xref: /openbmc/linux/fs/f2fs/data.c (revision 93d90ad7)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
26 
27 static void f2fs_read_end_io(struct bio *bio, int err)
28 {
29 	struct bio_vec *bvec;
30 	int i;
31 
32 	bio_for_each_segment_all(bvec, bio, i) {
33 		struct page *page = bvec->bv_page;
34 
35 		if (!err) {
36 			SetPageUptodate(page);
37 		} else {
38 			ClearPageUptodate(page);
39 			SetPageError(page);
40 		}
41 		unlock_page(page);
42 	}
43 	bio_put(bio);
44 }
45 
46 static void f2fs_write_end_io(struct bio *bio, int err)
47 {
48 	struct f2fs_sb_info *sbi = bio->bi_private;
49 	struct bio_vec *bvec;
50 	int i;
51 
52 	bio_for_each_segment_all(bvec, bio, i) {
53 		struct page *page = bvec->bv_page;
54 
55 		if (unlikely(err)) {
56 			set_page_dirty(page);
57 			set_bit(AS_EIO, &page->mapping->flags);
58 			f2fs_stop_checkpoint(sbi);
59 		}
60 		end_page_writeback(page);
61 		dec_page_count(sbi, F2FS_WRITEBACK);
62 	}
63 
64 	if (!get_pages(sbi, F2FS_WRITEBACK) &&
65 			!list_empty(&sbi->cp_wait.task_list))
66 		wake_up(&sbi->cp_wait);
67 
68 	bio_put(bio);
69 }
70 
71 /*
72  * Low-level block read/write IO operations.
73  */
74 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
75 				int npages, bool is_read)
76 {
77 	struct bio *bio;
78 
79 	/* No failure on bio allocation */
80 	bio = bio_alloc(GFP_NOIO, npages);
81 
82 	bio->bi_bdev = sbi->sb->s_bdev;
83 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
84 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
85 	bio->bi_private = sbi;
86 
87 	return bio;
88 }
89 
90 static void __submit_merged_bio(struct f2fs_bio_info *io)
91 {
92 	struct f2fs_io_info *fio = &io->fio;
93 
94 	if (!io->bio)
95 		return;
96 
97 	if (is_read_io(fio->rw))
98 		trace_f2fs_submit_read_bio(io->sbi->sb, fio->rw,
99 							fio->type, io->bio);
100 	else
101 		trace_f2fs_submit_write_bio(io->sbi->sb, fio->rw,
102 							fio->type, io->bio);
103 
104 	submit_bio(fio->rw, io->bio);
105 	io->bio = NULL;
106 }
107 
108 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
109 				enum page_type type, int rw)
110 {
111 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
112 	struct f2fs_bio_info *io;
113 
114 	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
115 
116 	down_write(&io->io_rwsem);
117 
118 	/* change META to META_FLUSH in the checkpoint procedure */
119 	if (type >= META_FLUSH) {
120 		io->fio.type = META_FLUSH;
121 		if (test_opt(sbi, NOBARRIER))
122 			io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
123 		else
124 			io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
125 	}
126 	__submit_merged_bio(io);
127 	up_write(&io->io_rwsem);
128 }
129 
130 /*
131  * Fill the locked page with data located in the block address.
132  * Return unlocked page.
133  */
134 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
135 					block_t blk_addr, int rw)
136 {
137 	struct bio *bio;
138 
139 	trace_f2fs_submit_page_bio(page, blk_addr, rw);
140 
141 	/* Allocate a new bio */
142 	bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
143 
144 	if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
145 		bio_put(bio);
146 		f2fs_put_page(page, 1);
147 		return -EFAULT;
148 	}
149 
150 	submit_bio(rw, bio);
151 	return 0;
152 }
153 
154 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
155 			block_t blk_addr, struct f2fs_io_info *fio)
156 {
157 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
158 	struct f2fs_bio_info *io;
159 	bool is_read = is_read_io(fio->rw);
160 
161 	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
162 
163 	verify_block_addr(sbi, blk_addr);
164 
165 	down_write(&io->io_rwsem);
166 
167 	if (!is_read)
168 		inc_page_count(sbi, F2FS_WRITEBACK);
169 
170 	if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
171 						io->fio.rw != fio->rw))
172 		__submit_merged_bio(io);
173 alloc_new:
174 	if (io->bio == NULL) {
175 		int bio_blocks = MAX_BIO_BLOCKS(sbi);
176 
177 		io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
178 		io->fio = *fio;
179 	}
180 
181 	if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
182 							PAGE_CACHE_SIZE) {
183 		__submit_merged_bio(io);
184 		goto alloc_new;
185 	}
186 
187 	io->last_block_in_bio = blk_addr;
188 
189 	up_write(&io->io_rwsem);
190 	trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
191 }
192 
193 /*
194  * Lock ordering for the change of data block address:
195  * ->data_page
196  *  ->node_page
197  *    update block addresses in the node page
198  */
199 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
200 {
201 	struct f2fs_node *rn;
202 	__le32 *addr_array;
203 	struct page *node_page = dn->node_page;
204 	unsigned int ofs_in_node = dn->ofs_in_node;
205 
206 	f2fs_wait_on_page_writeback(node_page, NODE);
207 
208 	rn = F2FS_NODE(node_page);
209 
210 	/* Get physical address of data block */
211 	addr_array = blkaddr_in_node(rn);
212 	addr_array[ofs_in_node] = cpu_to_le32(new_addr);
213 	set_page_dirty(node_page);
214 }
215 
216 int reserve_new_block(struct dnode_of_data *dn)
217 {
218 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
219 
220 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
221 		return -EPERM;
222 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
223 		return -ENOSPC;
224 
225 	trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
226 
227 	__set_data_blkaddr(dn, NEW_ADDR);
228 	dn->data_blkaddr = NEW_ADDR;
229 	mark_inode_dirty(dn->inode);
230 	sync_inode_page(dn);
231 	return 0;
232 }
233 
234 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
235 {
236 	bool need_put = dn->inode_page ? false : true;
237 	int err;
238 
239 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
240 	if (err)
241 		return err;
242 
243 	if (dn->data_blkaddr == NULL_ADDR)
244 		err = reserve_new_block(dn);
245 	if (err || need_put)
246 		f2fs_put_dnode(dn);
247 	return err;
248 }
249 
250 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
251 					struct buffer_head *bh_result)
252 {
253 	struct f2fs_inode_info *fi = F2FS_I(inode);
254 	pgoff_t start_fofs, end_fofs;
255 	block_t start_blkaddr;
256 
257 	if (is_inode_flag_set(fi, FI_NO_EXTENT))
258 		return 0;
259 
260 	read_lock(&fi->ext.ext_lock);
261 	if (fi->ext.len == 0) {
262 		read_unlock(&fi->ext.ext_lock);
263 		return 0;
264 	}
265 
266 	stat_inc_total_hit(inode->i_sb);
267 
268 	start_fofs = fi->ext.fofs;
269 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
270 	start_blkaddr = fi->ext.blk_addr;
271 
272 	if (pgofs >= start_fofs && pgofs <= end_fofs) {
273 		unsigned int blkbits = inode->i_sb->s_blocksize_bits;
274 		size_t count;
275 
276 		clear_buffer_new(bh_result);
277 		map_bh(bh_result, inode->i_sb,
278 				start_blkaddr + pgofs - start_fofs);
279 		count = end_fofs - pgofs + 1;
280 		if (count < (UINT_MAX >> blkbits))
281 			bh_result->b_size = (count << blkbits);
282 		else
283 			bh_result->b_size = UINT_MAX;
284 
285 		stat_inc_read_hit(inode->i_sb);
286 		read_unlock(&fi->ext.ext_lock);
287 		return 1;
288 	}
289 	read_unlock(&fi->ext.ext_lock);
290 	return 0;
291 }
292 
293 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
294 {
295 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
296 	pgoff_t fofs, start_fofs, end_fofs;
297 	block_t start_blkaddr, end_blkaddr;
298 	int need_update = true;
299 
300 	f2fs_bug_on(F2FS_I_SB(dn->inode), blk_addr == NEW_ADDR);
301 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
302 							dn->ofs_in_node;
303 
304 	/* Update the page address in the parent node */
305 	__set_data_blkaddr(dn, blk_addr);
306 
307 	if (is_inode_flag_set(fi, FI_NO_EXTENT))
308 		return;
309 
310 	write_lock(&fi->ext.ext_lock);
311 
312 	start_fofs = fi->ext.fofs;
313 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
314 	start_blkaddr = fi->ext.blk_addr;
315 	end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
316 
317 	/* Drop and initialize the matched extent */
318 	if (fi->ext.len == 1 && fofs == start_fofs)
319 		fi->ext.len = 0;
320 
321 	/* Initial extent */
322 	if (fi->ext.len == 0) {
323 		if (blk_addr != NULL_ADDR) {
324 			fi->ext.fofs = fofs;
325 			fi->ext.blk_addr = blk_addr;
326 			fi->ext.len = 1;
327 		}
328 		goto end_update;
329 	}
330 
331 	/* Front merge */
332 	if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
333 		fi->ext.fofs--;
334 		fi->ext.blk_addr--;
335 		fi->ext.len++;
336 		goto end_update;
337 	}
338 
339 	/* Back merge */
340 	if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
341 		fi->ext.len++;
342 		goto end_update;
343 	}
344 
345 	/* Split the existing extent */
346 	if (fi->ext.len > 1 &&
347 		fofs >= start_fofs && fofs <= end_fofs) {
348 		if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
349 			fi->ext.len = fofs - start_fofs;
350 		} else {
351 			fi->ext.fofs = fofs + 1;
352 			fi->ext.blk_addr = start_blkaddr +
353 					fofs - start_fofs + 1;
354 			fi->ext.len -= fofs - start_fofs + 1;
355 		}
356 	} else {
357 		need_update = false;
358 	}
359 
360 	/* Finally, if the extent is very fragmented, let's drop the cache. */
361 	if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
362 		fi->ext.len = 0;
363 		set_inode_flag(fi, FI_NO_EXTENT);
364 		need_update = true;
365 	}
366 end_update:
367 	write_unlock(&fi->ext.ext_lock);
368 	if (need_update)
369 		sync_inode_page(dn);
370 	return;
371 }
372 
373 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
374 {
375 	struct address_space *mapping = inode->i_mapping;
376 	struct dnode_of_data dn;
377 	struct page *page;
378 	int err;
379 
380 	page = find_get_page(mapping, index);
381 	if (page && PageUptodate(page))
382 		return page;
383 	f2fs_put_page(page, 0);
384 
385 	set_new_dnode(&dn, inode, NULL, NULL, 0);
386 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
387 	if (err)
388 		return ERR_PTR(err);
389 	f2fs_put_dnode(&dn);
390 
391 	if (dn.data_blkaddr == NULL_ADDR)
392 		return ERR_PTR(-ENOENT);
393 
394 	/* By fallocate(), there is no cached page, but with NEW_ADDR */
395 	if (unlikely(dn.data_blkaddr == NEW_ADDR))
396 		return ERR_PTR(-EINVAL);
397 
398 	page = grab_cache_page(mapping, index);
399 	if (!page)
400 		return ERR_PTR(-ENOMEM);
401 
402 	if (PageUptodate(page)) {
403 		unlock_page(page);
404 		return page;
405 	}
406 
407 	err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, dn.data_blkaddr,
408 					sync ? READ_SYNC : READA);
409 	if (err)
410 		return ERR_PTR(err);
411 
412 	if (sync) {
413 		wait_on_page_locked(page);
414 		if (unlikely(!PageUptodate(page))) {
415 			f2fs_put_page(page, 0);
416 			return ERR_PTR(-EIO);
417 		}
418 	}
419 	return page;
420 }
421 
422 /*
423  * If it tries to access a hole, return an error.
424  * Because, the callers, functions in dir.c and GC, should be able to know
425  * whether this page exists or not.
426  */
427 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
428 {
429 	struct address_space *mapping = inode->i_mapping;
430 	struct dnode_of_data dn;
431 	struct page *page;
432 	int err;
433 
434 repeat:
435 	page = grab_cache_page(mapping, index);
436 	if (!page)
437 		return ERR_PTR(-ENOMEM);
438 
439 	set_new_dnode(&dn, inode, NULL, NULL, 0);
440 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
441 	if (err) {
442 		f2fs_put_page(page, 1);
443 		return ERR_PTR(err);
444 	}
445 	f2fs_put_dnode(&dn);
446 
447 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
448 		f2fs_put_page(page, 1);
449 		return ERR_PTR(-ENOENT);
450 	}
451 
452 	if (PageUptodate(page))
453 		return page;
454 
455 	/*
456 	 * A new dentry page is allocated but not able to be written, since its
457 	 * new inode page couldn't be allocated due to -ENOSPC.
458 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
459 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
460 	 */
461 	if (dn.data_blkaddr == NEW_ADDR) {
462 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
463 		SetPageUptodate(page);
464 		return page;
465 	}
466 
467 	err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
468 					dn.data_blkaddr, READ_SYNC);
469 	if (err)
470 		return ERR_PTR(err);
471 
472 	lock_page(page);
473 	if (unlikely(!PageUptodate(page))) {
474 		f2fs_put_page(page, 1);
475 		return ERR_PTR(-EIO);
476 	}
477 	if (unlikely(page->mapping != mapping)) {
478 		f2fs_put_page(page, 1);
479 		goto repeat;
480 	}
481 	return page;
482 }
483 
484 /*
485  * Caller ensures that this data page is never allocated.
486  * A new zero-filled data page is allocated in the page cache.
487  *
488  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
489  * f2fs_unlock_op().
490  * Note that, ipage is set only by make_empty_dir.
491  */
492 struct page *get_new_data_page(struct inode *inode,
493 		struct page *ipage, pgoff_t index, bool new_i_size)
494 {
495 	struct address_space *mapping = inode->i_mapping;
496 	struct page *page;
497 	struct dnode_of_data dn;
498 	int err;
499 
500 	set_new_dnode(&dn, inode, ipage, NULL, 0);
501 	err = f2fs_reserve_block(&dn, index);
502 	if (err)
503 		return ERR_PTR(err);
504 repeat:
505 	page = grab_cache_page(mapping, index);
506 	if (!page) {
507 		err = -ENOMEM;
508 		goto put_err;
509 	}
510 
511 	if (PageUptodate(page))
512 		return page;
513 
514 	if (dn.data_blkaddr == NEW_ADDR) {
515 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
516 		SetPageUptodate(page);
517 	} else {
518 		err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
519 						dn.data_blkaddr, READ_SYNC);
520 		if (err)
521 			goto put_err;
522 
523 		lock_page(page);
524 		if (unlikely(!PageUptodate(page))) {
525 			f2fs_put_page(page, 1);
526 			err = -EIO;
527 			goto put_err;
528 		}
529 		if (unlikely(page->mapping != mapping)) {
530 			f2fs_put_page(page, 1);
531 			goto repeat;
532 		}
533 	}
534 
535 	if (new_i_size &&
536 		i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
537 		i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
538 		/* Only the directory inode sets new_i_size */
539 		set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
540 	}
541 	return page;
542 
543 put_err:
544 	f2fs_put_dnode(&dn);
545 	return ERR_PTR(err);
546 }
547 
548 static int __allocate_data_block(struct dnode_of_data *dn)
549 {
550 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
551 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
552 	struct f2fs_summary sum;
553 	block_t new_blkaddr;
554 	struct node_info ni;
555 	pgoff_t fofs;
556 	int type;
557 
558 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
559 		return -EPERM;
560 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
561 		return -ENOSPC;
562 
563 	__set_data_blkaddr(dn, NEW_ADDR);
564 	dn->data_blkaddr = NEW_ADDR;
565 
566 	get_node_info(sbi, dn->nid, &ni);
567 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
568 
569 	type = CURSEG_WARM_DATA;
570 
571 	allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
572 
573 	/* direct IO doesn't use extent cache to maximize the performance */
574 	set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
575 	update_extent_cache(new_blkaddr, dn);
576 	clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
577 
578 	/* update i_size */
579 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
580 							dn->ofs_in_node;
581 	if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
582 		i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
583 
584 	dn->data_blkaddr = new_blkaddr;
585 	return 0;
586 }
587 
588 /*
589  * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
590  * If original data blocks are allocated, then give them to blockdev.
591  * Otherwise,
592  *     a. preallocate requested block addresses
593  *     b. do not use extent cache for better performance
594  *     c. give the block addresses to blockdev
595  */
596 static int __get_data_block(struct inode *inode, sector_t iblock,
597 			struct buffer_head *bh_result, int create, bool fiemap)
598 {
599 	unsigned int blkbits = inode->i_sb->s_blocksize_bits;
600 	unsigned maxblocks = bh_result->b_size >> blkbits;
601 	struct dnode_of_data dn;
602 	int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
603 	pgoff_t pgofs, end_offset;
604 	int err = 0, ofs = 1;
605 	bool allocated = false;
606 
607 	/* Get the page offset from the block offset(iblock) */
608 	pgofs =	(pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
609 
610 	if (check_extent_cache(inode, pgofs, bh_result))
611 		goto out;
612 
613 	if (create) {
614 		f2fs_balance_fs(F2FS_I_SB(inode));
615 		f2fs_lock_op(F2FS_I_SB(inode));
616 	}
617 
618 	/* When reading holes, we need its node page */
619 	set_new_dnode(&dn, inode, NULL, NULL, 0);
620 	err = get_dnode_of_data(&dn, pgofs, mode);
621 	if (err) {
622 		if (err == -ENOENT)
623 			err = 0;
624 		goto unlock_out;
625 	}
626 	if (dn.data_blkaddr == NEW_ADDR && !fiemap)
627 		goto put_out;
628 
629 	if (dn.data_blkaddr != NULL_ADDR) {
630 		map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
631 	} else if (create) {
632 		err = __allocate_data_block(&dn);
633 		if (err)
634 			goto put_out;
635 		allocated = true;
636 		map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
637 	} else {
638 		goto put_out;
639 	}
640 
641 	end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
642 	bh_result->b_size = (((size_t)1) << blkbits);
643 	dn.ofs_in_node++;
644 	pgofs++;
645 
646 get_next:
647 	if (dn.ofs_in_node >= end_offset) {
648 		if (allocated)
649 			sync_inode_page(&dn);
650 		allocated = false;
651 		f2fs_put_dnode(&dn);
652 
653 		set_new_dnode(&dn, inode, NULL, NULL, 0);
654 		err = get_dnode_of_data(&dn, pgofs, mode);
655 		if (err) {
656 			if (err == -ENOENT)
657 				err = 0;
658 			goto unlock_out;
659 		}
660 		if (dn.data_blkaddr == NEW_ADDR && !fiemap)
661 			goto put_out;
662 
663 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
664 	}
665 
666 	if (maxblocks > (bh_result->b_size >> blkbits)) {
667 		block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
668 		if (blkaddr == NULL_ADDR && create) {
669 			err = __allocate_data_block(&dn);
670 			if (err)
671 				goto sync_out;
672 			allocated = true;
673 			blkaddr = dn.data_blkaddr;
674 		}
675 		/* Give more consecutive addresses for the readahead */
676 		if (blkaddr == (bh_result->b_blocknr + ofs)) {
677 			ofs++;
678 			dn.ofs_in_node++;
679 			pgofs++;
680 			bh_result->b_size += (((size_t)1) << blkbits);
681 			goto get_next;
682 		}
683 	}
684 sync_out:
685 	if (allocated)
686 		sync_inode_page(&dn);
687 put_out:
688 	f2fs_put_dnode(&dn);
689 unlock_out:
690 	if (create)
691 		f2fs_unlock_op(F2FS_I_SB(inode));
692 out:
693 	trace_f2fs_get_data_block(inode, iblock, bh_result, err);
694 	return err;
695 }
696 
697 static int get_data_block(struct inode *inode, sector_t iblock,
698 			struct buffer_head *bh_result, int create)
699 {
700 	return __get_data_block(inode, iblock, bh_result, create, false);
701 }
702 
703 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
704 			struct buffer_head *bh_result, int create)
705 {
706 	return __get_data_block(inode, iblock, bh_result, create, true);
707 }
708 
709 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
710 		u64 start, u64 len)
711 {
712 	return generic_block_fiemap(inode, fieinfo,
713 				start, len, get_data_block_fiemap);
714 }
715 
716 static int f2fs_read_data_page(struct file *file, struct page *page)
717 {
718 	struct inode *inode = page->mapping->host;
719 	int ret = -EAGAIN;
720 
721 	trace_f2fs_readpage(page, DATA);
722 
723 	/* If the file has inline data, try to read it directly */
724 	if (f2fs_has_inline_data(inode))
725 		ret = f2fs_read_inline_data(inode, page);
726 	if (ret == -EAGAIN)
727 		ret = mpage_readpage(page, get_data_block);
728 
729 	return ret;
730 }
731 
732 static int f2fs_read_data_pages(struct file *file,
733 			struct address_space *mapping,
734 			struct list_head *pages, unsigned nr_pages)
735 {
736 	struct inode *inode = file->f_mapping->host;
737 
738 	/* If the file has inline data, skip readpages */
739 	if (f2fs_has_inline_data(inode))
740 		return 0;
741 
742 	return mpage_readpages(mapping, pages, nr_pages, get_data_block);
743 }
744 
745 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
746 {
747 	struct inode *inode = page->mapping->host;
748 	block_t old_blkaddr, new_blkaddr;
749 	struct dnode_of_data dn;
750 	int err = 0;
751 
752 	set_new_dnode(&dn, inode, NULL, NULL, 0);
753 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
754 	if (err)
755 		return err;
756 
757 	old_blkaddr = dn.data_blkaddr;
758 
759 	/* This page is already truncated */
760 	if (old_blkaddr == NULL_ADDR)
761 		goto out_writepage;
762 
763 	set_page_writeback(page);
764 
765 	/*
766 	 * If current allocation needs SSR,
767 	 * it had better in-place writes for updated data.
768 	 */
769 	if (unlikely(old_blkaddr != NEW_ADDR &&
770 			!is_cold_data(page) &&
771 			need_inplace_update(inode))) {
772 		rewrite_data_page(page, old_blkaddr, fio);
773 		set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
774 	} else {
775 		write_data_page(page, &dn, &new_blkaddr, fio);
776 		update_extent_cache(new_blkaddr, &dn);
777 		set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
778 	}
779 out_writepage:
780 	f2fs_put_dnode(&dn);
781 	return err;
782 }
783 
784 static int f2fs_write_data_page(struct page *page,
785 					struct writeback_control *wbc)
786 {
787 	struct inode *inode = page->mapping->host;
788 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
789 	loff_t i_size = i_size_read(inode);
790 	const pgoff_t end_index = ((unsigned long long) i_size)
791 							>> PAGE_CACHE_SHIFT;
792 	unsigned offset = 0;
793 	bool need_balance_fs = false;
794 	int err = 0;
795 	struct f2fs_io_info fio = {
796 		.type = DATA,
797 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
798 	};
799 
800 	trace_f2fs_writepage(page, DATA);
801 
802 	if (page->index < end_index)
803 		goto write;
804 
805 	/*
806 	 * If the offset is out-of-range of file size,
807 	 * this page does not have to be written to disk.
808 	 */
809 	offset = i_size & (PAGE_CACHE_SIZE - 1);
810 	if ((page->index >= end_index + 1) || !offset)
811 		goto out;
812 
813 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
814 write:
815 	if (unlikely(sbi->por_doing))
816 		goto redirty_out;
817 
818 	/* Dentry blocks are controlled by checkpoint */
819 	if (S_ISDIR(inode->i_mode)) {
820 		if (unlikely(f2fs_cp_error(sbi)))
821 			goto redirty_out;
822 		err = do_write_data_page(page, &fio);
823 		goto done;
824 	}
825 
826 	/* we should bypass data pages to proceed the kworkder jobs */
827 	if (unlikely(f2fs_cp_error(sbi))) {
828 		SetPageError(page);
829 		unlock_page(page);
830 		goto out;
831 	}
832 
833 	if (!wbc->for_reclaim)
834 		need_balance_fs = true;
835 	else if (has_not_enough_free_secs(sbi, 0))
836 		goto redirty_out;
837 
838 	err = -EAGAIN;
839 	f2fs_lock_op(sbi);
840 	if (f2fs_has_inline_data(inode))
841 		err = f2fs_write_inline_data(inode, page);
842 	if (err == -EAGAIN)
843 		err = do_write_data_page(page, &fio);
844 	f2fs_unlock_op(sbi);
845 done:
846 	if (err && err != -ENOENT)
847 		goto redirty_out;
848 
849 	clear_cold_data(page);
850 out:
851 	inode_dec_dirty_pages(inode);
852 	unlock_page(page);
853 	if (need_balance_fs)
854 		f2fs_balance_fs(sbi);
855 	if (wbc->for_reclaim)
856 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
857 	return 0;
858 
859 redirty_out:
860 	redirty_page_for_writepage(wbc, page);
861 	return AOP_WRITEPAGE_ACTIVATE;
862 }
863 
864 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
865 			void *data)
866 {
867 	struct address_space *mapping = data;
868 	int ret = mapping->a_ops->writepage(page, wbc);
869 	mapping_set_error(mapping, ret);
870 	return ret;
871 }
872 
873 static int f2fs_write_data_pages(struct address_space *mapping,
874 			    struct writeback_control *wbc)
875 {
876 	struct inode *inode = mapping->host;
877 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
878 	bool locked = false;
879 	int ret;
880 	long diff;
881 
882 	trace_f2fs_writepages(mapping->host, wbc, DATA);
883 
884 	/* deal with chardevs and other special file */
885 	if (!mapping->a_ops->writepage)
886 		return 0;
887 
888 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
889 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
890 			available_free_memory(sbi, DIRTY_DENTS))
891 		goto skip_write;
892 
893 	diff = nr_pages_to_write(sbi, DATA, wbc);
894 
895 	if (!S_ISDIR(inode->i_mode)) {
896 		mutex_lock(&sbi->writepages);
897 		locked = true;
898 	}
899 	ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
900 	if (locked)
901 		mutex_unlock(&sbi->writepages);
902 
903 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
904 
905 	remove_dirty_dir_inode(inode);
906 
907 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
908 	return ret;
909 
910 skip_write:
911 	wbc->pages_skipped += get_dirty_pages(inode);
912 	return 0;
913 }
914 
915 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
916 {
917 	struct inode *inode = mapping->host;
918 
919 	if (to > inode->i_size) {
920 		truncate_pagecache(inode, inode->i_size);
921 		truncate_blocks(inode, inode->i_size, true);
922 	}
923 }
924 
925 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
926 		loff_t pos, unsigned len, unsigned flags,
927 		struct page **pagep, void **fsdata)
928 {
929 	struct inode *inode = mapping->host;
930 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
931 	struct page *page, *ipage;
932 	pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
933 	struct dnode_of_data dn;
934 	int err = 0;
935 
936 	trace_f2fs_write_begin(inode, pos, len, flags);
937 
938 	f2fs_balance_fs(sbi);
939 
940 	/*
941 	 * We should check this at this moment to avoid deadlock on inode page
942 	 * and #0 page. The locking rule for inline_data conversion should be:
943 	 * lock_page(page #0) -> lock_page(inode_page)
944 	 */
945 	if (index != 0) {
946 		err = f2fs_convert_inline_inode(inode);
947 		if (err)
948 			goto fail;
949 	}
950 repeat:
951 	page = grab_cache_page_write_begin(mapping, index, flags);
952 	if (!page) {
953 		err = -ENOMEM;
954 		goto fail;
955 	}
956 
957 	*pagep = page;
958 
959 	f2fs_lock_op(sbi);
960 
961 	/* check inline_data */
962 	ipage = get_node_page(sbi, inode->i_ino);
963 	if (IS_ERR(ipage)) {
964 		err = PTR_ERR(ipage);
965 		goto unlock_fail;
966 	}
967 
968 	set_new_dnode(&dn, inode, ipage, ipage, 0);
969 
970 	if (f2fs_has_inline_data(inode)) {
971 		if (pos + len <= MAX_INLINE_DATA) {
972 			read_inline_data(page, ipage);
973 			set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
974 			sync_inode_page(&dn);
975 			goto put_next;
976 		}
977 		err = f2fs_convert_inline_page(&dn, page);
978 		if (err)
979 			goto put_fail;
980 	}
981 	err = f2fs_reserve_block(&dn, index);
982 	if (err)
983 		goto put_fail;
984 put_next:
985 	f2fs_put_dnode(&dn);
986 	f2fs_unlock_op(sbi);
987 
988 	if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
989 		return 0;
990 
991 	f2fs_wait_on_page_writeback(page, DATA);
992 
993 	if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
994 		unsigned start = pos & (PAGE_CACHE_SIZE - 1);
995 		unsigned end = start + len;
996 
997 		/* Reading beyond i_size is simple: memset to zero */
998 		zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
999 		goto out;
1000 	}
1001 
1002 	if (dn.data_blkaddr == NEW_ADDR) {
1003 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1004 	} else {
1005 		err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
1006 					   READ_SYNC);
1007 		if (err)
1008 			goto fail;
1009 
1010 		lock_page(page);
1011 		if (unlikely(!PageUptodate(page))) {
1012 			f2fs_put_page(page, 1);
1013 			err = -EIO;
1014 			goto fail;
1015 		}
1016 		if (unlikely(page->mapping != mapping)) {
1017 			f2fs_put_page(page, 1);
1018 			goto repeat;
1019 		}
1020 	}
1021 out:
1022 	SetPageUptodate(page);
1023 	clear_cold_data(page);
1024 	return 0;
1025 
1026 put_fail:
1027 	f2fs_put_dnode(&dn);
1028 unlock_fail:
1029 	f2fs_unlock_op(sbi);
1030 	f2fs_put_page(page, 1);
1031 fail:
1032 	f2fs_write_failed(mapping, pos + len);
1033 	return err;
1034 }
1035 
1036 static int f2fs_write_end(struct file *file,
1037 			struct address_space *mapping,
1038 			loff_t pos, unsigned len, unsigned copied,
1039 			struct page *page, void *fsdata)
1040 {
1041 	struct inode *inode = page->mapping->host;
1042 
1043 	trace_f2fs_write_end(inode, pos, len, copied);
1044 
1045 	set_page_dirty(page);
1046 
1047 	if (pos + copied > i_size_read(inode)) {
1048 		i_size_write(inode, pos + copied);
1049 		mark_inode_dirty(inode);
1050 		update_inode_page(inode);
1051 	}
1052 
1053 	f2fs_put_page(page, 1);
1054 	return copied;
1055 }
1056 
1057 static int check_direct_IO(struct inode *inode, int rw,
1058 		struct iov_iter *iter, loff_t offset)
1059 {
1060 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1061 
1062 	if (rw == READ)
1063 		return 0;
1064 
1065 	if (offset & blocksize_mask)
1066 		return -EINVAL;
1067 
1068 	if (iov_iter_alignment(iter) & blocksize_mask)
1069 		return -EINVAL;
1070 
1071 	return 0;
1072 }
1073 
1074 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1075 		struct iov_iter *iter, loff_t offset)
1076 {
1077 	struct file *file = iocb->ki_filp;
1078 	struct address_space *mapping = file->f_mapping;
1079 	struct inode *inode = mapping->host;
1080 	size_t count = iov_iter_count(iter);
1081 	int err;
1082 
1083 	/* we don't need to use inline_data strictly */
1084 	if (f2fs_has_inline_data(inode)) {
1085 		err = f2fs_convert_inline_inode(inode);
1086 		if (err)
1087 			return err;
1088 	}
1089 
1090 	if (check_direct_IO(inode, rw, iter, offset))
1091 		return 0;
1092 
1093 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1094 
1095 	err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1096 	if (err < 0 && (rw & WRITE))
1097 		f2fs_write_failed(mapping, offset + count);
1098 
1099 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1100 
1101 	return err;
1102 }
1103 
1104 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
1105 				      unsigned int length)
1106 {
1107 	struct inode *inode = page->mapping->host;
1108 
1109 	if (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)
1110 		return;
1111 
1112 	if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
1113 		invalidate_inmem_page(inode, page);
1114 
1115 	if (PageDirty(page))
1116 		inode_dec_dirty_pages(inode);
1117 	ClearPagePrivate(page);
1118 }
1119 
1120 static int f2fs_release_data_page(struct page *page, gfp_t wait)
1121 {
1122 	ClearPagePrivate(page);
1123 	return 1;
1124 }
1125 
1126 static int f2fs_set_data_page_dirty(struct page *page)
1127 {
1128 	struct address_space *mapping = page->mapping;
1129 	struct inode *inode = mapping->host;
1130 
1131 	trace_f2fs_set_page_dirty(page, DATA);
1132 
1133 	SetPageUptodate(page);
1134 
1135 	if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode)) {
1136 		register_inmem_page(inode, page);
1137 		return 1;
1138 	}
1139 
1140 	mark_inode_dirty(inode);
1141 
1142 	if (!PageDirty(page)) {
1143 		__set_page_dirty_nobuffers(page);
1144 		update_dirty_page(inode, page);
1145 		return 1;
1146 	}
1147 	return 0;
1148 }
1149 
1150 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1151 {
1152 	struct inode *inode = mapping->host;
1153 
1154 	/* we don't need to use inline_data strictly */
1155 	if (f2fs_has_inline_data(inode)) {
1156 		int err = f2fs_convert_inline_inode(inode);
1157 		if (err)
1158 			return err;
1159 	}
1160 	return generic_block_bmap(mapping, block, get_data_block);
1161 }
1162 
1163 const struct address_space_operations f2fs_dblock_aops = {
1164 	.readpage	= f2fs_read_data_page,
1165 	.readpages	= f2fs_read_data_pages,
1166 	.writepage	= f2fs_write_data_page,
1167 	.writepages	= f2fs_write_data_pages,
1168 	.write_begin	= f2fs_write_begin,
1169 	.write_end	= f2fs_write_end,
1170 	.set_page_dirty	= f2fs_set_data_page_dirty,
1171 	.invalidatepage	= f2fs_invalidate_data_page,
1172 	.releasepage	= f2fs_release_data_page,
1173 	.direct_IO	= f2fs_direct_IO,
1174 	.bmap		= f2fs_bmap,
1175 };
1176