1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && 73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 74 page_private_gcing(page)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct page *page) 80 { 81 struct address_space *mapping = page_file_mapping(page); 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = 1 << 0, 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = 1 << 1, 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = 1 << 2, 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct work_struct work; 119 unsigned int enabled_steps; 120 block_t fs_blkaddr; 121 }; 122 123 static void f2fs_finish_read_bio(struct bio *bio) 124 { 125 struct bio_vec *bv; 126 struct bvec_iter_all iter_all; 127 128 /* 129 * Update and unlock the bio's pagecache pages, and put the 130 * decompression context for any compressed pages. 131 */ 132 bio_for_each_segment_all(bv, bio, iter_all) { 133 struct page *page = bv->bv_page; 134 135 if (f2fs_is_compressed_page(page)) { 136 if (bio->bi_status) 137 f2fs_end_read_compressed_page(page, true, 0); 138 f2fs_put_page_dic(page); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readpages() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 229 { 230 struct bio_vec *bv; 231 struct bvec_iter_all iter_all; 232 bool all_compressed = true; 233 block_t blkaddr = ctx->fs_blkaddr; 234 235 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 236 struct page *page = bv->bv_page; 237 238 /* PG_error was set if decryption failed. */ 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, PageError(page), 241 blkaddr); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 262 if (ctx->enabled_steps & STEP_DECRYPT) 263 fscrypt_decrypt_bio(ctx->bio); 264 265 if (ctx->enabled_steps & STEP_DECOMPRESS) 266 f2fs_handle_step_decompress(ctx); 267 268 f2fs_verify_and_finish_bio(ctx->bio); 269 } 270 271 static void f2fs_read_end_io(struct bio *bio) 272 { 273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 274 struct bio_post_read_ctx *ctx; 275 276 iostat_update_and_unbind_ctx(bio, 0); 277 ctx = bio->bi_private; 278 279 if (time_to_inject(sbi, FAULT_READ_IO)) { 280 f2fs_show_injection_info(sbi, FAULT_READ_IO); 281 bio->bi_status = BLK_STS_IOERR; 282 } 283 284 if (bio->bi_status) { 285 f2fs_finish_read_bio(bio); 286 return; 287 } 288 289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 290 INIT_WORK(&ctx->work, f2fs_post_read_work); 291 queue_work(ctx->sbi->post_read_wq, &ctx->work); 292 } else { 293 f2fs_verify_and_finish_bio(bio); 294 } 295 } 296 297 static void f2fs_write_end_io(struct bio *bio) 298 { 299 struct f2fs_sb_info *sbi; 300 struct bio_vec *bvec; 301 struct bvec_iter_all iter_all; 302 303 iostat_update_and_unbind_ctx(bio, 1); 304 sbi = bio->bi_private; 305 306 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 308 bio->bi_status = BLK_STS_IOERR; 309 } 310 311 bio_for_each_segment_all(bvec, bio, iter_all) { 312 struct page *page = bvec->bv_page; 313 enum count_type type = WB_DATA_TYPE(page); 314 315 if (page_private_dummy(page)) { 316 clear_page_private_dummy(page); 317 unlock_page(page); 318 mempool_free(page, sbi->write_io_dummy); 319 320 if (unlikely(bio->bi_status)) 321 f2fs_stop_checkpoint(sbi, true); 322 continue; 323 } 324 325 fscrypt_finalize_bounce_page(&page); 326 327 #ifdef CONFIG_F2FS_FS_COMPRESSION 328 if (f2fs_is_compressed_page(page)) { 329 f2fs_compress_write_end_io(bio, page); 330 continue; 331 } 332 #endif 333 334 if (unlikely(bio->bi_status)) { 335 mapping_set_error(page->mapping, -EIO); 336 if (type == F2FS_WB_CP_DATA) 337 f2fs_stop_checkpoint(sbi, true); 338 } 339 340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 341 page->index != nid_of_node(page)); 342 343 dec_page_count(sbi, type); 344 if (f2fs_in_warm_node_list(sbi, page)) 345 f2fs_del_fsync_node_entry(sbi, page); 346 clear_page_private_gcing(page); 347 end_page_writeback(page); 348 } 349 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 350 wq_has_sleeper(&sbi->cp_wait)) 351 wake_up(&sbi->cp_wait); 352 353 bio_put(bio); 354 } 355 356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 357 block_t blk_addr, struct bio *bio) 358 { 359 struct block_device *bdev = sbi->sb->s_bdev; 360 int i; 361 362 if (f2fs_is_multi_device(sbi)) { 363 for (i = 0; i < sbi->s_ndevs; i++) { 364 if (FDEV(i).start_blk <= blk_addr && 365 FDEV(i).end_blk >= blk_addr) { 366 blk_addr -= FDEV(i).start_blk; 367 bdev = FDEV(i).bdev; 368 break; 369 } 370 } 371 } 372 if (bio) { 373 bio_set_dev(bio, bdev); 374 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 375 } 376 return bdev; 377 } 378 379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 380 { 381 int i; 382 383 if (!f2fs_is_multi_device(sbi)) 384 return 0; 385 386 for (i = 0; i < sbi->s_ndevs; i++) 387 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 388 return i; 389 return 0; 390 } 391 392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 393 { 394 struct f2fs_sb_info *sbi = fio->sbi; 395 struct bio *bio; 396 397 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); 398 399 f2fs_target_device(sbi, fio->new_blkaddr, bio); 400 if (is_read_io(fio->op)) { 401 bio->bi_end_io = f2fs_read_end_io; 402 bio->bi_private = NULL; 403 } else { 404 bio->bi_end_io = f2fs_write_end_io; 405 bio->bi_private = sbi; 406 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 407 fio->type, fio->temp); 408 } 409 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 410 411 if (fio->io_wbc) 412 wbc_init_bio(fio->io_wbc, bio); 413 414 return bio; 415 } 416 417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 418 pgoff_t first_idx, 419 const struct f2fs_io_info *fio, 420 gfp_t gfp_mask) 421 { 422 /* 423 * The f2fs garbage collector sets ->encrypted_page when it wants to 424 * read/write raw data without encryption. 425 */ 426 if (!fio || !fio->encrypted_page) 427 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 428 } 429 430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 431 pgoff_t next_idx, 432 const struct f2fs_io_info *fio) 433 { 434 /* 435 * The f2fs garbage collector sets ->encrypted_page when it wants to 436 * read/write raw data without encryption. 437 */ 438 if (fio && fio->encrypted_page) 439 return !bio_has_crypt_ctx(bio); 440 441 return fscrypt_mergeable_bio(bio, inode, next_idx); 442 } 443 444 static inline void __submit_bio(struct f2fs_sb_info *sbi, 445 struct bio *bio, enum page_type type) 446 { 447 if (!is_read_io(bio_op(bio))) { 448 unsigned int start; 449 450 if (type != DATA && type != NODE) 451 goto submit_io; 452 453 if (f2fs_lfs_mode(sbi) && current->plug) 454 blk_finish_plug(current->plug); 455 456 if (!F2FS_IO_ALIGNED(sbi)) 457 goto submit_io; 458 459 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 460 start %= F2FS_IO_SIZE(sbi); 461 462 if (start == 0) 463 goto submit_io; 464 465 /* fill dummy pages */ 466 for (; start < F2FS_IO_SIZE(sbi); start++) { 467 struct page *page = 468 mempool_alloc(sbi->write_io_dummy, 469 GFP_NOIO | __GFP_NOFAIL); 470 f2fs_bug_on(sbi, !page); 471 472 lock_page(page); 473 474 zero_user_segment(page, 0, PAGE_SIZE); 475 set_page_private_dummy(page); 476 477 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 478 f2fs_bug_on(sbi, 1); 479 } 480 /* 481 * In the NODE case, we lose next block address chain. So, we 482 * need to do checkpoint in f2fs_sync_file. 483 */ 484 if (type == NODE) 485 set_sbi_flag(sbi, SBI_NEED_CP); 486 } 487 submit_io: 488 if (is_read_io(bio_op(bio))) 489 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 490 else 491 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 492 493 iostat_update_submit_ctx(bio, type); 494 submit_bio(bio); 495 } 496 497 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 498 struct bio *bio, enum page_type type) 499 { 500 __submit_bio(sbi, bio, type); 501 } 502 503 static void __attach_io_flag(struct f2fs_io_info *fio) 504 { 505 struct f2fs_sb_info *sbi = fio->sbi; 506 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 507 unsigned int io_flag, fua_flag, meta_flag; 508 509 if (fio->type == DATA) 510 io_flag = sbi->data_io_flag; 511 else if (fio->type == NODE) 512 io_flag = sbi->node_io_flag; 513 else 514 return; 515 516 fua_flag = io_flag & temp_mask; 517 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 518 519 /* 520 * data/node io flag bits per temp: 521 * REQ_META | REQ_FUA | 522 * 5 | 4 | 3 | 2 | 1 | 0 | 523 * Cold | Warm | Hot | Cold | Warm | Hot | 524 */ 525 if ((1 << fio->temp) & meta_flag) 526 fio->op_flags |= REQ_META; 527 if ((1 << fio->temp) & fua_flag) 528 fio->op_flags |= REQ_FUA; 529 } 530 531 static void __submit_merged_bio(struct f2fs_bio_info *io) 532 { 533 struct f2fs_io_info *fio = &io->fio; 534 535 if (!io->bio) 536 return; 537 538 __attach_io_flag(fio); 539 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 540 541 if (is_read_io(fio->op)) 542 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 543 else 544 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 545 546 __submit_bio(io->sbi, io->bio, fio->type); 547 io->bio = NULL; 548 } 549 550 static bool __has_merged_page(struct bio *bio, struct inode *inode, 551 struct page *page, nid_t ino) 552 { 553 struct bio_vec *bvec; 554 struct bvec_iter_all iter_all; 555 556 if (!bio) 557 return false; 558 559 if (!inode && !page && !ino) 560 return true; 561 562 bio_for_each_segment_all(bvec, bio, iter_all) { 563 struct page *target = bvec->bv_page; 564 565 if (fscrypt_is_bounce_page(target)) { 566 target = fscrypt_pagecache_page(target); 567 if (IS_ERR(target)) 568 continue; 569 } 570 if (f2fs_is_compressed_page(target)) { 571 target = f2fs_compress_control_page(target); 572 if (IS_ERR(target)) 573 continue; 574 } 575 576 if (inode && inode == target->mapping->host) 577 return true; 578 if (page && page == target) 579 return true; 580 if (ino && ino == ino_of_node(target)) 581 return true; 582 } 583 584 return false; 585 } 586 587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 588 enum page_type type, enum temp_type temp) 589 { 590 enum page_type btype = PAGE_TYPE_OF_BIO(type); 591 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 592 593 down_write(&io->io_rwsem); 594 595 /* change META to META_FLUSH in the checkpoint procedure */ 596 if (type >= META_FLUSH) { 597 io->fio.type = META_FLUSH; 598 io->fio.op = REQ_OP_WRITE; 599 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 600 if (!test_opt(sbi, NOBARRIER)) 601 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 602 } 603 __submit_merged_bio(io); 604 up_write(&io->io_rwsem); 605 } 606 607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 608 struct inode *inode, struct page *page, 609 nid_t ino, enum page_type type, bool force) 610 { 611 enum temp_type temp; 612 bool ret = true; 613 614 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 615 if (!force) { 616 enum page_type btype = PAGE_TYPE_OF_BIO(type); 617 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 618 619 down_read(&io->io_rwsem); 620 ret = __has_merged_page(io->bio, inode, page, ino); 621 up_read(&io->io_rwsem); 622 } 623 if (ret) 624 __f2fs_submit_merged_write(sbi, type, temp); 625 626 /* TODO: use HOT temp only for meta pages now. */ 627 if (type >= META) 628 break; 629 } 630 } 631 632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 633 { 634 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 635 } 636 637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 638 struct inode *inode, struct page *page, 639 nid_t ino, enum page_type type) 640 { 641 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 642 } 643 644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 645 { 646 f2fs_submit_merged_write(sbi, DATA); 647 f2fs_submit_merged_write(sbi, NODE); 648 f2fs_submit_merged_write(sbi, META); 649 } 650 651 /* 652 * Fill the locked page with data located in the block address. 653 * A caller needs to unlock the page on failure. 654 */ 655 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 656 { 657 struct bio *bio; 658 struct page *page = fio->encrypted_page ? 659 fio->encrypted_page : fio->page; 660 661 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 662 fio->is_por ? META_POR : (__is_meta_io(fio) ? 663 META_GENERIC : DATA_GENERIC_ENHANCE))) 664 return -EFSCORRUPTED; 665 666 trace_f2fs_submit_page_bio(page, fio); 667 668 /* Allocate a new bio */ 669 bio = __bio_alloc(fio, 1); 670 671 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 672 fio->page->index, fio, GFP_NOIO); 673 674 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 675 bio_put(bio); 676 return -EFAULT; 677 } 678 679 if (fio->io_wbc && !is_read_io(fio->op)) 680 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 681 682 __attach_io_flag(fio); 683 bio_set_op_attrs(bio, fio->op, fio->op_flags); 684 685 inc_page_count(fio->sbi, is_read_io(fio->op) ? 686 __read_io_type(page): WB_DATA_TYPE(fio->page)); 687 688 __submit_bio(fio->sbi, bio, fio->type); 689 return 0; 690 } 691 692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 693 block_t last_blkaddr, block_t cur_blkaddr) 694 { 695 if (unlikely(sbi->max_io_bytes && 696 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 697 return false; 698 if (last_blkaddr + 1 != cur_blkaddr) 699 return false; 700 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 701 } 702 703 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 704 struct f2fs_io_info *fio) 705 { 706 if (io->fio.op != fio->op) 707 return false; 708 return io->fio.op_flags == fio->op_flags; 709 } 710 711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 712 struct f2fs_bio_info *io, 713 struct f2fs_io_info *fio, 714 block_t last_blkaddr, 715 block_t cur_blkaddr) 716 { 717 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 718 unsigned int filled_blocks = 719 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 720 unsigned int io_size = F2FS_IO_SIZE(sbi); 721 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 722 723 /* IOs in bio is aligned and left space of vectors is not enough */ 724 if (!(filled_blocks % io_size) && left_vecs < io_size) 725 return false; 726 } 727 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 728 return false; 729 return io_type_is_mergeable(io, fio); 730 } 731 732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 733 struct page *page, enum temp_type temp) 734 { 735 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 736 struct bio_entry *be; 737 738 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 739 be->bio = bio; 740 bio_get(bio); 741 742 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 743 f2fs_bug_on(sbi, 1); 744 745 down_write(&io->bio_list_lock); 746 list_add_tail(&be->list, &io->bio_list); 747 up_write(&io->bio_list_lock); 748 } 749 750 static void del_bio_entry(struct bio_entry *be) 751 { 752 list_del(&be->list); 753 kmem_cache_free(bio_entry_slab, be); 754 } 755 756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 757 struct page *page) 758 { 759 struct f2fs_sb_info *sbi = fio->sbi; 760 enum temp_type temp; 761 bool found = false; 762 int ret = -EAGAIN; 763 764 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 765 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 766 struct list_head *head = &io->bio_list; 767 struct bio_entry *be; 768 769 down_write(&io->bio_list_lock); 770 list_for_each_entry(be, head, list) { 771 if (be->bio != *bio) 772 continue; 773 774 found = true; 775 776 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 777 *fio->last_block, 778 fio->new_blkaddr)); 779 if (f2fs_crypt_mergeable_bio(*bio, 780 fio->page->mapping->host, 781 fio->page->index, fio) && 782 bio_add_page(*bio, page, PAGE_SIZE, 0) == 783 PAGE_SIZE) { 784 ret = 0; 785 break; 786 } 787 788 /* page can't be merged into bio; submit the bio */ 789 del_bio_entry(be); 790 __submit_bio(sbi, *bio, DATA); 791 break; 792 } 793 up_write(&io->bio_list_lock); 794 } 795 796 if (ret) { 797 bio_put(*bio); 798 *bio = NULL; 799 } 800 801 return ret; 802 } 803 804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 805 struct bio **bio, struct page *page) 806 { 807 enum temp_type temp; 808 bool found = false; 809 struct bio *target = bio ? *bio : NULL; 810 811 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 812 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 813 struct list_head *head = &io->bio_list; 814 struct bio_entry *be; 815 816 if (list_empty(head)) 817 continue; 818 819 down_read(&io->bio_list_lock); 820 list_for_each_entry(be, head, list) { 821 if (target) 822 found = (target == be->bio); 823 else 824 found = __has_merged_page(be->bio, NULL, 825 page, 0); 826 if (found) 827 break; 828 } 829 up_read(&io->bio_list_lock); 830 831 if (!found) 832 continue; 833 834 found = false; 835 836 down_write(&io->bio_list_lock); 837 list_for_each_entry(be, head, list) { 838 if (target) 839 found = (target == be->bio); 840 else 841 found = __has_merged_page(be->bio, NULL, 842 page, 0); 843 if (found) { 844 target = be->bio; 845 del_bio_entry(be); 846 break; 847 } 848 } 849 up_write(&io->bio_list_lock); 850 } 851 852 if (found) 853 __submit_bio(sbi, target, DATA); 854 if (bio && *bio) { 855 bio_put(*bio); 856 *bio = NULL; 857 } 858 } 859 860 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 861 { 862 struct bio *bio = *fio->bio; 863 struct page *page = fio->encrypted_page ? 864 fio->encrypted_page : fio->page; 865 866 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 867 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 868 return -EFSCORRUPTED; 869 870 trace_f2fs_submit_page_bio(page, fio); 871 872 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 873 fio->new_blkaddr)) 874 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 875 alloc_new: 876 if (!bio) { 877 bio = __bio_alloc(fio, BIO_MAX_VECS); 878 __attach_io_flag(fio); 879 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 880 fio->page->index, fio, GFP_NOIO); 881 bio_set_op_attrs(bio, fio->op, fio->op_flags); 882 883 add_bio_entry(fio->sbi, bio, page, fio->temp); 884 } else { 885 if (add_ipu_page(fio, &bio, page)) 886 goto alloc_new; 887 } 888 889 if (fio->io_wbc) 890 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 891 892 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 893 894 *fio->last_block = fio->new_blkaddr; 895 *fio->bio = bio; 896 897 return 0; 898 } 899 900 void f2fs_submit_page_write(struct f2fs_io_info *fio) 901 { 902 struct f2fs_sb_info *sbi = fio->sbi; 903 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 904 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 905 struct page *bio_page; 906 907 f2fs_bug_on(sbi, is_read_io(fio->op)); 908 909 down_write(&io->io_rwsem); 910 next: 911 if (fio->in_list) { 912 spin_lock(&io->io_lock); 913 if (list_empty(&io->io_list)) { 914 spin_unlock(&io->io_lock); 915 goto out; 916 } 917 fio = list_first_entry(&io->io_list, 918 struct f2fs_io_info, list); 919 list_del(&fio->list); 920 spin_unlock(&io->io_lock); 921 } 922 923 verify_fio_blkaddr(fio); 924 925 if (fio->encrypted_page) 926 bio_page = fio->encrypted_page; 927 else if (fio->compressed_page) 928 bio_page = fio->compressed_page; 929 else 930 bio_page = fio->page; 931 932 /* set submitted = true as a return value */ 933 fio->submitted = true; 934 935 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 936 937 if (io->bio && 938 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 939 fio->new_blkaddr) || 940 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 941 bio_page->index, fio))) 942 __submit_merged_bio(io); 943 alloc_new: 944 if (io->bio == NULL) { 945 if (F2FS_IO_ALIGNED(sbi) && 946 (fio->type == DATA || fio->type == NODE) && 947 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 948 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 949 fio->retry = true; 950 goto skip; 951 } 952 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 953 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 954 bio_page->index, fio, GFP_NOIO); 955 io->fio = *fio; 956 } 957 958 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 959 __submit_merged_bio(io); 960 goto alloc_new; 961 } 962 963 if (fio->io_wbc) 964 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 965 966 io->last_block_in_bio = fio->new_blkaddr; 967 968 trace_f2fs_submit_page_write(fio->page, fio); 969 skip: 970 if (fio->in_list) 971 goto next; 972 out: 973 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 974 !f2fs_is_checkpoint_ready(sbi)) 975 __submit_merged_bio(io); 976 up_write(&io->io_rwsem); 977 } 978 979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 980 unsigned nr_pages, unsigned op_flag, 981 pgoff_t first_idx, bool for_write) 982 { 983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 984 struct bio *bio; 985 struct bio_post_read_ctx *ctx = NULL; 986 unsigned int post_read_steps = 0; 987 988 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, 989 bio_max_segs(nr_pages), &f2fs_bioset); 990 if (!bio) 991 return ERR_PTR(-ENOMEM); 992 993 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 994 995 f2fs_target_device(sbi, blkaddr, bio); 996 bio->bi_end_io = f2fs_read_end_io; 997 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 998 999 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1000 post_read_steps |= STEP_DECRYPT; 1001 1002 if (f2fs_need_verity(inode, first_idx)) 1003 post_read_steps |= STEP_VERITY; 1004 1005 /* 1006 * STEP_DECOMPRESS is handled specially, since a compressed file might 1007 * contain both compressed and uncompressed clusters. We'll allocate a 1008 * bio_post_read_ctx if the file is compressed, but the caller is 1009 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1010 */ 1011 1012 if (post_read_steps || f2fs_compressed_file(inode)) { 1013 /* Due to the mempool, this never fails. */ 1014 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1015 ctx->bio = bio; 1016 ctx->sbi = sbi; 1017 ctx->enabled_steps = post_read_steps; 1018 ctx->fs_blkaddr = blkaddr; 1019 bio->bi_private = ctx; 1020 } 1021 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1022 1023 return bio; 1024 } 1025 1026 /* This can handle encryption stuffs */ 1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1028 block_t blkaddr, int op_flags, bool for_write) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1031 struct bio *bio; 1032 1033 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1034 page->index, for_write); 1035 if (IS_ERR(bio)) 1036 return PTR_ERR(bio); 1037 1038 /* wait for GCed page writeback via META_MAPPING */ 1039 f2fs_wait_on_block_writeback(inode, blkaddr); 1040 1041 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1042 bio_put(bio); 1043 return -EFAULT; 1044 } 1045 ClearPageError(page); 1046 inc_page_count(sbi, F2FS_RD_DATA); 1047 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1048 __submit_bio(sbi, bio, DATA); 1049 return 0; 1050 } 1051 1052 static void __set_data_blkaddr(struct dnode_of_data *dn) 1053 { 1054 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1055 __le32 *addr_array; 1056 int base = 0; 1057 1058 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1059 base = get_extra_isize(dn->inode); 1060 1061 /* Get physical address of data block */ 1062 addr_array = blkaddr_in_node(rn); 1063 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1064 } 1065 1066 /* 1067 * Lock ordering for the change of data block address: 1068 * ->data_page 1069 * ->node_page 1070 * update block addresses in the node page 1071 */ 1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1073 { 1074 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1075 __set_data_blkaddr(dn); 1076 if (set_page_dirty(dn->node_page)) 1077 dn->node_changed = true; 1078 } 1079 1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1081 { 1082 dn->data_blkaddr = blkaddr; 1083 f2fs_set_data_blkaddr(dn); 1084 f2fs_update_extent_cache(dn); 1085 } 1086 1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1089 { 1090 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1091 int err; 1092 1093 if (!count) 1094 return 0; 1095 1096 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1097 return -EPERM; 1098 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1099 return err; 1100 1101 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1102 dn->ofs_in_node, count); 1103 1104 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1105 1106 for (; count > 0; dn->ofs_in_node++) { 1107 block_t blkaddr = f2fs_data_blkaddr(dn); 1108 1109 if (blkaddr == NULL_ADDR) { 1110 dn->data_blkaddr = NEW_ADDR; 1111 __set_data_blkaddr(dn); 1112 count--; 1113 } 1114 } 1115 1116 if (set_page_dirty(dn->node_page)) 1117 dn->node_changed = true; 1118 return 0; 1119 } 1120 1121 /* Should keep dn->ofs_in_node unchanged */ 1122 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1123 { 1124 unsigned int ofs_in_node = dn->ofs_in_node; 1125 int ret; 1126 1127 ret = f2fs_reserve_new_blocks(dn, 1); 1128 dn->ofs_in_node = ofs_in_node; 1129 return ret; 1130 } 1131 1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1133 { 1134 bool need_put = dn->inode_page ? false : true; 1135 int err; 1136 1137 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1138 if (err) 1139 return err; 1140 1141 if (dn->data_blkaddr == NULL_ADDR) 1142 err = f2fs_reserve_new_block(dn); 1143 if (err || need_put) 1144 f2fs_put_dnode(dn); 1145 return err; 1146 } 1147 1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1149 { 1150 struct extent_info ei = {0, }; 1151 struct inode *inode = dn->inode; 1152 1153 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1154 dn->data_blkaddr = ei.blk + index - ei.fofs; 1155 return 0; 1156 } 1157 1158 return f2fs_reserve_block(dn, index); 1159 } 1160 1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1162 int op_flags, bool for_write) 1163 { 1164 struct address_space *mapping = inode->i_mapping; 1165 struct dnode_of_data dn; 1166 struct page *page; 1167 struct extent_info ei = {0, }; 1168 int err; 1169 1170 page = f2fs_grab_cache_page(mapping, index, for_write); 1171 if (!page) 1172 return ERR_PTR(-ENOMEM); 1173 1174 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1175 dn.data_blkaddr = ei.blk + index - ei.fofs; 1176 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1177 DATA_GENERIC_ENHANCE_READ)) { 1178 err = -EFSCORRUPTED; 1179 goto put_err; 1180 } 1181 goto got_it; 1182 } 1183 1184 set_new_dnode(&dn, inode, NULL, NULL, 0); 1185 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1186 if (err) 1187 goto put_err; 1188 f2fs_put_dnode(&dn); 1189 1190 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1191 err = -ENOENT; 1192 goto put_err; 1193 } 1194 if (dn.data_blkaddr != NEW_ADDR && 1195 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1196 dn.data_blkaddr, 1197 DATA_GENERIC_ENHANCE)) { 1198 err = -EFSCORRUPTED; 1199 goto put_err; 1200 } 1201 got_it: 1202 if (PageUptodate(page)) { 1203 unlock_page(page); 1204 return page; 1205 } 1206 1207 /* 1208 * A new dentry page is allocated but not able to be written, since its 1209 * new inode page couldn't be allocated due to -ENOSPC. 1210 * In such the case, its blkaddr can be remained as NEW_ADDR. 1211 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1212 * f2fs_init_inode_metadata. 1213 */ 1214 if (dn.data_blkaddr == NEW_ADDR) { 1215 zero_user_segment(page, 0, PAGE_SIZE); 1216 if (!PageUptodate(page)) 1217 SetPageUptodate(page); 1218 unlock_page(page); 1219 return page; 1220 } 1221 1222 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1223 op_flags, for_write); 1224 if (err) 1225 goto put_err; 1226 return page; 1227 1228 put_err: 1229 f2fs_put_page(page, 1); 1230 return ERR_PTR(err); 1231 } 1232 1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1234 { 1235 struct address_space *mapping = inode->i_mapping; 1236 struct page *page; 1237 1238 page = find_get_page(mapping, index); 1239 if (page && PageUptodate(page)) 1240 return page; 1241 f2fs_put_page(page, 0); 1242 1243 page = f2fs_get_read_data_page(inode, index, 0, false); 1244 if (IS_ERR(page)) 1245 return page; 1246 1247 if (PageUptodate(page)) 1248 return page; 1249 1250 wait_on_page_locked(page); 1251 if (unlikely(!PageUptodate(page))) { 1252 f2fs_put_page(page, 0); 1253 return ERR_PTR(-EIO); 1254 } 1255 return page; 1256 } 1257 1258 /* 1259 * If it tries to access a hole, return an error. 1260 * Because, the callers, functions in dir.c and GC, should be able to know 1261 * whether this page exists or not. 1262 */ 1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1264 bool for_write) 1265 { 1266 struct address_space *mapping = inode->i_mapping; 1267 struct page *page; 1268 repeat: 1269 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1270 if (IS_ERR(page)) 1271 return page; 1272 1273 /* wait for read completion */ 1274 lock_page(page); 1275 if (unlikely(page->mapping != mapping)) { 1276 f2fs_put_page(page, 1); 1277 goto repeat; 1278 } 1279 if (unlikely(!PageUptodate(page))) { 1280 f2fs_put_page(page, 1); 1281 return ERR_PTR(-EIO); 1282 } 1283 return page; 1284 } 1285 1286 /* 1287 * Caller ensures that this data page is never allocated. 1288 * A new zero-filled data page is allocated in the page cache. 1289 * 1290 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1291 * f2fs_unlock_op(). 1292 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1293 * ipage should be released by this function. 1294 */ 1295 struct page *f2fs_get_new_data_page(struct inode *inode, 1296 struct page *ipage, pgoff_t index, bool new_i_size) 1297 { 1298 struct address_space *mapping = inode->i_mapping; 1299 struct page *page; 1300 struct dnode_of_data dn; 1301 int err; 1302 1303 page = f2fs_grab_cache_page(mapping, index, true); 1304 if (!page) { 1305 /* 1306 * before exiting, we should make sure ipage will be released 1307 * if any error occur. 1308 */ 1309 f2fs_put_page(ipage, 1); 1310 return ERR_PTR(-ENOMEM); 1311 } 1312 1313 set_new_dnode(&dn, inode, ipage, NULL, 0); 1314 err = f2fs_reserve_block(&dn, index); 1315 if (err) { 1316 f2fs_put_page(page, 1); 1317 return ERR_PTR(err); 1318 } 1319 if (!ipage) 1320 f2fs_put_dnode(&dn); 1321 1322 if (PageUptodate(page)) 1323 goto got_it; 1324 1325 if (dn.data_blkaddr == NEW_ADDR) { 1326 zero_user_segment(page, 0, PAGE_SIZE); 1327 if (!PageUptodate(page)) 1328 SetPageUptodate(page); 1329 } else { 1330 f2fs_put_page(page, 1); 1331 1332 /* if ipage exists, blkaddr should be NEW_ADDR */ 1333 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1334 page = f2fs_get_lock_data_page(inode, index, true); 1335 if (IS_ERR(page)) 1336 return page; 1337 } 1338 got_it: 1339 if (new_i_size && i_size_read(inode) < 1340 ((loff_t)(index + 1) << PAGE_SHIFT)) 1341 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1342 return page; 1343 } 1344 1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1346 { 1347 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1348 struct f2fs_summary sum; 1349 struct node_info ni; 1350 block_t old_blkaddr; 1351 blkcnt_t count = 1; 1352 int err; 1353 1354 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1355 return -EPERM; 1356 1357 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1358 if (err) 1359 return err; 1360 1361 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1362 if (dn->data_blkaddr != NULL_ADDR) 1363 goto alloc; 1364 1365 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1366 return err; 1367 1368 alloc: 1369 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1370 old_blkaddr = dn->data_blkaddr; 1371 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1372 &sum, seg_type, NULL); 1373 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1374 invalidate_mapping_pages(META_MAPPING(sbi), 1375 old_blkaddr, old_blkaddr); 1376 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1377 } 1378 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1379 return 0; 1380 } 1381 1382 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1383 { 1384 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1385 if (lock) 1386 down_read(&sbi->node_change); 1387 else 1388 up_read(&sbi->node_change); 1389 } else { 1390 if (lock) 1391 f2fs_lock_op(sbi); 1392 else 1393 f2fs_unlock_op(sbi); 1394 } 1395 } 1396 1397 /* 1398 * f2fs_map_blocks() tries to find or build mapping relationship which 1399 * maps continuous logical blocks to physical blocks, and return such 1400 * info via f2fs_map_blocks structure. 1401 */ 1402 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1403 int create, int flag) 1404 { 1405 unsigned int maxblocks = map->m_len; 1406 struct dnode_of_data dn; 1407 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1408 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1409 pgoff_t pgofs, end_offset, end; 1410 int err = 0, ofs = 1; 1411 unsigned int ofs_in_node, last_ofs_in_node; 1412 blkcnt_t prealloc; 1413 struct extent_info ei = {0, }; 1414 block_t blkaddr; 1415 unsigned int start_pgofs; 1416 int bidx = 0; 1417 1418 if (!maxblocks) 1419 return 0; 1420 1421 map->m_bdev = inode->i_sb->s_bdev; 1422 map->m_multidev_dio = 1423 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1424 1425 map->m_len = 0; 1426 map->m_flags = 0; 1427 1428 /* it only supports block size == page size */ 1429 pgofs = (pgoff_t)map->m_lblk; 1430 end = pgofs + maxblocks; 1431 1432 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1433 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1434 map->m_may_create) 1435 goto next_dnode; 1436 1437 map->m_pblk = ei.blk + pgofs - ei.fofs; 1438 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1439 map->m_flags = F2FS_MAP_MAPPED; 1440 if (map->m_next_extent) 1441 *map->m_next_extent = pgofs + map->m_len; 1442 1443 /* for hardware encryption, but to avoid potential issue in future */ 1444 if (flag == F2FS_GET_BLOCK_DIO) 1445 f2fs_wait_on_block_writeback_range(inode, 1446 map->m_pblk, map->m_len); 1447 1448 if (map->m_multidev_dio) { 1449 block_t blk_addr = map->m_pblk; 1450 1451 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1452 1453 map->m_bdev = FDEV(bidx).bdev; 1454 map->m_pblk -= FDEV(bidx).start_blk; 1455 map->m_len = min(map->m_len, 1456 FDEV(bidx).end_blk + 1 - map->m_pblk); 1457 1458 if (map->m_may_create) 1459 f2fs_update_device_state(sbi, inode->i_ino, 1460 blk_addr, map->m_len); 1461 } 1462 goto out; 1463 } 1464 1465 next_dnode: 1466 if (map->m_may_create) 1467 f2fs_do_map_lock(sbi, flag, true); 1468 1469 /* When reading holes, we need its node page */ 1470 set_new_dnode(&dn, inode, NULL, NULL, 0); 1471 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1472 if (err) { 1473 if (flag == F2FS_GET_BLOCK_BMAP) 1474 map->m_pblk = 0; 1475 1476 if (err == -ENOENT) { 1477 /* 1478 * There is one exceptional case that read_node_page() 1479 * may return -ENOENT due to filesystem has been 1480 * shutdown or cp_error, so force to convert error 1481 * number to EIO for such case. 1482 */ 1483 if (map->m_may_create && 1484 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1485 f2fs_cp_error(sbi))) { 1486 err = -EIO; 1487 goto unlock_out; 1488 } 1489 1490 err = 0; 1491 if (map->m_next_pgofs) 1492 *map->m_next_pgofs = 1493 f2fs_get_next_page_offset(&dn, pgofs); 1494 if (map->m_next_extent) 1495 *map->m_next_extent = 1496 f2fs_get_next_page_offset(&dn, pgofs); 1497 } 1498 goto unlock_out; 1499 } 1500 1501 start_pgofs = pgofs; 1502 prealloc = 0; 1503 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1504 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1505 1506 next_block: 1507 blkaddr = f2fs_data_blkaddr(&dn); 1508 1509 if (__is_valid_data_blkaddr(blkaddr) && 1510 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1511 err = -EFSCORRUPTED; 1512 goto sync_out; 1513 } 1514 1515 if (__is_valid_data_blkaddr(blkaddr)) { 1516 /* use out-place-update for driect IO under LFS mode */ 1517 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1518 map->m_may_create) { 1519 err = __allocate_data_block(&dn, map->m_seg_type); 1520 if (err) 1521 goto sync_out; 1522 blkaddr = dn.data_blkaddr; 1523 set_inode_flag(inode, FI_APPEND_WRITE); 1524 } 1525 } else { 1526 if (create) { 1527 if (unlikely(f2fs_cp_error(sbi))) { 1528 err = -EIO; 1529 goto sync_out; 1530 } 1531 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1532 if (blkaddr == NULL_ADDR) { 1533 prealloc++; 1534 last_ofs_in_node = dn.ofs_in_node; 1535 } 1536 } else { 1537 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1538 flag != F2FS_GET_BLOCK_DIO); 1539 err = __allocate_data_block(&dn, 1540 map->m_seg_type); 1541 if (!err) { 1542 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1543 file_need_truncate(inode); 1544 set_inode_flag(inode, FI_APPEND_WRITE); 1545 } 1546 } 1547 if (err) 1548 goto sync_out; 1549 map->m_flags |= F2FS_MAP_NEW; 1550 blkaddr = dn.data_blkaddr; 1551 } else { 1552 if (f2fs_compressed_file(inode) && 1553 f2fs_sanity_check_cluster(&dn) && 1554 (flag != F2FS_GET_BLOCK_FIEMAP || 1555 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1556 err = -EFSCORRUPTED; 1557 goto sync_out; 1558 } 1559 if (flag == F2FS_GET_BLOCK_BMAP) { 1560 map->m_pblk = 0; 1561 goto sync_out; 1562 } 1563 if (flag == F2FS_GET_BLOCK_PRECACHE) 1564 goto sync_out; 1565 if (flag == F2FS_GET_BLOCK_FIEMAP && 1566 blkaddr == NULL_ADDR) { 1567 if (map->m_next_pgofs) 1568 *map->m_next_pgofs = pgofs + 1; 1569 goto sync_out; 1570 } 1571 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1572 /* for defragment case */ 1573 if (map->m_next_pgofs) 1574 *map->m_next_pgofs = pgofs + 1; 1575 goto sync_out; 1576 } 1577 } 1578 } 1579 1580 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1581 goto skip; 1582 1583 if (map->m_multidev_dio) 1584 bidx = f2fs_target_device_index(sbi, blkaddr); 1585 1586 if (map->m_len == 0) { 1587 /* preallocated unwritten block should be mapped for fiemap. */ 1588 if (blkaddr == NEW_ADDR) 1589 map->m_flags |= F2FS_MAP_UNWRITTEN; 1590 map->m_flags |= F2FS_MAP_MAPPED; 1591 1592 map->m_pblk = blkaddr; 1593 map->m_len = 1; 1594 1595 if (map->m_multidev_dio) 1596 map->m_bdev = FDEV(bidx).bdev; 1597 } else if ((map->m_pblk != NEW_ADDR && 1598 blkaddr == (map->m_pblk + ofs)) || 1599 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1600 flag == F2FS_GET_BLOCK_PRE_DIO) { 1601 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1602 goto sync_out; 1603 ofs++; 1604 map->m_len++; 1605 } else { 1606 goto sync_out; 1607 } 1608 1609 skip: 1610 dn.ofs_in_node++; 1611 pgofs++; 1612 1613 /* preallocate blocks in batch for one dnode page */ 1614 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1615 (pgofs == end || dn.ofs_in_node == end_offset)) { 1616 1617 dn.ofs_in_node = ofs_in_node; 1618 err = f2fs_reserve_new_blocks(&dn, prealloc); 1619 if (err) 1620 goto sync_out; 1621 1622 map->m_len += dn.ofs_in_node - ofs_in_node; 1623 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1624 err = -ENOSPC; 1625 goto sync_out; 1626 } 1627 dn.ofs_in_node = end_offset; 1628 } 1629 1630 if (pgofs >= end) 1631 goto sync_out; 1632 else if (dn.ofs_in_node < end_offset) 1633 goto next_block; 1634 1635 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1636 if (map->m_flags & F2FS_MAP_MAPPED) { 1637 unsigned int ofs = start_pgofs - map->m_lblk; 1638 1639 f2fs_update_extent_cache_range(&dn, 1640 start_pgofs, map->m_pblk + ofs, 1641 map->m_len - ofs); 1642 } 1643 } 1644 1645 f2fs_put_dnode(&dn); 1646 1647 if (map->m_may_create) { 1648 f2fs_do_map_lock(sbi, flag, false); 1649 f2fs_balance_fs(sbi, dn.node_changed); 1650 } 1651 goto next_dnode; 1652 1653 sync_out: 1654 1655 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1656 /* 1657 * for hardware encryption, but to avoid potential issue 1658 * in future 1659 */ 1660 f2fs_wait_on_block_writeback_range(inode, 1661 map->m_pblk, map->m_len); 1662 invalidate_mapping_pages(META_MAPPING(sbi), 1663 map->m_pblk, map->m_pblk); 1664 1665 if (map->m_multidev_dio) { 1666 block_t blk_addr = map->m_pblk; 1667 1668 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1669 1670 map->m_bdev = FDEV(bidx).bdev; 1671 map->m_pblk -= FDEV(bidx).start_blk; 1672 1673 if (map->m_may_create) 1674 f2fs_update_device_state(sbi, inode->i_ino, 1675 blk_addr, map->m_len); 1676 1677 f2fs_bug_on(sbi, blk_addr + map->m_len > 1678 FDEV(bidx).end_blk + 1); 1679 } 1680 } 1681 1682 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1683 if (map->m_flags & F2FS_MAP_MAPPED) { 1684 unsigned int ofs = start_pgofs - map->m_lblk; 1685 1686 f2fs_update_extent_cache_range(&dn, 1687 start_pgofs, map->m_pblk + ofs, 1688 map->m_len - ofs); 1689 } 1690 if (map->m_next_extent) 1691 *map->m_next_extent = pgofs + 1; 1692 } 1693 f2fs_put_dnode(&dn); 1694 unlock_out: 1695 if (map->m_may_create) { 1696 f2fs_do_map_lock(sbi, flag, false); 1697 f2fs_balance_fs(sbi, dn.node_changed); 1698 } 1699 out: 1700 trace_f2fs_map_blocks(inode, map, create, flag, err); 1701 return err; 1702 } 1703 1704 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1705 { 1706 struct f2fs_map_blocks map; 1707 block_t last_lblk; 1708 int err; 1709 1710 if (pos + len > i_size_read(inode)) 1711 return false; 1712 1713 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1714 map.m_next_pgofs = NULL; 1715 map.m_next_extent = NULL; 1716 map.m_seg_type = NO_CHECK_TYPE; 1717 map.m_may_create = false; 1718 last_lblk = F2FS_BLK_ALIGN(pos + len); 1719 1720 while (map.m_lblk < last_lblk) { 1721 map.m_len = last_lblk - map.m_lblk; 1722 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1723 if (err || map.m_len == 0) 1724 return false; 1725 map.m_lblk += map.m_len; 1726 } 1727 return true; 1728 } 1729 1730 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1731 { 1732 return (bytes >> inode->i_blkbits); 1733 } 1734 1735 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1736 { 1737 return (blks << inode->i_blkbits); 1738 } 1739 1740 static int f2fs_xattr_fiemap(struct inode *inode, 1741 struct fiemap_extent_info *fieinfo) 1742 { 1743 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1744 struct page *page; 1745 struct node_info ni; 1746 __u64 phys = 0, len; 1747 __u32 flags; 1748 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1749 int err = 0; 1750 1751 if (f2fs_has_inline_xattr(inode)) { 1752 int offset; 1753 1754 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1755 inode->i_ino, false); 1756 if (!page) 1757 return -ENOMEM; 1758 1759 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1760 if (err) { 1761 f2fs_put_page(page, 1); 1762 return err; 1763 } 1764 1765 phys = blks_to_bytes(inode, ni.blk_addr); 1766 offset = offsetof(struct f2fs_inode, i_addr) + 1767 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1768 get_inline_xattr_addrs(inode)); 1769 1770 phys += offset; 1771 len = inline_xattr_size(inode); 1772 1773 f2fs_put_page(page, 1); 1774 1775 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1776 1777 if (!xnid) 1778 flags |= FIEMAP_EXTENT_LAST; 1779 1780 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1781 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1782 if (err || err == 1) 1783 return err; 1784 } 1785 1786 if (xnid) { 1787 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1788 if (!page) 1789 return -ENOMEM; 1790 1791 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1792 if (err) { 1793 f2fs_put_page(page, 1); 1794 return err; 1795 } 1796 1797 phys = blks_to_bytes(inode, ni.blk_addr); 1798 len = inode->i_sb->s_blocksize; 1799 1800 f2fs_put_page(page, 1); 1801 1802 flags = FIEMAP_EXTENT_LAST; 1803 } 1804 1805 if (phys) { 1806 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1807 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1808 } 1809 1810 return (err < 0 ? err : 0); 1811 } 1812 1813 static loff_t max_inode_blocks(struct inode *inode) 1814 { 1815 loff_t result = ADDRS_PER_INODE(inode); 1816 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1817 1818 /* two direct node blocks */ 1819 result += (leaf_count * 2); 1820 1821 /* two indirect node blocks */ 1822 leaf_count *= NIDS_PER_BLOCK; 1823 result += (leaf_count * 2); 1824 1825 /* one double indirect node block */ 1826 leaf_count *= NIDS_PER_BLOCK; 1827 result += leaf_count; 1828 1829 return result; 1830 } 1831 1832 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1833 u64 start, u64 len) 1834 { 1835 struct f2fs_map_blocks map; 1836 sector_t start_blk, last_blk; 1837 pgoff_t next_pgofs; 1838 u64 logical = 0, phys = 0, size = 0; 1839 u32 flags = 0; 1840 int ret = 0; 1841 bool compr_cluster = false, compr_appended; 1842 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1843 unsigned int count_in_cluster = 0; 1844 loff_t maxbytes; 1845 1846 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1847 ret = f2fs_precache_extents(inode); 1848 if (ret) 1849 return ret; 1850 } 1851 1852 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1853 if (ret) 1854 return ret; 1855 1856 inode_lock(inode); 1857 1858 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1859 if (start > maxbytes) { 1860 ret = -EFBIG; 1861 goto out; 1862 } 1863 1864 if (len > maxbytes || (maxbytes - len) < start) 1865 len = maxbytes - start; 1866 1867 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1868 ret = f2fs_xattr_fiemap(inode, fieinfo); 1869 goto out; 1870 } 1871 1872 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1873 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1874 if (ret != -EAGAIN) 1875 goto out; 1876 } 1877 1878 if (bytes_to_blks(inode, len) == 0) 1879 len = blks_to_bytes(inode, 1); 1880 1881 start_blk = bytes_to_blks(inode, start); 1882 last_blk = bytes_to_blks(inode, start + len - 1); 1883 1884 next: 1885 memset(&map, 0, sizeof(map)); 1886 map.m_lblk = start_blk; 1887 map.m_len = bytes_to_blks(inode, len); 1888 map.m_next_pgofs = &next_pgofs; 1889 map.m_seg_type = NO_CHECK_TYPE; 1890 1891 if (compr_cluster) { 1892 map.m_lblk += 1; 1893 map.m_len = cluster_size - count_in_cluster; 1894 } 1895 1896 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1897 if (ret) 1898 goto out; 1899 1900 /* HOLE */ 1901 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1902 start_blk = next_pgofs; 1903 1904 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1905 max_inode_blocks(inode))) 1906 goto prep_next; 1907 1908 flags |= FIEMAP_EXTENT_LAST; 1909 } 1910 1911 compr_appended = false; 1912 /* In a case of compressed cluster, append this to the last extent */ 1913 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1914 !(map.m_flags & F2FS_MAP_FLAGS))) { 1915 compr_appended = true; 1916 goto skip_fill; 1917 } 1918 1919 if (size) { 1920 flags |= FIEMAP_EXTENT_MERGED; 1921 if (IS_ENCRYPTED(inode)) 1922 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1923 1924 ret = fiemap_fill_next_extent(fieinfo, logical, 1925 phys, size, flags); 1926 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1927 if (ret) 1928 goto out; 1929 size = 0; 1930 } 1931 1932 if (start_blk > last_blk) 1933 goto out; 1934 1935 skip_fill: 1936 if (map.m_pblk == COMPRESS_ADDR) { 1937 compr_cluster = true; 1938 count_in_cluster = 1; 1939 } else if (compr_appended) { 1940 unsigned int appended_blks = cluster_size - 1941 count_in_cluster + 1; 1942 size += blks_to_bytes(inode, appended_blks); 1943 start_blk += appended_blks; 1944 compr_cluster = false; 1945 } else { 1946 logical = blks_to_bytes(inode, start_blk); 1947 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1948 blks_to_bytes(inode, map.m_pblk) : 0; 1949 size = blks_to_bytes(inode, map.m_len); 1950 flags = 0; 1951 1952 if (compr_cluster) { 1953 flags = FIEMAP_EXTENT_ENCODED; 1954 count_in_cluster += map.m_len; 1955 if (count_in_cluster == cluster_size) { 1956 compr_cluster = false; 1957 size += blks_to_bytes(inode, 1); 1958 } 1959 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 1960 flags = FIEMAP_EXTENT_UNWRITTEN; 1961 } 1962 1963 start_blk += bytes_to_blks(inode, size); 1964 } 1965 1966 prep_next: 1967 cond_resched(); 1968 if (fatal_signal_pending(current)) 1969 ret = -EINTR; 1970 else 1971 goto next; 1972 out: 1973 if (ret == 1) 1974 ret = 0; 1975 1976 inode_unlock(inode); 1977 return ret; 1978 } 1979 1980 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1981 { 1982 if (IS_ENABLED(CONFIG_FS_VERITY) && 1983 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1984 return inode->i_sb->s_maxbytes; 1985 1986 return i_size_read(inode); 1987 } 1988 1989 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1990 unsigned nr_pages, 1991 struct f2fs_map_blocks *map, 1992 struct bio **bio_ret, 1993 sector_t *last_block_in_bio, 1994 bool is_readahead) 1995 { 1996 struct bio *bio = *bio_ret; 1997 const unsigned blocksize = blks_to_bytes(inode, 1); 1998 sector_t block_in_file; 1999 sector_t last_block; 2000 sector_t last_block_in_file; 2001 sector_t block_nr; 2002 int ret = 0; 2003 2004 block_in_file = (sector_t)page_index(page); 2005 last_block = block_in_file + nr_pages; 2006 last_block_in_file = bytes_to_blks(inode, 2007 f2fs_readpage_limit(inode) + blocksize - 1); 2008 if (last_block > last_block_in_file) 2009 last_block = last_block_in_file; 2010 2011 /* just zeroing out page which is beyond EOF */ 2012 if (block_in_file >= last_block) 2013 goto zero_out; 2014 /* 2015 * Map blocks using the previous result first. 2016 */ 2017 if ((map->m_flags & F2FS_MAP_MAPPED) && 2018 block_in_file > map->m_lblk && 2019 block_in_file < (map->m_lblk + map->m_len)) 2020 goto got_it; 2021 2022 /* 2023 * Then do more f2fs_map_blocks() calls until we are 2024 * done with this page. 2025 */ 2026 map->m_lblk = block_in_file; 2027 map->m_len = last_block - block_in_file; 2028 2029 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2030 if (ret) 2031 goto out; 2032 got_it: 2033 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2034 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2035 SetPageMappedToDisk(page); 2036 2037 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2038 DATA_GENERIC_ENHANCE_READ)) { 2039 ret = -EFSCORRUPTED; 2040 goto out; 2041 } 2042 } else { 2043 zero_out: 2044 zero_user_segment(page, 0, PAGE_SIZE); 2045 if (f2fs_need_verity(inode, page->index) && 2046 !fsverity_verify_page(page)) { 2047 ret = -EIO; 2048 goto out; 2049 } 2050 if (!PageUptodate(page)) 2051 SetPageUptodate(page); 2052 unlock_page(page); 2053 goto out; 2054 } 2055 2056 /* 2057 * This page will go to BIO. Do we need to send this 2058 * BIO off first? 2059 */ 2060 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2061 *last_block_in_bio, block_nr) || 2062 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2063 submit_and_realloc: 2064 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2065 bio = NULL; 2066 } 2067 if (bio == NULL) { 2068 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2069 is_readahead ? REQ_RAHEAD : 0, page->index, 2070 false); 2071 if (IS_ERR(bio)) { 2072 ret = PTR_ERR(bio); 2073 bio = NULL; 2074 goto out; 2075 } 2076 } 2077 2078 /* 2079 * If the page is under writeback, we need to wait for 2080 * its completion to see the correct decrypted data. 2081 */ 2082 f2fs_wait_on_block_writeback(inode, block_nr); 2083 2084 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2085 goto submit_and_realloc; 2086 2087 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2088 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2089 ClearPageError(page); 2090 *last_block_in_bio = block_nr; 2091 goto out; 2092 out: 2093 *bio_ret = bio; 2094 return ret; 2095 } 2096 2097 #ifdef CONFIG_F2FS_FS_COMPRESSION 2098 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2099 unsigned nr_pages, sector_t *last_block_in_bio, 2100 bool is_readahead, bool for_write) 2101 { 2102 struct dnode_of_data dn; 2103 struct inode *inode = cc->inode; 2104 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2105 struct bio *bio = *bio_ret; 2106 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2107 sector_t last_block_in_file; 2108 const unsigned blocksize = blks_to_bytes(inode, 1); 2109 struct decompress_io_ctx *dic = NULL; 2110 struct extent_info ei = {0, }; 2111 bool from_dnode = true; 2112 int i; 2113 int ret = 0; 2114 2115 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2116 2117 last_block_in_file = bytes_to_blks(inode, 2118 f2fs_readpage_limit(inode) + blocksize - 1); 2119 2120 /* get rid of pages beyond EOF */ 2121 for (i = 0; i < cc->cluster_size; i++) { 2122 struct page *page = cc->rpages[i]; 2123 2124 if (!page) 2125 continue; 2126 if ((sector_t)page->index >= last_block_in_file) { 2127 zero_user_segment(page, 0, PAGE_SIZE); 2128 if (!PageUptodate(page)) 2129 SetPageUptodate(page); 2130 } else if (!PageUptodate(page)) { 2131 continue; 2132 } 2133 unlock_page(page); 2134 if (for_write) 2135 put_page(page); 2136 cc->rpages[i] = NULL; 2137 cc->nr_rpages--; 2138 } 2139 2140 /* we are done since all pages are beyond EOF */ 2141 if (f2fs_cluster_is_empty(cc)) 2142 goto out; 2143 2144 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2145 from_dnode = false; 2146 2147 if (!from_dnode) 2148 goto skip_reading_dnode; 2149 2150 set_new_dnode(&dn, inode, NULL, NULL, 0); 2151 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2152 if (ret) 2153 goto out; 2154 2155 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2156 2157 skip_reading_dnode: 2158 for (i = 1; i < cc->cluster_size; i++) { 2159 block_t blkaddr; 2160 2161 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2162 dn.ofs_in_node + i) : 2163 ei.blk + i - 1; 2164 2165 if (!__is_valid_data_blkaddr(blkaddr)) 2166 break; 2167 2168 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2169 ret = -EFAULT; 2170 goto out_put_dnode; 2171 } 2172 cc->nr_cpages++; 2173 2174 if (!from_dnode && i >= ei.c_len) 2175 break; 2176 } 2177 2178 /* nothing to decompress */ 2179 if (cc->nr_cpages == 0) { 2180 ret = 0; 2181 goto out_put_dnode; 2182 } 2183 2184 dic = f2fs_alloc_dic(cc); 2185 if (IS_ERR(dic)) { 2186 ret = PTR_ERR(dic); 2187 goto out_put_dnode; 2188 } 2189 2190 for (i = 0; i < cc->nr_cpages; i++) { 2191 struct page *page = dic->cpages[i]; 2192 block_t blkaddr; 2193 struct bio_post_read_ctx *ctx; 2194 2195 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2196 dn.ofs_in_node + i + 1) : 2197 ei.blk + i; 2198 2199 f2fs_wait_on_block_writeback(inode, blkaddr); 2200 2201 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2202 if (atomic_dec_and_test(&dic->remaining_pages)) 2203 f2fs_decompress_cluster(dic); 2204 continue; 2205 } 2206 2207 if (bio && (!page_is_mergeable(sbi, bio, 2208 *last_block_in_bio, blkaddr) || 2209 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2210 submit_and_realloc: 2211 __submit_bio(sbi, bio, DATA); 2212 bio = NULL; 2213 } 2214 2215 if (!bio) { 2216 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2217 is_readahead ? REQ_RAHEAD : 0, 2218 page->index, for_write); 2219 if (IS_ERR(bio)) { 2220 ret = PTR_ERR(bio); 2221 f2fs_decompress_end_io(dic, ret); 2222 f2fs_put_dnode(&dn); 2223 *bio_ret = NULL; 2224 return ret; 2225 } 2226 } 2227 2228 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2229 goto submit_and_realloc; 2230 2231 ctx = get_post_read_ctx(bio); 2232 ctx->enabled_steps |= STEP_DECOMPRESS; 2233 refcount_inc(&dic->refcnt); 2234 2235 inc_page_count(sbi, F2FS_RD_DATA); 2236 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2237 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2238 ClearPageError(page); 2239 *last_block_in_bio = blkaddr; 2240 } 2241 2242 if (from_dnode) 2243 f2fs_put_dnode(&dn); 2244 2245 *bio_ret = bio; 2246 return 0; 2247 2248 out_put_dnode: 2249 if (from_dnode) 2250 f2fs_put_dnode(&dn); 2251 out: 2252 for (i = 0; i < cc->cluster_size; i++) { 2253 if (cc->rpages[i]) { 2254 ClearPageUptodate(cc->rpages[i]); 2255 ClearPageError(cc->rpages[i]); 2256 unlock_page(cc->rpages[i]); 2257 } 2258 } 2259 *bio_ret = bio; 2260 return ret; 2261 } 2262 #endif 2263 2264 /* 2265 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2266 * Major change was from block_size == page_size in f2fs by default. 2267 */ 2268 static int f2fs_mpage_readpages(struct inode *inode, 2269 struct readahead_control *rac, struct page *page) 2270 { 2271 struct bio *bio = NULL; 2272 sector_t last_block_in_bio = 0; 2273 struct f2fs_map_blocks map; 2274 #ifdef CONFIG_F2FS_FS_COMPRESSION 2275 struct compress_ctx cc = { 2276 .inode = inode, 2277 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2278 .cluster_size = F2FS_I(inode)->i_cluster_size, 2279 .cluster_idx = NULL_CLUSTER, 2280 .rpages = NULL, 2281 .cpages = NULL, 2282 .nr_rpages = 0, 2283 .nr_cpages = 0, 2284 }; 2285 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2286 #endif 2287 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2288 unsigned max_nr_pages = nr_pages; 2289 int ret = 0; 2290 2291 map.m_pblk = 0; 2292 map.m_lblk = 0; 2293 map.m_len = 0; 2294 map.m_flags = 0; 2295 map.m_next_pgofs = NULL; 2296 map.m_next_extent = NULL; 2297 map.m_seg_type = NO_CHECK_TYPE; 2298 map.m_may_create = false; 2299 2300 for (; nr_pages; nr_pages--) { 2301 if (rac) { 2302 page = readahead_page(rac); 2303 prefetchw(&page->flags); 2304 } 2305 2306 #ifdef CONFIG_F2FS_FS_COMPRESSION 2307 if (f2fs_compressed_file(inode)) { 2308 /* there are remained comressed pages, submit them */ 2309 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2310 ret = f2fs_read_multi_pages(&cc, &bio, 2311 max_nr_pages, 2312 &last_block_in_bio, 2313 rac != NULL, false); 2314 f2fs_destroy_compress_ctx(&cc, false); 2315 if (ret) 2316 goto set_error_page; 2317 } 2318 if (cc.cluster_idx == NULL_CLUSTER) { 2319 if (nc_cluster_idx == 2320 page->index >> cc.log_cluster_size) { 2321 goto read_single_page; 2322 } 2323 2324 ret = f2fs_is_compressed_cluster(inode, page->index); 2325 if (ret < 0) 2326 goto set_error_page; 2327 else if (!ret) { 2328 nc_cluster_idx = 2329 page->index >> cc.log_cluster_size; 2330 goto read_single_page; 2331 } 2332 2333 nc_cluster_idx = NULL_CLUSTER; 2334 } 2335 ret = f2fs_init_compress_ctx(&cc); 2336 if (ret) 2337 goto set_error_page; 2338 2339 f2fs_compress_ctx_add_page(&cc, page); 2340 2341 goto next_page; 2342 } 2343 read_single_page: 2344 #endif 2345 2346 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2347 &bio, &last_block_in_bio, rac); 2348 if (ret) { 2349 #ifdef CONFIG_F2FS_FS_COMPRESSION 2350 set_error_page: 2351 #endif 2352 SetPageError(page); 2353 zero_user_segment(page, 0, PAGE_SIZE); 2354 unlock_page(page); 2355 } 2356 #ifdef CONFIG_F2FS_FS_COMPRESSION 2357 next_page: 2358 #endif 2359 if (rac) 2360 put_page(page); 2361 2362 #ifdef CONFIG_F2FS_FS_COMPRESSION 2363 if (f2fs_compressed_file(inode)) { 2364 /* last page */ 2365 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2366 ret = f2fs_read_multi_pages(&cc, &bio, 2367 max_nr_pages, 2368 &last_block_in_bio, 2369 rac != NULL, false); 2370 f2fs_destroy_compress_ctx(&cc, false); 2371 } 2372 } 2373 #endif 2374 } 2375 if (bio) 2376 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2377 return ret; 2378 } 2379 2380 static int f2fs_read_data_page(struct file *file, struct page *page) 2381 { 2382 struct inode *inode = page_file_mapping(page)->host; 2383 int ret = -EAGAIN; 2384 2385 trace_f2fs_readpage(page, DATA); 2386 2387 if (!f2fs_is_compress_backend_ready(inode)) { 2388 unlock_page(page); 2389 return -EOPNOTSUPP; 2390 } 2391 2392 /* If the file has inline data, try to read it directly */ 2393 if (f2fs_has_inline_data(inode)) 2394 ret = f2fs_read_inline_data(inode, page); 2395 if (ret == -EAGAIN) 2396 ret = f2fs_mpage_readpages(inode, NULL, page); 2397 return ret; 2398 } 2399 2400 static void f2fs_readahead(struct readahead_control *rac) 2401 { 2402 struct inode *inode = rac->mapping->host; 2403 2404 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2405 2406 if (!f2fs_is_compress_backend_ready(inode)) 2407 return; 2408 2409 /* If the file has inline data, skip readpages */ 2410 if (f2fs_has_inline_data(inode)) 2411 return; 2412 2413 f2fs_mpage_readpages(inode, rac, NULL); 2414 } 2415 2416 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2417 { 2418 struct inode *inode = fio->page->mapping->host; 2419 struct page *mpage, *page; 2420 gfp_t gfp_flags = GFP_NOFS; 2421 2422 if (!f2fs_encrypted_file(inode)) 2423 return 0; 2424 2425 page = fio->compressed_page ? fio->compressed_page : fio->page; 2426 2427 /* wait for GCed page writeback via META_MAPPING */ 2428 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2429 2430 if (fscrypt_inode_uses_inline_crypto(inode)) 2431 return 0; 2432 2433 retry_encrypt: 2434 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2435 PAGE_SIZE, 0, gfp_flags); 2436 if (IS_ERR(fio->encrypted_page)) { 2437 /* flush pending IOs and wait for a while in the ENOMEM case */ 2438 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2439 f2fs_flush_merged_writes(fio->sbi); 2440 memalloc_retry_wait(GFP_NOFS); 2441 gfp_flags |= __GFP_NOFAIL; 2442 goto retry_encrypt; 2443 } 2444 return PTR_ERR(fio->encrypted_page); 2445 } 2446 2447 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2448 if (mpage) { 2449 if (PageUptodate(mpage)) 2450 memcpy(page_address(mpage), 2451 page_address(fio->encrypted_page), PAGE_SIZE); 2452 f2fs_put_page(mpage, 1); 2453 } 2454 return 0; 2455 } 2456 2457 static inline bool check_inplace_update_policy(struct inode *inode, 2458 struct f2fs_io_info *fio) 2459 { 2460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2461 unsigned int policy = SM_I(sbi)->ipu_policy; 2462 2463 if (policy & (0x1 << F2FS_IPU_FORCE)) 2464 return true; 2465 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2466 return true; 2467 if (policy & (0x1 << F2FS_IPU_UTIL) && 2468 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2469 return true; 2470 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2471 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2472 return true; 2473 2474 /* 2475 * IPU for rewrite async pages 2476 */ 2477 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2478 fio && fio->op == REQ_OP_WRITE && 2479 !(fio->op_flags & REQ_SYNC) && 2480 !IS_ENCRYPTED(inode)) 2481 return true; 2482 2483 /* this is only set during fdatasync */ 2484 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2485 is_inode_flag_set(inode, FI_NEED_IPU)) 2486 return true; 2487 2488 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2489 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2490 return true; 2491 2492 return false; 2493 } 2494 2495 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2496 { 2497 /* swap file is migrating in aligned write mode */ 2498 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2499 return false; 2500 2501 if (f2fs_is_pinned_file(inode)) 2502 return true; 2503 2504 /* if this is cold file, we should overwrite to avoid fragmentation */ 2505 if (file_is_cold(inode)) 2506 return true; 2507 2508 return check_inplace_update_policy(inode, fio); 2509 } 2510 2511 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2512 { 2513 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2514 2515 /* The below cases were checked when setting it. */ 2516 if (f2fs_is_pinned_file(inode)) 2517 return false; 2518 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2519 return true; 2520 if (f2fs_lfs_mode(sbi)) 2521 return true; 2522 if (S_ISDIR(inode->i_mode)) 2523 return true; 2524 if (IS_NOQUOTA(inode)) 2525 return true; 2526 if (f2fs_is_atomic_file(inode)) 2527 return true; 2528 2529 /* swap file is migrating in aligned write mode */ 2530 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2531 return true; 2532 2533 if (fio) { 2534 if (page_private_gcing(fio->page)) 2535 return true; 2536 if (page_private_dummy(fio->page)) 2537 return true; 2538 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2539 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2540 return true; 2541 } 2542 return false; 2543 } 2544 2545 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2546 { 2547 struct inode *inode = fio->page->mapping->host; 2548 2549 if (f2fs_should_update_outplace(inode, fio)) 2550 return false; 2551 2552 return f2fs_should_update_inplace(inode, fio); 2553 } 2554 2555 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2556 { 2557 struct page *page = fio->page; 2558 struct inode *inode = page->mapping->host; 2559 struct dnode_of_data dn; 2560 struct extent_info ei = {0, }; 2561 struct node_info ni; 2562 bool ipu_force = false; 2563 int err = 0; 2564 2565 set_new_dnode(&dn, inode, NULL, NULL, 0); 2566 if (need_inplace_update(fio) && 2567 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2568 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2569 2570 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2571 DATA_GENERIC_ENHANCE)) 2572 return -EFSCORRUPTED; 2573 2574 ipu_force = true; 2575 fio->need_lock = LOCK_DONE; 2576 goto got_it; 2577 } 2578 2579 /* Deadlock due to between page->lock and f2fs_lock_op */ 2580 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2581 return -EAGAIN; 2582 2583 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2584 if (err) 2585 goto out; 2586 2587 fio->old_blkaddr = dn.data_blkaddr; 2588 2589 /* This page is already truncated */ 2590 if (fio->old_blkaddr == NULL_ADDR) { 2591 ClearPageUptodate(page); 2592 clear_page_private_gcing(page); 2593 goto out_writepage; 2594 } 2595 got_it: 2596 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2597 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2598 DATA_GENERIC_ENHANCE)) { 2599 err = -EFSCORRUPTED; 2600 goto out_writepage; 2601 } 2602 /* 2603 * If current allocation needs SSR, 2604 * it had better in-place writes for updated data. 2605 */ 2606 if (ipu_force || 2607 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2608 need_inplace_update(fio))) { 2609 err = f2fs_encrypt_one_page(fio); 2610 if (err) 2611 goto out_writepage; 2612 2613 set_page_writeback(page); 2614 ClearPageError(page); 2615 f2fs_put_dnode(&dn); 2616 if (fio->need_lock == LOCK_REQ) 2617 f2fs_unlock_op(fio->sbi); 2618 err = f2fs_inplace_write_data(fio); 2619 if (err) { 2620 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2621 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2622 if (PageWriteback(page)) 2623 end_page_writeback(page); 2624 } else { 2625 set_inode_flag(inode, FI_UPDATE_WRITE); 2626 } 2627 trace_f2fs_do_write_data_page(fio->page, IPU); 2628 return err; 2629 } 2630 2631 if (fio->need_lock == LOCK_RETRY) { 2632 if (!f2fs_trylock_op(fio->sbi)) { 2633 err = -EAGAIN; 2634 goto out_writepage; 2635 } 2636 fio->need_lock = LOCK_REQ; 2637 } 2638 2639 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2640 if (err) 2641 goto out_writepage; 2642 2643 fio->version = ni.version; 2644 2645 err = f2fs_encrypt_one_page(fio); 2646 if (err) 2647 goto out_writepage; 2648 2649 set_page_writeback(page); 2650 ClearPageError(page); 2651 2652 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2653 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2654 2655 /* LFS mode write path */ 2656 f2fs_outplace_write_data(&dn, fio); 2657 trace_f2fs_do_write_data_page(page, OPU); 2658 set_inode_flag(inode, FI_APPEND_WRITE); 2659 if (page->index == 0) 2660 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2661 out_writepage: 2662 f2fs_put_dnode(&dn); 2663 out: 2664 if (fio->need_lock == LOCK_REQ) 2665 f2fs_unlock_op(fio->sbi); 2666 return err; 2667 } 2668 2669 int f2fs_write_single_data_page(struct page *page, int *submitted, 2670 struct bio **bio, 2671 sector_t *last_block, 2672 struct writeback_control *wbc, 2673 enum iostat_type io_type, 2674 int compr_blocks, 2675 bool allow_balance) 2676 { 2677 struct inode *inode = page->mapping->host; 2678 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2679 loff_t i_size = i_size_read(inode); 2680 const pgoff_t end_index = ((unsigned long long)i_size) 2681 >> PAGE_SHIFT; 2682 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2683 unsigned offset = 0; 2684 bool need_balance_fs = false; 2685 int err = 0; 2686 struct f2fs_io_info fio = { 2687 .sbi = sbi, 2688 .ino = inode->i_ino, 2689 .type = DATA, 2690 .op = REQ_OP_WRITE, 2691 .op_flags = wbc_to_write_flags(wbc), 2692 .old_blkaddr = NULL_ADDR, 2693 .page = page, 2694 .encrypted_page = NULL, 2695 .submitted = false, 2696 .compr_blocks = compr_blocks, 2697 .need_lock = LOCK_RETRY, 2698 .io_type = io_type, 2699 .io_wbc = wbc, 2700 .bio = bio, 2701 .last_block = last_block, 2702 }; 2703 2704 trace_f2fs_writepage(page, DATA); 2705 2706 /* we should bypass data pages to proceed the kworkder jobs */ 2707 if (unlikely(f2fs_cp_error(sbi))) { 2708 mapping_set_error(page->mapping, -EIO); 2709 /* 2710 * don't drop any dirty dentry pages for keeping lastest 2711 * directory structure. 2712 */ 2713 if (S_ISDIR(inode->i_mode)) 2714 goto redirty_out; 2715 goto out; 2716 } 2717 2718 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2719 goto redirty_out; 2720 2721 if (page->index < end_index || 2722 f2fs_verity_in_progress(inode) || 2723 compr_blocks) 2724 goto write; 2725 2726 /* 2727 * If the offset is out-of-range of file size, 2728 * this page does not have to be written to disk. 2729 */ 2730 offset = i_size & (PAGE_SIZE - 1); 2731 if ((page->index >= end_index + 1) || !offset) 2732 goto out; 2733 2734 zero_user_segment(page, offset, PAGE_SIZE); 2735 write: 2736 if (f2fs_is_drop_cache(inode)) 2737 goto out; 2738 /* we should not write 0'th page having journal header */ 2739 if (f2fs_is_volatile_file(inode) && (!page->index || 2740 (!wbc->for_reclaim && 2741 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2742 goto redirty_out; 2743 2744 /* Dentry/quota blocks are controlled by checkpoint */ 2745 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2746 /* 2747 * We need to wait for node_write to avoid block allocation during 2748 * checkpoint. This can only happen to quota writes which can cause 2749 * the below discard race condition. 2750 */ 2751 if (IS_NOQUOTA(inode)) 2752 down_read(&sbi->node_write); 2753 2754 fio.need_lock = LOCK_DONE; 2755 err = f2fs_do_write_data_page(&fio); 2756 2757 if (IS_NOQUOTA(inode)) 2758 up_read(&sbi->node_write); 2759 2760 goto done; 2761 } 2762 2763 if (!wbc->for_reclaim) 2764 need_balance_fs = true; 2765 else if (has_not_enough_free_secs(sbi, 0, 0)) 2766 goto redirty_out; 2767 else 2768 set_inode_flag(inode, FI_HOT_DATA); 2769 2770 err = -EAGAIN; 2771 if (f2fs_has_inline_data(inode)) { 2772 err = f2fs_write_inline_data(inode, page); 2773 if (!err) 2774 goto out; 2775 } 2776 2777 if (err == -EAGAIN) { 2778 err = f2fs_do_write_data_page(&fio); 2779 if (err == -EAGAIN) { 2780 fio.need_lock = LOCK_REQ; 2781 err = f2fs_do_write_data_page(&fio); 2782 } 2783 } 2784 2785 if (err) { 2786 file_set_keep_isize(inode); 2787 } else { 2788 spin_lock(&F2FS_I(inode)->i_size_lock); 2789 if (F2FS_I(inode)->last_disk_size < psize) 2790 F2FS_I(inode)->last_disk_size = psize; 2791 spin_unlock(&F2FS_I(inode)->i_size_lock); 2792 } 2793 2794 done: 2795 if (err && err != -ENOENT) 2796 goto redirty_out; 2797 2798 out: 2799 inode_dec_dirty_pages(inode); 2800 if (err) { 2801 ClearPageUptodate(page); 2802 clear_page_private_gcing(page); 2803 } 2804 2805 if (wbc->for_reclaim) { 2806 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2807 clear_inode_flag(inode, FI_HOT_DATA); 2808 f2fs_remove_dirty_inode(inode); 2809 submitted = NULL; 2810 } 2811 unlock_page(page); 2812 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2813 !F2FS_I(inode)->cp_task && allow_balance) 2814 f2fs_balance_fs(sbi, need_balance_fs); 2815 2816 if (unlikely(f2fs_cp_error(sbi))) { 2817 f2fs_submit_merged_write(sbi, DATA); 2818 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2819 submitted = NULL; 2820 } 2821 2822 if (submitted) 2823 *submitted = fio.submitted ? 1 : 0; 2824 2825 return 0; 2826 2827 redirty_out: 2828 redirty_page_for_writepage(wbc, page); 2829 /* 2830 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2831 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2832 * file_write_and_wait_range() will see EIO error, which is critical 2833 * to return value of fsync() followed by atomic_write failure to user. 2834 */ 2835 if (!err || wbc->for_reclaim) 2836 return AOP_WRITEPAGE_ACTIVATE; 2837 unlock_page(page); 2838 return err; 2839 } 2840 2841 static int f2fs_write_data_page(struct page *page, 2842 struct writeback_control *wbc) 2843 { 2844 #ifdef CONFIG_F2FS_FS_COMPRESSION 2845 struct inode *inode = page->mapping->host; 2846 2847 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2848 goto out; 2849 2850 if (f2fs_compressed_file(inode)) { 2851 if (f2fs_is_compressed_cluster(inode, page->index)) { 2852 redirty_page_for_writepage(wbc, page); 2853 return AOP_WRITEPAGE_ACTIVATE; 2854 } 2855 } 2856 out: 2857 #endif 2858 2859 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2860 wbc, FS_DATA_IO, 0, true); 2861 } 2862 2863 /* 2864 * This function was copied from write_cche_pages from mm/page-writeback.c. 2865 * The major change is making write step of cold data page separately from 2866 * warm/hot data page. 2867 */ 2868 static int f2fs_write_cache_pages(struct address_space *mapping, 2869 struct writeback_control *wbc, 2870 enum iostat_type io_type) 2871 { 2872 int ret = 0; 2873 int done = 0, retry = 0; 2874 struct pagevec pvec; 2875 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2876 struct bio *bio = NULL; 2877 sector_t last_block; 2878 #ifdef CONFIG_F2FS_FS_COMPRESSION 2879 struct inode *inode = mapping->host; 2880 struct compress_ctx cc = { 2881 .inode = inode, 2882 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2883 .cluster_size = F2FS_I(inode)->i_cluster_size, 2884 .cluster_idx = NULL_CLUSTER, 2885 .rpages = NULL, 2886 .nr_rpages = 0, 2887 .cpages = NULL, 2888 .valid_nr_cpages = 0, 2889 .rbuf = NULL, 2890 .cbuf = NULL, 2891 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2892 .private = NULL, 2893 }; 2894 #endif 2895 int nr_pages; 2896 pgoff_t index; 2897 pgoff_t end; /* Inclusive */ 2898 pgoff_t done_index; 2899 int range_whole = 0; 2900 xa_mark_t tag; 2901 int nwritten = 0; 2902 int submitted = 0; 2903 int i; 2904 2905 pagevec_init(&pvec); 2906 2907 if (get_dirty_pages(mapping->host) <= 2908 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2909 set_inode_flag(mapping->host, FI_HOT_DATA); 2910 else 2911 clear_inode_flag(mapping->host, FI_HOT_DATA); 2912 2913 if (wbc->range_cyclic) { 2914 index = mapping->writeback_index; /* prev offset */ 2915 end = -1; 2916 } else { 2917 index = wbc->range_start >> PAGE_SHIFT; 2918 end = wbc->range_end >> PAGE_SHIFT; 2919 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2920 range_whole = 1; 2921 } 2922 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2923 tag = PAGECACHE_TAG_TOWRITE; 2924 else 2925 tag = PAGECACHE_TAG_DIRTY; 2926 retry: 2927 retry = 0; 2928 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2929 tag_pages_for_writeback(mapping, index, end); 2930 done_index = index; 2931 while (!done && !retry && (index <= end)) { 2932 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2933 tag); 2934 if (nr_pages == 0) 2935 break; 2936 2937 for (i = 0; i < nr_pages; i++) { 2938 struct page *page = pvec.pages[i]; 2939 bool need_readd; 2940 readd: 2941 need_readd = false; 2942 #ifdef CONFIG_F2FS_FS_COMPRESSION 2943 if (f2fs_compressed_file(inode)) { 2944 void *fsdata = NULL; 2945 struct page *pagep; 2946 int ret2; 2947 2948 ret = f2fs_init_compress_ctx(&cc); 2949 if (ret) { 2950 done = 1; 2951 break; 2952 } 2953 2954 if (!f2fs_cluster_can_merge_page(&cc, 2955 page->index)) { 2956 ret = f2fs_write_multi_pages(&cc, 2957 &submitted, wbc, io_type); 2958 if (!ret) 2959 need_readd = true; 2960 goto result; 2961 } 2962 2963 if (unlikely(f2fs_cp_error(sbi))) 2964 goto lock_page; 2965 2966 if (!f2fs_cluster_is_empty(&cc)) 2967 goto lock_page; 2968 2969 ret2 = f2fs_prepare_compress_overwrite( 2970 inode, &pagep, 2971 page->index, &fsdata); 2972 if (ret2 < 0) { 2973 ret = ret2; 2974 done = 1; 2975 break; 2976 } else if (ret2 && 2977 (!f2fs_compress_write_end(inode, 2978 fsdata, page->index, 1) || 2979 !f2fs_all_cluster_page_loaded(&cc, 2980 &pvec, i, nr_pages))) { 2981 retry = 1; 2982 break; 2983 } 2984 } 2985 #endif 2986 /* give a priority to WB_SYNC threads */ 2987 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2988 wbc->sync_mode == WB_SYNC_NONE) { 2989 done = 1; 2990 break; 2991 } 2992 #ifdef CONFIG_F2FS_FS_COMPRESSION 2993 lock_page: 2994 #endif 2995 done_index = page->index; 2996 retry_write: 2997 lock_page(page); 2998 2999 if (unlikely(page->mapping != mapping)) { 3000 continue_unlock: 3001 unlock_page(page); 3002 continue; 3003 } 3004 3005 if (!PageDirty(page)) { 3006 /* someone wrote it for us */ 3007 goto continue_unlock; 3008 } 3009 3010 if (PageWriteback(page)) { 3011 if (wbc->sync_mode != WB_SYNC_NONE) 3012 f2fs_wait_on_page_writeback(page, 3013 DATA, true, true); 3014 else 3015 goto continue_unlock; 3016 } 3017 3018 if (!clear_page_dirty_for_io(page)) 3019 goto continue_unlock; 3020 3021 #ifdef CONFIG_F2FS_FS_COMPRESSION 3022 if (f2fs_compressed_file(inode)) { 3023 get_page(page); 3024 f2fs_compress_ctx_add_page(&cc, page); 3025 continue; 3026 } 3027 #endif 3028 ret = f2fs_write_single_data_page(page, &submitted, 3029 &bio, &last_block, wbc, io_type, 3030 0, true); 3031 if (ret == AOP_WRITEPAGE_ACTIVATE) 3032 unlock_page(page); 3033 #ifdef CONFIG_F2FS_FS_COMPRESSION 3034 result: 3035 #endif 3036 nwritten += submitted; 3037 wbc->nr_to_write -= submitted; 3038 3039 if (unlikely(ret)) { 3040 /* 3041 * keep nr_to_write, since vfs uses this to 3042 * get # of written pages. 3043 */ 3044 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3045 ret = 0; 3046 goto next; 3047 } else if (ret == -EAGAIN) { 3048 ret = 0; 3049 if (wbc->sync_mode == WB_SYNC_ALL) { 3050 cond_resched(); 3051 congestion_wait(BLK_RW_ASYNC, 3052 DEFAULT_IO_TIMEOUT); 3053 goto retry_write; 3054 } 3055 goto next; 3056 } 3057 done_index = page->index + 1; 3058 done = 1; 3059 break; 3060 } 3061 3062 if (wbc->nr_to_write <= 0 && 3063 wbc->sync_mode == WB_SYNC_NONE) { 3064 done = 1; 3065 break; 3066 } 3067 next: 3068 if (need_readd) 3069 goto readd; 3070 } 3071 pagevec_release(&pvec); 3072 cond_resched(); 3073 } 3074 #ifdef CONFIG_F2FS_FS_COMPRESSION 3075 /* flush remained pages in compress cluster */ 3076 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3077 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3078 nwritten += submitted; 3079 wbc->nr_to_write -= submitted; 3080 if (ret) { 3081 done = 1; 3082 retry = 0; 3083 } 3084 } 3085 if (f2fs_compressed_file(inode)) 3086 f2fs_destroy_compress_ctx(&cc, false); 3087 #endif 3088 if (retry) { 3089 index = 0; 3090 end = -1; 3091 goto retry; 3092 } 3093 if (wbc->range_cyclic && !done) 3094 done_index = 0; 3095 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3096 mapping->writeback_index = done_index; 3097 3098 if (nwritten) 3099 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3100 NULL, 0, DATA); 3101 /* submit cached bio of IPU write */ 3102 if (bio) 3103 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3104 3105 return ret; 3106 } 3107 3108 static inline bool __should_serialize_io(struct inode *inode, 3109 struct writeback_control *wbc) 3110 { 3111 /* to avoid deadlock in path of data flush */ 3112 if (F2FS_I(inode)->cp_task) 3113 return false; 3114 3115 if (!S_ISREG(inode->i_mode)) 3116 return false; 3117 if (IS_NOQUOTA(inode)) 3118 return false; 3119 3120 if (f2fs_need_compress_data(inode)) 3121 return true; 3122 if (wbc->sync_mode != WB_SYNC_ALL) 3123 return true; 3124 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3125 return true; 3126 return false; 3127 } 3128 3129 static int __f2fs_write_data_pages(struct address_space *mapping, 3130 struct writeback_control *wbc, 3131 enum iostat_type io_type) 3132 { 3133 struct inode *inode = mapping->host; 3134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3135 struct blk_plug plug; 3136 int ret; 3137 bool locked = false; 3138 3139 /* deal with chardevs and other special file */ 3140 if (!mapping->a_ops->writepage) 3141 return 0; 3142 3143 /* skip writing if there is no dirty page in this inode */ 3144 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3145 return 0; 3146 3147 /* during POR, we don't need to trigger writepage at all. */ 3148 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3149 goto skip_write; 3150 3151 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3152 wbc->sync_mode == WB_SYNC_NONE && 3153 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3154 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3155 goto skip_write; 3156 3157 /* skip writing during file defragment */ 3158 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3159 goto skip_write; 3160 3161 trace_f2fs_writepages(mapping->host, wbc, DATA); 3162 3163 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3164 if (wbc->sync_mode == WB_SYNC_ALL) 3165 atomic_inc(&sbi->wb_sync_req[DATA]); 3166 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3167 goto skip_write; 3168 3169 if (__should_serialize_io(inode, wbc)) { 3170 mutex_lock(&sbi->writepages); 3171 locked = true; 3172 } 3173 3174 blk_start_plug(&plug); 3175 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3176 blk_finish_plug(&plug); 3177 3178 if (locked) 3179 mutex_unlock(&sbi->writepages); 3180 3181 if (wbc->sync_mode == WB_SYNC_ALL) 3182 atomic_dec(&sbi->wb_sync_req[DATA]); 3183 /* 3184 * if some pages were truncated, we cannot guarantee its mapping->host 3185 * to detect pending bios. 3186 */ 3187 3188 f2fs_remove_dirty_inode(inode); 3189 return ret; 3190 3191 skip_write: 3192 wbc->pages_skipped += get_dirty_pages(inode); 3193 trace_f2fs_writepages(mapping->host, wbc, DATA); 3194 return 0; 3195 } 3196 3197 static int f2fs_write_data_pages(struct address_space *mapping, 3198 struct writeback_control *wbc) 3199 { 3200 struct inode *inode = mapping->host; 3201 3202 return __f2fs_write_data_pages(mapping, wbc, 3203 F2FS_I(inode)->cp_task == current ? 3204 FS_CP_DATA_IO : FS_DATA_IO); 3205 } 3206 3207 void f2fs_write_failed(struct inode *inode, loff_t to) 3208 { 3209 loff_t i_size = i_size_read(inode); 3210 3211 if (IS_NOQUOTA(inode)) 3212 return; 3213 3214 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3215 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3216 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3217 filemap_invalidate_lock(inode->i_mapping); 3218 3219 truncate_pagecache(inode, i_size); 3220 f2fs_truncate_blocks(inode, i_size, true); 3221 3222 filemap_invalidate_unlock(inode->i_mapping); 3223 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3224 } 3225 } 3226 3227 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3228 struct page *page, loff_t pos, unsigned len, 3229 block_t *blk_addr, bool *node_changed) 3230 { 3231 struct inode *inode = page->mapping->host; 3232 pgoff_t index = page->index; 3233 struct dnode_of_data dn; 3234 struct page *ipage; 3235 bool locked = false; 3236 struct extent_info ei = {0, }; 3237 int err = 0; 3238 int flag; 3239 3240 /* 3241 * If a whole page is being written and we already preallocated all the 3242 * blocks, then there is no need to get a block address now. 3243 */ 3244 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3245 return 0; 3246 3247 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3248 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3249 flag = F2FS_GET_BLOCK_DEFAULT; 3250 else 3251 flag = F2FS_GET_BLOCK_PRE_AIO; 3252 3253 if (f2fs_has_inline_data(inode) || 3254 (pos & PAGE_MASK) >= i_size_read(inode)) { 3255 f2fs_do_map_lock(sbi, flag, true); 3256 locked = true; 3257 } 3258 3259 restart: 3260 /* check inline_data */ 3261 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3262 if (IS_ERR(ipage)) { 3263 err = PTR_ERR(ipage); 3264 goto unlock_out; 3265 } 3266 3267 set_new_dnode(&dn, inode, ipage, ipage, 0); 3268 3269 if (f2fs_has_inline_data(inode)) { 3270 if (pos + len <= MAX_INLINE_DATA(inode)) { 3271 f2fs_do_read_inline_data(page, ipage); 3272 set_inode_flag(inode, FI_DATA_EXIST); 3273 if (inode->i_nlink) 3274 set_page_private_inline(ipage); 3275 } else { 3276 err = f2fs_convert_inline_page(&dn, page); 3277 if (err) 3278 goto out; 3279 if (dn.data_blkaddr == NULL_ADDR) 3280 err = f2fs_get_block(&dn, index); 3281 } 3282 } else if (locked) { 3283 err = f2fs_get_block(&dn, index); 3284 } else { 3285 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3286 dn.data_blkaddr = ei.blk + index - ei.fofs; 3287 } else { 3288 /* hole case */ 3289 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3290 if (err || dn.data_blkaddr == NULL_ADDR) { 3291 f2fs_put_dnode(&dn); 3292 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3293 true); 3294 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3295 locked = true; 3296 goto restart; 3297 } 3298 } 3299 } 3300 3301 /* convert_inline_page can make node_changed */ 3302 *blk_addr = dn.data_blkaddr; 3303 *node_changed = dn.node_changed; 3304 out: 3305 f2fs_put_dnode(&dn); 3306 unlock_out: 3307 if (locked) 3308 f2fs_do_map_lock(sbi, flag, false); 3309 return err; 3310 } 3311 3312 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3313 loff_t pos, unsigned len, unsigned flags, 3314 struct page **pagep, void **fsdata) 3315 { 3316 struct inode *inode = mapping->host; 3317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3318 struct page *page = NULL; 3319 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3320 bool need_balance = false, drop_atomic = false; 3321 block_t blkaddr = NULL_ADDR; 3322 int err = 0; 3323 3324 trace_f2fs_write_begin(inode, pos, len, flags); 3325 3326 if (!f2fs_is_checkpoint_ready(sbi)) { 3327 err = -ENOSPC; 3328 goto fail; 3329 } 3330 3331 if ((f2fs_is_atomic_file(inode) && 3332 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3333 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3334 err = -ENOMEM; 3335 drop_atomic = true; 3336 goto fail; 3337 } 3338 3339 /* 3340 * We should check this at this moment to avoid deadlock on inode page 3341 * and #0 page. The locking rule for inline_data conversion should be: 3342 * lock_page(page #0) -> lock_page(inode_page) 3343 */ 3344 if (index != 0) { 3345 err = f2fs_convert_inline_inode(inode); 3346 if (err) 3347 goto fail; 3348 } 3349 3350 #ifdef CONFIG_F2FS_FS_COMPRESSION 3351 if (f2fs_compressed_file(inode)) { 3352 int ret; 3353 3354 *fsdata = NULL; 3355 3356 if (len == PAGE_SIZE) 3357 goto repeat; 3358 3359 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3360 index, fsdata); 3361 if (ret < 0) { 3362 err = ret; 3363 goto fail; 3364 } else if (ret) { 3365 return 0; 3366 } 3367 } 3368 #endif 3369 3370 repeat: 3371 /* 3372 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3373 * wait_for_stable_page. Will wait that below with our IO control. 3374 */ 3375 page = f2fs_pagecache_get_page(mapping, index, 3376 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3377 if (!page) { 3378 err = -ENOMEM; 3379 goto fail; 3380 } 3381 3382 /* TODO: cluster can be compressed due to race with .writepage */ 3383 3384 *pagep = page; 3385 3386 err = prepare_write_begin(sbi, page, pos, len, 3387 &blkaddr, &need_balance); 3388 if (err) 3389 goto fail; 3390 3391 if (need_balance && !IS_NOQUOTA(inode) && 3392 has_not_enough_free_secs(sbi, 0, 0)) { 3393 unlock_page(page); 3394 f2fs_balance_fs(sbi, true); 3395 lock_page(page); 3396 if (page->mapping != mapping) { 3397 /* The page got truncated from under us */ 3398 f2fs_put_page(page, 1); 3399 goto repeat; 3400 } 3401 } 3402 3403 f2fs_wait_on_page_writeback(page, DATA, false, true); 3404 3405 if (len == PAGE_SIZE || PageUptodate(page)) 3406 return 0; 3407 3408 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3409 !f2fs_verity_in_progress(inode)) { 3410 zero_user_segment(page, len, PAGE_SIZE); 3411 return 0; 3412 } 3413 3414 if (blkaddr == NEW_ADDR) { 3415 zero_user_segment(page, 0, PAGE_SIZE); 3416 SetPageUptodate(page); 3417 } else { 3418 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3419 DATA_GENERIC_ENHANCE_READ)) { 3420 err = -EFSCORRUPTED; 3421 goto fail; 3422 } 3423 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3424 if (err) 3425 goto fail; 3426 3427 lock_page(page); 3428 if (unlikely(page->mapping != mapping)) { 3429 f2fs_put_page(page, 1); 3430 goto repeat; 3431 } 3432 if (unlikely(!PageUptodate(page))) { 3433 err = -EIO; 3434 goto fail; 3435 } 3436 } 3437 return 0; 3438 3439 fail: 3440 f2fs_put_page(page, 1); 3441 f2fs_write_failed(inode, pos + len); 3442 if (drop_atomic) 3443 f2fs_drop_inmem_pages_all(sbi, false); 3444 return err; 3445 } 3446 3447 static int f2fs_write_end(struct file *file, 3448 struct address_space *mapping, 3449 loff_t pos, unsigned len, unsigned copied, 3450 struct page *page, void *fsdata) 3451 { 3452 struct inode *inode = page->mapping->host; 3453 3454 trace_f2fs_write_end(inode, pos, len, copied); 3455 3456 /* 3457 * This should be come from len == PAGE_SIZE, and we expect copied 3458 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3459 * let generic_perform_write() try to copy data again through copied=0. 3460 */ 3461 if (!PageUptodate(page)) { 3462 if (unlikely(copied != len)) 3463 copied = 0; 3464 else 3465 SetPageUptodate(page); 3466 } 3467 3468 #ifdef CONFIG_F2FS_FS_COMPRESSION 3469 /* overwrite compressed file */ 3470 if (f2fs_compressed_file(inode) && fsdata) { 3471 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3472 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3473 3474 if (pos + copied > i_size_read(inode) && 3475 !f2fs_verity_in_progress(inode)) 3476 f2fs_i_size_write(inode, pos + copied); 3477 return copied; 3478 } 3479 #endif 3480 3481 if (!copied) 3482 goto unlock_out; 3483 3484 set_page_dirty(page); 3485 3486 if (pos + copied > i_size_read(inode) && 3487 !f2fs_verity_in_progress(inode)) 3488 f2fs_i_size_write(inode, pos + copied); 3489 unlock_out: 3490 f2fs_put_page(page, 1); 3491 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3492 return copied; 3493 } 3494 3495 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3496 unsigned int length) 3497 { 3498 struct inode *inode = page->mapping->host; 3499 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3500 3501 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3502 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3503 return; 3504 3505 if (PageDirty(page)) { 3506 if (inode->i_ino == F2FS_META_INO(sbi)) { 3507 dec_page_count(sbi, F2FS_DIRTY_META); 3508 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3509 dec_page_count(sbi, F2FS_DIRTY_NODES); 3510 } else { 3511 inode_dec_dirty_pages(inode); 3512 f2fs_remove_dirty_inode(inode); 3513 } 3514 } 3515 3516 clear_page_private_gcing(page); 3517 3518 if (test_opt(sbi, COMPRESS_CACHE) && 3519 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3520 clear_page_private_data(page); 3521 3522 if (page_private_atomic(page)) 3523 return f2fs_drop_inmem_page(inode, page); 3524 3525 detach_page_private(page); 3526 set_page_private(page, 0); 3527 } 3528 3529 int f2fs_release_page(struct page *page, gfp_t wait) 3530 { 3531 /* If this is dirty page, keep PagePrivate */ 3532 if (PageDirty(page)) 3533 return 0; 3534 3535 /* This is atomic written page, keep Private */ 3536 if (page_private_atomic(page)) 3537 return 0; 3538 3539 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3540 struct inode *inode = page->mapping->host; 3541 3542 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode))) 3543 clear_page_private_data(page); 3544 } 3545 3546 clear_page_private_gcing(page); 3547 3548 detach_page_private(page); 3549 set_page_private(page, 0); 3550 return 1; 3551 } 3552 3553 static int f2fs_set_data_page_dirty(struct page *page) 3554 { 3555 struct inode *inode = page_file_mapping(page)->host; 3556 3557 trace_f2fs_set_page_dirty(page, DATA); 3558 3559 if (!PageUptodate(page)) 3560 SetPageUptodate(page); 3561 if (PageSwapCache(page)) 3562 return __set_page_dirty_nobuffers(page); 3563 3564 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3565 if (!page_private_atomic(page)) { 3566 f2fs_register_inmem_page(inode, page); 3567 return 1; 3568 } 3569 /* 3570 * Previously, this page has been registered, we just 3571 * return here. 3572 */ 3573 return 0; 3574 } 3575 3576 if (!PageDirty(page)) { 3577 __set_page_dirty_nobuffers(page); 3578 f2fs_update_dirty_page(inode, page); 3579 return 1; 3580 } 3581 return 0; 3582 } 3583 3584 3585 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3586 { 3587 #ifdef CONFIG_F2FS_FS_COMPRESSION 3588 struct dnode_of_data dn; 3589 sector_t start_idx, blknr = 0; 3590 int ret; 3591 3592 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3593 3594 set_new_dnode(&dn, inode, NULL, NULL, 0); 3595 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3596 if (ret) 3597 return 0; 3598 3599 if (dn.data_blkaddr != COMPRESS_ADDR) { 3600 dn.ofs_in_node += block - start_idx; 3601 blknr = f2fs_data_blkaddr(&dn); 3602 if (!__is_valid_data_blkaddr(blknr)) 3603 blknr = 0; 3604 } 3605 3606 f2fs_put_dnode(&dn); 3607 return blknr; 3608 #else 3609 return 0; 3610 #endif 3611 } 3612 3613 3614 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3615 { 3616 struct inode *inode = mapping->host; 3617 sector_t blknr = 0; 3618 3619 if (f2fs_has_inline_data(inode)) 3620 goto out; 3621 3622 /* make sure allocating whole blocks */ 3623 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3624 filemap_write_and_wait(mapping); 3625 3626 /* Block number less than F2FS MAX BLOCKS */ 3627 if (unlikely(block >= max_file_blocks(inode))) 3628 goto out; 3629 3630 if (f2fs_compressed_file(inode)) { 3631 blknr = f2fs_bmap_compress(inode, block); 3632 } else { 3633 struct f2fs_map_blocks map; 3634 3635 memset(&map, 0, sizeof(map)); 3636 map.m_lblk = block; 3637 map.m_len = 1; 3638 map.m_next_pgofs = NULL; 3639 map.m_seg_type = NO_CHECK_TYPE; 3640 3641 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3642 blknr = map.m_pblk; 3643 } 3644 out: 3645 trace_f2fs_bmap(inode, block, blknr); 3646 return blknr; 3647 } 3648 3649 #ifdef CONFIG_MIGRATION 3650 #include <linux/migrate.h> 3651 3652 int f2fs_migrate_page(struct address_space *mapping, 3653 struct page *newpage, struct page *page, enum migrate_mode mode) 3654 { 3655 int rc, extra_count; 3656 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3657 bool atomic_written = page_private_atomic(page); 3658 3659 BUG_ON(PageWriteback(page)); 3660 3661 /* migrating an atomic written page is safe with the inmem_lock hold */ 3662 if (atomic_written) { 3663 if (mode != MIGRATE_SYNC) 3664 return -EBUSY; 3665 if (!mutex_trylock(&fi->inmem_lock)) 3666 return -EAGAIN; 3667 } 3668 3669 /* one extra reference was held for atomic_write page */ 3670 extra_count = atomic_written ? 1 : 0; 3671 rc = migrate_page_move_mapping(mapping, newpage, 3672 page, extra_count); 3673 if (rc != MIGRATEPAGE_SUCCESS) { 3674 if (atomic_written) 3675 mutex_unlock(&fi->inmem_lock); 3676 return rc; 3677 } 3678 3679 if (atomic_written) { 3680 struct inmem_pages *cur; 3681 3682 list_for_each_entry(cur, &fi->inmem_pages, list) 3683 if (cur->page == page) { 3684 cur->page = newpage; 3685 break; 3686 } 3687 mutex_unlock(&fi->inmem_lock); 3688 put_page(page); 3689 get_page(newpage); 3690 } 3691 3692 /* guarantee to start from no stale private field */ 3693 set_page_private(newpage, 0); 3694 if (PagePrivate(page)) { 3695 set_page_private(newpage, page_private(page)); 3696 SetPagePrivate(newpage); 3697 get_page(newpage); 3698 3699 set_page_private(page, 0); 3700 ClearPagePrivate(page); 3701 put_page(page); 3702 } 3703 3704 if (mode != MIGRATE_SYNC_NO_COPY) 3705 migrate_page_copy(newpage, page); 3706 else 3707 migrate_page_states(newpage, page); 3708 3709 return MIGRATEPAGE_SUCCESS; 3710 } 3711 #endif 3712 3713 #ifdef CONFIG_SWAP 3714 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3715 unsigned int blkcnt) 3716 { 3717 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3718 unsigned int blkofs; 3719 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3720 unsigned int secidx = start_blk / blk_per_sec; 3721 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3722 int ret = 0; 3723 3724 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3725 filemap_invalidate_lock(inode->i_mapping); 3726 3727 set_inode_flag(inode, FI_ALIGNED_WRITE); 3728 3729 for (; secidx < end_sec; secidx++) { 3730 down_write(&sbi->pin_sem); 3731 3732 f2fs_lock_op(sbi); 3733 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3734 f2fs_unlock_op(sbi); 3735 3736 set_inode_flag(inode, FI_DO_DEFRAG); 3737 3738 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3739 struct page *page; 3740 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3741 3742 page = f2fs_get_lock_data_page(inode, blkidx, true); 3743 if (IS_ERR(page)) { 3744 up_write(&sbi->pin_sem); 3745 ret = PTR_ERR(page); 3746 goto done; 3747 } 3748 3749 set_page_dirty(page); 3750 f2fs_put_page(page, 1); 3751 } 3752 3753 clear_inode_flag(inode, FI_DO_DEFRAG); 3754 3755 ret = filemap_fdatawrite(inode->i_mapping); 3756 3757 up_write(&sbi->pin_sem); 3758 3759 if (ret) 3760 break; 3761 } 3762 3763 done: 3764 clear_inode_flag(inode, FI_DO_DEFRAG); 3765 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3766 3767 filemap_invalidate_unlock(inode->i_mapping); 3768 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3769 3770 return ret; 3771 } 3772 3773 static int check_swap_activate(struct swap_info_struct *sis, 3774 struct file *swap_file, sector_t *span) 3775 { 3776 struct address_space *mapping = swap_file->f_mapping; 3777 struct inode *inode = mapping->host; 3778 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3779 sector_t cur_lblock; 3780 sector_t last_lblock; 3781 sector_t pblock; 3782 sector_t lowest_pblock = -1; 3783 sector_t highest_pblock = 0; 3784 int nr_extents = 0; 3785 unsigned long nr_pblocks; 3786 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3787 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3788 unsigned int not_aligned = 0; 3789 int ret = 0; 3790 3791 /* 3792 * Map all the blocks into the extent list. This code doesn't try 3793 * to be very smart. 3794 */ 3795 cur_lblock = 0; 3796 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3797 3798 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3799 struct f2fs_map_blocks map; 3800 retry: 3801 cond_resched(); 3802 3803 memset(&map, 0, sizeof(map)); 3804 map.m_lblk = cur_lblock; 3805 map.m_len = last_lblock - cur_lblock; 3806 map.m_next_pgofs = NULL; 3807 map.m_next_extent = NULL; 3808 map.m_seg_type = NO_CHECK_TYPE; 3809 map.m_may_create = false; 3810 3811 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3812 if (ret) 3813 goto out; 3814 3815 /* hole */ 3816 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3817 f2fs_err(sbi, "Swapfile has holes"); 3818 ret = -EINVAL; 3819 goto out; 3820 } 3821 3822 pblock = map.m_pblk; 3823 nr_pblocks = map.m_len; 3824 3825 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3826 nr_pblocks & sec_blks_mask) { 3827 not_aligned++; 3828 3829 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3830 if (cur_lblock + nr_pblocks > sis->max) 3831 nr_pblocks -= blks_per_sec; 3832 3833 if (!nr_pblocks) { 3834 /* this extent is last one */ 3835 nr_pblocks = map.m_len; 3836 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3837 goto next; 3838 } 3839 3840 ret = f2fs_migrate_blocks(inode, cur_lblock, 3841 nr_pblocks); 3842 if (ret) 3843 goto out; 3844 goto retry; 3845 } 3846 next: 3847 if (cur_lblock + nr_pblocks >= sis->max) 3848 nr_pblocks = sis->max - cur_lblock; 3849 3850 if (cur_lblock) { /* exclude the header page */ 3851 if (pblock < lowest_pblock) 3852 lowest_pblock = pblock; 3853 if (pblock + nr_pblocks - 1 > highest_pblock) 3854 highest_pblock = pblock + nr_pblocks - 1; 3855 } 3856 3857 /* 3858 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3859 */ 3860 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3861 if (ret < 0) 3862 goto out; 3863 nr_extents += ret; 3864 cur_lblock += nr_pblocks; 3865 } 3866 ret = nr_extents; 3867 *span = 1 + highest_pblock - lowest_pblock; 3868 if (cur_lblock == 0) 3869 cur_lblock = 1; /* force Empty message */ 3870 sis->max = cur_lblock; 3871 sis->pages = cur_lblock - 1; 3872 sis->highest_bit = cur_lblock - 1; 3873 out: 3874 if (not_aligned) 3875 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3876 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3877 return ret; 3878 } 3879 3880 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3881 sector_t *span) 3882 { 3883 struct inode *inode = file_inode(file); 3884 int ret; 3885 3886 if (!S_ISREG(inode->i_mode)) 3887 return -EINVAL; 3888 3889 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3890 return -EROFS; 3891 3892 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3893 f2fs_err(F2FS_I_SB(inode), 3894 "Swapfile not supported in LFS mode"); 3895 return -EINVAL; 3896 } 3897 3898 ret = f2fs_convert_inline_inode(inode); 3899 if (ret) 3900 return ret; 3901 3902 if (!f2fs_disable_compressed_file(inode)) 3903 return -EINVAL; 3904 3905 f2fs_precache_extents(inode); 3906 3907 ret = check_swap_activate(sis, file, span); 3908 if (ret < 0) 3909 return ret; 3910 3911 set_inode_flag(inode, FI_PIN_FILE); 3912 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3913 return ret; 3914 } 3915 3916 static void f2fs_swap_deactivate(struct file *file) 3917 { 3918 struct inode *inode = file_inode(file); 3919 3920 clear_inode_flag(inode, FI_PIN_FILE); 3921 } 3922 #else 3923 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3924 sector_t *span) 3925 { 3926 return -EOPNOTSUPP; 3927 } 3928 3929 static void f2fs_swap_deactivate(struct file *file) 3930 { 3931 } 3932 #endif 3933 3934 const struct address_space_operations f2fs_dblock_aops = { 3935 .readpage = f2fs_read_data_page, 3936 .readahead = f2fs_readahead, 3937 .writepage = f2fs_write_data_page, 3938 .writepages = f2fs_write_data_pages, 3939 .write_begin = f2fs_write_begin, 3940 .write_end = f2fs_write_end, 3941 .set_page_dirty = f2fs_set_data_page_dirty, 3942 .invalidatepage = f2fs_invalidate_page, 3943 .releasepage = f2fs_release_page, 3944 .direct_IO = noop_direct_IO, 3945 .bmap = f2fs_bmap, 3946 .swap_activate = f2fs_swap_activate, 3947 .swap_deactivate = f2fs_swap_deactivate, 3948 #ifdef CONFIG_MIGRATION 3949 .migratepage = f2fs_migrate_page, 3950 #endif 3951 }; 3952 3953 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3954 { 3955 struct address_space *mapping = page_mapping(page); 3956 unsigned long flags; 3957 3958 xa_lock_irqsave(&mapping->i_pages, flags); 3959 __xa_clear_mark(&mapping->i_pages, page_index(page), 3960 PAGECACHE_TAG_DIRTY); 3961 xa_unlock_irqrestore(&mapping->i_pages, flags); 3962 } 3963 3964 int __init f2fs_init_post_read_processing(void) 3965 { 3966 bio_post_read_ctx_cache = 3967 kmem_cache_create("f2fs_bio_post_read_ctx", 3968 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 3969 if (!bio_post_read_ctx_cache) 3970 goto fail; 3971 bio_post_read_ctx_pool = 3972 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3973 bio_post_read_ctx_cache); 3974 if (!bio_post_read_ctx_pool) 3975 goto fail_free_cache; 3976 return 0; 3977 3978 fail_free_cache: 3979 kmem_cache_destroy(bio_post_read_ctx_cache); 3980 fail: 3981 return -ENOMEM; 3982 } 3983 3984 void f2fs_destroy_post_read_processing(void) 3985 { 3986 mempool_destroy(bio_post_read_ctx_pool); 3987 kmem_cache_destroy(bio_post_read_ctx_cache); 3988 } 3989 3990 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 3991 { 3992 if (!f2fs_sb_has_encrypt(sbi) && 3993 !f2fs_sb_has_verity(sbi) && 3994 !f2fs_sb_has_compression(sbi)) 3995 return 0; 3996 3997 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 3998 WQ_UNBOUND | WQ_HIGHPRI, 3999 num_online_cpus()); 4000 if (!sbi->post_read_wq) 4001 return -ENOMEM; 4002 return 0; 4003 } 4004 4005 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4006 { 4007 if (sbi->post_read_wq) 4008 destroy_workqueue(sbi->post_read_wq); 4009 } 4010 4011 int __init f2fs_init_bio_entry_cache(void) 4012 { 4013 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4014 sizeof(struct bio_entry)); 4015 if (!bio_entry_slab) 4016 return -ENOMEM; 4017 return 0; 4018 } 4019 4020 void f2fs_destroy_bio_entry_cache(void) 4021 { 4022 kmem_cache_destroy(bio_entry_slab); 4023 } 4024 4025 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4026 unsigned int flags, struct iomap *iomap, 4027 struct iomap *srcmap) 4028 { 4029 struct f2fs_map_blocks map = {}; 4030 pgoff_t next_pgofs = 0; 4031 int err; 4032 4033 map.m_lblk = bytes_to_blks(inode, offset); 4034 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4035 map.m_next_pgofs = &next_pgofs; 4036 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4037 if (flags & IOMAP_WRITE) 4038 map.m_may_create = true; 4039 4040 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4041 F2FS_GET_BLOCK_DIO); 4042 if (err) 4043 return err; 4044 4045 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4046 4047 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4048 iomap->length = blks_to_bytes(inode, map.m_len); 4049 if (map.m_flags & F2FS_MAP_MAPPED) { 4050 iomap->type = IOMAP_MAPPED; 4051 iomap->flags |= IOMAP_F_MERGED; 4052 } else { 4053 iomap->type = IOMAP_UNWRITTEN; 4054 } 4055 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4056 return -EINVAL; 4057 4058 iomap->bdev = map.m_bdev; 4059 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4060 } else { 4061 iomap->length = blks_to_bytes(inode, next_pgofs) - 4062 iomap->offset; 4063 iomap->type = IOMAP_HOLE; 4064 iomap->addr = IOMAP_NULL_ADDR; 4065 } 4066 4067 if (map.m_flags & F2FS_MAP_NEW) 4068 iomap->flags |= IOMAP_F_NEW; 4069 if ((inode->i_state & I_DIRTY_DATASYNC) || 4070 offset + length > i_size_read(inode)) 4071 iomap->flags |= IOMAP_F_DIRTY; 4072 4073 return 0; 4074 } 4075 4076 const struct iomap_ops f2fs_iomap_ops = { 4077 .iomap_begin = f2fs_iomap_begin, 4078 }; 4079