1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/cleancache.h> 21 #include <linux/sched/signal.h> 22 23 #include "f2fs.h" 24 #include "node.h" 25 #include "segment.h" 26 #include "trace.h" 27 #include <trace/events/f2fs.h> 28 29 #define NUM_PREALLOC_POST_READ_CTXS 128 30 31 static struct kmem_cache *bio_post_read_ctx_cache; 32 static mempool_t *bio_post_read_ctx_pool; 33 34 static bool __is_cp_guaranteed(struct page *page) 35 { 36 struct address_space *mapping = page->mapping; 37 struct inode *inode; 38 struct f2fs_sb_info *sbi; 39 40 if (!mapping) 41 return false; 42 43 inode = mapping->host; 44 sbi = F2FS_I_SB(inode); 45 46 if (inode->i_ino == F2FS_META_INO(sbi) || 47 inode->i_ino == F2FS_NODE_INO(sbi) || 48 S_ISDIR(inode->i_mode) || 49 (S_ISREG(inode->i_mode) && 50 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 51 is_cold_data(page)) 52 return true; 53 return false; 54 } 55 56 static enum count_type __read_io_type(struct page *page) 57 { 58 struct address_space *mapping = page_file_mapping(page); 59 60 if (mapping) { 61 struct inode *inode = mapping->host; 62 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 63 64 if (inode->i_ino == F2FS_META_INO(sbi)) 65 return F2FS_RD_META; 66 67 if (inode->i_ino == F2FS_NODE_INO(sbi)) 68 return F2FS_RD_NODE; 69 } 70 return F2FS_RD_DATA; 71 } 72 73 /* postprocessing steps for read bios */ 74 enum bio_post_read_step { 75 STEP_INITIAL = 0, 76 STEP_DECRYPT, 77 STEP_VERITY, 78 }; 79 80 struct bio_post_read_ctx { 81 struct bio *bio; 82 struct work_struct work; 83 unsigned int cur_step; 84 unsigned int enabled_steps; 85 }; 86 87 static void __read_end_io(struct bio *bio) 88 { 89 struct page *page; 90 struct bio_vec *bv; 91 struct bvec_iter_all iter_all; 92 93 bio_for_each_segment_all(bv, bio, iter_all) { 94 page = bv->bv_page; 95 96 /* PG_error was set if any post_read step failed */ 97 if (bio->bi_status || PageError(page)) { 98 ClearPageUptodate(page); 99 /* will re-read again later */ 100 ClearPageError(page); 101 } else { 102 SetPageUptodate(page); 103 } 104 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 105 unlock_page(page); 106 } 107 if (bio->bi_private) 108 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 109 bio_put(bio); 110 } 111 112 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 113 114 static void decrypt_work(struct work_struct *work) 115 { 116 struct bio_post_read_ctx *ctx = 117 container_of(work, struct bio_post_read_ctx, work); 118 119 fscrypt_decrypt_bio(ctx->bio); 120 121 bio_post_read_processing(ctx); 122 } 123 124 static void verity_work(struct work_struct *work) 125 { 126 struct bio_post_read_ctx *ctx = 127 container_of(work, struct bio_post_read_ctx, work); 128 129 fsverity_verify_bio(ctx->bio); 130 131 bio_post_read_processing(ctx); 132 } 133 134 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 135 { 136 /* 137 * We use different work queues for decryption and for verity because 138 * verity may require reading metadata pages that need decryption, and 139 * we shouldn't recurse to the same workqueue. 140 */ 141 switch (++ctx->cur_step) { 142 case STEP_DECRYPT: 143 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { 144 INIT_WORK(&ctx->work, decrypt_work); 145 fscrypt_enqueue_decrypt_work(&ctx->work); 146 return; 147 } 148 ctx->cur_step++; 149 /* fall-through */ 150 case STEP_VERITY: 151 if (ctx->enabled_steps & (1 << STEP_VERITY)) { 152 INIT_WORK(&ctx->work, verity_work); 153 fsverity_enqueue_verify_work(&ctx->work); 154 return; 155 } 156 ctx->cur_step++; 157 /* fall-through */ 158 default: 159 __read_end_io(ctx->bio); 160 } 161 } 162 163 static bool f2fs_bio_post_read_required(struct bio *bio) 164 { 165 return bio->bi_private && !bio->bi_status; 166 } 167 168 static void f2fs_read_end_io(struct bio *bio) 169 { 170 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), 171 FAULT_READ_IO)) { 172 f2fs_show_injection_info(FAULT_READ_IO); 173 bio->bi_status = BLK_STS_IOERR; 174 } 175 176 if (f2fs_bio_post_read_required(bio)) { 177 struct bio_post_read_ctx *ctx = bio->bi_private; 178 179 ctx->cur_step = STEP_INITIAL; 180 bio_post_read_processing(ctx); 181 return; 182 } 183 184 __read_end_io(bio); 185 } 186 187 static void f2fs_write_end_io(struct bio *bio) 188 { 189 struct f2fs_sb_info *sbi = bio->bi_private; 190 struct bio_vec *bvec; 191 struct bvec_iter_all iter_all; 192 193 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 194 f2fs_show_injection_info(FAULT_WRITE_IO); 195 bio->bi_status = BLK_STS_IOERR; 196 } 197 198 bio_for_each_segment_all(bvec, bio, iter_all) { 199 struct page *page = bvec->bv_page; 200 enum count_type type = WB_DATA_TYPE(page); 201 202 if (IS_DUMMY_WRITTEN_PAGE(page)) { 203 set_page_private(page, (unsigned long)NULL); 204 ClearPagePrivate(page); 205 unlock_page(page); 206 mempool_free(page, sbi->write_io_dummy); 207 208 if (unlikely(bio->bi_status)) 209 f2fs_stop_checkpoint(sbi, true); 210 continue; 211 } 212 213 fscrypt_finalize_bounce_page(&page); 214 215 if (unlikely(bio->bi_status)) { 216 mapping_set_error(page->mapping, -EIO); 217 if (type == F2FS_WB_CP_DATA) 218 f2fs_stop_checkpoint(sbi, true); 219 } 220 221 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 222 page->index != nid_of_node(page)); 223 224 dec_page_count(sbi, type); 225 if (f2fs_in_warm_node_list(sbi, page)) 226 f2fs_del_fsync_node_entry(sbi, page); 227 clear_cold_data(page); 228 end_page_writeback(page); 229 } 230 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 231 wq_has_sleeper(&sbi->cp_wait)) 232 wake_up(&sbi->cp_wait); 233 234 bio_put(bio); 235 } 236 237 /* 238 * Return true, if pre_bio's bdev is same as its target device. 239 */ 240 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 241 block_t blk_addr, struct bio *bio) 242 { 243 struct block_device *bdev = sbi->sb->s_bdev; 244 int i; 245 246 if (f2fs_is_multi_device(sbi)) { 247 for (i = 0; i < sbi->s_ndevs; i++) { 248 if (FDEV(i).start_blk <= blk_addr && 249 FDEV(i).end_blk >= blk_addr) { 250 blk_addr -= FDEV(i).start_blk; 251 bdev = FDEV(i).bdev; 252 break; 253 } 254 } 255 } 256 if (bio) { 257 bio_set_dev(bio, bdev); 258 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 259 } 260 return bdev; 261 } 262 263 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 264 { 265 int i; 266 267 if (!f2fs_is_multi_device(sbi)) 268 return 0; 269 270 for (i = 0; i < sbi->s_ndevs; i++) 271 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 272 return i; 273 return 0; 274 } 275 276 static bool __same_bdev(struct f2fs_sb_info *sbi, 277 block_t blk_addr, struct bio *bio) 278 { 279 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 280 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 281 } 282 283 /* 284 * Low-level block read/write IO operations. 285 */ 286 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 287 { 288 struct f2fs_sb_info *sbi = fio->sbi; 289 struct bio *bio; 290 291 bio = f2fs_bio_alloc(sbi, npages, true); 292 293 f2fs_target_device(sbi, fio->new_blkaddr, bio); 294 if (is_read_io(fio->op)) { 295 bio->bi_end_io = f2fs_read_end_io; 296 bio->bi_private = NULL; 297 } else { 298 bio->bi_end_io = f2fs_write_end_io; 299 bio->bi_private = sbi; 300 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 301 fio->type, fio->temp); 302 } 303 if (fio->io_wbc) 304 wbc_init_bio(fio->io_wbc, bio); 305 306 return bio; 307 } 308 309 static inline void __submit_bio(struct f2fs_sb_info *sbi, 310 struct bio *bio, enum page_type type) 311 { 312 if (!is_read_io(bio_op(bio))) { 313 unsigned int start; 314 315 if (type != DATA && type != NODE) 316 goto submit_io; 317 318 if (test_opt(sbi, LFS) && current->plug) 319 blk_finish_plug(current->plug); 320 321 if (F2FS_IO_ALIGNED(sbi)) 322 goto submit_io; 323 324 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 325 start %= F2FS_IO_SIZE(sbi); 326 327 if (start == 0) 328 goto submit_io; 329 330 /* fill dummy pages */ 331 for (; start < F2FS_IO_SIZE(sbi); start++) { 332 struct page *page = 333 mempool_alloc(sbi->write_io_dummy, 334 GFP_NOIO | __GFP_NOFAIL); 335 f2fs_bug_on(sbi, !page); 336 337 zero_user_segment(page, 0, PAGE_SIZE); 338 SetPagePrivate(page); 339 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 340 lock_page(page); 341 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 342 f2fs_bug_on(sbi, 1); 343 } 344 /* 345 * In the NODE case, we lose next block address chain. So, we 346 * need to do checkpoint in f2fs_sync_file. 347 */ 348 if (type == NODE) 349 set_sbi_flag(sbi, SBI_NEED_CP); 350 } 351 submit_io: 352 if (is_read_io(bio_op(bio))) 353 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 354 else 355 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 356 submit_bio(bio); 357 } 358 359 static void __submit_merged_bio(struct f2fs_bio_info *io) 360 { 361 struct f2fs_io_info *fio = &io->fio; 362 363 if (!io->bio) 364 return; 365 366 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 367 368 if (is_read_io(fio->op)) 369 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 370 else 371 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 372 373 __submit_bio(io->sbi, io->bio, fio->type); 374 io->bio = NULL; 375 } 376 377 static bool __has_merged_page(struct bio *bio, struct inode *inode, 378 struct page *page, nid_t ino) 379 { 380 struct bio_vec *bvec; 381 struct page *target; 382 struct bvec_iter_all iter_all; 383 384 if (!bio) 385 return false; 386 387 if (!inode && !page && !ino) 388 return true; 389 390 bio_for_each_segment_all(bvec, bio, iter_all) { 391 392 target = bvec->bv_page; 393 if (fscrypt_is_bounce_page(target)) 394 target = fscrypt_pagecache_page(target); 395 396 if (inode && inode == target->mapping->host) 397 return true; 398 if (page && page == target) 399 return true; 400 if (ino && ino == ino_of_node(target)) 401 return true; 402 } 403 404 return false; 405 } 406 407 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 408 enum page_type type, enum temp_type temp) 409 { 410 enum page_type btype = PAGE_TYPE_OF_BIO(type); 411 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 412 413 down_write(&io->io_rwsem); 414 415 /* change META to META_FLUSH in the checkpoint procedure */ 416 if (type >= META_FLUSH) { 417 io->fio.type = META_FLUSH; 418 io->fio.op = REQ_OP_WRITE; 419 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 420 if (!test_opt(sbi, NOBARRIER)) 421 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 422 } 423 __submit_merged_bio(io); 424 up_write(&io->io_rwsem); 425 } 426 427 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 428 struct inode *inode, struct page *page, 429 nid_t ino, enum page_type type, bool force) 430 { 431 enum temp_type temp; 432 bool ret = true; 433 434 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 435 if (!force) { 436 enum page_type btype = PAGE_TYPE_OF_BIO(type); 437 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 438 439 down_read(&io->io_rwsem); 440 ret = __has_merged_page(io->bio, inode, page, ino); 441 up_read(&io->io_rwsem); 442 } 443 if (ret) 444 __f2fs_submit_merged_write(sbi, type, temp); 445 446 /* TODO: use HOT temp only for meta pages now. */ 447 if (type >= META) 448 break; 449 } 450 } 451 452 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 453 { 454 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 455 } 456 457 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 458 struct inode *inode, struct page *page, 459 nid_t ino, enum page_type type) 460 { 461 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 462 } 463 464 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 465 { 466 f2fs_submit_merged_write(sbi, DATA); 467 f2fs_submit_merged_write(sbi, NODE); 468 f2fs_submit_merged_write(sbi, META); 469 } 470 471 /* 472 * Fill the locked page with data located in the block address. 473 * A caller needs to unlock the page on failure. 474 */ 475 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 476 { 477 struct bio *bio; 478 struct page *page = fio->encrypted_page ? 479 fio->encrypted_page : fio->page; 480 481 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 482 fio->is_por ? META_POR : (__is_meta_io(fio) ? 483 META_GENERIC : DATA_GENERIC_ENHANCE))) 484 return -EFSCORRUPTED; 485 486 trace_f2fs_submit_page_bio(page, fio); 487 f2fs_trace_ios(fio, 0); 488 489 /* Allocate a new bio */ 490 bio = __bio_alloc(fio, 1); 491 492 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 493 bio_put(bio); 494 return -EFAULT; 495 } 496 497 if (fio->io_wbc && !is_read_io(fio->op)) 498 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 499 500 bio_set_op_attrs(bio, fio->op, fio->op_flags); 501 502 inc_page_count(fio->sbi, is_read_io(fio->op) ? 503 __read_io_type(page): WB_DATA_TYPE(fio->page)); 504 505 __submit_bio(fio->sbi, bio, fio->type); 506 return 0; 507 } 508 509 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 510 block_t last_blkaddr, block_t cur_blkaddr) 511 { 512 if (last_blkaddr + 1 != cur_blkaddr) 513 return false; 514 return __same_bdev(sbi, cur_blkaddr, bio); 515 } 516 517 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 518 struct f2fs_io_info *fio) 519 { 520 if (io->fio.op != fio->op) 521 return false; 522 return io->fio.op_flags == fio->op_flags; 523 } 524 525 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 526 struct f2fs_bio_info *io, 527 struct f2fs_io_info *fio, 528 block_t last_blkaddr, 529 block_t cur_blkaddr) 530 { 531 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 532 unsigned int filled_blocks = 533 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 534 unsigned int io_size = F2FS_IO_SIZE(sbi); 535 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 536 537 /* IOs in bio is aligned and left space of vectors is not enough */ 538 if (!(filled_blocks % io_size) && left_vecs < io_size) 539 return false; 540 } 541 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 542 return false; 543 return io_type_is_mergeable(io, fio); 544 } 545 546 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 547 { 548 struct bio *bio = *fio->bio; 549 struct page *page = fio->encrypted_page ? 550 fio->encrypted_page : fio->page; 551 552 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 553 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 554 return -EFSCORRUPTED; 555 556 trace_f2fs_submit_page_bio(page, fio); 557 f2fs_trace_ios(fio, 0); 558 559 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 560 fio->new_blkaddr)) { 561 __submit_bio(fio->sbi, bio, fio->type); 562 bio = NULL; 563 } 564 alloc_new: 565 if (!bio) { 566 bio = __bio_alloc(fio, BIO_MAX_PAGES); 567 bio_set_op_attrs(bio, fio->op, fio->op_flags); 568 } 569 570 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 571 __submit_bio(fio->sbi, bio, fio->type); 572 bio = NULL; 573 goto alloc_new; 574 } 575 576 if (fio->io_wbc) 577 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 578 579 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 580 581 *fio->last_block = fio->new_blkaddr; 582 *fio->bio = bio; 583 584 return 0; 585 } 586 587 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio, 588 struct page *page) 589 { 590 if (!bio) 591 return; 592 593 if (!__has_merged_page(*bio, NULL, page, 0)) 594 return; 595 596 __submit_bio(sbi, *bio, DATA); 597 *bio = NULL; 598 } 599 600 void f2fs_submit_page_write(struct f2fs_io_info *fio) 601 { 602 struct f2fs_sb_info *sbi = fio->sbi; 603 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 604 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 605 struct page *bio_page; 606 607 f2fs_bug_on(sbi, is_read_io(fio->op)); 608 609 down_write(&io->io_rwsem); 610 next: 611 if (fio->in_list) { 612 spin_lock(&io->io_lock); 613 if (list_empty(&io->io_list)) { 614 spin_unlock(&io->io_lock); 615 goto out; 616 } 617 fio = list_first_entry(&io->io_list, 618 struct f2fs_io_info, list); 619 list_del(&fio->list); 620 spin_unlock(&io->io_lock); 621 } 622 623 verify_fio_blkaddr(fio); 624 625 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 626 627 /* set submitted = true as a return value */ 628 fio->submitted = true; 629 630 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 631 632 if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio, 633 io->last_block_in_bio, fio->new_blkaddr)) 634 __submit_merged_bio(io); 635 alloc_new: 636 if (io->bio == NULL) { 637 if (F2FS_IO_ALIGNED(sbi) && 638 (fio->type == DATA || fio->type == NODE) && 639 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 640 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 641 fio->retry = true; 642 goto skip; 643 } 644 io->bio = __bio_alloc(fio, BIO_MAX_PAGES); 645 io->fio = *fio; 646 } 647 648 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 649 __submit_merged_bio(io); 650 goto alloc_new; 651 } 652 653 if (fio->io_wbc) 654 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 655 656 io->last_block_in_bio = fio->new_blkaddr; 657 f2fs_trace_ios(fio, 0); 658 659 trace_f2fs_submit_page_write(fio->page, fio); 660 skip: 661 if (fio->in_list) 662 goto next; 663 out: 664 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 665 !f2fs_is_checkpoint_ready(sbi)) 666 __submit_merged_bio(io); 667 up_write(&io->io_rwsem); 668 } 669 670 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 671 { 672 return fsverity_active(inode) && 673 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 674 } 675 676 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 677 unsigned nr_pages, unsigned op_flag, 678 pgoff_t first_idx) 679 { 680 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 681 struct bio *bio; 682 struct bio_post_read_ctx *ctx; 683 unsigned int post_read_steps = 0; 684 685 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 686 if (!bio) 687 return ERR_PTR(-ENOMEM); 688 f2fs_target_device(sbi, blkaddr, bio); 689 bio->bi_end_io = f2fs_read_end_io; 690 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 691 692 if (f2fs_encrypted_file(inode)) 693 post_read_steps |= 1 << STEP_DECRYPT; 694 695 if (f2fs_need_verity(inode, first_idx)) 696 post_read_steps |= 1 << STEP_VERITY; 697 698 if (post_read_steps) { 699 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 700 if (!ctx) { 701 bio_put(bio); 702 return ERR_PTR(-ENOMEM); 703 } 704 ctx->bio = bio; 705 ctx->enabled_steps = post_read_steps; 706 bio->bi_private = ctx; 707 } 708 709 return bio; 710 } 711 712 /* This can handle encryption stuffs */ 713 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 714 block_t blkaddr) 715 { 716 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 717 struct bio *bio; 718 719 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index); 720 if (IS_ERR(bio)) 721 return PTR_ERR(bio); 722 723 /* wait for GCed page writeback via META_MAPPING */ 724 f2fs_wait_on_block_writeback(inode, blkaddr); 725 726 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 727 bio_put(bio); 728 return -EFAULT; 729 } 730 ClearPageError(page); 731 inc_page_count(sbi, F2FS_RD_DATA); 732 __submit_bio(sbi, bio, DATA); 733 return 0; 734 } 735 736 static void __set_data_blkaddr(struct dnode_of_data *dn) 737 { 738 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 739 __le32 *addr_array; 740 int base = 0; 741 742 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 743 base = get_extra_isize(dn->inode); 744 745 /* Get physical address of data block */ 746 addr_array = blkaddr_in_node(rn); 747 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 748 } 749 750 /* 751 * Lock ordering for the change of data block address: 752 * ->data_page 753 * ->node_page 754 * update block addresses in the node page 755 */ 756 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 757 { 758 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 759 __set_data_blkaddr(dn); 760 if (set_page_dirty(dn->node_page)) 761 dn->node_changed = true; 762 } 763 764 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 765 { 766 dn->data_blkaddr = blkaddr; 767 f2fs_set_data_blkaddr(dn); 768 f2fs_update_extent_cache(dn); 769 } 770 771 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 772 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 773 { 774 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 775 int err; 776 777 if (!count) 778 return 0; 779 780 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 781 return -EPERM; 782 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 783 return err; 784 785 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 786 dn->ofs_in_node, count); 787 788 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 789 790 for (; count > 0; dn->ofs_in_node++) { 791 block_t blkaddr = datablock_addr(dn->inode, 792 dn->node_page, dn->ofs_in_node); 793 if (blkaddr == NULL_ADDR) { 794 dn->data_blkaddr = NEW_ADDR; 795 __set_data_blkaddr(dn); 796 count--; 797 } 798 } 799 800 if (set_page_dirty(dn->node_page)) 801 dn->node_changed = true; 802 return 0; 803 } 804 805 /* Should keep dn->ofs_in_node unchanged */ 806 int f2fs_reserve_new_block(struct dnode_of_data *dn) 807 { 808 unsigned int ofs_in_node = dn->ofs_in_node; 809 int ret; 810 811 ret = f2fs_reserve_new_blocks(dn, 1); 812 dn->ofs_in_node = ofs_in_node; 813 return ret; 814 } 815 816 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 817 { 818 bool need_put = dn->inode_page ? false : true; 819 int err; 820 821 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 822 if (err) 823 return err; 824 825 if (dn->data_blkaddr == NULL_ADDR) 826 err = f2fs_reserve_new_block(dn); 827 if (err || need_put) 828 f2fs_put_dnode(dn); 829 return err; 830 } 831 832 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 833 { 834 struct extent_info ei = {0,0,0}; 835 struct inode *inode = dn->inode; 836 837 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 838 dn->data_blkaddr = ei.blk + index - ei.fofs; 839 return 0; 840 } 841 842 return f2fs_reserve_block(dn, index); 843 } 844 845 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 846 int op_flags, bool for_write) 847 { 848 struct address_space *mapping = inode->i_mapping; 849 struct dnode_of_data dn; 850 struct page *page; 851 struct extent_info ei = {0,0,0}; 852 int err; 853 854 page = f2fs_grab_cache_page(mapping, index, for_write); 855 if (!page) 856 return ERR_PTR(-ENOMEM); 857 858 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 859 dn.data_blkaddr = ei.blk + index - ei.fofs; 860 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 861 DATA_GENERIC_ENHANCE_READ)) { 862 err = -EFSCORRUPTED; 863 goto put_err; 864 } 865 goto got_it; 866 } 867 868 set_new_dnode(&dn, inode, NULL, NULL, 0); 869 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 870 if (err) 871 goto put_err; 872 f2fs_put_dnode(&dn); 873 874 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 875 err = -ENOENT; 876 goto put_err; 877 } 878 if (dn.data_blkaddr != NEW_ADDR && 879 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 880 dn.data_blkaddr, 881 DATA_GENERIC_ENHANCE)) { 882 err = -EFSCORRUPTED; 883 goto put_err; 884 } 885 got_it: 886 if (PageUptodate(page)) { 887 unlock_page(page); 888 return page; 889 } 890 891 /* 892 * A new dentry page is allocated but not able to be written, since its 893 * new inode page couldn't be allocated due to -ENOSPC. 894 * In such the case, its blkaddr can be remained as NEW_ADDR. 895 * see, f2fs_add_link -> f2fs_get_new_data_page -> 896 * f2fs_init_inode_metadata. 897 */ 898 if (dn.data_blkaddr == NEW_ADDR) { 899 zero_user_segment(page, 0, PAGE_SIZE); 900 if (!PageUptodate(page)) 901 SetPageUptodate(page); 902 unlock_page(page); 903 return page; 904 } 905 906 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 907 if (err) 908 goto put_err; 909 return page; 910 911 put_err: 912 f2fs_put_page(page, 1); 913 return ERR_PTR(err); 914 } 915 916 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 917 { 918 struct address_space *mapping = inode->i_mapping; 919 struct page *page; 920 921 page = find_get_page(mapping, index); 922 if (page && PageUptodate(page)) 923 return page; 924 f2fs_put_page(page, 0); 925 926 page = f2fs_get_read_data_page(inode, index, 0, false); 927 if (IS_ERR(page)) 928 return page; 929 930 if (PageUptodate(page)) 931 return page; 932 933 wait_on_page_locked(page); 934 if (unlikely(!PageUptodate(page))) { 935 f2fs_put_page(page, 0); 936 return ERR_PTR(-EIO); 937 } 938 return page; 939 } 940 941 /* 942 * If it tries to access a hole, return an error. 943 * Because, the callers, functions in dir.c and GC, should be able to know 944 * whether this page exists or not. 945 */ 946 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 947 bool for_write) 948 { 949 struct address_space *mapping = inode->i_mapping; 950 struct page *page; 951 repeat: 952 page = f2fs_get_read_data_page(inode, index, 0, for_write); 953 if (IS_ERR(page)) 954 return page; 955 956 /* wait for read completion */ 957 lock_page(page); 958 if (unlikely(page->mapping != mapping)) { 959 f2fs_put_page(page, 1); 960 goto repeat; 961 } 962 if (unlikely(!PageUptodate(page))) { 963 f2fs_put_page(page, 1); 964 return ERR_PTR(-EIO); 965 } 966 return page; 967 } 968 969 /* 970 * Caller ensures that this data page is never allocated. 971 * A new zero-filled data page is allocated in the page cache. 972 * 973 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 974 * f2fs_unlock_op(). 975 * Note that, ipage is set only by make_empty_dir, and if any error occur, 976 * ipage should be released by this function. 977 */ 978 struct page *f2fs_get_new_data_page(struct inode *inode, 979 struct page *ipage, pgoff_t index, bool new_i_size) 980 { 981 struct address_space *mapping = inode->i_mapping; 982 struct page *page; 983 struct dnode_of_data dn; 984 int err; 985 986 page = f2fs_grab_cache_page(mapping, index, true); 987 if (!page) { 988 /* 989 * before exiting, we should make sure ipage will be released 990 * if any error occur. 991 */ 992 f2fs_put_page(ipage, 1); 993 return ERR_PTR(-ENOMEM); 994 } 995 996 set_new_dnode(&dn, inode, ipage, NULL, 0); 997 err = f2fs_reserve_block(&dn, index); 998 if (err) { 999 f2fs_put_page(page, 1); 1000 return ERR_PTR(err); 1001 } 1002 if (!ipage) 1003 f2fs_put_dnode(&dn); 1004 1005 if (PageUptodate(page)) 1006 goto got_it; 1007 1008 if (dn.data_blkaddr == NEW_ADDR) { 1009 zero_user_segment(page, 0, PAGE_SIZE); 1010 if (!PageUptodate(page)) 1011 SetPageUptodate(page); 1012 } else { 1013 f2fs_put_page(page, 1); 1014 1015 /* if ipage exists, blkaddr should be NEW_ADDR */ 1016 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1017 page = f2fs_get_lock_data_page(inode, index, true); 1018 if (IS_ERR(page)) 1019 return page; 1020 } 1021 got_it: 1022 if (new_i_size && i_size_read(inode) < 1023 ((loff_t)(index + 1) << PAGE_SHIFT)) 1024 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1025 return page; 1026 } 1027 1028 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1031 struct f2fs_summary sum; 1032 struct node_info ni; 1033 block_t old_blkaddr; 1034 blkcnt_t count = 1; 1035 int err; 1036 1037 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1038 return -EPERM; 1039 1040 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1041 if (err) 1042 return err; 1043 1044 dn->data_blkaddr = datablock_addr(dn->inode, 1045 dn->node_page, dn->ofs_in_node); 1046 if (dn->data_blkaddr != NULL_ADDR) 1047 goto alloc; 1048 1049 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1050 return err; 1051 1052 alloc: 1053 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1054 old_blkaddr = dn->data_blkaddr; 1055 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1056 &sum, seg_type, NULL, false); 1057 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1058 invalidate_mapping_pages(META_MAPPING(sbi), 1059 old_blkaddr, old_blkaddr); 1060 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1061 1062 /* 1063 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1064 * data from unwritten block via dio_read. 1065 */ 1066 return 0; 1067 } 1068 1069 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1070 { 1071 struct inode *inode = file_inode(iocb->ki_filp); 1072 struct f2fs_map_blocks map; 1073 int flag; 1074 int err = 0; 1075 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1076 1077 /* convert inline data for Direct I/O*/ 1078 if (direct_io) { 1079 err = f2fs_convert_inline_inode(inode); 1080 if (err) 1081 return err; 1082 } 1083 1084 if (direct_io && allow_outplace_dio(inode, iocb, from)) 1085 return 0; 1086 1087 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 1088 return 0; 1089 1090 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1091 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1092 if (map.m_len > map.m_lblk) 1093 map.m_len -= map.m_lblk; 1094 else 1095 map.m_len = 0; 1096 1097 map.m_next_pgofs = NULL; 1098 map.m_next_extent = NULL; 1099 map.m_seg_type = NO_CHECK_TYPE; 1100 map.m_may_create = true; 1101 1102 if (direct_io) { 1103 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1104 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1105 F2FS_GET_BLOCK_PRE_AIO : 1106 F2FS_GET_BLOCK_PRE_DIO; 1107 goto map_blocks; 1108 } 1109 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1110 err = f2fs_convert_inline_inode(inode); 1111 if (err) 1112 return err; 1113 } 1114 if (f2fs_has_inline_data(inode)) 1115 return err; 1116 1117 flag = F2FS_GET_BLOCK_PRE_AIO; 1118 1119 map_blocks: 1120 err = f2fs_map_blocks(inode, &map, 1, flag); 1121 if (map.m_len > 0 && err == -ENOSPC) { 1122 if (!direct_io) 1123 set_inode_flag(inode, FI_NO_PREALLOC); 1124 err = 0; 1125 } 1126 return err; 1127 } 1128 1129 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1130 { 1131 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1132 if (lock) 1133 down_read(&sbi->node_change); 1134 else 1135 up_read(&sbi->node_change); 1136 } else { 1137 if (lock) 1138 f2fs_lock_op(sbi); 1139 else 1140 f2fs_unlock_op(sbi); 1141 } 1142 } 1143 1144 /* 1145 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 1146 * f2fs_map_blocks structure. 1147 * If original data blocks are allocated, then give them to blockdev. 1148 * Otherwise, 1149 * a. preallocate requested block addresses 1150 * b. do not use extent cache for better performance 1151 * c. give the block addresses to blockdev 1152 */ 1153 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1154 int create, int flag) 1155 { 1156 unsigned int maxblocks = map->m_len; 1157 struct dnode_of_data dn; 1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1159 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1160 pgoff_t pgofs, end_offset, end; 1161 int err = 0, ofs = 1; 1162 unsigned int ofs_in_node, last_ofs_in_node; 1163 blkcnt_t prealloc; 1164 struct extent_info ei = {0,0,0}; 1165 block_t blkaddr; 1166 unsigned int start_pgofs; 1167 1168 if (!maxblocks) 1169 return 0; 1170 1171 map->m_len = 0; 1172 map->m_flags = 0; 1173 1174 /* it only supports block size == page size */ 1175 pgofs = (pgoff_t)map->m_lblk; 1176 end = pgofs + maxblocks; 1177 1178 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1179 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1180 map->m_may_create) 1181 goto next_dnode; 1182 1183 map->m_pblk = ei.blk + pgofs - ei.fofs; 1184 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1185 map->m_flags = F2FS_MAP_MAPPED; 1186 if (map->m_next_extent) 1187 *map->m_next_extent = pgofs + map->m_len; 1188 1189 /* for hardware encryption, but to avoid potential issue in future */ 1190 if (flag == F2FS_GET_BLOCK_DIO) 1191 f2fs_wait_on_block_writeback_range(inode, 1192 map->m_pblk, map->m_len); 1193 goto out; 1194 } 1195 1196 next_dnode: 1197 if (map->m_may_create) 1198 __do_map_lock(sbi, flag, true); 1199 1200 /* When reading holes, we need its node page */ 1201 set_new_dnode(&dn, inode, NULL, NULL, 0); 1202 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1203 if (err) { 1204 if (flag == F2FS_GET_BLOCK_BMAP) 1205 map->m_pblk = 0; 1206 if (err == -ENOENT) { 1207 err = 0; 1208 if (map->m_next_pgofs) 1209 *map->m_next_pgofs = 1210 f2fs_get_next_page_offset(&dn, pgofs); 1211 if (map->m_next_extent) 1212 *map->m_next_extent = 1213 f2fs_get_next_page_offset(&dn, pgofs); 1214 } 1215 goto unlock_out; 1216 } 1217 1218 start_pgofs = pgofs; 1219 prealloc = 0; 1220 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1221 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1222 1223 next_block: 1224 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 1225 1226 if (__is_valid_data_blkaddr(blkaddr) && 1227 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1228 err = -EFSCORRUPTED; 1229 goto sync_out; 1230 } 1231 1232 if (__is_valid_data_blkaddr(blkaddr)) { 1233 /* use out-place-update for driect IO under LFS mode */ 1234 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1235 map->m_may_create) { 1236 err = __allocate_data_block(&dn, map->m_seg_type); 1237 if (err) 1238 goto sync_out; 1239 blkaddr = dn.data_blkaddr; 1240 set_inode_flag(inode, FI_APPEND_WRITE); 1241 } 1242 } else { 1243 if (create) { 1244 if (unlikely(f2fs_cp_error(sbi))) { 1245 err = -EIO; 1246 goto sync_out; 1247 } 1248 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1249 if (blkaddr == NULL_ADDR) { 1250 prealloc++; 1251 last_ofs_in_node = dn.ofs_in_node; 1252 } 1253 } else { 1254 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1255 flag != F2FS_GET_BLOCK_DIO); 1256 err = __allocate_data_block(&dn, 1257 map->m_seg_type); 1258 if (!err) 1259 set_inode_flag(inode, FI_APPEND_WRITE); 1260 } 1261 if (err) 1262 goto sync_out; 1263 map->m_flags |= F2FS_MAP_NEW; 1264 blkaddr = dn.data_blkaddr; 1265 } else { 1266 if (flag == F2FS_GET_BLOCK_BMAP) { 1267 map->m_pblk = 0; 1268 goto sync_out; 1269 } 1270 if (flag == F2FS_GET_BLOCK_PRECACHE) 1271 goto sync_out; 1272 if (flag == F2FS_GET_BLOCK_FIEMAP && 1273 blkaddr == NULL_ADDR) { 1274 if (map->m_next_pgofs) 1275 *map->m_next_pgofs = pgofs + 1; 1276 goto sync_out; 1277 } 1278 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1279 /* for defragment case */ 1280 if (map->m_next_pgofs) 1281 *map->m_next_pgofs = pgofs + 1; 1282 goto sync_out; 1283 } 1284 } 1285 } 1286 1287 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1288 goto skip; 1289 1290 if (map->m_len == 0) { 1291 /* preallocated unwritten block should be mapped for fiemap. */ 1292 if (blkaddr == NEW_ADDR) 1293 map->m_flags |= F2FS_MAP_UNWRITTEN; 1294 map->m_flags |= F2FS_MAP_MAPPED; 1295 1296 map->m_pblk = blkaddr; 1297 map->m_len = 1; 1298 } else if ((map->m_pblk != NEW_ADDR && 1299 blkaddr == (map->m_pblk + ofs)) || 1300 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1301 flag == F2FS_GET_BLOCK_PRE_DIO) { 1302 ofs++; 1303 map->m_len++; 1304 } else { 1305 goto sync_out; 1306 } 1307 1308 skip: 1309 dn.ofs_in_node++; 1310 pgofs++; 1311 1312 /* preallocate blocks in batch for one dnode page */ 1313 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1314 (pgofs == end || dn.ofs_in_node == end_offset)) { 1315 1316 dn.ofs_in_node = ofs_in_node; 1317 err = f2fs_reserve_new_blocks(&dn, prealloc); 1318 if (err) 1319 goto sync_out; 1320 1321 map->m_len += dn.ofs_in_node - ofs_in_node; 1322 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1323 err = -ENOSPC; 1324 goto sync_out; 1325 } 1326 dn.ofs_in_node = end_offset; 1327 } 1328 1329 if (pgofs >= end) 1330 goto sync_out; 1331 else if (dn.ofs_in_node < end_offset) 1332 goto next_block; 1333 1334 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1335 if (map->m_flags & F2FS_MAP_MAPPED) { 1336 unsigned int ofs = start_pgofs - map->m_lblk; 1337 1338 f2fs_update_extent_cache_range(&dn, 1339 start_pgofs, map->m_pblk + ofs, 1340 map->m_len - ofs); 1341 } 1342 } 1343 1344 f2fs_put_dnode(&dn); 1345 1346 if (map->m_may_create) { 1347 __do_map_lock(sbi, flag, false); 1348 f2fs_balance_fs(sbi, dn.node_changed); 1349 } 1350 goto next_dnode; 1351 1352 sync_out: 1353 1354 /* for hardware encryption, but to avoid potential issue in future */ 1355 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1356 f2fs_wait_on_block_writeback_range(inode, 1357 map->m_pblk, map->m_len); 1358 1359 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1360 if (map->m_flags & F2FS_MAP_MAPPED) { 1361 unsigned int ofs = start_pgofs - map->m_lblk; 1362 1363 f2fs_update_extent_cache_range(&dn, 1364 start_pgofs, map->m_pblk + ofs, 1365 map->m_len - ofs); 1366 } 1367 if (map->m_next_extent) 1368 *map->m_next_extent = pgofs + 1; 1369 } 1370 f2fs_put_dnode(&dn); 1371 unlock_out: 1372 if (map->m_may_create) { 1373 __do_map_lock(sbi, flag, false); 1374 f2fs_balance_fs(sbi, dn.node_changed); 1375 } 1376 out: 1377 trace_f2fs_map_blocks(inode, map, err); 1378 return err; 1379 } 1380 1381 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1382 { 1383 struct f2fs_map_blocks map; 1384 block_t last_lblk; 1385 int err; 1386 1387 if (pos + len > i_size_read(inode)) 1388 return false; 1389 1390 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1391 map.m_next_pgofs = NULL; 1392 map.m_next_extent = NULL; 1393 map.m_seg_type = NO_CHECK_TYPE; 1394 map.m_may_create = false; 1395 last_lblk = F2FS_BLK_ALIGN(pos + len); 1396 1397 while (map.m_lblk < last_lblk) { 1398 map.m_len = last_lblk - map.m_lblk; 1399 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1400 if (err || map.m_len == 0) 1401 return false; 1402 map.m_lblk += map.m_len; 1403 } 1404 return true; 1405 } 1406 1407 static int __get_data_block(struct inode *inode, sector_t iblock, 1408 struct buffer_head *bh, int create, int flag, 1409 pgoff_t *next_pgofs, int seg_type, bool may_write) 1410 { 1411 struct f2fs_map_blocks map; 1412 int err; 1413 1414 map.m_lblk = iblock; 1415 map.m_len = bh->b_size >> inode->i_blkbits; 1416 map.m_next_pgofs = next_pgofs; 1417 map.m_next_extent = NULL; 1418 map.m_seg_type = seg_type; 1419 map.m_may_create = may_write; 1420 1421 err = f2fs_map_blocks(inode, &map, create, flag); 1422 if (!err) { 1423 map_bh(bh, inode->i_sb, map.m_pblk); 1424 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1425 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1426 } 1427 return err; 1428 } 1429 1430 static int get_data_block(struct inode *inode, sector_t iblock, 1431 struct buffer_head *bh_result, int create, int flag, 1432 pgoff_t *next_pgofs) 1433 { 1434 return __get_data_block(inode, iblock, bh_result, create, 1435 flag, next_pgofs, 1436 NO_CHECK_TYPE, create); 1437 } 1438 1439 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1440 struct buffer_head *bh_result, int create) 1441 { 1442 return __get_data_block(inode, iblock, bh_result, create, 1443 F2FS_GET_BLOCK_DIO, NULL, 1444 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1445 IS_SWAPFILE(inode) ? false : true); 1446 } 1447 1448 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1449 struct buffer_head *bh_result, int create) 1450 { 1451 return __get_data_block(inode, iblock, bh_result, create, 1452 F2FS_GET_BLOCK_DIO, NULL, 1453 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1454 false); 1455 } 1456 1457 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1458 struct buffer_head *bh_result, int create) 1459 { 1460 /* Block number less than F2FS MAX BLOCKS */ 1461 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1462 return -EFBIG; 1463 1464 return __get_data_block(inode, iblock, bh_result, create, 1465 F2FS_GET_BLOCK_BMAP, NULL, 1466 NO_CHECK_TYPE, create); 1467 } 1468 1469 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1470 { 1471 return (offset >> inode->i_blkbits); 1472 } 1473 1474 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1475 { 1476 return (blk << inode->i_blkbits); 1477 } 1478 1479 static int f2fs_xattr_fiemap(struct inode *inode, 1480 struct fiemap_extent_info *fieinfo) 1481 { 1482 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1483 struct page *page; 1484 struct node_info ni; 1485 __u64 phys = 0, len; 1486 __u32 flags; 1487 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1488 int err = 0; 1489 1490 if (f2fs_has_inline_xattr(inode)) { 1491 int offset; 1492 1493 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1494 inode->i_ino, false); 1495 if (!page) 1496 return -ENOMEM; 1497 1498 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1499 if (err) { 1500 f2fs_put_page(page, 1); 1501 return err; 1502 } 1503 1504 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1505 offset = offsetof(struct f2fs_inode, i_addr) + 1506 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1507 get_inline_xattr_addrs(inode)); 1508 1509 phys += offset; 1510 len = inline_xattr_size(inode); 1511 1512 f2fs_put_page(page, 1); 1513 1514 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1515 1516 if (!xnid) 1517 flags |= FIEMAP_EXTENT_LAST; 1518 1519 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1520 if (err || err == 1) 1521 return err; 1522 } 1523 1524 if (xnid) { 1525 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1526 if (!page) 1527 return -ENOMEM; 1528 1529 err = f2fs_get_node_info(sbi, xnid, &ni); 1530 if (err) { 1531 f2fs_put_page(page, 1); 1532 return err; 1533 } 1534 1535 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1536 len = inode->i_sb->s_blocksize; 1537 1538 f2fs_put_page(page, 1); 1539 1540 flags = FIEMAP_EXTENT_LAST; 1541 } 1542 1543 if (phys) 1544 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1545 1546 return (err < 0 ? err : 0); 1547 } 1548 1549 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1550 u64 start, u64 len) 1551 { 1552 struct buffer_head map_bh; 1553 sector_t start_blk, last_blk; 1554 pgoff_t next_pgofs; 1555 u64 logical = 0, phys = 0, size = 0; 1556 u32 flags = 0; 1557 int ret = 0; 1558 1559 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1560 ret = f2fs_precache_extents(inode); 1561 if (ret) 1562 return ret; 1563 } 1564 1565 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1566 if (ret) 1567 return ret; 1568 1569 inode_lock(inode); 1570 1571 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1572 ret = f2fs_xattr_fiemap(inode, fieinfo); 1573 goto out; 1574 } 1575 1576 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1577 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1578 if (ret != -EAGAIN) 1579 goto out; 1580 } 1581 1582 if (logical_to_blk(inode, len) == 0) 1583 len = blk_to_logical(inode, 1); 1584 1585 start_blk = logical_to_blk(inode, start); 1586 last_blk = logical_to_blk(inode, start + len - 1); 1587 1588 next: 1589 memset(&map_bh, 0, sizeof(struct buffer_head)); 1590 map_bh.b_size = len; 1591 1592 ret = get_data_block(inode, start_blk, &map_bh, 0, 1593 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1594 if (ret) 1595 goto out; 1596 1597 /* HOLE */ 1598 if (!buffer_mapped(&map_bh)) { 1599 start_blk = next_pgofs; 1600 1601 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1602 F2FS_I_SB(inode)->max_file_blocks)) 1603 goto prep_next; 1604 1605 flags |= FIEMAP_EXTENT_LAST; 1606 } 1607 1608 if (size) { 1609 if (IS_ENCRYPTED(inode)) 1610 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1611 1612 ret = fiemap_fill_next_extent(fieinfo, logical, 1613 phys, size, flags); 1614 } 1615 1616 if (start_blk > last_blk || ret) 1617 goto out; 1618 1619 logical = blk_to_logical(inode, start_blk); 1620 phys = blk_to_logical(inode, map_bh.b_blocknr); 1621 size = map_bh.b_size; 1622 flags = 0; 1623 if (buffer_unwritten(&map_bh)) 1624 flags = FIEMAP_EXTENT_UNWRITTEN; 1625 1626 start_blk += logical_to_blk(inode, size); 1627 1628 prep_next: 1629 cond_resched(); 1630 if (fatal_signal_pending(current)) 1631 ret = -EINTR; 1632 else 1633 goto next; 1634 out: 1635 if (ret == 1) 1636 ret = 0; 1637 1638 inode_unlock(inode); 1639 return ret; 1640 } 1641 1642 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1643 { 1644 if (IS_ENABLED(CONFIG_FS_VERITY) && 1645 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1646 return inode->i_sb->s_maxbytes; 1647 1648 return i_size_read(inode); 1649 } 1650 1651 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1652 unsigned nr_pages, 1653 struct f2fs_map_blocks *map, 1654 struct bio **bio_ret, 1655 sector_t *last_block_in_bio, 1656 bool is_readahead) 1657 { 1658 struct bio *bio = *bio_ret; 1659 const unsigned blkbits = inode->i_blkbits; 1660 const unsigned blocksize = 1 << blkbits; 1661 sector_t block_in_file; 1662 sector_t last_block; 1663 sector_t last_block_in_file; 1664 sector_t block_nr; 1665 int ret = 0; 1666 1667 block_in_file = (sector_t)page_index(page); 1668 last_block = block_in_file + nr_pages; 1669 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >> 1670 blkbits; 1671 if (last_block > last_block_in_file) 1672 last_block = last_block_in_file; 1673 1674 /* just zeroing out page which is beyond EOF */ 1675 if (block_in_file >= last_block) 1676 goto zero_out; 1677 /* 1678 * Map blocks using the previous result first. 1679 */ 1680 if ((map->m_flags & F2FS_MAP_MAPPED) && 1681 block_in_file > map->m_lblk && 1682 block_in_file < (map->m_lblk + map->m_len)) 1683 goto got_it; 1684 1685 /* 1686 * Then do more f2fs_map_blocks() calls until we are 1687 * done with this page. 1688 */ 1689 map->m_lblk = block_in_file; 1690 map->m_len = last_block - block_in_file; 1691 1692 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 1693 if (ret) 1694 goto out; 1695 got_it: 1696 if ((map->m_flags & F2FS_MAP_MAPPED)) { 1697 block_nr = map->m_pblk + block_in_file - map->m_lblk; 1698 SetPageMappedToDisk(page); 1699 1700 if (!PageUptodate(page) && (!PageSwapCache(page) && 1701 !cleancache_get_page(page))) { 1702 SetPageUptodate(page); 1703 goto confused; 1704 } 1705 1706 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 1707 DATA_GENERIC_ENHANCE_READ)) { 1708 ret = -EFSCORRUPTED; 1709 goto out; 1710 } 1711 } else { 1712 zero_out: 1713 zero_user_segment(page, 0, PAGE_SIZE); 1714 if (f2fs_need_verity(inode, page->index) && 1715 !fsverity_verify_page(page)) { 1716 ret = -EIO; 1717 goto out; 1718 } 1719 if (!PageUptodate(page)) 1720 SetPageUptodate(page); 1721 unlock_page(page); 1722 goto out; 1723 } 1724 1725 /* 1726 * This page will go to BIO. Do we need to send this 1727 * BIO off first? 1728 */ 1729 if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio, 1730 *last_block_in_bio, block_nr)) { 1731 submit_and_realloc: 1732 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1733 bio = NULL; 1734 } 1735 if (bio == NULL) { 1736 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 1737 is_readahead ? REQ_RAHEAD : 0, page->index); 1738 if (IS_ERR(bio)) { 1739 ret = PTR_ERR(bio); 1740 bio = NULL; 1741 goto out; 1742 } 1743 } 1744 1745 /* 1746 * If the page is under writeback, we need to wait for 1747 * its completion to see the correct decrypted data. 1748 */ 1749 f2fs_wait_on_block_writeback(inode, block_nr); 1750 1751 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1752 goto submit_and_realloc; 1753 1754 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 1755 ClearPageError(page); 1756 *last_block_in_bio = block_nr; 1757 goto out; 1758 confused: 1759 if (bio) { 1760 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1761 bio = NULL; 1762 } 1763 unlock_page(page); 1764 out: 1765 *bio_ret = bio; 1766 return ret; 1767 } 1768 1769 /* 1770 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1771 * Major change was from block_size == page_size in f2fs by default. 1772 * 1773 * Note that the aops->readpages() function is ONLY used for read-ahead. If 1774 * this function ever deviates from doing just read-ahead, it should either 1775 * use ->readpage() or do the necessary surgery to decouple ->readpages() 1776 * from read-ahead. 1777 */ 1778 static int f2fs_mpage_readpages(struct address_space *mapping, 1779 struct list_head *pages, struct page *page, 1780 unsigned nr_pages, bool is_readahead) 1781 { 1782 struct bio *bio = NULL; 1783 sector_t last_block_in_bio = 0; 1784 struct inode *inode = mapping->host; 1785 struct f2fs_map_blocks map; 1786 int ret = 0; 1787 1788 map.m_pblk = 0; 1789 map.m_lblk = 0; 1790 map.m_len = 0; 1791 map.m_flags = 0; 1792 map.m_next_pgofs = NULL; 1793 map.m_next_extent = NULL; 1794 map.m_seg_type = NO_CHECK_TYPE; 1795 map.m_may_create = false; 1796 1797 for (; nr_pages; nr_pages--) { 1798 if (pages) { 1799 page = list_last_entry(pages, struct page, lru); 1800 1801 prefetchw(&page->flags); 1802 list_del(&page->lru); 1803 if (add_to_page_cache_lru(page, mapping, 1804 page_index(page), 1805 readahead_gfp_mask(mapping))) 1806 goto next_page; 1807 } 1808 1809 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio, 1810 &last_block_in_bio, is_readahead); 1811 if (ret) { 1812 SetPageError(page); 1813 zero_user_segment(page, 0, PAGE_SIZE); 1814 unlock_page(page); 1815 } 1816 next_page: 1817 if (pages) 1818 put_page(page); 1819 } 1820 BUG_ON(pages && !list_empty(pages)); 1821 if (bio) 1822 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1823 return pages ? 0 : ret; 1824 } 1825 1826 static int f2fs_read_data_page(struct file *file, struct page *page) 1827 { 1828 struct inode *inode = page_file_mapping(page)->host; 1829 int ret = -EAGAIN; 1830 1831 trace_f2fs_readpage(page, DATA); 1832 1833 /* If the file has inline data, try to read it directly */ 1834 if (f2fs_has_inline_data(inode)) 1835 ret = f2fs_read_inline_data(inode, page); 1836 if (ret == -EAGAIN) 1837 ret = f2fs_mpage_readpages(page_file_mapping(page), 1838 NULL, page, 1, false); 1839 return ret; 1840 } 1841 1842 static int f2fs_read_data_pages(struct file *file, 1843 struct address_space *mapping, 1844 struct list_head *pages, unsigned nr_pages) 1845 { 1846 struct inode *inode = mapping->host; 1847 struct page *page = list_last_entry(pages, struct page, lru); 1848 1849 trace_f2fs_readpages(inode, page, nr_pages); 1850 1851 /* If the file has inline data, skip readpages */ 1852 if (f2fs_has_inline_data(inode)) 1853 return 0; 1854 1855 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true); 1856 } 1857 1858 static int encrypt_one_page(struct f2fs_io_info *fio) 1859 { 1860 struct inode *inode = fio->page->mapping->host; 1861 struct page *mpage; 1862 gfp_t gfp_flags = GFP_NOFS; 1863 1864 if (!f2fs_encrypted_file(inode)) 1865 return 0; 1866 1867 /* wait for GCed page writeback via META_MAPPING */ 1868 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 1869 1870 retry_encrypt: 1871 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page, 1872 PAGE_SIZE, 0, 1873 gfp_flags); 1874 if (IS_ERR(fio->encrypted_page)) { 1875 /* flush pending IOs and wait for a while in the ENOMEM case */ 1876 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1877 f2fs_flush_merged_writes(fio->sbi); 1878 congestion_wait(BLK_RW_ASYNC, HZ/50); 1879 gfp_flags |= __GFP_NOFAIL; 1880 goto retry_encrypt; 1881 } 1882 return PTR_ERR(fio->encrypted_page); 1883 } 1884 1885 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 1886 if (mpage) { 1887 if (PageUptodate(mpage)) 1888 memcpy(page_address(mpage), 1889 page_address(fio->encrypted_page), PAGE_SIZE); 1890 f2fs_put_page(mpage, 1); 1891 } 1892 return 0; 1893 } 1894 1895 static inline bool check_inplace_update_policy(struct inode *inode, 1896 struct f2fs_io_info *fio) 1897 { 1898 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1899 unsigned int policy = SM_I(sbi)->ipu_policy; 1900 1901 if (policy & (0x1 << F2FS_IPU_FORCE)) 1902 return true; 1903 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 1904 return true; 1905 if (policy & (0x1 << F2FS_IPU_UTIL) && 1906 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1907 return true; 1908 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 1909 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1910 return true; 1911 1912 /* 1913 * IPU for rewrite async pages 1914 */ 1915 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1916 fio && fio->op == REQ_OP_WRITE && 1917 !(fio->op_flags & REQ_SYNC) && 1918 !IS_ENCRYPTED(inode)) 1919 return true; 1920 1921 /* this is only set during fdatasync */ 1922 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1923 is_inode_flag_set(inode, FI_NEED_IPU)) 1924 return true; 1925 1926 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1927 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1928 return true; 1929 1930 return false; 1931 } 1932 1933 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1934 { 1935 if (f2fs_is_pinned_file(inode)) 1936 return true; 1937 1938 /* if this is cold file, we should overwrite to avoid fragmentation */ 1939 if (file_is_cold(inode)) 1940 return true; 1941 1942 return check_inplace_update_policy(inode, fio); 1943 } 1944 1945 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1946 { 1947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1948 1949 if (test_opt(sbi, LFS)) 1950 return true; 1951 if (S_ISDIR(inode->i_mode)) 1952 return true; 1953 if (IS_NOQUOTA(inode)) 1954 return true; 1955 if (f2fs_is_atomic_file(inode)) 1956 return true; 1957 if (fio) { 1958 if (is_cold_data(fio->page)) 1959 return true; 1960 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1961 return true; 1962 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1963 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1964 return true; 1965 } 1966 return false; 1967 } 1968 1969 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1970 { 1971 struct inode *inode = fio->page->mapping->host; 1972 1973 if (f2fs_should_update_outplace(inode, fio)) 1974 return false; 1975 1976 return f2fs_should_update_inplace(inode, fio); 1977 } 1978 1979 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 1980 { 1981 struct page *page = fio->page; 1982 struct inode *inode = page->mapping->host; 1983 struct dnode_of_data dn; 1984 struct extent_info ei = {0,0,0}; 1985 struct node_info ni; 1986 bool ipu_force = false; 1987 int err = 0; 1988 1989 set_new_dnode(&dn, inode, NULL, NULL, 0); 1990 if (need_inplace_update(fio) && 1991 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1992 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1993 1994 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1995 DATA_GENERIC_ENHANCE)) 1996 return -EFSCORRUPTED; 1997 1998 ipu_force = true; 1999 fio->need_lock = LOCK_DONE; 2000 goto got_it; 2001 } 2002 2003 /* Deadlock due to between page->lock and f2fs_lock_op */ 2004 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2005 return -EAGAIN; 2006 2007 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2008 if (err) 2009 goto out; 2010 2011 fio->old_blkaddr = dn.data_blkaddr; 2012 2013 /* This page is already truncated */ 2014 if (fio->old_blkaddr == NULL_ADDR) { 2015 ClearPageUptodate(page); 2016 clear_cold_data(page); 2017 goto out_writepage; 2018 } 2019 got_it: 2020 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2021 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2022 DATA_GENERIC_ENHANCE)) { 2023 err = -EFSCORRUPTED; 2024 goto out_writepage; 2025 } 2026 /* 2027 * If current allocation needs SSR, 2028 * it had better in-place writes for updated data. 2029 */ 2030 if (ipu_force || 2031 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2032 need_inplace_update(fio))) { 2033 err = encrypt_one_page(fio); 2034 if (err) 2035 goto out_writepage; 2036 2037 set_page_writeback(page); 2038 ClearPageError(page); 2039 f2fs_put_dnode(&dn); 2040 if (fio->need_lock == LOCK_REQ) 2041 f2fs_unlock_op(fio->sbi); 2042 err = f2fs_inplace_write_data(fio); 2043 if (err) { 2044 if (f2fs_encrypted_file(inode)) 2045 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2046 if (PageWriteback(page)) 2047 end_page_writeback(page); 2048 } else { 2049 set_inode_flag(inode, FI_UPDATE_WRITE); 2050 } 2051 trace_f2fs_do_write_data_page(fio->page, IPU); 2052 return err; 2053 } 2054 2055 if (fio->need_lock == LOCK_RETRY) { 2056 if (!f2fs_trylock_op(fio->sbi)) { 2057 err = -EAGAIN; 2058 goto out_writepage; 2059 } 2060 fio->need_lock = LOCK_REQ; 2061 } 2062 2063 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2064 if (err) 2065 goto out_writepage; 2066 2067 fio->version = ni.version; 2068 2069 err = encrypt_one_page(fio); 2070 if (err) 2071 goto out_writepage; 2072 2073 set_page_writeback(page); 2074 ClearPageError(page); 2075 2076 /* LFS mode write path */ 2077 f2fs_outplace_write_data(&dn, fio); 2078 trace_f2fs_do_write_data_page(page, OPU); 2079 set_inode_flag(inode, FI_APPEND_WRITE); 2080 if (page->index == 0) 2081 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2082 out_writepage: 2083 f2fs_put_dnode(&dn); 2084 out: 2085 if (fio->need_lock == LOCK_REQ) 2086 f2fs_unlock_op(fio->sbi); 2087 return err; 2088 } 2089 2090 static int __write_data_page(struct page *page, bool *submitted, 2091 struct bio **bio, 2092 sector_t *last_block, 2093 struct writeback_control *wbc, 2094 enum iostat_type io_type) 2095 { 2096 struct inode *inode = page->mapping->host; 2097 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2098 loff_t i_size = i_size_read(inode); 2099 const pgoff_t end_index = ((unsigned long long) i_size) 2100 >> PAGE_SHIFT; 2101 loff_t psize = (page->index + 1) << PAGE_SHIFT; 2102 unsigned offset = 0; 2103 bool need_balance_fs = false; 2104 int err = 0; 2105 struct f2fs_io_info fio = { 2106 .sbi = sbi, 2107 .ino = inode->i_ino, 2108 .type = DATA, 2109 .op = REQ_OP_WRITE, 2110 .op_flags = wbc_to_write_flags(wbc), 2111 .old_blkaddr = NULL_ADDR, 2112 .page = page, 2113 .encrypted_page = NULL, 2114 .submitted = false, 2115 .need_lock = LOCK_RETRY, 2116 .io_type = io_type, 2117 .io_wbc = wbc, 2118 .bio = bio, 2119 .last_block = last_block, 2120 }; 2121 2122 trace_f2fs_writepage(page, DATA); 2123 2124 /* we should bypass data pages to proceed the kworkder jobs */ 2125 if (unlikely(f2fs_cp_error(sbi))) { 2126 mapping_set_error(page->mapping, -EIO); 2127 /* 2128 * don't drop any dirty dentry pages for keeping lastest 2129 * directory structure. 2130 */ 2131 if (S_ISDIR(inode->i_mode)) 2132 goto redirty_out; 2133 goto out; 2134 } 2135 2136 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2137 goto redirty_out; 2138 2139 if (page->index < end_index || f2fs_verity_in_progress(inode)) 2140 goto write; 2141 2142 /* 2143 * If the offset is out-of-range of file size, 2144 * this page does not have to be written to disk. 2145 */ 2146 offset = i_size & (PAGE_SIZE - 1); 2147 if ((page->index >= end_index + 1) || !offset) 2148 goto out; 2149 2150 zero_user_segment(page, offset, PAGE_SIZE); 2151 write: 2152 if (f2fs_is_drop_cache(inode)) 2153 goto out; 2154 /* we should not write 0'th page having journal header */ 2155 if (f2fs_is_volatile_file(inode) && (!page->index || 2156 (!wbc->for_reclaim && 2157 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2158 goto redirty_out; 2159 2160 /* Dentry blocks are controlled by checkpoint */ 2161 if (S_ISDIR(inode->i_mode)) { 2162 fio.need_lock = LOCK_DONE; 2163 err = f2fs_do_write_data_page(&fio); 2164 goto done; 2165 } 2166 2167 if (!wbc->for_reclaim) 2168 need_balance_fs = true; 2169 else if (has_not_enough_free_secs(sbi, 0, 0)) 2170 goto redirty_out; 2171 else 2172 set_inode_flag(inode, FI_HOT_DATA); 2173 2174 err = -EAGAIN; 2175 if (f2fs_has_inline_data(inode)) { 2176 err = f2fs_write_inline_data(inode, page); 2177 if (!err) 2178 goto out; 2179 } 2180 2181 if (err == -EAGAIN) { 2182 err = f2fs_do_write_data_page(&fio); 2183 if (err == -EAGAIN) { 2184 fio.need_lock = LOCK_REQ; 2185 err = f2fs_do_write_data_page(&fio); 2186 } 2187 } 2188 2189 if (err) { 2190 file_set_keep_isize(inode); 2191 } else { 2192 down_write(&F2FS_I(inode)->i_sem); 2193 if (F2FS_I(inode)->last_disk_size < psize) 2194 F2FS_I(inode)->last_disk_size = psize; 2195 up_write(&F2FS_I(inode)->i_sem); 2196 } 2197 2198 done: 2199 if (err && err != -ENOENT) 2200 goto redirty_out; 2201 2202 out: 2203 inode_dec_dirty_pages(inode); 2204 if (err) { 2205 ClearPageUptodate(page); 2206 clear_cold_data(page); 2207 } 2208 2209 if (wbc->for_reclaim) { 2210 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2211 clear_inode_flag(inode, FI_HOT_DATA); 2212 f2fs_remove_dirty_inode(inode); 2213 submitted = NULL; 2214 } 2215 2216 unlock_page(page); 2217 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2218 !F2FS_I(inode)->cp_task) { 2219 f2fs_submit_ipu_bio(sbi, bio, page); 2220 f2fs_balance_fs(sbi, need_balance_fs); 2221 } 2222 2223 if (unlikely(f2fs_cp_error(sbi))) { 2224 f2fs_submit_ipu_bio(sbi, bio, page); 2225 f2fs_submit_merged_write(sbi, DATA); 2226 submitted = NULL; 2227 } 2228 2229 if (submitted) 2230 *submitted = fio.submitted; 2231 2232 return 0; 2233 2234 redirty_out: 2235 redirty_page_for_writepage(wbc, page); 2236 /* 2237 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2238 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2239 * file_write_and_wait_range() will see EIO error, which is critical 2240 * to return value of fsync() followed by atomic_write failure to user. 2241 */ 2242 if (!err || wbc->for_reclaim) 2243 return AOP_WRITEPAGE_ACTIVATE; 2244 unlock_page(page); 2245 return err; 2246 } 2247 2248 static int f2fs_write_data_page(struct page *page, 2249 struct writeback_control *wbc) 2250 { 2251 return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO); 2252 } 2253 2254 /* 2255 * This function was copied from write_cche_pages from mm/page-writeback.c. 2256 * The major change is making write step of cold data page separately from 2257 * warm/hot data page. 2258 */ 2259 static int f2fs_write_cache_pages(struct address_space *mapping, 2260 struct writeback_control *wbc, 2261 enum iostat_type io_type) 2262 { 2263 int ret = 0; 2264 int done = 0; 2265 struct pagevec pvec; 2266 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2267 struct bio *bio = NULL; 2268 sector_t last_block; 2269 int nr_pages; 2270 pgoff_t uninitialized_var(writeback_index); 2271 pgoff_t index; 2272 pgoff_t end; /* Inclusive */ 2273 pgoff_t done_index; 2274 int cycled; 2275 int range_whole = 0; 2276 xa_mark_t tag; 2277 int nwritten = 0; 2278 2279 pagevec_init(&pvec); 2280 2281 if (get_dirty_pages(mapping->host) <= 2282 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2283 set_inode_flag(mapping->host, FI_HOT_DATA); 2284 else 2285 clear_inode_flag(mapping->host, FI_HOT_DATA); 2286 2287 if (wbc->range_cyclic) { 2288 writeback_index = mapping->writeback_index; /* prev offset */ 2289 index = writeback_index; 2290 if (index == 0) 2291 cycled = 1; 2292 else 2293 cycled = 0; 2294 end = -1; 2295 } else { 2296 index = wbc->range_start >> PAGE_SHIFT; 2297 end = wbc->range_end >> PAGE_SHIFT; 2298 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2299 range_whole = 1; 2300 cycled = 1; /* ignore range_cyclic tests */ 2301 } 2302 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2303 tag = PAGECACHE_TAG_TOWRITE; 2304 else 2305 tag = PAGECACHE_TAG_DIRTY; 2306 retry: 2307 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2308 tag_pages_for_writeback(mapping, index, end); 2309 done_index = index; 2310 while (!done && (index <= end)) { 2311 int i; 2312 2313 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2314 tag); 2315 if (nr_pages == 0) 2316 break; 2317 2318 for (i = 0; i < nr_pages; i++) { 2319 struct page *page = pvec.pages[i]; 2320 bool submitted = false; 2321 2322 /* give a priority to WB_SYNC threads */ 2323 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2324 wbc->sync_mode == WB_SYNC_NONE) { 2325 done = 1; 2326 break; 2327 } 2328 2329 done_index = page->index; 2330 retry_write: 2331 lock_page(page); 2332 2333 if (unlikely(page->mapping != mapping)) { 2334 continue_unlock: 2335 unlock_page(page); 2336 continue; 2337 } 2338 2339 if (!PageDirty(page)) { 2340 /* someone wrote it for us */ 2341 goto continue_unlock; 2342 } 2343 2344 if (PageWriteback(page)) { 2345 if (wbc->sync_mode != WB_SYNC_NONE) { 2346 f2fs_wait_on_page_writeback(page, 2347 DATA, true, true); 2348 f2fs_submit_ipu_bio(sbi, &bio, page); 2349 } else { 2350 goto continue_unlock; 2351 } 2352 } 2353 2354 if (!clear_page_dirty_for_io(page)) 2355 goto continue_unlock; 2356 2357 ret = __write_data_page(page, &submitted, &bio, 2358 &last_block, wbc, io_type); 2359 if (unlikely(ret)) { 2360 /* 2361 * keep nr_to_write, since vfs uses this to 2362 * get # of written pages. 2363 */ 2364 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2365 unlock_page(page); 2366 ret = 0; 2367 continue; 2368 } else if (ret == -EAGAIN) { 2369 ret = 0; 2370 if (wbc->sync_mode == WB_SYNC_ALL) { 2371 cond_resched(); 2372 congestion_wait(BLK_RW_ASYNC, 2373 HZ/50); 2374 goto retry_write; 2375 } 2376 continue; 2377 } 2378 done_index = page->index + 1; 2379 done = 1; 2380 break; 2381 } else if (submitted) { 2382 nwritten++; 2383 } 2384 2385 if (--wbc->nr_to_write <= 0 && 2386 wbc->sync_mode == WB_SYNC_NONE) { 2387 done = 1; 2388 break; 2389 } 2390 } 2391 pagevec_release(&pvec); 2392 cond_resched(); 2393 } 2394 2395 if (!cycled && !done) { 2396 cycled = 1; 2397 index = 0; 2398 end = writeback_index - 1; 2399 goto retry; 2400 } 2401 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2402 mapping->writeback_index = done_index; 2403 2404 if (nwritten) 2405 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 2406 NULL, 0, DATA); 2407 /* submit cached bio of IPU write */ 2408 if (bio) 2409 __submit_bio(sbi, bio, DATA); 2410 2411 return ret; 2412 } 2413 2414 static inline bool __should_serialize_io(struct inode *inode, 2415 struct writeback_control *wbc) 2416 { 2417 if (!S_ISREG(inode->i_mode)) 2418 return false; 2419 if (IS_NOQUOTA(inode)) 2420 return false; 2421 /* to avoid deadlock in path of data flush */ 2422 if (F2FS_I(inode)->cp_task) 2423 return false; 2424 if (wbc->sync_mode != WB_SYNC_ALL) 2425 return true; 2426 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 2427 return true; 2428 return false; 2429 } 2430 2431 static int __f2fs_write_data_pages(struct address_space *mapping, 2432 struct writeback_control *wbc, 2433 enum iostat_type io_type) 2434 { 2435 struct inode *inode = mapping->host; 2436 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2437 struct blk_plug plug; 2438 int ret; 2439 bool locked = false; 2440 2441 /* deal with chardevs and other special file */ 2442 if (!mapping->a_ops->writepage) 2443 return 0; 2444 2445 /* skip writing if there is no dirty page in this inode */ 2446 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2447 return 0; 2448 2449 /* during POR, we don't need to trigger writepage at all. */ 2450 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2451 goto skip_write; 2452 2453 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 2454 wbc->sync_mode == WB_SYNC_NONE && 2455 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2456 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 2457 goto skip_write; 2458 2459 /* skip writing during file defragment */ 2460 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2461 goto skip_write; 2462 2463 trace_f2fs_writepages(mapping->host, wbc, DATA); 2464 2465 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2466 if (wbc->sync_mode == WB_SYNC_ALL) 2467 atomic_inc(&sbi->wb_sync_req[DATA]); 2468 else if (atomic_read(&sbi->wb_sync_req[DATA])) 2469 goto skip_write; 2470 2471 if (__should_serialize_io(inode, wbc)) { 2472 mutex_lock(&sbi->writepages); 2473 locked = true; 2474 } 2475 2476 blk_start_plug(&plug); 2477 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2478 blk_finish_plug(&plug); 2479 2480 if (locked) 2481 mutex_unlock(&sbi->writepages); 2482 2483 if (wbc->sync_mode == WB_SYNC_ALL) 2484 atomic_dec(&sbi->wb_sync_req[DATA]); 2485 /* 2486 * if some pages were truncated, we cannot guarantee its mapping->host 2487 * to detect pending bios. 2488 */ 2489 2490 f2fs_remove_dirty_inode(inode); 2491 return ret; 2492 2493 skip_write: 2494 wbc->pages_skipped += get_dirty_pages(inode); 2495 trace_f2fs_writepages(mapping->host, wbc, DATA); 2496 return 0; 2497 } 2498 2499 static int f2fs_write_data_pages(struct address_space *mapping, 2500 struct writeback_control *wbc) 2501 { 2502 struct inode *inode = mapping->host; 2503 2504 return __f2fs_write_data_pages(mapping, wbc, 2505 F2FS_I(inode)->cp_task == current ? 2506 FS_CP_DATA_IO : FS_DATA_IO); 2507 } 2508 2509 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2510 { 2511 struct inode *inode = mapping->host; 2512 loff_t i_size = i_size_read(inode); 2513 2514 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 2515 if (to > i_size && !f2fs_verity_in_progress(inode)) { 2516 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2517 down_write(&F2FS_I(inode)->i_mmap_sem); 2518 2519 truncate_pagecache(inode, i_size); 2520 if (!IS_NOQUOTA(inode)) 2521 f2fs_truncate_blocks(inode, i_size, true); 2522 2523 up_write(&F2FS_I(inode)->i_mmap_sem); 2524 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2525 } 2526 } 2527 2528 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2529 struct page *page, loff_t pos, unsigned len, 2530 block_t *blk_addr, bool *node_changed) 2531 { 2532 struct inode *inode = page->mapping->host; 2533 pgoff_t index = page->index; 2534 struct dnode_of_data dn; 2535 struct page *ipage; 2536 bool locked = false; 2537 struct extent_info ei = {0,0,0}; 2538 int err = 0; 2539 int flag; 2540 2541 /* 2542 * we already allocated all the blocks, so we don't need to get 2543 * the block addresses when there is no need to fill the page. 2544 */ 2545 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2546 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 2547 !f2fs_verity_in_progress(inode)) 2548 return 0; 2549 2550 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 2551 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 2552 flag = F2FS_GET_BLOCK_DEFAULT; 2553 else 2554 flag = F2FS_GET_BLOCK_PRE_AIO; 2555 2556 if (f2fs_has_inline_data(inode) || 2557 (pos & PAGE_MASK) >= i_size_read(inode)) { 2558 __do_map_lock(sbi, flag, true); 2559 locked = true; 2560 } 2561 restart: 2562 /* check inline_data */ 2563 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2564 if (IS_ERR(ipage)) { 2565 err = PTR_ERR(ipage); 2566 goto unlock_out; 2567 } 2568 2569 set_new_dnode(&dn, inode, ipage, ipage, 0); 2570 2571 if (f2fs_has_inline_data(inode)) { 2572 if (pos + len <= MAX_INLINE_DATA(inode)) { 2573 f2fs_do_read_inline_data(page, ipage); 2574 set_inode_flag(inode, FI_DATA_EXIST); 2575 if (inode->i_nlink) 2576 set_inline_node(ipage); 2577 } else { 2578 err = f2fs_convert_inline_page(&dn, page); 2579 if (err) 2580 goto out; 2581 if (dn.data_blkaddr == NULL_ADDR) 2582 err = f2fs_get_block(&dn, index); 2583 } 2584 } else if (locked) { 2585 err = f2fs_get_block(&dn, index); 2586 } else { 2587 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2588 dn.data_blkaddr = ei.blk + index - ei.fofs; 2589 } else { 2590 /* hole case */ 2591 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 2592 if (err || dn.data_blkaddr == NULL_ADDR) { 2593 f2fs_put_dnode(&dn); 2594 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2595 true); 2596 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 2597 locked = true; 2598 goto restart; 2599 } 2600 } 2601 } 2602 2603 /* convert_inline_page can make node_changed */ 2604 *blk_addr = dn.data_blkaddr; 2605 *node_changed = dn.node_changed; 2606 out: 2607 f2fs_put_dnode(&dn); 2608 unlock_out: 2609 if (locked) 2610 __do_map_lock(sbi, flag, false); 2611 return err; 2612 } 2613 2614 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2615 loff_t pos, unsigned len, unsigned flags, 2616 struct page **pagep, void **fsdata) 2617 { 2618 struct inode *inode = mapping->host; 2619 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2620 struct page *page = NULL; 2621 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2622 bool need_balance = false, drop_atomic = false; 2623 block_t blkaddr = NULL_ADDR; 2624 int err = 0; 2625 2626 trace_f2fs_write_begin(inode, pos, len, flags); 2627 2628 if (!f2fs_is_checkpoint_ready(sbi)) { 2629 err = -ENOSPC; 2630 goto fail; 2631 } 2632 2633 if ((f2fs_is_atomic_file(inode) && 2634 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 2635 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2636 err = -ENOMEM; 2637 drop_atomic = true; 2638 goto fail; 2639 } 2640 2641 /* 2642 * We should check this at this moment to avoid deadlock on inode page 2643 * and #0 page. The locking rule for inline_data conversion should be: 2644 * lock_page(page #0) -> lock_page(inode_page) 2645 */ 2646 if (index != 0) { 2647 err = f2fs_convert_inline_inode(inode); 2648 if (err) 2649 goto fail; 2650 } 2651 repeat: 2652 /* 2653 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2654 * wait_for_stable_page. Will wait that below with our IO control. 2655 */ 2656 page = f2fs_pagecache_get_page(mapping, index, 2657 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2658 if (!page) { 2659 err = -ENOMEM; 2660 goto fail; 2661 } 2662 2663 *pagep = page; 2664 2665 err = prepare_write_begin(sbi, page, pos, len, 2666 &blkaddr, &need_balance); 2667 if (err) 2668 goto fail; 2669 2670 if (need_balance && !IS_NOQUOTA(inode) && 2671 has_not_enough_free_secs(sbi, 0, 0)) { 2672 unlock_page(page); 2673 f2fs_balance_fs(sbi, true); 2674 lock_page(page); 2675 if (page->mapping != mapping) { 2676 /* The page got truncated from under us */ 2677 f2fs_put_page(page, 1); 2678 goto repeat; 2679 } 2680 } 2681 2682 f2fs_wait_on_page_writeback(page, DATA, false, true); 2683 2684 if (len == PAGE_SIZE || PageUptodate(page)) 2685 return 0; 2686 2687 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 2688 !f2fs_verity_in_progress(inode)) { 2689 zero_user_segment(page, len, PAGE_SIZE); 2690 return 0; 2691 } 2692 2693 if (blkaddr == NEW_ADDR) { 2694 zero_user_segment(page, 0, PAGE_SIZE); 2695 SetPageUptodate(page); 2696 } else { 2697 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 2698 DATA_GENERIC_ENHANCE_READ)) { 2699 err = -EFSCORRUPTED; 2700 goto fail; 2701 } 2702 err = f2fs_submit_page_read(inode, page, blkaddr); 2703 if (err) 2704 goto fail; 2705 2706 lock_page(page); 2707 if (unlikely(page->mapping != mapping)) { 2708 f2fs_put_page(page, 1); 2709 goto repeat; 2710 } 2711 if (unlikely(!PageUptodate(page))) { 2712 err = -EIO; 2713 goto fail; 2714 } 2715 } 2716 return 0; 2717 2718 fail: 2719 f2fs_put_page(page, 1); 2720 f2fs_write_failed(mapping, pos + len); 2721 if (drop_atomic) 2722 f2fs_drop_inmem_pages_all(sbi, false); 2723 return err; 2724 } 2725 2726 static int f2fs_write_end(struct file *file, 2727 struct address_space *mapping, 2728 loff_t pos, unsigned len, unsigned copied, 2729 struct page *page, void *fsdata) 2730 { 2731 struct inode *inode = page->mapping->host; 2732 2733 trace_f2fs_write_end(inode, pos, len, copied); 2734 2735 /* 2736 * This should be come from len == PAGE_SIZE, and we expect copied 2737 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2738 * let generic_perform_write() try to copy data again through copied=0. 2739 */ 2740 if (!PageUptodate(page)) { 2741 if (unlikely(copied != len)) 2742 copied = 0; 2743 else 2744 SetPageUptodate(page); 2745 } 2746 if (!copied) 2747 goto unlock_out; 2748 2749 set_page_dirty(page); 2750 2751 if (pos + copied > i_size_read(inode) && 2752 !f2fs_verity_in_progress(inode)) 2753 f2fs_i_size_write(inode, pos + copied); 2754 unlock_out: 2755 f2fs_put_page(page, 1); 2756 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2757 return copied; 2758 } 2759 2760 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2761 loff_t offset) 2762 { 2763 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 2764 unsigned blkbits = i_blkbits; 2765 unsigned blocksize_mask = (1 << blkbits) - 1; 2766 unsigned long align = offset | iov_iter_alignment(iter); 2767 struct block_device *bdev = inode->i_sb->s_bdev; 2768 2769 if (align & blocksize_mask) { 2770 if (bdev) 2771 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 2772 blocksize_mask = (1 << blkbits) - 1; 2773 if (align & blocksize_mask) 2774 return -EINVAL; 2775 return 1; 2776 } 2777 return 0; 2778 } 2779 2780 static void f2fs_dio_end_io(struct bio *bio) 2781 { 2782 struct f2fs_private_dio *dio = bio->bi_private; 2783 2784 dec_page_count(F2FS_I_SB(dio->inode), 2785 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2786 2787 bio->bi_private = dio->orig_private; 2788 bio->bi_end_io = dio->orig_end_io; 2789 2790 kvfree(dio); 2791 2792 bio_endio(bio); 2793 } 2794 2795 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 2796 loff_t file_offset) 2797 { 2798 struct f2fs_private_dio *dio; 2799 bool write = (bio_op(bio) == REQ_OP_WRITE); 2800 2801 dio = f2fs_kzalloc(F2FS_I_SB(inode), 2802 sizeof(struct f2fs_private_dio), GFP_NOFS); 2803 if (!dio) 2804 goto out; 2805 2806 dio->inode = inode; 2807 dio->orig_end_io = bio->bi_end_io; 2808 dio->orig_private = bio->bi_private; 2809 dio->write = write; 2810 2811 bio->bi_end_io = f2fs_dio_end_io; 2812 bio->bi_private = dio; 2813 2814 inc_page_count(F2FS_I_SB(inode), 2815 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2816 2817 submit_bio(bio); 2818 return; 2819 out: 2820 bio->bi_status = BLK_STS_IOERR; 2821 bio_endio(bio); 2822 } 2823 2824 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2825 { 2826 struct address_space *mapping = iocb->ki_filp->f_mapping; 2827 struct inode *inode = mapping->host; 2828 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2829 struct f2fs_inode_info *fi = F2FS_I(inode); 2830 size_t count = iov_iter_count(iter); 2831 loff_t offset = iocb->ki_pos; 2832 int rw = iov_iter_rw(iter); 2833 int err; 2834 enum rw_hint hint = iocb->ki_hint; 2835 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2836 bool do_opu; 2837 2838 err = check_direct_IO(inode, iter, offset); 2839 if (err) 2840 return err < 0 ? err : 0; 2841 2842 if (f2fs_force_buffered_io(inode, iocb, iter)) 2843 return 0; 2844 2845 do_opu = allow_outplace_dio(inode, iocb, iter); 2846 2847 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2848 2849 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2850 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2851 2852 if (iocb->ki_flags & IOCB_NOWAIT) { 2853 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 2854 iocb->ki_hint = hint; 2855 err = -EAGAIN; 2856 goto out; 2857 } 2858 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 2859 up_read(&fi->i_gc_rwsem[rw]); 2860 iocb->ki_hint = hint; 2861 err = -EAGAIN; 2862 goto out; 2863 } 2864 } else { 2865 down_read(&fi->i_gc_rwsem[rw]); 2866 if (do_opu) 2867 down_read(&fi->i_gc_rwsem[READ]); 2868 } 2869 2870 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2871 iter, rw == WRITE ? get_data_block_dio_write : 2872 get_data_block_dio, NULL, f2fs_dio_submit_bio, 2873 DIO_LOCKING | DIO_SKIP_HOLES); 2874 2875 if (do_opu) 2876 up_read(&fi->i_gc_rwsem[READ]); 2877 2878 up_read(&fi->i_gc_rwsem[rw]); 2879 2880 if (rw == WRITE) { 2881 if (whint_mode == WHINT_MODE_OFF) 2882 iocb->ki_hint = hint; 2883 if (err > 0) { 2884 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2885 err); 2886 if (!do_opu) 2887 set_inode_flag(inode, FI_UPDATE_WRITE); 2888 } else if (err < 0) { 2889 f2fs_write_failed(mapping, offset + count); 2890 } 2891 } 2892 2893 out: 2894 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2895 2896 return err; 2897 } 2898 2899 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2900 unsigned int length) 2901 { 2902 struct inode *inode = page->mapping->host; 2903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2904 2905 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2906 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2907 return; 2908 2909 if (PageDirty(page)) { 2910 if (inode->i_ino == F2FS_META_INO(sbi)) { 2911 dec_page_count(sbi, F2FS_DIRTY_META); 2912 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2913 dec_page_count(sbi, F2FS_DIRTY_NODES); 2914 } else { 2915 inode_dec_dirty_pages(inode); 2916 f2fs_remove_dirty_inode(inode); 2917 } 2918 } 2919 2920 clear_cold_data(page); 2921 2922 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2923 return f2fs_drop_inmem_page(inode, page); 2924 2925 f2fs_clear_page_private(page); 2926 } 2927 2928 int f2fs_release_page(struct page *page, gfp_t wait) 2929 { 2930 /* If this is dirty page, keep PagePrivate */ 2931 if (PageDirty(page)) 2932 return 0; 2933 2934 /* This is atomic written page, keep Private */ 2935 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2936 return 0; 2937 2938 clear_cold_data(page); 2939 f2fs_clear_page_private(page); 2940 return 1; 2941 } 2942 2943 static int f2fs_set_data_page_dirty(struct page *page) 2944 { 2945 struct inode *inode = page_file_mapping(page)->host; 2946 2947 trace_f2fs_set_page_dirty(page, DATA); 2948 2949 if (!PageUptodate(page)) 2950 SetPageUptodate(page); 2951 if (PageSwapCache(page)) 2952 return __set_page_dirty_nobuffers(page); 2953 2954 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2955 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2956 f2fs_register_inmem_page(inode, page); 2957 return 1; 2958 } 2959 /* 2960 * Previously, this page has been registered, we just 2961 * return here. 2962 */ 2963 return 0; 2964 } 2965 2966 if (!PageDirty(page)) { 2967 __set_page_dirty_nobuffers(page); 2968 f2fs_update_dirty_page(inode, page); 2969 return 1; 2970 } 2971 return 0; 2972 } 2973 2974 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2975 { 2976 struct inode *inode = mapping->host; 2977 2978 if (f2fs_has_inline_data(inode)) 2979 return 0; 2980 2981 /* make sure allocating whole blocks */ 2982 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2983 filemap_write_and_wait(mapping); 2984 2985 return generic_block_bmap(mapping, block, get_data_block_bmap); 2986 } 2987 2988 #ifdef CONFIG_MIGRATION 2989 #include <linux/migrate.h> 2990 2991 int f2fs_migrate_page(struct address_space *mapping, 2992 struct page *newpage, struct page *page, enum migrate_mode mode) 2993 { 2994 int rc, extra_count; 2995 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2996 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2997 2998 BUG_ON(PageWriteback(page)); 2999 3000 /* migrating an atomic written page is safe with the inmem_lock hold */ 3001 if (atomic_written) { 3002 if (mode != MIGRATE_SYNC) 3003 return -EBUSY; 3004 if (!mutex_trylock(&fi->inmem_lock)) 3005 return -EAGAIN; 3006 } 3007 3008 /* one extra reference was held for atomic_write page */ 3009 extra_count = atomic_written ? 1 : 0; 3010 rc = migrate_page_move_mapping(mapping, newpage, 3011 page, extra_count); 3012 if (rc != MIGRATEPAGE_SUCCESS) { 3013 if (atomic_written) 3014 mutex_unlock(&fi->inmem_lock); 3015 return rc; 3016 } 3017 3018 if (atomic_written) { 3019 struct inmem_pages *cur; 3020 list_for_each_entry(cur, &fi->inmem_pages, list) 3021 if (cur->page == page) { 3022 cur->page = newpage; 3023 break; 3024 } 3025 mutex_unlock(&fi->inmem_lock); 3026 put_page(page); 3027 get_page(newpage); 3028 } 3029 3030 if (PagePrivate(page)) { 3031 f2fs_set_page_private(newpage, page_private(page)); 3032 f2fs_clear_page_private(page); 3033 } 3034 3035 if (mode != MIGRATE_SYNC_NO_COPY) 3036 migrate_page_copy(newpage, page); 3037 else 3038 migrate_page_states(newpage, page); 3039 3040 return MIGRATEPAGE_SUCCESS; 3041 } 3042 #endif 3043 3044 #ifdef CONFIG_SWAP 3045 /* Copied from generic_swapfile_activate() to check any holes */ 3046 static int check_swap_activate(struct file *swap_file, unsigned int max) 3047 { 3048 struct address_space *mapping = swap_file->f_mapping; 3049 struct inode *inode = mapping->host; 3050 unsigned blocks_per_page; 3051 unsigned long page_no; 3052 unsigned blkbits; 3053 sector_t probe_block; 3054 sector_t last_block; 3055 sector_t lowest_block = -1; 3056 sector_t highest_block = 0; 3057 3058 blkbits = inode->i_blkbits; 3059 blocks_per_page = PAGE_SIZE >> blkbits; 3060 3061 /* 3062 * Map all the blocks into the extent list. This code doesn't try 3063 * to be very smart. 3064 */ 3065 probe_block = 0; 3066 page_no = 0; 3067 last_block = i_size_read(inode) >> blkbits; 3068 while ((probe_block + blocks_per_page) <= last_block && page_no < max) { 3069 unsigned block_in_page; 3070 sector_t first_block; 3071 3072 cond_resched(); 3073 3074 first_block = bmap(inode, probe_block); 3075 if (first_block == 0) 3076 goto bad_bmap; 3077 3078 /* 3079 * It must be PAGE_SIZE aligned on-disk 3080 */ 3081 if (first_block & (blocks_per_page - 1)) { 3082 probe_block++; 3083 goto reprobe; 3084 } 3085 3086 for (block_in_page = 1; block_in_page < blocks_per_page; 3087 block_in_page++) { 3088 sector_t block; 3089 3090 block = bmap(inode, probe_block + block_in_page); 3091 if (block == 0) 3092 goto bad_bmap; 3093 if (block != first_block + block_in_page) { 3094 /* Discontiguity */ 3095 probe_block++; 3096 goto reprobe; 3097 } 3098 } 3099 3100 first_block >>= (PAGE_SHIFT - blkbits); 3101 if (page_no) { /* exclude the header page */ 3102 if (first_block < lowest_block) 3103 lowest_block = first_block; 3104 if (first_block > highest_block) 3105 highest_block = first_block; 3106 } 3107 3108 page_no++; 3109 probe_block += blocks_per_page; 3110 reprobe: 3111 continue; 3112 } 3113 return 0; 3114 3115 bad_bmap: 3116 pr_err("swapon: swapfile has holes\n"); 3117 return -EINVAL; 3118 } 3119 3120 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3121 sector_t *span) 3122 { 3123 struct inode *inode = file_inode(file); 3124 int ret; 3125 3126 if (!S_ISREG(inode->i_mode)) 3127 return -EINVAL; 3128 3129 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3130 return -EROFS; 3131 3132 ret = f2fs_convert_inline_inode(inode); 3133 if (ret) 3134 return ret; 3135 3136 ret = check_swap_activate(file, sis->max); 3137 if (ret) 3138 return ret; 3139 3140 set_inode_flag(inode, FI_PIN_FILE); 3141 f2fs_precache_extents(inode); 3142 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3143 return 0; 3144 } 3145 3146 static void f2fs_swap_deactivate(struct file *file) 3147 { 3148 struct inode *inode = file_inode(file); 3149 3150 clear_inode_flag(inode, FI_PIN_FILE); 3151 } 3152 #else 3153 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3154 sector_t *span) 3155 { 3156 return -EOPNOTSUPP; 3157 } 3158 3159 static void f2fs_swap_deactivate(struct file *file) 3160 { 3161 } 3162 #endif 3163 3164 const struct address_space_operations f2fs_dblock_aops = { 3165 .readpage = f2fs_read_data_page, 3166 .readpages = f2fs_read_data_pages, 3167 .writepage = f2fs_write_data_page, 3168 .writepages = f2fs_write_data_pages, 3169 .write_begin = f2fs_write_begin, 3170 .write_end = f2fs_write_end, 3171 .set_page_dirty = f2fs_set_data_page_dirty, 3172 .invalidatepage = f2fs_invalidate_page, 3173 .releasepage = f2fs_release_page, 3174 .direct_IO = f2fs_direct_IO, 3175 .bmap = f2fs_bmap, 3176 .swap_activate = f2fs_swap_activate, 3177 .swap_deactivate = f2fs_swap_deactivate, 3178 #ifdef CONFIG_MIGRATION 3179 .migratepage = f2fs_migrate_page, 3180 #endif 3181 }; 3182 3183 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3184 { 3185 struct address_space *mapping = page_mapping(page); 3186 unsigned long flags; 3187 3188 xa_lock_irqsave(&mapping->i_pages, flags); 3189 __xa_clear_mark(&mapping->i_pages, page_index(page), 3190 PAGECACHE_TAG_DIRTY); 3191 xa_unlock_irqrestore(&mapping->i_pages, flags); 3192 } 3193 3194 int __init f2fs_init_post_read_processing(void) 3195 { 3196 bio_post_read_ctx_cache = 3197 kmem_cache_create("f2fs_bio_post_read_ctx", 3198 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 3199 if (!bio_post_read_ctx_cache) 3200 goto fail; 3201 bio_post_read_ctx_pool = 3202 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3203 bio_post_read_ctx_cache); 3204 if (!bio_post_read_ctx_pool) 3205 goto fail_free_cache; 3206 return 0; 3207 3208 fail_free_cache: 3209 kmem_cache_destroy(bio_post_read_ctx_cache); 3210 fail: 3211 return -ENOMEM; 3212 } 3213 3214 void __exit f2fs_destroy_post_read_processing(void) 3215 { 3216 mempool_destroy(bio_post_read_ctx_pool); 3217 kmem_cache_destroy(bio_post_read_ctx_cache); 3218 } 3219