xref: /openbmc/linux/fs/f2fs/data.c (revision 9344dade)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
26 
27 /*
28  * Lock ordering for the change of data block address:
29  * ->data_page
30  *  ->node_page
31  *    update block addresses in the node page
32  */
33 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
34 {
35 	struct f2fs_node *rn;
36 	__le32 *addr_array;
37 	struct page *node_page = dn->node_page;
38 	unsigned int ofs_in_node = dn->ofs_in_node;
39 
40 	wait_on_page_writeback(node_page);
41 
42 	rn = (struct f2fs_node *)page_address(node_page);
43 
44 	/* Get physical address of data block */
45 	addr_array = blkaddr_in_node(rn);
46 	addr_array[ofs_in_node] = cpu_to_le32(new_addr);
47 	set_page_dirty(node_page);
48 }
49 
50 int reserve_new_block(struct dnode_of_data *dn)
51 {
52 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
53 
54 	if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
55 		return -EPERM;
56 	if (!inc_valid_block_count(sbi, dn->inode, 1))
57 		return -ENOSPC;
58 
59 	trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
60 
61 	__set_data_blkaddr(dn, NEW_ADDR);
62 	dn->data_blkaddr = NEW_ADDR;
63 	sync_inode_page(dn);
64 	return 0;
65 }
66 
67 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
68 					struct buffer_head *bh_result)
69 {
70 	struct f2fs_inode_info *fi = F2FS_I(inode);
71 #ifdef CONFIG_F2FS_STAT_FS
72 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
73 #endif
74 	pgoff_t start_fofs, end_fofs;
75 	block_t start_blkaddr;
76 
77 	read_lock(&fi->ext.ext_lock);
78 	if (fi->ext.len == 0) {
79 		read_unlock(&fi->ext.ext_lock);
80 		return 0;
81 	}
82 
83 #ifdef CONFIG_F2FS_STAT_FS
84 	sbi->total_hit_ext++;
85 #endif
86 	start_fofs = fi->ext.fofs;
87 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
88 	start_blkaddr = fi->ext.blk_addr;
89 
90 	if (pgofs >= start_fofs && pgofs <= end_fofs) {
91 		unsigned int blkbits = inode->i_sb->s_blocksize_bits;
92 		size_t count;
93 
94 		clear_buffer_new(bh_result);
95 		map_bh(bh_result, inode->i_sb,
96 				start_blkaddr + pgofs - start_fofs);
97 		count = end_fofs - pgofs + 1;
98 		if (count < (UINT_MAX >> blkbits))
99 			bh_result->b_size = (count << blkbits);
100 		else
101 			bh_result->b_size = UINT_MAX;
102 
103 #ifdef CONFIG_F2FS_STAT_FS
104 		sbi->read_hit_ext++;
105 #endif
106 		read_unlock(&fi->ext.ext_lock);
107 		return 1;
108 	}
109 	read_unlock(&fi->ext.ext_lock);
110 	return 0;
111 }
112 
113 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
114 {
115 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
116 	pgoff_t fofs, start_fofs, end_fofs;
117 	block_t start_blkaddr, end_blkaddr;
118 
119 	BUG_ON(blk_addr == NEW_ADDR);
120 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
121 
122 	/* Update the page address in the parent node */
123 	__set_data_blkaddr(dn, blk_addr);
124 
125 	write_lock(&fi->ext.ext_lock);
126 
127 	start_fofs = fi->ext.fofs;
128 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
129 	start_blkaddr = fi->ext.blk_addr;
130 	end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
131 
132 	/* Drop and initialize the matched extent */
133 	if (fi->ext.len == 1 && fofs == start_fofs)
134 		fi->ext.len = 0;
135 
136 	/* Initial extent */
137 	if (fi->ext.len == 0) {
138 		if (blk_addr != NULL_ADDR) {
139 			fi->ext.fofs = fofs;
140 			fi->ext.blk_addr = blk_addr;
141 			fi->ext.len = 1;
142 		}
143 		goto end_update;
144 	}
145 
146 	/* Front merge */
147 	if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
148 		fi->ext.fofs--;
149 		fi->ext.blk_addr--;
150 		fi->ext.len++;
151 		goto end_update;
152 	}
153 
154 	/* Back merge */
155 	if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
156 		fi->ext.len++;
157 		goto end_update;
158 	}
159 
160 	/* Split the existing extent */
161 	if (fi->ext.len > 1 &&
162 		fofs >= start_fofs && fofs <= end_fofs) {
163 		if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
164 			fi->ext.len = fofs - start_fofs;
165 		} else {
166 			fi->ext.fofs = fofs + 1;
167 			fi->ext.blk_addr = start_blkaddr +
168 					fofs - start_fofs + 1;
169 			fi->ext.len -= fofs - start_fofs + 1;
170 		}
171 		goto end_update;
172 	}
173 	write_unlock(&fi->ext.ext_lock);
174 	return;
175 
176 end_update:
177 	write_unlock(&fi->ext.ext_lock);
178 	sync_inode_page(dn);
179 	return;
180 }
181 
182 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
183 {
184 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
185 	struct address_space *mapping = inode->i_mapping;
186 	struct dnode_of_data dn;
187 	struct page *page;
188 	int err;
189 
190 	page = find_get_page(mapping, index);
191 	if (page && PageUptodate(page))
192 		return page;
193 	f2fs_put_page(page, 0);
194 
195 	set_new_dnode(&dn, inode, NULL, NULL, 0);
196 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
197 	if (err)
198 		return ERR_PTR(err);
199 	f2fs_put_dnode(&dn);
200 
201 	if (dn.data_blkaddr == NULL_ADDR)
202 		return ERR_PTR(-ENOENT);
203 
204 	/* By fallocate(), there is no cached page, but with NEW_ADDR */
205 	if (dn.data_blkaddr == NEW_ADDR)
206 		return ERR_PTR(-EINVAL);
207 
208 	page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
209 	if (!page)
210 		return ERR_PTR(-ENOMEM);
211 
212 	if (PageUptodate(page)) {
213 		unlock_page(page);
214 		return page;
215 	}
216 
217 	err = f2fs_readpage(sbi, page, dn.data_blkaddr,
218 					sync ? READ_SYNC : READA);
219 	if (sync) {
220 		wait_on_page_locked(page);
221 		if (!PageUptodate(page)) {
222 			f2fs_put_page(page, 0);
223 			return ERR_PTR(-EIO);
224 		}
225 	}
226 	return page;
227 }
228 
229 /*
230  * If it tries to access a hole, return an error.
231  * Because, the callers, functions in dir.c and GC, should be able to know
232  * whether this page exists or not.
233  */
234 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
235 {
236 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
237 	struct address_space *mapping = inode->i_mapping;
238 	struct dnode_of_data dn;
239 	struct page *page;
240 	int err;
241 
242 repeat:
243 	page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
244 	if (!page)
245 		return ERR_PTR(-ENOMEM);
246 
247 	set_new_dnode(&dn, inode, NULL, NULL, 0);
248 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
249 	if (err) {
250 		f2fs_put_page(page, 1);
251 		return ERR_PTR(err);
252 	}
253 	f2fs_put_dnode(&dn);
254 
255 	if (dn.data_blkaddr == NULL_ADDR) {
256 		f2fs_put_page(page, 1);
257 		return ERR_PTR(-ENOENT);
258 	}
259 
260 	if (PageUptodate(page))
261 		return page;
262 
263 	BUG_ON(dn.data_blkaddr == NEW_ADDR);
264 	BUG_ON(dn.data_blkaddr == NULL_ADDR);
265 
266 	err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
267 	if (err)
268 		return ERR_PTR(err);
269 
270 	lock_page(page);
271 	if (!PageUptodate(page)) {
272 		f2fs_put_page(page, 1);
273 		return ERR_PTR(-EIO);
274 	}
275 	if (page->mapping != mapping) {
276 		f2fs_put_page(page, 1);
277 		goto repeat;
278 	}
279 	return page;
280 }
281 
282 /*
283  * Caller ensures that this data page is never allocated.
284  * A new zero-filled data page is allocated in the page cache.
285  *
286  * Also, caller should grab and release a mutex by calling mutex_lock_op() and
287  * mutex_unlock_op().
288  * Note that, npage is set only by make_empty_dir.
289  */
290 struct page *get_new_data_page(struct inode *inode,
291 		struct page *npage, pgoff_t index, bool new_i_size)
292 {
293 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
294 	struct address_space *mapping = inode->i_mapping;
295 	struct page *page;
296 	struct dnode_of_data dn;
297 	int err;
298 
299 	set_new_dnode(&dn, inode, npage, npage, 0);
300 	err = get_dnode_of_data(&dn, index, ALLOC_NODE);
301 	if (err)
302 		return ERR_PTR(err);
303 
304 	if (dn.data_blkaddr == NULL_ADDR) {
305 		if (reserve_new_block(&dn)) {
306 			if (!npage)
307 				f2fs_put_dnode(&dn);
308 			return ERR_PTR(-ENOSPC);
309 		}
310 	}
311 	if (!npage)
312 		f2fs_put_dnode(&dn);
313 repeat:
314 	page = grab_cache_page(mapping, index);
315 	if (!page)
316 		return ERR_PTR(-ENOMEM);
317 
318 	if (PageUptodate(page))
319 		return page;
320 
321 	if (dn.data_blkaddr == NEW_ADDR) {
322 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
323 		SetPageUptodate(page);
324 	} else {
325 		err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
326 		if (err)
327 			return ERR_PTR(err);
328 		lock_page(page);
329 		if (!PageUptodate(page)) {
330 			f2fs_put_page(page, 1);
331 			return ERR_PTR(-EIO);
332 		}
333 		if (page->mapping != mapping) {
334 			f2fs_put_page(page, 1);
335 			goto repeat;
336 		}
337 	}
338 
339 	if (new_i_size &&
340 		i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
341 		i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
342 		/* Only the directory inode sets new_i_size */
343 		set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
344 		mark_inode_dirty_sync(inode);
345 	}
346 	return page;
347 }
348 
349 static void read_end_io(struct bio *bio, int err)
350 {
351 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
352 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
353 
354 	do {
355 		struct page *page = bvec->bv_page;
356 
357 		if (--bvec >= bio->bi_io_vec)
358 			prefetchw(&bvec->bv_page->flags);
359 
360 		if (uptodate) {
361 			SetPageUptodate(page);
362 		} else {
363 			ClearPageUptodate(page);
364 			SetPageError(page);
365 		}
366 		unlock_page(page);
367 	} while (bvec >= bio->bi_io_vec);
368 	kfree(bio->bi_private);
369 	bio_put(bio);
370 }
371 
372 /*
373  * Fill the locked page with data located in the block address.
374  * Return unlocked page.
375  */
376 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
377 					block_t blk_addr, int type)
378 {
379 	struct block_device *bdev = sbi->sb->s_bdev;
380 	struct bio *bio;
381 
382 	trace_f2fs_readpage(page, blk_addr, type);
383 
384 	down_read(&sbi->bio_sem);
385 
386 	/* Allocate a new bio */
387 	bio = f2fs_bio_alloc(bdev, 1);
388 
389 	/* Initialize the bio */
390 	bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
391 	bio->bi_end_io = read_end_io;
392 
393 	if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
394 		kfree(bio->bi_private);
395 		bio_put(bio);
396 		up_read(&sbi->bio_sem);
397 		f2fs_put_page(page, 1);
398 		return -EFAULT;
399 	}
400 
401 	submit_bio(type, bio);
402 	up_read(&sbi->bio_sem);
403 	return 0;
404 }
405 
406 /*
407  * This function should be used by the data read flow only where it
408  * does not check the "create" flag that indicates block allocation.
409  * The reason for this special functionality is to exploit VFS readahead
410  * mechanism.
411  */
412 static int get_data_block_ro(struct inode *inode, sector_t iblock,
413 			struct buffer_head *bh_result, int create)
414 {
415 	unsigned int blkbits = inode->i_sb->s_blocksize_bits;
416 	unsigned maxblocks = bh_result->b_size >> blkbits;
417 	struct dnode_of_data dn;
418 	pgoff_t pgofs;
419 	int err;
420 
421 	/* Get the page offset from the block offset(iblock) */
422 	pgofs =	(pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
423 
424 	if (check_extent_cache(inode, pgofs, bh_result)) {
425 		trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
426 		return 0;
427 	}
428 
429 	/* When reading holes, we need its node page */
430 	set_new_dnode(&dn, inode, NULL, NULL, 0);
431 	err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
432 	if (err) {
433 		trace_f2fs_get_data_block(inode, iblock, bh_result, err);
434 		return (err == -ENOENT) ? 0 : err;
435 	}
436 
437 	/* It does not support data allocation */
438 	BUG_ON(create);
439 
440 	if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
441 		int i;
442 		unsigned int end_offset;
443 
444 		end_offset = IS_INODE(dn.node_page) ?
445 				ADDRS_PER_INODE :
446 				ADDRS_PER_BLOCK;
447 
448 		clear_buffer_new(bh_result);
449 
450 		/* Give more consecutive addresses for the read ahead */
451 		for (i = 0; i < end_offset - dn.ofs_in_node; i++)
452 			if (((datablock_addr(dn.node_page,
453 							dn.ofs_in_node + i))
454 				!= (dn.data_blkaddr + i)) || maxblocks == i)
455 				break;
456 		map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
457 		bh_result->b_size = (i << blkbits);
458 	}
459 	f2fs_put_dnode(&dn);
460 	trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
461 	return 0;
462 }
463 
464 static int f2fs_read_data_page(struct file *file, struct page *page)
465 {
466 	return mpage_readpage(page, get_data_block_ro);
467 }
468 
469 static int f2fs_read_data_pages(struct file *file,
470 			struct address_space *mapping,
471 			struct list_head *pages, unsigned nr_pages)
472 {
473 	return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
474 }
475 
476 int do_write_data_page(struct page *page)
477 {
478 	struct inode *inode = page->mapping->host;
479 	block_t old_blk_addr, new_blk_addr;
480 	struct dnode_of_data dn;
481 	int err = 0;
482 
483 	set_new_dnode(&dn, inode, NULL, NULL, 0);
484 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
485 	if (err)
486 		return err;
487 
488 	old_blk_addr = dn.data_blkaddr;
489 
490 	/* This page is already truncated */
491 	if (old_blk_addr == NULL_ADDR)
492 		goto out_writepage;
493 
494 	set_page_writeback(page);
495 
496 	/*
497 	 * If current allocation needs SSR,
498 	 * it had better in-place writes for updated data.
499 	 */
500 	if (unlikely(old_blk_addr != NEW_ADDR &&
501 			!is_cold_data(page) &&
502 			need_inplace_update(inode))) {
503 		rewrite_data_page(F2FS_SB(inode->i_sb), page,
504 						old_blk_addr);
505 	} else {
506 		write_data_page(inode, page, &dn,
507 				old_blk_addr, &new_blk_addr);
508 		update_extent_cache(new_blk_addr, &dn);
509 	}
510 out_writepage:
511 	f2fs_put_dnode(&dn);
512 	return err;
513 }
514 
515 static int f2fs_write_data_page(struct page *page,
516 					struct writeback_control *wbc)
517 {
518 	struct inode *inode = page->mapping->host;
519 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
520 	loff_t i_size = i_size_read(inode);
521 	const pgoff_t end_index = ((unsigned long long) i_size)
522 							>> PAGE_CACHE_SHIFT;
523 	unsigned offset;
524 	bool need_balance_fs = false;
525 	int err = 0;
526 
527 	if (page->index < end_index)
528 		goto write;
529 
530 	/*
531 	 * If the offset is out-of-range of file size,
532 	 * this page does not have to be written to disk.
533 	 */
534 	offset = i_size & (PAGE_CACHE_SIZE - 1);
535 	if ((page->index >= end_index + 1) || !offset) {
536 		if (S_ISDIR(inode->i_mode)) {
537 			dec_page_count(sbi, F2FS_DIRTY_DENTS);
538 			inode_dec_dirty_dents(inode);
539 		}
540 		goto out;
541 	}
542 
543 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
544 write:
545 	if (sbi->por_doing) {
546 		err = AOP_WRITEPAGE_ACTIVATE;
547 		goto redirty_out;
548 	}
549 
550 	/* Dentry blocks are controlled by checkpoint */
551 	if (S_ISDIR(inode->i_mode)) {
552 		dec_page_count(sbi, F2FS_DIRTY_DENTS);
553 		inode_dec_dirty_dents(inode);
554 		err = do_write_data_page(page);
555 	} else {
556 		int ilock = mutex_lock_op(sbi);
557 		err = do_write_data_page(page);
558 		mutex_unlock_op(sbi, ilock);
559 		need_balance_fs = true;
560 	}
561 	if (err == -ENOENT)
562 		goto out;
563 	else if (err)
564 		goto redirty_out;
565 
566 	if (wbc->for_reclaim)
567 		f2fs_submit_bio(sbi, DATA, true);
568 
569 	clear_cold_data(page);
570 out:
571 	unlock_page(page);
572 	if (need_balance_fs)
573 		f2fs_balance_fs(sbi);
574 	return 0;
575 
576 redirty_out:
577 	wbc->pages_skipped++;
578 	set_page_dirty(page);
579 	return err;
580 }
581 
582 #define MAX_DESIRED_PAGES_WP	4096
583 
584 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
585 			void *data)
586 {
587 	struct address_space *mapping = data;
588 	int ret = mapping->a_ops->writepage(page, wbc);
589 	mapping_set_error(mapping, ret);
590 	return ret;
591 }
592 
593 static int f2fs_write_data_pages(struct address_space *mapping,
594 			    struct writeback_control *wbc)
595 {
596 	struct inode *inode = mapping->host;
597 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
598 	bool locked = false;
599 	int ret;
600 	long excess_nrtw = 0, desired_nrtw;
601 
602 	/* deal with chardevs and other special file */
603 	if (!mapping->a_ops->writepage)
604 		return 0;
605 
606 	if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
607 		desired_nrtw = MAX_DESIRED_PAGES_WP;
608 		excess_nrtw = desired_nrtw - wbc->nr_to_write;
609 		wbc->nr_to_write = desired_nrtw;
610 	}
611 
612 	if (!S_ISDIR(inode->i_mode)) {
613 		mutex_lock(&sbi->writepages);
614 		locked = true;
615 	}
616 	ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
617 	if (locked)
618 		mutex_unlock(&sbi->writepages);
619 	f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
620 
621 	remove_dirty_dir_inode(inode);
622 
623 	wbc->nr_to_write -= excess_nrtw;
624 	return ret;
625 }
626 
627 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
628 		loff_t pos, unsigned len, unsigned flags,
629 		struct page **pagep, void **fsdata)
630 {
631 	struct inode *inode = mapping->host;
632 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
633 	struct page *page;
634 	pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
635 	struct dnode_of_data dn;
636 	int err = 0;
637 	int ilock;
638 
639 	/* for nobh_write_end */
640 	*fsdata = NULL;
641 
642 	f2fs_balance_fs(sbi);
643 repeat:
644 	page = grab_cache_page_write_begin(mapping, index, flags);
645 	if (!page)
646 		return -ENOMEM;
647 	*pagep = page;
648 
649 	ilock = mutex_lock_op(sbi);
650 
651 	set_new_dnode(&dn, inode, NULL, NULL, 0);
652 	err = get_dnode_of_data(&dn, index, ALLOC_NODE);
653 	if (err)
654 		goto err;
655 
656 	if (dn.data_blkaddr == NULL_ADDR)
657 		err = reserve_new_block(&dn);
658 
659 	f2fs_put_dnode(&dn);
660 	if (err)
661 		goto err;
662 
663 	mutex_unlock_op(sbi, ilock);
664 
665 	if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
666 		return 0;
667 
668 	if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
669 		unsigned start = pos & (PAGE_CACHE_SIZE - 1);
670 		unsigned end = start + len;
671 
672 		/* Reading beyond i_size is simple: memset to zero */
673 		zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
674 		goto out;
675 	}
676 
677 	if (dn.data_blkaddr == NEW_ADDR) {
678 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
679 	} else {
680 		err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
681 		if (err)
682 			return err;
683 		lock_page(page);
684 		if (!PageUptodate(page)) {
685 			f2fs_put_page(page, 1);
686 			return -EIO;
687 		}
688 		if (page->mapping != mapping) {
689 			f2fs_put_page(page, 1);
690 			goto repeat;
691 		}
692 	}
693 out:
694 	SetPageUptodate(page);
695 	clear_cold_data(page);
696 	return 0;
697 
698 err:
699 	mutex_unlock_op(sbi, ilock);
700 	f2fs_put_page(page, 1);
701 	return err;
702 }
703 
704 static int f2fs_write_end(struct file *file,
705 			struct address_space *mapping,
706 			loff_t pos, unsigned len, unsigned copied,
707 			struct page *page, void *fsdata)
708 {
709 	struct inode *inode = page->mapping->host;
710 
711 	SetPageUptodate(page);
712 	set_page_dirty(page);
713 
714 	if (pos + copied > i_size_read(inode)) {
715 		i_size_write(inode, pos + copied);
716 		mark_inode_dirty(inode);
717 		update_inode_page(inode);
718 	}
719 
720 	unlock_page(page);
721 	page_cache_release(page);
722 	return copied;
723 }
724 
725 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
726 		const struct iovec *iov, loff_t offset, unsigned long nr_segs)
727 {
728 	struct file *file = iocb->ki_filp;
729 	struct inode *inode = file->f_mapping->host;
730 
731 	if (rw == WRITE)
732 		return 0;
733 
734 	/* Needs synchronization with the cleaner */
735 	return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
736 						  get_data_block_ro);
737 }
738 
739 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
740 				      unsigned int length)
741 {
742 	struct inode *inode = page->mapping->host;
743 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
744 	if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
745 		dec_page_count(sbi, F2FS_DIRTY_DENTS);
746 		inode_dec_dirty_dents(inode);
747 	}
748 	ClearPagePrivate(page);
749 }
750 
751 static int f2fs_release_data_page(struct page *page, gfp_t wait)
752 {
753 	ClearPagePrivate(page);
754 	return 1;
755 }
756 
757 static int f2fs_set_data_page_dirty(struct page *page)
758 {
759 	struct address_space *mapping = page->mapping;
760 	struct inode *inode = mapping->host;
761 
762 	SetPageUptodate(page);
763 	if (!PageDirty(page)) {
764 		__set_page_dirty_nobuffers(page);
765 		set_dirty_dir_page(inode, page);
766 		return 1;
767 	}
768 	return 0;
769 }
770 
771 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
772 {
773 	return generic_block_bmap(mapping, block, get_data_block_ro);
774 }
775 
776 const struct address_space_operations f2fs_dblock_aops = {
777 	.readpage	= f2fs_read_data_page,
778 	.readpages	= f2fs_read_data_pages,
779 	.writepage	= f2fs_write_data_page,
780 	.writepages	= f2fs_write_data_pages,
781 	.write_begin	= f2fs_write_begin,
782 	.write_end	= f2fs_write_end,
783 	.set_page_dirty	= f2fs_set_data_page_dirty,
784 	.invalidatepage	= f2fs_invalidate_data_page,
785 	.releasepage	= f2fs_release_data_page,
786 	.direct_IO	= f2fs_direct_IO,
787 	.bmap		= f2fs_bmap,
788 };
789