dentry blocks are controlled by checkpoint */ 1410 if (S_ISDIR(inode->i_mode)) { 1411 err = do_write_data_page(&fio); 1412 goto done; 1413 } 1414 1415 if (!wbc->for_reclaim) 1416 need_balance_fs = true; 1417 else if (has_not_enough_free_secs(sbi, 0, 0)) 1418 goto redirty_out; 1419 1420 err = -EAGAIN; 1421 if (f2fs_has_inline_data(inode)) { 1422 err = f2fs_write_inline_data(inode, page); 1423 if (!err) 1424 goto out; 1425 } 1426 f2fs_lock_op(sbi); 1427 if (err == -EAGAIN) 1428 err = do_write_data_page(&fio); 1429 if (F2FS_I(inode)->last_disk_size < psize) 1430 F2FS_I(inode)->last_disk_size = psize; 1431 f2fs_unlock_op(sbi); 1432 done: 1433 if (err && err != -ENOENT) 1434 goto redirty_out; 1435 1436 out: 1437 inode_dec_dirty_pages(inode); 1438 if (err) 1439 ClearPageUptodate(page); 1440 1441 if (wbc->for_reclaim) { 1442 f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index, 1443 DATA, WRITE); 1444 remove_dirty_inode(inode); 1445 submitted = NULL; 1446 } 1447 1448 unlock_page(page); 1449 f2fs_balance_fs(sbi, need_balance_fs); 1450 1451 if (unlikely(f2fs_cp_error(sbi))) { 1452 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1453 submitted = NULL; 1454 } 1455 1456 if (submitted) 1457 *submitted = fio.submitted; 1458 1459 return 0; 1460 1461 redirty_out: 1462 redirty_page_for_writepage(wbc, page); 1463 if (!err) 1464 return AOP_WRITEPAGE_ACTIVATE; 1465 unlock_page(page); 1466 return err; 1467 } 1468 1469 static int f2fs_write_data_page(struct page *page, 1470 struct writeback_control *wbc) 1471 { 1472 return __write_data_page(page, NULL, wbc); 1473 } 1474 1475 /* 1476 * This function was copied from write_cche_pages from mm/page-writeback.c. 1477 * The major change is making write step of cold data page separately from 1478 * warm/hot data page. 1479 */ 1480 static int f2fs_write_cache_pages(struct address_space *mapping, 1481 struct writeback_control *wbc) 1482 { 1483 int ret = 0; 1484 int done = 0; 1485 struct pagevec pvec; 1486 int nr_pages; 1487 pgoff_t uninitialized_var(writeback_index); 1488 pgoff_t index; 1489 pgoff_t end; /* Inclusive */ 1490 pgoff_t done_index; 1491 pgoff_t last_idx = ULONG_MAX; 1492 int cycled; 1493 int range_whole = 0; 1494 int tag; 1495 1496 pagevec_init(&pvec, 0); 1497 1498 if (wbc->range_cyclic) { 1499 writeback_index = mapping->writeback_index; /* prev offset */ 1500 index = writeback_index; 1501 if (index == 0) 1502 cycled = 1; 1503 else 1504 cycled = 0; 1505 end = -1; 1506 } else { 1507 index = wbc->range_start >> PAGE_SHIFT; 1508 end = wbc->range_end >> PAGE_SHIFT; 1509 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1510 range_whole = 1; 1511 cycled = 1; /* ignore range_cyclic tests */ 1512 } 1513 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1514 tag = PAGECACHE_TAG_TOWRITE; 1515 else 1516 tag = PAGECACHE_TAG_DIRTY; 1517 retry: 1518 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1519 tag_pages_for_writeback(mapping, index, end); 1520 done_index = index; 1521 while (!done && (index <= end)) { 1522 int i; 1523 1524 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1525 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1526 if (nr_pages == 0) 1527 break; 1528 1529 for (i = 0; i < nr_pages; i++) { 1530 struct page *page = pvec.pages[i]; 1531 bool submitted = false; 1532 1533 if (page->index > end) { 1534 done = 1; 1535 break; 1536 } 1537 1538 done_index = page->index; 1539 1540 lock_page(page); 1541 1542 if (unlikely(page->mapping != mapping)) { 1543 continue_unlock: 1544 unlock_page(page); 1545 continue; 1546 } 1547 1548 if (!PageDirty(page)) { 1549 /* someone wrote it for us */ 1550 goto continue_unlock; 1551 } 1552 1553 if (PageWriteback(page)) { 1554 if (wbc->sync_mode != WB_SYNC_NONE) 1555 f2fs_wait_on_page_writeback(page, 1556 DATA, true); 1557 else 1558 goto continue_unlock; 1559 } 1560 1561 BUG_ON(PageWriteback(page)); 1562 if (!clear_page_dirty_for_io(page)) 1563 goto continue_unlock; 1564 1565 ret = __write_data_page(page, &submitted, wbc); 1566 if (unlikely(ret)) { 1567 /* 1568 * keep nr_to_write, since vfs uses this to 1569 * get # of written pages. 1570 */ 1571 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1572 unlock_page(page); 1573 ret = 0; 1574 continue; 1575 } 1576 done_index = page->index + 1; 1577 done = 1; 1578 break; 1579 } else if (submitted) { 1580 last_idx = page->index; 1581 } 1582 1583 if (--wbc->nr_to_write <= 0 && 1584 wbc->sync_mode == WB_SYNC_NONE) { 1585 done = 1; 1586 break; 1587 } 1588 } 1589 pagevec_release(&pvec); 1590 cond_resched(); 1591 } 1592 1593 if (!cycled && !done) { 1594 cycled = 1; 1595 index = 0; 1596 end = writeback_index - 1; 1597 goto retry; 1598 } 1599 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1600 mapping->writeback_index = done_index; 1601 1602 if (last_idx != ULONG_MAX) 1603 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, 1604 0, last_idx, DATA, WRITE); 1605 1606 return ret; 1607 } 1608 1609 static int f2fs_write_data_pages(struct address_space *mapping, 1610 struct writeback_control *wbc) 1611 { 1612 struct inode *inode = mapping->host; 1613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1614 struct blk_plug plug; 1615 int ret; 1616 1617 /* deal with chardevs and other special file */ 1618 if (!mapping->a_ops->writepage) 1619 return 0; 1620 1621 /* skip writing if there is no dirty page in this inode */ 1622 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1623 return 0; 1624 1625 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1626 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1627 available_free_memory(sbi, DIRTY_DENTS)) 1628 goto skip_write; 1629 1630 /* skip writing during file defragment */ 1631 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1632 goto skip_write; 1633 1634 /* during POR, we don't need to trigger writepage at all. */ 1635 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1636 goto skip_write; 1637 1638 trace_f2fs_writepages(mapping->host, wbc, DATA); 1639 1640 blk_start_plug(&plug); 1641 ret = f2fs_write_cache_pages(mapping, wbc); 1642 blk_finish_plug(&plug); 1643 /* 1644 * if some pages were truncated, we cannot guarantee its mapping->host 1645 * to detect pending bios. 1646 */ 1647 1648 remove_dirty_inode(inode); 1649 return ret; 1650 1651 skip_write: 1652 wbc->pages_skipped += get_dirty_pages(inode); 1653 trace_f2fs_writepages(mapping->host, wbc, DATA); 1654 return 0; 1655 } 1656 1657 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1658 { 1659 struct inode *inode = mapping->host; 1660 loff_t i_size = i_size_read(inode); 1661 1662 if (to > i_size) { 1663 truncate_pagecache(inode, i_size); 1664 truncate_blocks(inode, i_size, true); 1665 } 1666 } 1667 1668 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1669 struct page *page, loff_t pos, unsigned len, 1670 block_t *blk_addr, bool *node_changed) 1671 { 1672 struct inode *inode = page->mapping->host; 1673 pgoff_t index = page->index; 1674 struct dnode_of_data dn; 1675 struct page *ipage; 1676 bool locked = false; 1677 struct extent_info ei = {0,0,0}; 1678 int err = 0; 1679 1680 /* 1681 * we already allocated all the blocks, so we don't need to get 1682 * the block addresses when there is no need to fill the page. 1683 */ 1684 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 1685 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 1686 return 0; 1687 1688 if (f2fs_has_inline_data(inode) || 1689 (pos & PAGE_MASK) >= i_size_read(inode)) { 1690 f2fs_lock_op(sbi); 1691 locked = true; 1692 } 1693 restart: 1694 /* check inline_data */ 1695 ipage = get_node_page(sbi, inode->i_ino); 1696 if (IS_ERR(ipage)) { 1697 err = PTR_ERR(ipage); 1698 goto unlock_out; 1699 } 1700 1701 set_new_dnode(&dn, inode, ipage, ipage, 0); 1702 1703 if (f2fs_has_inline_data(inode)) { 1704 if (pos + len <= MAX_INLINE_DATA) { 1705 read_inline_data(page, ipage); 1706 set_inode_flag(inode, FI_DATA_EXIST); 1707 if (inode->i_nlink) 1708 set_inline_node(ipage); 1709 } else { 1710 err = f2fs_convert_inline_page(&dn, page); 1711 if (err) 1712 goto out; 1713 if (dn.data_blkaddr == NULL_ADDR) 1714 err = f2fs_get_block(&dn, index); 1715 } 1716 } else if (locked) { 1717 err = f2fs_get_block(&dn, index); 1718 } else { 1719 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1720 dn.data_blkaddr = ei.blk + index - ei.fofs; 1721 } else { 1722 /* hole case */ 1723 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1724 if (err || dn.data_blkaddr == NULL_ADDR) { 1725 f2fs_put_dnode(&dn); 1726 f2fs_lock_op(sbi); 1727 locked = true; 1728 goto restart; 1729 } 1730 } 1731 } 1732 1733 /* convert_inline_page can make node_changed */ 1734 *blk_addr = dn.data_blkaddr; 1735 *node_changed = dn.node_changed; 1736 out: 1737 f2fs_put_dnode(&dn); 1738 unlock_out: 1739 if (locked) 1740 f2fs_unlock_op(sbi); 1741 return err; 1742 } 1743 1744 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1745 loff_t pos, unsigned len, unsigned flags, 1746 struct page **pagep, void **fsdata) 1747 { 1748 struct inode *inode = mapping->host; 1749 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1750 struct page *page = NULL; 1751 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1752 bool need_balance = false; 1753 block_t blkaddr = NULL_ADDR; 1754 int err = 0; 1755 1756 trace_f2fs_write_begin(inode, pos, len, flags); 1757 1758 /* 1759 * We should check this at this moment to avoid deadlock on inode page 1760 * and #0 page. The locking rule for inline_data conversion should be: 1761 * lock_page(page #0) -> lock_page(inode_page) 1762 */ 1763 if (index != 0) { 1764 err = f2fs_convert_inline_inode(inode); 1765 if (err) 1766 goto fail; 1767 } 1768 repeat: 1769 /* 1770 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 1771 * wait_for_stable_page. Will wait that below with our IO control. 1772 */ 1773 page = pagecache_get_page(mapping, index, 1774 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 1775 if (!page) { 1776 err = -ENOMEM; 1777 goto fail; 1778 } 1779 1780 *pagep = page; 1781 1782 err = prepare_write_begin(sbi, page, pos, len, 1783 &blkaddr, &need_balance); 1784 if (err) 1785 goto fail; 1786 1787 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1788 unlock_page(page); 1789 f2fs_balance_fs(sbi, true); 1790 lock_page(page); 1791 if (page->mapping != mapping) { 1792 /* The page got truncated from under us */ 1793 f2fs_put_page(page, 1); 1794 goto repeat; 1795 } 1796 } 1797 1798 f2fs_wait_on_page_writeback(page, DATA, false); 1799 1800 /* wait for GCed encrypted page writeback */ 1801 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1802 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1803 1804 if (len == PAGE_SIZE || PageUptodate(page)) 1805 return 0; 1806 1807 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 1808 zero_user_segment(page, len, PAGE_SIZE); 1809 return 0; 1810 } 1811 1812 if (blkaddr == NEW_ADDR) { 1813 zero_user_segment(page, 0, PAGE_SIZE); 1814 SetPageUptodate(page); 1815 } else { 1816 struct bio *bio; 1817 1818 bio = f2fs_grab_bio(inode, blkaddr, 1); 1819 if (IS_ERR(bio)) { 1820 err = PTR_ERR(bio); 1821 goto fail; 1822 } 1823 bio->bi_opf = REQ_OP_READ; 1824 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1825 bio_put(bio); 1826 err = -EFAULT; 1827 goto fail; 1828 } 1829 1830 __submit_bio(sbi, bio, DATA); 1831 1832 lock_page(page); 1833 if (unlikely(page->mapping != mapping)) { 1834 f2fs_put_page(page, 1); 1835 goto repeat; 1836 } 1837 if (unlikely(!PageUptodate(page))) { 1838 err = -EIO; 1839 goto fail; 1840 } 1841 } 1842 return 0; 1843 1844 fail: 1845 f2fs_put_page(page, 1); 1846 f2fs_write_failed(mapping, pos + len); 1847 return err; 1848 } 1849 1850 static int f2fs_write_end(struct file *file, 1851 struct address_space *mapping, 1852 loff_t pos, unsigned len, unsigned copied, 1853 struct page *page, void *fsdata) 1854 { 1855 struct inode *inode = page->mapping->host; 1856 1857 trace_f2fs_write_end(inode, pos, len, copied); 1858 1859 /* 1860 * This should be come from len == PAGE_SIZE, and we expect copied 1861 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 1862 * let generic_perform_write() try to copy data again through copied=0. 1863 */ 1864 if (!PageUptodate(page)) { 1865 if (unlikely(copied != len)) 1866 copied = 0; 1867 else 1868 SetPageUptodate(page); 1869 } 1870 if (!copied) 1871 goto unlock_out; 1872 1873 set_page_dirty(page); 1874 1875 if (pos + copied > i_size_read(inode)) 1876 f2fs_i_size_write(inode, pos + copied); 1877 unlock_out: 1878 f2fs_put_page(page, 1); 1879 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1880 return copied; 1881 } 1882 1883 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1884 loff_t offset) 1885 { 1886 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1887 1888 if (offset & blocksize_mask) 1889 return -EINVAL; 1890 1891 if (iov_iter_alignment(iter) & blocksize_mask) 1892 return -EINVAL; 1893 1894 return 0; 1895 } 1896 1897 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1898 { 1899 struct address_space *mapping = iocb->ki_filp->f_mapping; 1900 struct inode *inode = mapping->host; 1901 size_t count = iov_iter_count(iter); 1902 loff_t offset = iocb->ki_pos; 1903 int rw = iov_iter_rw(iter); 1904 int err; 1905 1906 err = check_direct_IO(inode, iter, offset); 1907 if (err) 1908 return err; 1909 1910 if (__force_buffered_io(inode, rw)) 1911 return 0; 1912 1913 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1914 1915 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1916 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1917 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1918 1919 if (rw == WRITE) { 1920 if (err > 0) 1921 set_inode_flag(inode, FI_UPDATE_WRITE); 1922 else if (err < 0) 1923 f2fs_write_failed(mapping, offset + count); 1924 } 1925 1926 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1927 1928 return err; 1929 } 1930 1931 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1932 unsigned int length) 1933 { 1934 struct inode *inode = page->mapping->host; 1935 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1936 1937 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1938 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1939 return; 1940 1941 if (PageDirty(page)) { 1942 if (inode->i_ino == F2FS_META_INO(sbi)) { 1943 dec_page_count(sbi, F2FS_DIRTY_META); 1944 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 1945 dec_page_count(sbi, F2FS_DIRTY_NODES); 1946 } else { 1947 inode_dec_dirty_pages(inode); 1948 remove_dirty_inode(inode); 1949 } 1950 } 1951 1952 /* This is atomic written page, keep Private */ 1953 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1954 return; 1955 1956 set_page_private(page, 0); 1957 ClearPagePrivate(page); 1958 } 1959 1960 int f2fs_release_page(struct page *page, gfp_t wait) 1961 { 1962 /* If this is dirty page, keep PagePrivate */ 1963 if (PageDirty(page)) 1964 return 0; 1965 1966 /* This is atomic written page, keep Private */ 1967 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1968 return 0; 1969 1970 set_page_private(page, 0); 1971 ClearPagePrivate(page); 1972 return 1; 1973 } 1974 1975 /* 1976 * This was copied from __set_page_dirty_buffers which gives higher performance 1977 * in very high speed storages. (e.g., pmem) 1978 */ 1979 void f2fs_set_page_dirty_nobuffers(struct page *page) 1980 { 1981 struct address_space *mapping = page->mapping; 1982 unsigned long flags; 1983 1984 if (unlikely(!mapping)) 1985 return; 1986 1987 spin_lock(&mapping->private_lock); 1988 lock_page_memcg(page); 1989 SetPageDirty(page); 1990 spin_unlock(&mapping->private_lock); 1991 1992 spin_lock_irqsave(&mapping->tree_lock, flags); 1993 WARN_ON_ONCE(!PageUptodate(page)); 1994 account_page_dirtied(page, mapping); 1995 radix_tree_tag_set(&mapping->page_tree, 1996 page_index(page), PAGECACHE_TAG_DIRTY); 1997 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1998 unlock_page_memcg(page); 1999 2000 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2001 return; 2002 } 2003 2004 static int f2fs_set_data_page_dirty(struct page *page) 2005 { 2006 struct address_space *mapping = page->mapping; 2007 struct inode *inode = mapping->host; 2008 2009 trace_f2fs_set_page_dirty(page, DATA); 2010 2011 if (!PageUptodate(page)) 2012 SetPageUptodate(page); 2013 2014 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2015 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2016 register_inmem_page(inode, page); 2017 return 1; 2018 } 2019 /* 2020 * Previously, this page has been registered, we just 2021 * return here. 2022 */ 2023 return 0; 2024 } 2025 2026 if (!PageDirty(page)) { 2027 f2fs_set_page_dirty_nobuffers(page); 2028 update_dirty_page(inode, page); 2029 return 1; 2030 } 2031 return 0; 2032 } 2033 2034 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2035 { 2036 struct inode *inode = mapping->host; 2037 2038 if (f2fs_has_inline_data(inode)) 2039 return 0; 2040 2041 /* make sure allocating whole blocks */ 2042 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2043 filemap_write_and_wait(mapping); 2044 2045 return generic_block_bmap(mapping, block, get_data_block_bmap); 2046 } 2047 2048 #ifdef CONFIG_MIGRATION 2049 #include <linux/migrate.h> 2050 2051 int f2fs_migrate_page(struct address_space *mapping, 2052 struct page *newpage, struct page *page, enum migrate_mode mode) 2053 { 2054 int rc, extra_count; 2055 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2056 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2057 2058 BUG_ON(PageWriteback(page)); 2059 2060 /* migrating an atomic written page is safe with the inmem_lock hold */ 2061 if (atomic_written && !mutex_trylock(&fi->inmem_lock)) 2062 return -EAGAIN; 2063 2064 /* 2065 * A reference is expected if PagePrivate set when move mapping, 2066 * however F2FS breaks this for maintaining dirty page counts when 2067 * truncating pages. So here adjusting the 'extra_count' make it work. 2068 */ 2069 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2070 rc = migrate_page_move_mapping(mapping, newpage, 2071 page, NULL, mode, extra_count); 2072 if (rc != MIGRATEPAGE_SUCCESS) { 2073 if (atomic_written) 2074 mutex_unlock(&fi->inmem_lock); 2075 return rc; 2076 } 2077 2078 if (atomic_written) { 2079 struct inmem_pages *cur; 2080 list_for_each_entry(cur, &fi->inmem_pages, list) 2081 if (cur->page == page) { 2082 cur->page = newpage; 2083 break; 2084 } 2085 mutex_unlock(&fi->inmem_lock); 2086 put_page(page); 2087 get_page(newpage); 2088 } 2089 2090 if (PagePrivate(page)) 2091 SetPagePrivate(newpage); 2092 set_page_private(newpage, page_private(page)); 2093 2094 migrate_page_copy(newpage, page); 2095 2096 return MIGRATEPAGE_SUCCESS; 2097 } 2098 #endif 2099 2100 const struct address_space_operations f2fs_dblock_aops = { 2101 .readpage = f2fs_read_data_page, 2102 .readpages = f2fs_read_data_pages, 2103 .writepage = f2fs_write_data_page, 2104 .writepages = f2fs_write_data_pages, 2105 .write_begin = f2fs_write_begin, 2106 .write_end = f2fs_write_end, 2107 .set_page_dirty = f2fs_set_data_page_dirty, 2108 .invalidatepage = f2fs_invalidate_page, 2109 .releasepage = f2fs_release_page, 2110 .direct_IO = f2fs_direct_IO, 2111 .bmap = f2fs_bmap, 2112 #ifdef CONFIG_MIGRATION 2113 .migratepage = f2fs_migrate_page, 2114 #endif 2115 }; 2116