1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/cleancache.h> 22 #include <linux/sched/signal.h> 23 #include <linux/fiemap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "trace.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask, 54 unsigned int nr_iovecs) 55 { 56 return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset); 57 } 58 59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio) 60 { 61 if (noio) { 62 /* No failure on bio allocation */ 63 return __f2fs_bio_alloc(GFP_NOIO, npages); 64 } 65 66 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 67 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO); 68 return NULL; 69 } 70 71 return __f2fs_bio_alloc(GFP_KERNEL, npages); 72 } 73 74 static bool __is_cp_guaranteed(struct page *page) 75 { 76 struct address_space *mapping = page->mapping; 77 struct inode *inode; 78 struct f2fs_sb_info *sbi; 79 80 if (!mapping) 81 return false; 82 83 if (f2fs_is_compressed_page(page)) 84 return false; 85 86 inode = mapping->host; 87 sbi = F2FS_I_SB(inode); 88 89 if (inode->i_ino == F2FS_META_INO(sbi) || 90 inode->i_ino == F2FS_NODE_INO(sbi) || 91 S_ISDIR(inode->i_mode) || 92 (S_ISREG(inode->i_mode) && 93 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 94 is_cold_data(page)) 95 return true; 96 return false; 97 } 98 99 static enum count_type __read_io_type(struct page *page) 100 { 101 struct address_space *mapping = page_file_mapping(page); 102 103 if (mapping) { 104 struct inode *inode = mapping->host; 105 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 106 107 if (inode->i_ino == F2FS_META_INO(sbi)) 108 return F2FS_RD_META; 109 110 if (inode->i_ino == F2FS_NODE_INO(sbi)) 111 return F2FS_RD_NODE; 112 } 113 return F2FS_RD_DATA; 114 } 115 116 /* postprocessing steps for read bios */ 117 enum bio_post_read_step { 118 STEP_DECRYPT, 119 STEP_DECOMPRESS_NOWQ, /* handle normal cluster data inplace */ 120 STEP_DECOMPRESS, /* handle compressed cluster data in workqueue */ 121 STEP_VERITY, 122 }; 123 124 struct bio_post_read_ctx { 125 struct bio *bio; 126 struct f2fs_sb_info *sbi; 127 struct work_struct work; 128 unsigned int enabled_steps; 129 }; 130 131 static void __read_end_io(struct bio *bio, bool compr, bool verity) 132 { 133 struct page *page; 134 struct bio_vec *bv; 135 struct bvec_iter_all iter_all; 136 137 bio_for_each_segment_all(bv, bio, iter_all) { 138 page = bv->bv_page; 139 140 #ifdef CONFIG_F2FS_FS_COMPRESSION 141 if (compr && f2fs_is_compressed_page(page)) { 142 f2fs_decompress_pages(bio, page, verity); 143 continue; 144 } 145 if (verity) 146 continue; 147 #endif 148 149 /* PG_error was set if any post_read step failed */ 150 if (bio->bi_status || PageError(page)) { 151 ClearPageUptodate(page); 152 /* will re-read again later */ 153 ClearPageError(page); 154 } else { 155 SetPageUptodate(page); 156 } 157 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 158 unlock_page(page); 159 } 160 } 161 162 static void f2fs_release_read_bio(struct bio *bio); 163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity) 164 { 165 if (!compr) 166 __read_end_io(bio, false, verity); 167 f2fs_release_read_bio(bio); 168 } 169 170 static void f2fs_decompress_bio(struct bio *bio, bool verity) 171 { 172 __read_end_io(bio, true, verity); 173 } 174 175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 176 177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx) 178 { 179 fscrypt_decrypt_bio(ctx->bio); 180 } 181 182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx) 183 { 184 f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY)); 185 } 186 187 #ifdef CONFIG_F2FS_FS_COMPRESSION 188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size) 189 { 190 f2fs_decompress_end_io(rpages, cluster_size, false, true); 191 } 192 193 static void f2fs_verify_bio(struct bio *bio) 194 { 195 struct bio_vec *bv; 196 struct bvec_iter_all iter_all; 197 198 bio_for_each_segment_all(bv, bio, iter_all) { 199 struct page *page = bv->bv_page; 200 struct decompress_io_ctx *dic; 201 202 dic = (struct decompress_io_ctx *)page_private(page); 203 204 if (dic) { 205 if (refcount_dec_not_one(&dic->ref)) 206 continue; 207 f2fs_verify_pages(dic->rpages, 208 dic->cluster_size); 209 f2fs_free_dic(dic); 210 continue; 211 } 212 213 if (bio->bi_status || PageError(page)) 214 goto clear_uptodate; 215 216 if (fsverity_verify_page(page)) { 217 SetPageUptodate(page); 218 goto unlock; 219 } 220 clear_uptodate: 221 ClearPageUptodate(page); 222 ClearPageError(page); 223 unlock: 224 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 225 unlock_page(page); 226 } 227 } 228 #endif 229 230 static void f2fs_verity_work(struct work_struct *work) 231 { 232 struct bio_post_read_ctx *ctx = 233 container_of(work, struct bio_post_read_ctx, work); 234 struct bio *bio = ctx->bio; 235 #ifdef CONFIG_F2FS_FS_COMPRESSION 236 unsigned int enabled_steps = ctx->enabled_steps; 237 #endif 238 239 /* 240 * fsverity_verify_bio() may call readpages() again, and while verity 241 * will be disabled for this, decryption may still be needed, resulting 242 * in another bio_post_read_ctx being allocated. So to prevent 243 * deadlocks we need to release the current ctx to the mempool first. 244 * This assumes that verity is the last post-read step. 245 */ 246 mempool_free(ctx, bio_post_read_ctx_pool); 247 bio->bi_private = NULL; 248 249 #ifdef CONFIG_F2FS_FS_COMPRESSION 250 /* previous step is decompression */ 251 if (enabled_steps & (1 << STEP_DECOMPRESS)) { 252 f2fs_verify_bio(bio); 253 f2fs_release_read_bio(bio); 254 return; 255 } 256 #endif 257 258 fsverity_verify_bio(bio); 259 __f2fs_read_end_io(bio, false, false); 260 } 261 262 static void f2fs_post_read_work(struct work_struct *work) 263 { 264 struct bio_post_read_ctx *ctx = 265 container_of(work, struct bio_post_read_ctx, work); 266 267 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) 268 f2fs_decrypt_work(ctx); 269 270 if (ctx->enabled_steps & (1 << STEP_DECOMPRESS)) 271 f2fs_decompress_work(ctx); 272 273 if (ctx->enabled_steps & (1 << STEP_VERITY)) { 274 INIT_WORK(&ctx->work, f2fs_verity_work); 275 fsverity_enqueue_verify_work(&ctx->work); 276 return; 277 } 278 279 __f2fs_read_end_io(ctx->bio, 280 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false); 281 } 282 283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi, 284 struct work_struct *work) 285 { 286 queue_work(sbi->post_read_wq, work); 287 } 288 289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 290 { 291 /* 292 * We use different work queues for decryption and for verity because 293 * verity may require reading metadata pages that need decryption, and 294 * we shouldn't recurse to the same workqueue. 295 */ 296 297 if (ctx->enabled_steps & (1 << STEP_DECRYPT) || 298 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) { 299 INIT_WORK(&ctx->work, f2fs_post_read_work); 300 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work); 301 return; 302 } 303 304 if (ctx->enabled_steps & (1 << STEP_VERITY)) { 305 INIT_WORK(&ctx->work, f2fs_verity_work); 306 fsverity_enqueue_verify_work(&ctx->work); 307 return; 308 } 309 310 __f2fs_read_end_io(ctx->bio, false, false); 311 } 312 313 static bool f2fs_bio_post_read_required(struct bio *bio) 314 { 315 return bio->bi_private; 316 } 317 318 static void f2fs_read_end_io(struct bio *bio) 319 { 320 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 321 322 if (time_to_inject(sbi, FAULT_READ_IO)) { 323 f2fs_show_injection_info(sbi, FAULT_READ_IO); 324 bio->bi_status = BLK_STS_IOERR; 325 } 326 327 if (f2fs_bio_post_read_required(bio)) { 328 struct bio_post_read_ctx *ctx = bio->bi_private; 329 330 bio_post_read_processing(ctx); 331 return; 332 } 333 334 __f2fs_read_end_io(bio, false, false); 335 } 336 337 static void f2fs_write_end_io(struct bio *bio) 338 { 339 struct f2fs_sb_info *sbi = bio->bi_private; 340 struct bio_vec *bvec; 341 struct bvec_iter_all iter_all; 342 343 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 344 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 345 bio->bi_status = BLK_STS_IOERR; 346 } 347 348 bio_for_each_segment_all(bvec, bio, iter_all) { 349 struct page *page = bvec->bv_page; 350 enum count_type type = WB_DATA_TYPE(page); 351 352 if (IS_DUMMY_WRITTEN_PAGE(page)) { 353 set_page_private(page, (unsigned long)NULL); 354 ClearPagePrivate(page); 355 unlock_page(page); 356 mempool_free(page, sbi->write_io_dummy); 357 358 if (unlikely(bio->bi_status)) 359 f2fs_stop_checkpoint(sbi, true); 360 continue; 361 } 362 363 fscrypt_finalize_bounce_page(&page); 364 365 #ifdef CONFIG_F2FS_FS_COMPRESSION 366 if (f2fs_is_compressed_page(page)) { 367 f2fs_compress_write_end_io(bio, page); 368 continue; 369 } 370 #endif 371 372 if (unlikely(bio->bi_status)) { 373 mapping_set_error(page->mapping, -EIO); 374 if (type == F2FS_WB_CP_DATA) 375 f2fs_stop_checkpoint(sbi, true); 376 } 377 378 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 379 page->index != nid_of_node(page)); 380 381 dec_page_count(sbi, type); 382 if (f2fs_in_warm_node_list(sbi, page)) 383 f2fs_del_fsync_node_entry(sbi, page); 384 clear_cold_data(page); 385 end_page_writeback(page); 386 } 387 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 388 wq_has_sleeper(&sbi->cp_wait)) 389 wake_up(&sbi->cp_wait); 390 391 bio_put(bio); 392 } 393 394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 395 block_t blk_addr, struct bio *bio) 396 { 397 struct block_device *bdev = sbi->sb->s_bdev; 398 int i; 399 400 if (f2fs_is_multi_device(sbi)) { 401 for (i = 0; i < sbi->s_ndevs; i++) { 402 if (FDEV(i).start_blk <= blk_addr && 403 FDEV(i).end_blk >= blk_addr) { 404 blk_addr -= FDEV(i).start_blk; 405 bdev = FDEV(i).bdev; 406 break; 407 } 408 } 409 } 410 if (bio) { 411 bio_set_dev(bio, bdev); 412 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 413 } 414 return bdev; 415 } 416 417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 418 { 419 int i; 420 421 if (!f2fs_is_multi_device(sbi)) 422 return 0; 423 424 for (i = 0; i < sbi->s_ndevs; i++) 425 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 426 return i; 427 return 0; 428 } 429 430 /* 431 * Return true, if pre_bio's bdev is same as its target device. 432 */ 433 static bool __same_bdev(struct f2fs_sb_info *sbi, 434 block_t blk_addr, struct bio *bio) 435 { 436 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 437 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 438 } 439 440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 441 { 442 struct f2fs_sb_info *sbi = fio->sbi; 443 struct bio *bio; 444 445 bio = f2fs_bio_alloc(sbi, npages, true); 446 447 f2fs_target_device(sbi, fio->new_blkaddr, bio); 448 if (is_read_io(fio->op)) { 449 bio->bi_end_io = f2fs_read_end_io; 450 bio->bi_private = NULL; 451 } else { 452 bio->bi_end_io = f2fs_write_end_io; 453 bio->bi_private = sbi; 454 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 455 fio->type, fio->temp); 456 } 457 if (fio->io_wbc) 458 wbc_init_bio(fio->io_wbc, bio); 459 460 return bio; 461 } 462 463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 464 pgoff_t first_idx, 465 const struct f2fs_io_info *fio, 466 gfp_t gfp_mask) 467 { 468 /* 469 * The f2fs garbage collector sets ->encrypted_page when it wants to 470 * read/write raw data without encryption. 471 */ 472 if (!fio || !fio->encrypted_page) 473 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 474 } 475 476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 477 pgoff_t next_idx, 478 const struct f2fs_io_info *fio) 479 { 480 /* 481 * The f2fs garbage collector sets ->encrypted_page when it wants to 482 * read/write raw data without encryption. 483 */ 484 if (fio && fio->encrypted_page) 485 return !bio_has_crypt_ctx(bio); 486 487 return fscrypt_mergeable_bio(bio, inode, next_idx); 488 } 489 490 static inline void __submit_bio(struct f2fs_sb_info *sbi, 491 struct bio *bio, enum page_type type) 492 { 493 if (!is_read_io(bio_op(bio))) { 494 unsigned int start; 495 496 if (type != DATA && type != NODE) 497 goto submit_io; 498 499 if (f2fs_lfs_mode(sbi) && current->plug) 500 blk_finish_plug(current->plug); 501 502 if (F2FS_IO_ALIGNED(sbi)) 503 goto submit_io; 504 505 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 506 start %= F2FS_IO_SIZE(sbi); 507 508 if (start == 0) 509 goto submit_io; 510 511 /* fill dummy pages */ 512 for (; start < F2FS_IO_SIZE(sbi); start++) { 513 struct page *page = 514 mempool_alloc(sbi->write_io_dummy, 515 GFP_NOIO | __GFP_NOFAIL); 516 f2fs_bug_on(sbi, !page); 517 518 zero_user_segment(page, 0, PAGE_SIZE); 519 SetPagePrivate(page); 520 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 521 lock_page(page); 522 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 523 f2fs_bug_on(sbi, 1); 524 } 525 /* 526 * In the NODE case, we lose next block address chain. So, we 527 * need to do checkpoint in f2fs_sync_file. 528 */ 529 if (type == NODE) 530 set_sbi_flag(sbi, SBI_NEED_CP); 531 } 532 submit_io: 533 if (is_read_io(bio_op(bio))) 534 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 535 else 536 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 537 submit_bio(bio); 538 } 539 540 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 541 struct bio *bio, enum page_type type) 542 { 543 __submit_bio(sbi, bio, type); 544 } 545 546 static void __attach_io_flag(struct f2fs_io_info *fio) 547 { 548 struct f2fs_sb_info *sbi = fio->sbi; 549 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 550 unsigned int io_flag, fua_flag, meta_flag; 551 552 if (fio->type == DATA) 553 io_flag = sbi->data_io_flag; 554 else if (fio->type == NODE) 555 io_flag = sbi->node_io_flag; 556 else 557 return; 558 559 fua_flag = io_flag & temp_mask; 560 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 561 562 /* 563 * data/node io flag bits per temp: 564 * REQ_META | REQ_FUA | 565 * 5 | 4 | 3 | 2 | 1 | 0 | 566 * Cold | Warm | Hot | Cold | Warm | Hot | 567 */ 568 if ((1 << fio->temp) & meta_flag) 569 fio->op_flags |= REQ_META; 570 if ((1 << fio->temp) & fua_flag) 571 fio->op_flags |= REQ_FUA; 572 } 573 574 static void __submit_merged_bio(struct f2fs_bio_info *io) 575 { 576 struct f2fs_io_info *fio = &io->fio; 577 578 if (!io->bio) 579 return; 580 581 __attach_io_flag(fio); 582 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 583 584 if (is_read_io(fio->op)) 585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 586 else 587 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 588 589 __submit_bio(io->sbi, io->bio, fio->type); 590 io->bio = NULL; 591 } 592 593 static bool __has_merged_page(struct bio *bio, struct inode *inode, 594 struct page *page, nid_t ino) 595 { 596 struct bio_vec *bvec; 597 struct bvec_iter_all iter_all; 598 599 if (!bio) 600 return false; 601 602 if (!inode && !page && !ino) 603 return true; 604 605 bio_for_each_segment_all(bvec, bio, iter_all) { 606 struct page *target = bvec->bv_page; 607 608 if (fscrypt_is_bounce_page(target)) { 609 target = fscrypt_pagecache_page(target); 610 if (IS_ERR(target)) 611 continue; 612 } 613 if (f2fs_is_compressed_page(target)) { 614 target = f2fs_compress_control_page(target); 615 if (IS_ERR(target)) 616 continue; 617 } 618 619 if (inode && inode == target->mapping->host) 620 return true; 621 if (page && page == target) 622 return true; 623 if (ino && ino == ino_of_node(target)) 624 return true; 625 } 626 627 return false; 628 } 629 630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 631 enum page_type type, enum temp_type temp) 632 { 633 enum page_type btype = PAGE_TYPE_OF_BIO(type); 634 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 635 636 down_write(&io->io_rwsem); 637 638 /* change META to META_FLUSH in the checkpoint procedure */ 639 if (type >= META_FLUSH) { 640 io->fio.type = META_FLUSH; 641 io->fio.op = REQ_OP_WRITE; 642 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 643 if (!test_opt(sbi, NOBARRIER)) 644 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 645 } 646 __submit_merged_bio(io); 647 up_write(&io->io_rwsem); 648 } 649 650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 651 struct inode *inode, struct page *page, 652 nid_t ino, enum page_type type, bool force) 653 { 654 enum temp_type temp; 655 bool ret = true; 656 657 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 658 if (!force) { 659 enum page_type btype = PAGE_TYPE_OF_BIO(type); 660 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 661 662 down_read(&io->io_rwsem); 663 ret = __has_merged_page(io->bio, inode, page, ino); 664 up_read(&io->io_rwsem); 665 } 666 if (ret) 667 __f2fs_submit_merged_write(sbi, type, temp); 668 669 /* TODO: use HOT temp only for meta pages now. */ 670 if (type >= META) 671 break; 672 } 673 } 674 675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 676 { 677 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 678 } 679 680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 681 struct inode *inode, struct page *page, 682 nid_t ino, enum page_type type) 683 { 684 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 685 } 686 687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 688 { 689 f2fs_submit_merged_write(sbi, DATA); 690 f2fs_submit_merged_write(sbi, NODE); 691 f2fs_submit_merged_write(sbi, META); 692 } 693 694 /* 695 * Fill the locked page with data located in the block address. 696 * A caller needs to unlock the page on failure. 697 */ 698 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 699 { 700 struct bio *bio; 701 struct page *page = fio->encrypted_page ? 702 fio->encrypted_page : fio->page; 703 704 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 705 fio->is_por ? META_POR : (__is_meta_io(fio) ? 706 META_GENERIC : DATA_GENERIC_ENHANCE))) 707 return -EFSCORRUPTED; 708 709 trace_f2fs_submit_page_bio(page, fio); 710 f2fs_trace_ios(fio, 0); 711 712 /* Allocate a new bio */ 713 bio = __bio_alloc(fio, 1); 714 715 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 716 fio->page->index, fio, GFP_NOIO); 717 718 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 719 bio_put(bio); 720 return -EFAULT; 721 } 722 723 if (fio->io_wbc && !is_read_io(fio->op)) 724 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 725 726 __attach_io_flag(fio); 727 bio_set_op_attrs(bio, fio->op, fio->op_flags); 728 729 inc_page_count(fio->sbi, is_read_io(fio->op) ? 730 __read_io_type(page): WB_DATA_TYPE(fio->page)); 731 732 __submit_bio(fio->sbi, bio, fio->type); 733 return 0; 734 } 735 736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 737 block_t last_blkaddr, block_t cur_blkaddr) 738 { 739 if (last_blkaddr + 1 != cur_blkaddr) 740 return false; 741 return __same_bdev(sbi, cur_blkaddr, bio); 742 } 743 744 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 745 struct f2fs_io_info *fio) 746 { 747 if (io->fio.op != fio->op) 748 return false; 749 return io->fio.op_flags == fio->op_flags; 750 } 751 752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 753 struct f2fs_bio_info *io, 754 struct f2fs_io_info *fio, 755 block_t last_blkaddr, 756 block_t cur_blkaddr) 757 { 758 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 759 unsigned int filled_blocks = 760 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 761 unsigned int io_size = F2FS_IO_SIZE(sbi); 762 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 763 764 /* IOs in bio is aligned and left space of vectors is not enough */ 765 if (!(filled_blocks % io_size) && left_vecs < io_size) 766 return false; 767 } 768 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 769 return false; 770 return io_type_is_mergeable(io, fio); 771 } 772 773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 774 struct page *page, enum temp_type temp) 775 { 776 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 777 struct bio_entry *be; 778 779 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 780 be->bio = bio; 781 bio_get(bio); 782 783 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 784 f2fs_bug_on(sbi, 1); 785 786 down_write(&io->bio_list_lock); 787 list_add_tail(&be->list, &io->bio_list); 788 up_write(&io->bio_list_lock); 789 } 790 791 static void del_bio_entry(struct bio_entry *be) 792 { 793 list_del(&be->list); 794 kmem_cache_free(bio_entry_slab, be); 795 } 796 797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 798 struct page *page) 799 { 800 struct f2fs_sb_info *sbi = fio->sbi; 801 enum temp_type temp; 802 bool found = false; 803 int ret = -EAGAIN; 804 805 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 806 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 807 struct list_head *head = &io->bio_list; 808 struct bio_entry *be; 809 810 down_write(&io->bio_list_lock); 811 list_for_each_entry(be, head, list) { 812 if (be->bio != *bio) 813 continue; 814 815 found = true; 816 817 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 818 *fio->last_block, 819 fio->new_blkaddr)); 820 if (f2fs_crypt_mergeable_bio(*bio, 821 fio->page->mapping->host, 822 fio->page->index, fio) && 823 bio_add_page(*bio, page, PAGE_SIZE, 0) == 824 PAGE_SIZE) { 825 ret = 0; 826 break; 827 } 828 829 /* page can't be merged into bio; submit the bio */ 830 del_bio_entry(be); 831 __submit_bio(sbi, *bio, DATA); 832 break; 833 } 834 up_write(&io->bio_list_lock); 835 } 836 837 if (ret) { 838 bio_put(*bio); 839 *bio = NULL; 840 } 841 842 return ret; 843 } 844 845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 846 struct bio **bio, struct page *page) 847 { 848 enum temp_type temp; 849 bool found = false; 850 struct bio *target = bio ? *bio : NULL; 851 852 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 853 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 854 struct list_head *head = &io->bio_list; 855 struct bio_entry *be; 856 857 if (list_empty(head)) 858 continue; 859 860 down_read(&io->bio_list_lock); 861 list_for_each_entry(be, head, list) { 862 if (target) 863 found = (target == be->bio); 864 else 865 found = __has_merged_page(be->bio, NULL, 866 page, 0); 867 if (found) 868 break; 869 } 870 up_read(&io->bio_list_lock); 871 872 if (!found) 873 continue; 874 875 found = false; 876 877 down_write(&io->bio_list_lock); 878 list_for_each_entry(be, head, list) { 879 if (target) 880 found = (target == be->bio); 881 else 882 found = __has_merged_page(be->bio, NULL, 883 page, 0); 884 if (found) { 885 target = be->bio; 886 del_bio_entry(be); 887 break; 888 } 889 } 890 up_write(&io->bio_list_lock); 891 } 892 893 if (found) 894 __submit_bio(sbi, target, DATA); 895 if (bio && *bio) { 896 bio_put(*bio); 897 *bio = NULL; 898 } 899 } 900 901 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 902 { 903 struct bio *bio = *fio->bio; 904 struct page *page = fio->encrypted_page ? 905 fio->encrypted_page : fio->page; 906 907 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 908 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 909 return -EFSCORRUPTED; 910 911 trace_f2fs_submit_page_bio(page, fio); 912 f2fs_trace_ios(fio, 0); 913 914 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 915 fio->new_blkaddr)) 916 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 917 alloc_new: 918 if (!bio) { 919 bio = __bio_alloc(fio, BIO_MAX_PAGES); 920 __attach_io_flag(fio); 921 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 922 fio->page->index, fio, GFP_NOIO); 923 bio_set_op_attrs(bio, fio->op, fio->op_flags); 924 925 add_bio_entry(fio->sbi, bio, page, fio->temp); 926 } else { 927 if (add_ipu_page(fio, &bio, page)) 928 goto alloc_new; 929 } 930 931 if (fio->io_wbc) 932 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 933 934 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 935 936 *fio->last_block = fio->new_blkaddr; 937 *fio->bio = bio; 938 939 return 0; 940 } 941 942 void f2fs_submit_page_write(struct f2fs_io_info *fio) 943 { 944 struct f2fs_sb_info *sbi = fio->sbi; 945 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 946 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 947 struct page *bio_page; 948 949 f2fs_bug_on(sbi, is_read_io(fio->op)); 950 951 down_write(&io->io_rwsem); 952 next: 953 if (fio->in_list) { 954 spin_lock(&io->io_lock); 955 if (list_empty(&io->io_list)) { 956 spin_unlock(&io->io_lock); 957 goto out; 958 } 959 fio = list_first_entry(&io->io_list, 960 struct f2fs_io_info, list); 961 list_del(&fio->list); 962 spin_unlock(&io->io_lock); 963 } 964 965 verify_fio_blkaddr(fio); 966 967 if (fio->encrypted_page) 968 bio_page = fio->encrypted_page; 969 else if (fio->compressed_page) 970 bio_page = fio->compressed_page; 971 else 972 bio_page = fio->page; 973 974 /* set submitted = true as a return value */ 975 fio->submitted = true; 976 977 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 978 979 if (io->bio && 980 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 981 fio->new_blkaddr) || 982 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 983 bio_page->index, fio))) 984 __submit_merged_bio(io); 985 alloc_new: 986 if (io->bio == NULL) { 987 if (F2FS_IO_ALIGNED(sbi) && 988 (fio->type == DATA || fio->type == NODE) && 989 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 990 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 991 fio->retry = true; 992 goto skip; 993 } 994 io->bio = __bio_alloc(fio, BIO_MAX_PAGES); 995 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 996 bio_page->index, fio, GFP_NOIO); 997 io->fio = *fio; 998 } 999 1000 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1001 __submit_merged_bio(io); 1002 goto alloc_new; 1003 } 1004 1005 if (fio->io_wbc) 1006 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 1007 1008 io->last_block_in_bio = fio->new_blkaddr; 1009 f2fs_trace_ios(fio, 0); 1010 1011 trace_f2fs_submit_page_write(fio->page, fio); 1012 skip: 1013 if (fio->in_list) 1014 goto next; 1015 out: 1016 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1017 !f2fs_is_checkpoint_ready(sbi)) 1018 __submit_merged_bio(io); 1019 up_write(&io->io_rwsem); 1020 } 1021 1022 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 1023 { 1024 return fsverity_active(inode) && 1025 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 1026 } 1027 1028 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1029 unsigned nr_pages, unsigned op_flag, 1030 pgoff_t first_idx, bool for_write) 1031 { 1032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1033 struct bio *bio; 1034 struct bio_post_read_ctx *ctx; 1035 unsigned int post_read_steps = 0; 1036 1037 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), 1038 for_write); 1039 if (!bio) 1040 return ERR_PTR(-ENOMEM); 1041 1042 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1043 1044 f2fs_target_device(sbi, blkaddr, bio); 1045 bio->bi_end_io = f2fs_read_end_io; 1046 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 1047 1048 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1049 post_read_steps |= 1 << STEP_DECRYPT; 1050 if (f2fs_compressed_file(inode)) 1051 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ; 1052 if (f2fs_need_verity(inode, first_idx)) 1053 post_read_steps |= 1 << STEP_VERITY; 1054 1055 if (post_read_steps) { 1056 /* Due to the mempool, this never fails. */ 1057 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1058 ctx->bio = bio; 1059 ctx->sbi = sbi; 1060 ctx->enabled_steps = post_read_steps; 1061 bio->bi_private = ctx; 1062 } 1063 1064 return bio; 1065 } 1066 1067 static void f2fs_release_read_bio(struct bio *bio) 1068 { 1069 if (bio->bi_private) 1070 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1071 bio_put(bio); 1072 } 1073 1074 /* This can handle encryption stuffs */ 1075 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1076 block_t blkaddr, int op_flags, bool for_write) 1077 { 1078 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1079 struct bio *bio; 1080 1081 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1082 page->index, for_write); 1083 if (IS_ERR(bio)) 1084 return PTR_ERR(bio); 1085 1086 /* wait for GCed page writeback via META_MAPPING */ 1087 f2fs_wait_on_block_writeback(inode, blkaddr); 1088 1089 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1090 bio_put(bio); 1091 return -EFAULT; 1092 } 1093 ClearPageError(page); 1094 inc_page_count(sbi, F2FS_RD_DATA); 1095 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1096 __submit_bio(sbi, bio, DATA); 1097 return 0; 1098 } 1099 1100 static void __set_data_blkaddr(struct dnode_of_data *dn) 1101 { 1102 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1103 __le32 *addr_array; 1104 int base = 0; 1105 1106 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1107 base = get_extra_isize(dn->inode); 1108 1109 /* Get physical address of data block */ 1110 addr_array = blkaddr_in_node(rn); 1111 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1112 } 1113 1114 /* 1115 * Lock ordering for the change of data block address: 1116 * ->data_page 1117 * ->node_page 1118 * update block addresses in the node page 1119 */ 1120 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1121 { 1122 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1123 __set_data_blkaddr(dn); 1124 if (set_page_dirty(dn->node_page)) 1125 dn->node_changed = true; 1126 } 1127 1128 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1129 { 1130 dn->data_blkaddr = blkaddr; 1131 f2fs_set_data_blkaddr(dn); 1132 f2fs_update_extent_cache(dn); 1133 } 1134 1135 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1136 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1137 { 1138 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1139 int err; 1140 1141 if (!count) 1142 return 0; 1143 1144 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1145 return -EPERM; 1146 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1147 return err; 1148 1149 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1150 dn->ofs_in_node, count); 1151 1152 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1153 1154 for (; count > 0; dn->ofs_in_node++) { 1155 block_t blkaddr = f2fs_data_blkaddr(dn); 1156 if (blkaddr == NULL_ADDR) { 1157 dn->data_blkaddr = NEW_ADDR; 1158 __set_data_blkaddr(dn); 1159 count--; 1160 } 1161 } 1162 1163 if (set_page_dirty(dn->node_page)) 1164 dn->node_changed = true; 1165 return 0; 1166 } 1167 1168 /* Should keep dn->ofs_in_node unchanged */ 1169 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1170 { 1171 unsigned int ofs_in_node = dn->ofs_in_node; 1172 int ret; 1173 1174 ret = f2fs_reserve_new_blocks(dn, 1); 1175 dn->ofs_in_node = ofs_in_node; 1176 return ret; 1177 } 1178 1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1180 { 1181 bool need_put = dn->inode_page ? false : true; 1182 int err; 1183 1184 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1185 if (err) 1186 return err; 1187 1188 if (dn->data_blkaddr == NULL_ADDR) 1189 err = f2fs_reserve_new_block(dn); 1190 if (err || need_put) 1191 f2fs_put_dnode(dn); 1192 return err; 1193 } 1194 1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1196 { 1197 struct extent_info ei = {0, 0, 0}; 1198 struct inode *inode = dn->inode; 1199 1200 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1201 dn->data_blkaddr = ei.blk + index - ei.fofs; 1202 return 0; 1203 } 1204 1205 return f2fs_reserve_block(dn, index); 1206 } 1207 1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1209 int op_flags, bool for_write) 1210 { 1211 struct address_space *mapping = inode->i_mapping; 1212 struct dnode_of_data dn; 1213 struct page *page; 1214 struct extent_info ei = {0,0,0}; 1215 int err; 1216 1217 page = f2fs_grab_cache_page(mapping, index, for_write); 1218 if (!page) 1219 return ERR_PTR(-ENOMEM); 1220 1221 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1222 dn.data_blkaddr = ei.blk + index - ei.fofs; 1223 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1224 DATA_GENERIC_ENHANCE_READ)) { 1225 err = -EFSCORRUPTED; 1226 goto put_err; 1227 } 1228 goto got_it; 1229 } 1230 1231 set_new_dnode(&dn, inode, NULL, NULL, 0); 1232 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1233 if (err) 1234 goto put_err; 1235 f2fs_put_dnode(&dn); 1236 1237 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1238 err = -ENOENT; 1239 goto put_err; 1240 } 1241 if (dn.data_blkaddr != NEW_ADDR && 1242 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1243 dn.data_blkaddr, 1244 DATA_GENERIC_ENHANCE)) { 1245 err = -EFSCORRUPTED; 1246 goto put_err; 1247 } 1248 got_it: 1249 if (PageUptodate(page)) { 1250 unlock_page(page); 1251 return page; 1252 } 1253 1254 /* 1255 * A new dentry page is allocated but not able to be written, since its 1256 * new inode page couldn't be allocated due to -ENOSPC. 1257 * In such the case, its blkaddr can be remained as NEW_ADDR. 1258 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1259 * f2fs_init_inode_metadata. 1260 */ 1261 if (dn.data_blkaddr == NEW_ADDR) { 1262 zero_user_segment(page, 0, PAGE_SIZE); 1263 if (!PageUptodate(page)) 1264 SetPageUptodate(page); 1265 unlock_page(page); 1266 return page; 1267 } 1268 1269 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1270 op_flags, for_write); 1271 if (err) 1272 goto put_err; 1273 return page; 1274 1275 put_err: 1276 f2fs_put_page(page, 1); 1277 return ERR_PTR(err); 1278 } 1279 1280 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1281 { 1282 struct address_space *mapping = inode->i_mapping; 1283 struct page *page; 1284 1285 page = find_get_page(mapping, index); 1286 if (page && PageUptodate(page)) 1287 return page; 1288 f2fs_put_page(page, 0); 1289 1290 page = f2fs_get_read_data_page(inode, index, 0, false); 1291 if (IS_ERR(page)) 1292 return page; 1293 1294 if (PageUptodate(page)) 1295 return page; 1296 1297 wait_on_page_locked(page); 1298 if (unlikely(!PageUptodate(page))) { 1299 f2fs_put_page(page, 0); 1300 return ERR_PTR(-EIO); 1301 } 1302 return page; 1303 } 1304 1305 /* 1306 * If it tries to access a hole, return an error. 1307 * Because, the callers, functions in dir.c and GC, should be able to know 1308 * whether this page exists or not. 1309 */ 1310 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1311 bool for_write) 1312 { 1313 struct address_space *mapping = inode->i_mapping; 1314 struct page *page; 1315 repeat: 1316 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1317 if (IS_ERR(page)) 1318 return page; 1319 1320 /* wait for read completion */ 1321 lock_page(page); 1322 if (unlikely(page->mapping != mapping)) { 1323 f2fs_put_page(page, 1); 1324 goto repeat; 1325 } 1326 if (unlikely(!PageUptodate(page))) { 1327 f2fs_put_page(page, 1); 1328 return ERR_PTR(-EIO); 1329 } 1330 return page; 1331 } 1332 1333 /* 1334 * Caller ensures that this data page is never allocated. 1335 * A new zero-filled data page is allocated in the page cache. 1336 * 1337 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1338 * f2fs_unlock_op(). 1339 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1340 * ipage should be released by this function. 1341 */ 1342 struct page *f2fs_get_new_data_page(struct inode *inode, 1343 struct page *ipage, pgoff_t index, bool new_i_size) 1344 { 1345 struct address_space *mapping = inode->i_mapping; 1346 struct page *page; 1347 struct dnode_of_data dn; 1348 int err; 1349 1350 page = f2fs_grab_cache_page(mapping, index, true); 1351 if (!page) { 1352 /* 1353 * before exiting, we should make sure ipage will be released 1354 * if any error occur. 1355 */ 1356 f2fs_put_page(ipage, 1); 1357 return ERR_PTR(-ENOMEM); 1358 } 1359 1360 set_new_dnode(&dn, inode, ipage, NULL, 0); 1361 err = f2fs_reserve_block(&dn, index); 1362 if (err) { 1363 f2fs_put_page(page, 1); 1364 return ERR_PTR(err); 1365 } 1366 if (!ipage) 1367 f2fs_put_dnode(&dn); 1368 1369 if (PageUptodate(page)) 1370 goto got_it; 1371 1372 if (dn.data_blkaddr == NEW_ADDR) { 1373 zero_user_segment(page, 0, PAGE_SIZE); 1374 if (!PageUptodate(page)) 1375 SetPageUptodate(page); 1376 } else { 1377 f2fs_put_page(page, 1); 1378 1379 /* if ipage exists, blkaddr should be NEW_ADDR */ 1380 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1381 page = f2fs_get_lock_data_page(inode, index, true); 1382 if (IS_ERR(page)) 1383 return page; 1384 } 1385 got_it: 1386 if (new_i_size && i_size_read(inode) < 1387 ((loff_t)(index + 1) << PAGE_SHIFT)) 1388 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1389 return page; 1390 } 1391 1392 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1393 { 1394 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1395 struct f2fs_summary sum; 1396 struct node_info ni; 1397 block_t old_blkaddr; 1398 blkcnt_t count = 1; 1399 int err; 1400 1401 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1402 return -EPERM; 1403 1404 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1405 if (err) 1406 return err; 1407 1408 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1409 if (dn->data_blkaddr != NULL_ADDR) 1410 goto alloc; 1411 1412 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1413 return err; 1414 1415 alloc: 1416 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1417 old_blkaddr = dn->data_blkaddr; 1418 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1419 &sum, seg_type, NULL); 1420 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1421 invalidate_mapping_pages(META_MAPPING(sbi), 1422 old_blkaddr, old_blkaddr); 1423 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1424 1425 /* 1426 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1427 * data from unwritten block via dio_read. 1428 */ 1429 return 0; 1430 } 1431 1432 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1433 { 1434 struct inode *inode = file_inode(iocb->ki_filp); 1435 struct f2fs_map_blocks map; 1436 int flag; 1437 int err = 0; 1438 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1439 1440 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1441 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1442 if (map.m_len > map.m_lblk) 1443 map.m_len -= map.m_lblk; 1444 else 1445 map.m_len = 0; 1446 1447 map.m_next_pgofs = NULL; 1448 map.m_next_extent = NULL; 1449 map.m_seg_type = NO_CHECK_TYPE; 1450 map.m_may_create = true; 1451 1452 if (direct_io) { 1453 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1454 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1455 F2FS_GET_BLOCK_PRE_AIO : 1456 F2FS_GET_BLOCK_PRE_DIO; 1457 goto map_blocks; 1458 } 1459 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1460 err = f2fs_convert_inline_inode(inode); 1461 if (err) 1462 return err; 1463 } 1464 if (f2fs_has_inline_data(inode)) 1465 return err; 1466 1467 flag = F2FS_GET_BLOCK_PRE_AIO; 1468 1469 map_blocks: 1470 err = f2fs_map_blocks(inode, &map, 1, flag); 1471 if (map.m_len > 0 && err == -ENOSPC) { 1472 if (!direct_io) 1473 set_inode_flag(inode, FI_NO_PREALLOC); 1474 err = 0; 1475 } 1476 return err; 1477 } 1478 1479 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1480 { 1481 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1482 if (lock) 1483 down_read(&sbi->node_change); 1484 else 1485 up_read(&sbi->node_change); 1486 } else { 1487 if (lock) 1488 f2fs_lock_op(sbi); 1489 else 1490 f2fs_unlock_op(sbi); 1491 } 1492 } 1493 1494 /* 1495 * f2fs_map_blocks() tries to find or build mapping relationship which 1496 * maps continuous logical blocks to physical blocks, and return such 1497 * info via f2fs_map_blocks structure. 1498 */ 1499 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1500 int create, int flag) 1501 { 1502 unsigned int maxblocks = map->m_len; 1503 struct dnode_of_data dn; 1504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1505 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1506 pgoff_t pgofs, end_offset, end; 1507 int err = 0, ofs = 1; 1508 unsigned int ofs_in_node, last_ofs_in_node; 1509 blkcnt_t prealloc; 1510 struct extent_info ei = {0,0,0}; 1511 block_t blkaddr; 1512 unsigned int start_pgofs; 1513 1514 if (!maxblocks) 1515 return 0; 1516 1517 map->m_len = 0; 1518 map->m_flags = 0; 1519 1520 /* it only supports block size == page size */ 1521 pgofs = (pgoff_t)map->m_lblk; 1522 end = pgofs + maxblocks; 1523 1524 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1525 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1526 map->m_may_create) 1527 goto next_dnode; 1528 1529 map->m_pblk = ei.blk + pgofs - ei.fofs; 1530 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1531 map->m_flags = F2FS_MAP_MAPPED; 1532 if (map->m_next_extent) 1533 *map->m_next_extent = pgofs + map->m_len; 1534 1535 /* for hardware encryption, but to avoid potential issue in future */ 1536 if (flag == F2FS_GET_BLOCK_DIO) 1537 f2fs_wait_on_block_writeback_range(inode, 1538 map->m_pblk, map->m_len); 1539 goto out; 1540 } 1541 1542 next_dnode: 1543 if (map->m_may_create) 1544 f2fs_do_map_lock(sbi, flag, true); 1545 1546 /* When reading holes, we need its node page */ 1547 set_new_dnode(&dn, inode, NULL, NULL, 0); 1548 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1549 if (err) { 1550 if (flag == F2FS_GET_BLOCK_BMAP) 1551 map->m_pblk = 0; 1552 if (err == -ENOENT) { 1553 err = 0; 1554 if (map->m_next_pgofs) 1555 *map->m_next_pgofs = 1556 f2fs_get_next_page_offset(&dn, pgofs); 1557 if (map->m_next_extent) 1558 *map->m_next_extent = 1559 f2fs_get_next_page_offset(&dn, pgofs); 1560 } 1561 goto unlock_out; 1562 } 1563 1564 start_pgofs = pgofs; 1565 prealloc = 0; 1566 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1567 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1568 1569 next_block: 1570 blkaddr = f2fs_data_blkaddr(&dn); 1571 1572 if (__is_valid_data_blkaddr(blkaddr) && 1573 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1574 err = -EFSCORRUPTED; 1575 goto sync_out; 1576 } 1577 1578 if (__is_valid_data_blkaddr(blkaddr)) { 1579 /* use out-place-update for driect IO under LFS mode */ 1580 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1581 map->m_may_create) { 1582 err = __allocate_data_block(&dn, map->m_seg_type); 1583 if (err) 1584 goto sync_out; 1585 blkaddr = dn.data_blkaddr; 1586 set_inode_flag(inode, FI_APPEND_WRITE); 1587 } 1588 } else { 1589 if (create) { 1590 if (unlikely(f2fs_cp_error(sbi))) { 1591 err = -EIO; 1592 goto sync_out; 1593 } 1594 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1595 if (blkaddr == NULL_ADDR) { 1596 prealloc++; 1597 last_ofs_in_node = dn.ofs_in_node; 1598 } 1599 } else { 1600 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1601 flag != F2FS_GET_BLOCK_DIO); 1602 err = __allocate_data_block(&dn, 1603 map->m_seg_type); 1604 if (!err) 1605 set_inode_flag(inode, FI_APPEND_WRITE); 1606 } 1607 if (err) 1608 goto sync_out; 1609 map->m_flags |= F2FS_MAP_NEW; 1610 blkaddr = dn.data_blkaddr; 1611 } else { 1612 if (flag == F2FS_GET_BLOCK_BMAP) { 1613 map->m_pblk = 0; 1614 goto sync_out; 1615 } 1616 if (flag == F2FS_GET_BLOCK_PRECACHE) 1617 goto sync_out; 1618 if (flag == F2FS_GET_BLOCK_FIEMAP && 1619 blkaddr == NULL_ADDR) { 1620 if (map->m_next_pgofs) 1621 *map->m_next_pgofs = pgofs + 1; 1622 goto sync_out; 1623 } 1624 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1625 /* for defragment case */ 1626 if (map->m_next_pgofs) 1627 *map->m_next_pgofs = pgofs + 1; 1628 goto sync_out; 1629 } 1630 } 1631 } 1632 1633 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1634 goto skip; 1635 1636 if (map->m_len == 0) { 1637 /* preallocated unwritten block should be mapped for fiemap. */ 1638 if (blkaddr == NEW_ADDR) 1639 map->m_flags |= F2FS_MAP_UNWRITTEN; 1640 map->m_flags |= F2FS_MAP_MAPPED; 1641 1642 map->m_pblk = blkaddr; 1643 map->m_len = 1; 1644 } else if ((map->m_pblk != NEW_ADDR && 1645 blkaddr == (map->m_pblk + ofs)) || 1646 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1647 flag == F2FS_GET_BLOCK_PRE_DIO) { 1648 ofs++; 1649 map->m_len++; 1650 } else { 1651 goto sync_out; 1652 } 1653 1654 skip: 1655 dn.ofs_in_node++; 1656 pgofs++; 1657 1658 /* preallocate blocks in batch for one dnode page */ 1659 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1660 (pgofs == end || dn.ofs_in_node == end_offset)) { 1661 1662 dn.ofs_in_node = ofs_in_node; 1663 err = f2fs_reserve_new_blocks(&dn, prealloc); 1664 if (err) 1665 goto sync_out; 1666 1667 map->m_len += dn.ofs_in_node - ofs_in_node; 1668 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1669 err = -ENOSPC; 1670 goto sync_out; 1671 } 1672 dn.ofs_in_node = end_offset; 1673 } 1674 1675 if (pgofs >= end) 1676 goto sync_out; 1677 else if (dn.ofs_in_node < end_offset) 1678 goto next_block; 1679 1680 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1681 if (map->m_flags & F2FS_MAP_MAPPED) { 1682 unsigned int ofs = start_pgofs - map->m_lblk; 1683 1684 f2fs_update_extent_cache_range(&dn, 1685 start_pgofs, map->m_pblk + ofs, 1686 map->m_len - ofs); 1687 } 1688 } 1689 1690 f2fs_put_dnode(&dn); 1691 1692 if (map->m_may_create) { 1693 f2fs_do_map_lock(sbi, flag, false); 1694 f2fs_balance_fs(sbi, dn.node_changed); 1695 } 1696 goto next_dnode; 1697 1698 sync_out: 1699 1700 /* for hardware encryption, but to avoid potential issue in future */ 1701 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1702 f2fs_wait_on_block_writeback_range(inode, 1703 map->m_pblk, map->m_len); 1704 1705 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1706 if (map->m_flags & F2FS_MAP_MAPPED) { 1707 unsigned int ofs = start_pgofs - map->m_lblk; 1708 1709 f2fs_update_extent_cache_range(&dn, 1710 start_pgofs, map->m_pblk + ofs, 1711 map->m_len - ofs); 1712 } 1713 if (map->m_next_extent) 1714 *map->m_next_extent = pgofs + 1; 1715 } 1716 f2fs_put_dnode(&dn); 1717 unlock_out: 1718 if (map->m_may_create) { 1719 f2fs_do_map_lock(sbi, flag, false); 1720 f2fs_balance_fs(sbi, dn.node_changed); 1721 } 1722 out: 1723 trace_f2fs_map_blocks(inode, map, err); 1724 return err; 1725 } 1726 1727 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1728 { 1729 struct f2fs_map_blocks map; 1730 block_t last_lblk; 1731 int err; 1732 1733 if (pos + len > i_size_read(inode)) 1734 return false; 1735 1736 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1737 map.m_next_pgofs = NULL; 1738 map.m_next_extent = NULL; 1739 map.m_seg_type = NO_CHECK_TYPE; 1740 map.m_may_create = false; 1741 last_lblk = F2FS_BLK_ALIGN(pos + len); 1742 1743 while (map.m_lblk < last_lblk) { 1744 map.m_len = last_lblk - map.m_lblk; 1745 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1746 if (err || map.m_len == 0) 1747 return false; 1748 map.m_lblk += map.m_len; 1749 } 1750 return true; 1751 } 1752 1753 static int __get_data_block(struct inode *inode, sector_t iblock, 1754 struct buffer_head *bh, int create, int flag, 1755 pgoff_t *next_pgofs, int seg_type, bool may_write) 1756 { 1757 struct f2fs_map_blocks map; 1758 int err; 1759 1760 map.m_lblk = iblock; 1761 map.m_len = bh->b_size >> inode->i_blkbits; 1762 map.m_next_pgofs = next_pgofs; 1763 map.m_next_extent = NULL; 1764 map.m_seg_type = seg_type; 1765 map.m_may_create = may_write; 1766 1767 err = f2fs_map_blocks(inode, &map, create, flag); 1768 if (!err) { 1769 map_bh(bh, inode->i_sb, map.m_pblk); 1770 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1771 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1772 } 1773 return err; 1774 } 1775 1776 static int get_data_block(struct inode *inode, sector_t iblock, 1777 struct buffer_head *bh_result, int create, int flag, 1778 pgoff_t *next_pgofs) 1779 { 1780 return __get_data_block(inode, iblock, bh_result, create, 1781 flag, next_pgofs, 1782 NO_CHECK_TYPE, create); 1783 } 1784 1785 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1786 struct buffer_head *bh_result, int create) 1787 { 1788 return __get_data_block(inode, iblock, bh_result, create, 1789 F2FS_GET_BLOCK_DIO, NULL, 1790 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1791 IS_SWAPFILE(inode) ? false : true); 1792 } 1793 1794 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1795 struct buffer_head *bh_result, int create) 1796 { 1797 return __get_data_block(inode, iblock, bh_result, create, 1798 F2FS_GET_BLOCK_DIO, NULL, 1799 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1800 false); 1801 } 1802 1803 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1804 struct buffer_head *bh_result, int create) 1805 { 1806 /* Block number less than F2FS MAX BLOCKS */ 1807 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1808 return -EFBIG; 1809 1810 return __get_data_block(inode, iblock, bh_result, create, 1811 F2FS_GET_BLOCK_BMAP, NULL, 1812 NO_CHECK_TYPE, create); 1813 } 1814 1815 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1816 { 1817 return (offset >> inode->i_blkbits); 1818 } 1819 1820 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1821 { 1822 return (blk << inode->i_blkbits); 1823 } 1824 1825 static int f2fs_xattr_fiemap(struct inode *inode, 1826 struct fiemap_extent_info *fieinfo) 1827 { 1828 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1829 struct page *page; 1830 struct node_info ni; 1831 __u64 phys = 0, len; 1832 __u32 flags; 1833 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1834 int err = 0; 1835 1836 if (f2fs_has_inline_xattr(inode)) { 1837 int offset; 1838 1839 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1840 inode->i_ino, false); 1841 if (!page) 1842 return -ENOMEM; 1843 1844 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1845 if (err) { 1846 f2fs_put_page(page, 1); 1847 return err; 1848 } 1849 1850 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1851 offset = offsetof(struct f2fs_inode, i_addr) + 1852 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1853 get_inline_xattr_addrs(inode)); 1854 1855 phys += offset; 1856 len = inline_xattr_size(inode); 1857 1858 f2fs_put_page(page, 1); 1859 1860 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1861 1862 if (!xnid) 1863 flags |= FIEMAP_EXTENT_LAST; 1864 1865 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1866 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1867 if (err || err == 1) 1868 return err; 1869 } 1870 1871 if (xnid) { 1872 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1873 if (!page) 1874 return -ENOMEM; 1875 1876 err = f2fs_get_node_info(sbi, xnid, &ni); 1877 if (err) { 1878 f2fs_put_page(page, 1); 1879 return err; 1880 } 1881 1882 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1883 len = inode->i_sb->s_blocksize; 1884 1885 f2fs_put_page(page, 1); 1886 1887 flags = FIEMAP_EXTENT_LAST; 1888 } 1889 1890 if (phys) { 1891 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1892 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1893 } 1894 1895 return (err < 0 ? err : 0); 1896 } 1897 1898 static loff_t max_inode_blocks(struct inode *inode) 1899 { 1900 loff_t result = ADDRS_PER_INODE(inode); 1901 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1902 1903 /* two direct node blocks */ 1904 result += (leaf_count * 2); 1905 1906 /* two indirect node blocks */ 1907 leaf_count *= NIDS_PER_BLOCK; 1908 result += (leaf_count * 2); 1909 1910 /* one double indirect node block */ 1911 leaf_count *= NIDS_PER_BLOCK; 1912 result += leaf_count; 1913 1914 return result; 1915 } 1916 1917 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1918 u64 start, u64 len) 1919 { 1920 struct buffer_head map_bh; 1921 sector_t start_blk, last_blk; 1922 pgoff_t next_pgofs; 1923 u64 logical = 0, phys = 0, size = 0; 1924 u32 flags = 0; 1925 int ret = 0; 1926 bool compr_cluster = false; 1927 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1928 1929 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1930 ret = f2fs_precache_extents(inode); 1931 if (ret) 1932 return ret; 1933 } 1934 1935 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1936 if (ret) 1937 return ret; 1938 1939 inode_lock(inode); 1940 1941 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1942 ret = f2fs_xattr_fiemap(inode, fieinfo); 1943 goto out; 1944 } 1945 1946 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1947 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1948 if (ret != -EAGAIN) 1949 goto out; 1950 } 1951 1952 if (logical_to_blk(inode, len) == 0) 1953 len = blk_to_logical(inode, 1); 1954 1955 start_blk = logical_to_blk(inode, start); 1956 last_blk = logical_to_blk(inode, start + len - 1); 1957 1958 next: 1959 memset(&map_bh, 0, sizeof(struct buffer_head)); 1960 map_bh.b_size = len; 1961 1962 if (compr_cluster) 1963 map_bh.b_size = blk_to_logical(inode, cluster_size - 1); 1964 1965 ret = get_data_block(inode, start_blk, &map_bh, 0, 1966 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1967 if (ret) 1968 goto out; 1969 1970 /* HOLE */ 1971 if (!buffer_mapped(&map_bh)) { 1972 start_blk = next_pgofs; 1973 1974 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1975 max_inode_blocks(inode))) 1976 goto prep_next; 1977 1978 flags |= FIEMAP_EXTENT_LAST; 1979 } 1980 1981 if (size) { 1982 if (IS_ENCRYPTED(inode)) 1983 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1984 1985 ret = fiemap_fill_next_extent(fieinfo, logical, 1986 phys, size, flags); 1987 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1988 if (ret) 1989 goto out; 1990 size = 0; 1991 } 1992 1993 if (start_blk > last_blk) 1994 goto out; 1995 1996 if (compr_cluster) { 1997 compr_cluster = false; 1998 1999 2000 logical = blk_to_logical(inode, start_blk - 1); 2001 phys = blk_to_logical(inode, map_bh.b_blocknr); 2002 size = blk_to_logical(inode, cluster_size); 2003 2004 flags |= FIEMAP_EXTENT_ENCODED; 2005 2006 start_blk += cluster_size - 1; 2007 2008 if (start_blk > last_blk) 2009 goto out; 2010 2011 goto prep_next; 2012 } 2013 2014 if (map_bh.b_blocknr == COMPRESS_ADDR) { 2015 compr_cluster = true; 2016 start_blk++; 2017 goto prep_next; 2018 } 2019 2020 logical = blk_to_logical(inode, start_blk); 2021 phys = blk_to_logical(inode, map_bh.b_blocknr); 2022 size = map_bh.b_size; 2023 flags = 0; 2024 if (buffer_unwritten(&map_bh)) 2025 flags = FIEMAP_EXTENT_UNWRITTEN; 2026 2027 start_blk += logical_to_blk(inode, size); 2028 2029 prep_next: 2030 cond_resched(); 2031 if (fatal_signal_pending(current)) 2032 ret = -EINTR; 2033 else 2034 goto next; 2035 out: 2036 if (ret == 1) 2037 ret = 0; 2038 2039 inode_unlock(inode); 2040 return ret; 2041 } 2042 2043 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2044 { 2045 if (IS_ENABLED(CONFIG_FS_VERITY) && 2046 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2047 return inode->i_sb->s_maxbytes; 2048 2049 return i_size_read(inode); 2050 } 2051 2052 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2053 unsigned nr_pages, 2054 struct f2fs_map_blocks *map, 2055 struct bio **bio_ret, 2056 sector_t *last_block_in_bio, 2057 bool is_readahead) 2058 { 2059 struct bio *bio = *bio_ret; 2060 const unsigned blkbits = inode->i_blkbits; 2061 const unsigned blocksize = 1 << blkbits; 2062 sector_t block_in_file; 2063 sector_t last_block; 2064 sector_t last_block_in_file; 2065 sector_t block_nr; 2066 int ret = 0; 2067 2068 block_in_file = (sector_t)page_index(page); 2069 last_block = block_in_file + nr_pages; 2070 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >> 2071 blkbits; 2072 if (last_block > last_block_in_file) 2073 last_block = last_block_in_file; 2074 2075 /* just zeroing out page which is beyond EOF */ 2076 if (block_in_file >= last_block) 2077 goto zero_out; 2078 /* 2079 * Map blocks using the previous result first. 2080 */ 2081 if ((map->m_flags & F2FS_MAP_MAPPED) && 2082 block_in_file > map->m_lblk && 2083 block_in_file < (map->m_lblk + map->m_len)) 2084 goto got_it; 2085 2086 /* 2087 * Then do more f2fs_map_blocks() calls until we are 2088 * done with this page. 2089 */ 2090 map->m_lblk = block_in_file; 2091 map->m_len = last_block - block_in_file; 2092 2093 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2094 if (ret) 2095 goto out; 2096 got_it: 2097 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2098 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2099 SetPageMappedToDisk(page); 2100 2101 if (!PageUptodate(page) && (!PageSwapCache(page) && 2102 !cleancache_get_page(page))) { 2103 SetPageUptodate(page); 2104 goto confused; 2105 } 2106 2107 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2108 DATA_GENERIC_ENHANCE_READ)) { 2109 ret = -EFSCORRUPTED; 2110 goto out; 2111 } 2112 } else { 2113 zero_out: 2114 zero_user_segment(page, 0, PAGE_SIZE); 2115 if (f2fs_need_verity(inode, page->index) && 2116 !fsverity_verify_page(page)) { 2117 ret = -EIO; 2118 goto out; 2119 } 2120 if (!PageUptodate(page)) 2121 SetPageUptodate(page); 2122 unlock_page(page); 2123 goto out; 2124 } 2125 2126 /* 2127 * This page will go to BIO. Do we need to send this 2128 * BIO off first? 2129 */ 2130 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2131 *last_block_in_bio, block_nr) || 2132 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2133 submit_and_realloc: 2134 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2135 bio = NULL; 2136 } 2137 if (bio == NULL) { 2138 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2139 is_readahead ? REQ_RAHEAD : 0, page->index, 2140 false); 2141 if (IS_ERR(bio)) { 2142 ret = PTR_ERR(bio); 2143 bio = NULL; 2144 goto out; 2145 } 2146 } 2147 2148 /* 2149 * If the page is under writeback, we need to wait for 2150 * its completion to see the correct decrypted data. 2151 */ 2152 f2fs_wait_on_block_writeback(inode, block_nr); 2153 2154 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2155 goto submit_and_realloc; 2156 2157 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2158 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2159 ClearPageError(page); 2160 *last_block_in_bio = block_nr; 2161 goto out; 2162 confused: 2163 if (bio) { 2164 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2165 bio = NULL; 2166 } 2167 unlock_page(page); 2168 out: 2169 *bio_ret = bio; 2170 return ret; 2171 } 2172 2173 #ifdef CONFIG_F2FS_FS_COMPRESSION 2174 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2175 unsigned nr_pages, sector_t *last_block_in_bio, 2176 bool is_readahead, bool for_write) 2177 { 2178 struct dnode_of_data dn; 2179 struct inode *inode = cc->inode; 2180 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2181 struct bio *bio = *bio_ret; 2182 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2183 sector_t last_block_in_file; 2184 const unsigned blkbits = inode->i_blkbits; 2185 const unsigned blocksize = 1 << blkbits; 2186 struct decompress_io_ctx *dic = NULL; 2187 int i; 2188 int ret = 0; 2189 2190 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2191 2192 last_block_in_file = (f2fs_readpage_limit(inode) + 2193 blocksize - 1) >> blkbits; 2194 2195 /* get rid of pages beyond EOF */ 2196 for (i = 0; i < cc->cluster_size; i++) { 2197 struct page *page = cc->rpages[i]; 2198 2199 if (!page) 2200 continue; 2201 if ((sector_t)page->index >= last_block_in_file) { 2202 zero_user_segment(page, 0, PAGE_SIZE); 2203 if (!PageUptodate(page)) 2204 SetPageUptodate(page); 2205 } else if (!PageUptodate(page)) { 2206 continue; 2207 } 2208 unlock_page(page); 2209 cc->rpages[i] = NULL; 2210 cc->nr_rpages--; 2211 } 2212 2213 /* we are done since all pages are beyond EOF */ 2214 if (f2fs_cluster_is_empty(cc)) 2215 goto out; 2216 2217 set_new_dnode(&dn, inode, NULL, NULL, 0); 2218 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2219 if (ret) 2220 goto out; 2221 2222 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2223 2224 for (i = 1; i < cc->cluster_size; i++) { 2225 block_t blkaddr; 2226 2227 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2228 dn.ofs_in_node + i); 2229 2230 if (!__is_valid_data_blkaddr(blkaddr)) 2231 break; 2232 2233 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2234 ret = -EFAULT; 2235 goto out_put_dnode; 2236 } 2237 cc->nr_cpages++; 2238 } 2239 2240 /* nothing to decompress */ 2241 if (cc->nr_cpages == 0) { 2242 ret = 0; 2243 goto out_put_dnode; 2244 } 2245 2246 dic = f2fs_alloc_dic(cc); 2247 if (IS_ERR(dic)) { 2248 ret = PTR_ERR(dic); 2249 goto out_put_dnode; 2250 } 2251 2252 for (i = 0; i < dic->nr_cpages; i++) { 2253 struct page *page = dic->cpages[i]; 2254 block_t blkaddr; 2255 struct bio_post_read_ctx *ctx; 2256 2257 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2258 dn.ofs_in_node + i + 1); 2259 2260 if (bio && (!page_is_mergeable(sbi, bio, 2261 *last_block_in_bio, blkaddr) || 2262 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2263 submit_and_realloc: 2264 __submit_bio(sbi, bio, DATA); 2265 bio = NULL; 2266 } 2267 2268 if (!bio) { 2269 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2270 is_readahead ? REQ_RAHEAD : 0, 2271 page->index, for_write); 2272 if (IS_ERR(bio)) { 2273 ret = PTR_ERR(bio); 2274 dic->failed = true; 2275 if (refcount_sub_and_test(dic->nr_cpages - i, 2276 &dic->ref)) { 2277 f2fs_decompress_end_io(dic->rpages, 2278 cc->cluster_size, true, 2279 false); 2280 f2fs_free_dic(dic); 2281 } 2282 f2fs_put_dnode(&dn); 2283 *bio_ret = NULL; 2284 return ret; 2285 } 2286 } 2287 2288 f2fs_wait_on_block_writeback(inode, blkaddr); 2289 2290 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2291 goto submit_and_realloc; 2292 2293 /* tag STEP_DECOMPRESS to handle IO in wq */ 2294 ctx = bio->bi_private; 2295 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS))) 2296 ctx->enabled_steps |= 1 << STEP_DECOMPRESS; 2297 2298 inc_page_count(sbi, F2FS_RD_DATA); 2299 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2300 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2301 ClearPageError(page); 2302 *last_block_in_bio = blkaddr; 2303 } 2304 2305 f2fs_put_dnode(&dn); 2306 2307 *bio_ret = bio; 2308 return 0; 2309 2310 out_put_dnode: 2311 f2fs_put_dnode(&dn); 2312 out: 2313 f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false); 2314 *bio_ret = bio; 2315 return ret; 2316 } 2317 #endif 2318 2319 /* 2320 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2321 * Major change was from block_size == page_size in f2fs by default. 2322 * 2323 * Note that the aops->readpages() function is ONLY used for read-ahead. If 2324 * this function ever deviates from doing just read-ahead, it should either 2325 * use ->readpage() or do the necessary surgery to decouple ->readpages() 2326 * from read-ahead. 2327 */ 2328 static int f2fs_mpage_readpages(struct inode *inode, 2329 struct readahead_control *rac, struct page *page) 2330 { 2331 struct bio *bio = NULL; 2332 sector_t last_block_in_bio = 0; 2333 struct f2fs_map_blocks map; 2334 #ifdef CONFIG_F2FS_FS_COMPRESSION 2335 struct compress_ctx cc = { 2336 .inode = inode, 2337 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2338 .cluster_size = F2FS_I(inode)->i_cluster_size, 2339 .cluster_idx = NULL_CLUSTER, 2340 .rpages = NULL, 2341 .cpages = NULL, 2342 .nr_rpages = 0, 2343 .nr_cpages = 0, 2344 }; 2345 #endif 2346 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2347 unsigned max_nr_pages = nr_pages; 2348 int ret = 0; 2349 bool drop_ra = false; 2350 2351 map.m_pblk = 0; 2352 map.m_lblk = 0; 2353 map.m_len = 0; 2354 map.m_flags = 0; 2355 map.m_next_pgofs = NULL; 2356 map.m_next_extent = NULL; 2357 map.m_seg_type = NO_CHECK_TYPE; 2358 map.m_may_create = false; 2359 2360 /* 2361 * Two readahead threads for same address range can cause race condition 2362 * which fragments sequential read IOs. So let's avoid each other. 2363 */ 2364 if (rac && readahead_count(rac)) { 2365 if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac)) 2366 drop_ra = true; 2367 else 2368 WRITE_ONCE(F2FS_I(inode)->ra_offset, 2369 readahead_index(rac)); 2370 } 2371 2372 for (; nr_pages; nr_pages--) { 2373 if (rac) { 2374 page = readahead_page(rac); 2375 prefetchw(&page->flags); 2376 if (drop_ra) { 2377 f2fs_put_page(page, 1); 2378 continue; 2379 } 2380 } 2381 2382 #ifdef CONFIG_F2FS_FS_COMPRESSION 2383 if (f2fs_compressed_file(inode)) { 2384 /* there are remained comressed pages, submit them */ 2385 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2386 ret = f2fs_read_multi_pages(&cc, &bio, 2387 max_nr_pages, 2388 &last_block_in_bio, 2389 rac != NULL, false); 2390 f2fs_destroy_compress_ctx(&cc); 2391 if (ret) 2392 goto set_error_page; 2393 } 2394 ret = f2fs_is_compressed_cluster(inode, page->index); 2395 if (ret < 0) 2396 goto set_error_page; 2397 else if (!ret) 2398 goto read_single_page; 2399 2400 ret = f2fs_init_compress_ctx(&cc); 2401 if (ret) 2402 goto set_error_page; 2403 2404 f2fs_compress_ctx_add_page(&cc, page); 2405 2406 goto next_page; 2407 } 2408 read_single_page: 2409 #endif 2410 2411 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2412 &bio, &last_block_in_bio, rac); 2413 if (ret) { 2414 #ifdef CONFIG_F2FS_FS_COMPRESSION 2415 set_error_page: 2416 #endif 2417 SetPageError(page); 2418 zero_user_segment(page, 0, PAGE_SIZE); 2419 unlock_page(page); 2420 } 2421 #ifdef CONFIG_F2FS_FS_COMPRESSION 2422 next_page: 2423 #endif 2424 if (rac) 2425 put_page(page); 2426 2427 #ifdef CONFIG_F2FS_FS_COMPRESSION 2428 if (f2fs_compressed_file(inode)) { 2429 /* last page */ 2430 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2431 ret = f2fs_read_multi_pages(&cc, &bio, 2432 max_nr_pages, 2433 &last_block_in_bio, 2434 rac != NULL, false); 2435 f2fs_destroy_compress_ctx(&cc); 2436 } 2437 } 2438 #endif 2439 } 2440 if (bio) 2441 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2442 2443 if (rac && readahead_count(rac) && !drop_ra) 2444 WRITE_ONCE(F2FS_I(inode)->ra_offset, -1); 2445 return ret; 2446 } 2447 2448 static int f2fs_read_data_page(struct file *file, struct page *page) 2449 { 2450 struct inode *inode = page_file_mapping(page)->host; 2451 int ret = -EAGAIN; 2452 2453 trace_f2fs_readpage(page, DATA); 2454 2455 if (!f2fs_is_compress_backend_ready(inode)) { 2456 unlock_page(page); 2457 return -EOPNOTSUPP; 2458 } 2459 2460 /* If the file has inline data, try to read it directly */ 2461 if (f2fs_has_inline_data(inode)) 2462 ret = f2fs_read_inline_data(inode, page); 2463 if (ret == -EAGAIN) 2464 ret = f2fs_mpage_readpages(inode, NULL, page); 2465 return ret; 2466 } 2467 2468 static void f2fs_readahead(struct readahead_control *rac) 2469 { 2470 struct inode *inode = rac->mapping->host; 2471 2472 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2473 2474 if (!f2fs_is_compress_backend_ready(inode)) 2475 return; 2476 2477 /* If the file has inline data, skip readpages */ 2478 if (f2fs_has_inline_data(inode)) 2479 return; 2480 2481 f2fs_mpage_readpages(inode, rac, NULL); 2482 } 2483 2484 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2485 { 2486 struct inode *inode = fio->page->mapping->host; 2487 struct page *mpage, *page; 2488 gfp_t gfp_flags = GFP_NOFS; 2489 2490 if (!f2fs_encrypted_file(inode)) 2491 return 0; 2492 2493 page = fio->compressed_page ? fio->compressed_page : fio->page; 2494 2495 /* wait for GCed page writeback via META_MAPPING */ 2496 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2497 2498 if (fscrypt_inode_uses_inline_crypto(inode)) 2499 return 0; 2500 2501 retry_encrypt: 2502 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2503 PAGE_SIZE, 0, gfp_flags); 2504 if (IS_ERR(fio->encrypted_page)) { 2505 /* flush pending IOs and wait for a while in the ENOMEM case */ 2506 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2507 f2fs_flush_merged_writes(fio->sbi); 2508 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2509 gfp_flags |= __GFP_NOFAIL; 2510 goto retry_encrypt; 2511 } 2512 return PTR_ERR(fio->encrypted_page); 2513 } 2514 2515 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2516 if (mpage) { 2517 if (PageUptodate(mpage)) 2518 memcpy(page_address(mpage), 2519 page_address(fio->encrypted_page), PAGE_SIZE); 2520 f2fs_put_page(mpage, 1); 2521 } 2522 return 0; 2523 } 2524 2525 static inline bool check_inplace_update_policy(struct inode *inode, 2526 struct f2fs_io_info *fio) 2527 { 2528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2529 unsigned int policy = SM_I(sbi)->ipu_policy; 2530 2531 if (policy & (0x1 << F2FS_IPU_FORCE)) 2532 return true; 2533 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2534 return true; 2535 if (policy & (0x1 << F2FS_IPU_UTIL) && 2536 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2537 return true; 2538 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2539 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2540 return true; 2541 2542 /* 2543 * IPU for rewrite async pages 2544 */ 2545 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2546 fio && fio->op == REQ_OP_WRITE && 2547 !(fio->op_flags & REQ_SYNC) && 2548 !IS_ENCRYPTED(inode)) 2549 return true; 2550 2551 /* this is only set during fdatasync */ 2552 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2553 is_inode_flag_set(inode, FI_NEED_IPU)) 2554 return true; 2555 2556 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2557 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2558 return true; 2559 2560 return false; 2561 } 2562 2563 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2564 { 2565 if (f2fs_is_pinned_file(inode)) 2566 return true; 2567 2568 /* if this is cold file, we should overwrite to avoid fragmentation */ 2569 if (file_is_cold(inode)) 2570 return true; 2571 2572 return check_inplace_update_policy(inode, fio); 2573 } 2574 2575 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2576 { 2577 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2578 2579 if (f2fs_lfs_mode(sbi)) 2580 return true; 2581 if (S_ISDIR(inode->i_mode)) 2582 return true; 2583 if (IS_NOQUOTA(inode)) 2584 return true; 2585 if (f2fs_is_atomic_file(inode)) 2586 return true; 2587 if (fio) { 2588 if (is_cold_data(fio->page)) 2589 return true; 2590 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 2591 return true; 2592 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2593 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2594 return true; 2595 } 2596 return false; 2597 } 2598 2599 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2600 { 2601 struct inode *inode = fio->page->mapping->host; 2602 2603 if (f2fs_should_update_outplace(inode, fio)) 2604 return false; 2605 2606 return f2fs_should_update_inplace(inode, fio); 2607 } 2608 2609 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2610 { 2611 struct page *page = fio->page; 2612 struct inode *inode = page->mapping->host; 2613 struct dnode_of_data dn; 2614 struct extent_info ei = {0,0,0}; 2615 struct node_info ni; 2616 bool ipu_force = false; 2617 int err = 0; 2618 2619 set_new_dnode(&dn, inode, NULL, NULL, 0); 2620 if (need_inplace_update(fio) && 2621 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2622 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2623 2624 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2625 DATA_GENERIC_ENHANCE)) 2626 return -EFSCORRUPTED; 2627 2628 ipu_force = true; 2629 fio->need_lock = LOCK_DONE; 2630 goto got_it; 2631 } 2632 2633 /* Deadlock due to between page->lock and f2fs_lock_op */ 2634 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2635 return -EAGAIN; 2636 2637 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2638 if (err) 2639 goto out; 2640 2641 fio->old_blkaddr = dn.data_blkaddr; 2642 2643 /* This page is already truncated */ 2644 if (fio->old_blkaddr == NULL_ADDR) { 2645 ClearPageUptodate(page); 2646 clear_cold_data(page); 2647 goto out_writepage; 2648 } 2649 got_it: 2650 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2651 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2652 DATA_GENERIC_ENHANCE)) { 2653 err = -EFSCORRUPTED; 2654 goto out_writepage; 2655 } 2656 /* 2657 * If current allocation needs SSR, 2658 * it had better in-place writes for updated data. 2659 */ 2660 if (ipu_force || 2661 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2662 need_inplace_update(fio))) { 2663 err = f2fs_encrypt_one_page(fio); 2664 if (err) 2665 goto out_writepage; 2666 2667 set_page_writeback(page); 2668 ClearPageError(page); 2669 f2fs_put_dnode(&dn); 2670 if (fio->need_lock == LOCK_REQ) 2671 f2fs_unlock_op(fio->sbi); 2672 err = f2fs_inplace_write_data(fio); 2673 if (err) { 2674 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2675 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2676 if (PageWriteback(page)) 2677 end_page_writeback(page); 2678 } else { 2679 set_inode_flag(inode, FI_UPDATE_WRITE); 2680 } 2681 trace_f2fs_do_write_data_page(fio->page, IPU); 2682 return err; 2683 } 2684 2685 if (fio->need_lock == LOCK_RETRY) { 2686 if (!f2fs_trylock_op(fio->sbi)) { 2687 err = -EAGAIN; 2688 goto out_writepage; 2689 } 2690 fio->need_lock = LOCK_REQ; 2691 } 2692 2693 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2694 if (err) 2695 goto out_writepage; 2696 2697 fio->version = ni.version; 2698 2699 err = f2fs_encrypt_one_page(fio); 2700 if (err) 2701 goto out_writepage; 2702 2703 set_page_writeback(page); 2704 ClearPageError(page); 2705 2706 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2707 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2708 2709 /* LFS mode write path */ 2710 f2fs_outplace_write_data(&dn, fio); 2711 trace_f2fs_do_write_data_page(page, OPU); 2712 set_inode_flag(inode, FI_APPEND_WRITE); 2713 if (page->index == 0) 2714 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2715 out_writepage: 2716 f2fs_put_dnode(&dn); 2717 out: 2718 if (fio->need_lock == LOCK_REQ) 2719 f2fs_unlock_op(fio->sbi); 2720 return err; 2721 } 2722 2723 int f2fs_write_single_data_page(struct page *page, int *submitted, 2724 struct bio **bio, 2725 sector_t *last_block, 2726 struct writeback_control *wbc, 2727 enum iostat_type io_type, 2728 int compr_blocks) 2729 { 2730 struct inode *inode = page->mapping->host; 2731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2732 loff_t i_size = i_size_read(inode); 2733 const pgoff_t end_index = ((unsigned long long)i_size) 2734 >> PAGE_SHIFT; 2735 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2736 unsigned offset = 0; 2737 bool need_balance_fs = false; 2738 int err = 0; 2739 struct f2fs_io_info fio = { 2740 .sbi = sbi, 2741 .ino = inode->i_ino, 2742 .type = DATA, 2743 .op = REQ_OP_WRITE, 2744 .op_flags = wbc_to_write_flags(wbc), 2745 .old_blkaddr = NULL_ADDR, 2746 .page = page, 2747 .encrypted_page = NULL, 2748 .submitted = false, 2749 .compr_blocks = compr_blocks, 2750 .need_lock = LOCK_RETRY, 2751 .io_type = io_type, 2752 .io_wbc = wbc, 2753 .bio = bio, 2754 .last_block = last_block, 2755 }; 2756 2757 trace_f2fs_writepage(page, DATA); 2758 2759 /* we should bypass data pages to proceed the kworkder jobs */ 2760 if (unlikely(f2fs_cp_error(sbi))) { 2761 mapping_set_error(page->mapping, -EIO); 2762 /* 2763 * don't drop any dirty dentry pages for keeping lastest 2764 * directory structure. 2765 */ 2766 if (S_ISDIR(inode->i_mode)) 2767 goto redirty_out; 2768 goto out; 2769 } 2770 2771 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2772 goto redirty_out; 2773 2774 if (page->index < end_index || 2775 f2fs_verity_in_progress(inode) || 2776 compr_blocks) 2777 goto write; 2778 2779 /* 2780 * If the offset is out-of-range of file size, 2781 * this page does not have to be written to disk. 2782 */ 2783 offset = i_size & (PAGE_SIZE - 1); 2784 if ((page->index >= end_index + 1) || !offset) 2785 goto out; 2786 2787 zero_user_segment(page, offset, PAGE_SIZE); 2788 write: 2789 if (f2fs_is_drop_cache(inode)) 2790 goto out; 2791 /* we should not write 0'th page having journal header */ 2792 if (f2fs_is_volatile_file(inode) && (!page->index || 2793 (!wbc->for_reclaim && 2794 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2795 goto redirty_out; 2796 2797 /* Dentry/quota blocks are controlled by checkpoint */ 2798 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2799 /* 2800 * We need to wait for node_write to avoid block allocation during 2801 * checkpoint. This can only happen to quota writes which can cause 2802 * the below discard race condition. 2803 */ 2804 if (IS_NOQUOTA(inode)) 2805 down_read(&sbi->node_write); 2806 2807 fio.need_lock = LOCK_DONE; 2808 err = f2fs_do_write_data_page(&fio); 2809 2810 if (IS_NOQUOTA(inode)) 2811 up_read(&sbi->node_write); 2812 2813 goto done; 2814 } 2815 2816 if (!wbc->for_reclaim) 2817 need_balance_fs = true; 2818 else if (has_not_enough_free_secs(sbi, 0, 0)) 2819 goto redirty_out; 2820 else 2821 set_inode_flag(inode, FI_HOT_DATA); 2822 2823 err = -EAGAIN; 2824 if (f2fs_has_inline_data(inode)) { 2825 err = f2fs_write_inline_data(inode, page); 2826 if (!err) 2827 goto out; 2828 } 2829 2830 if (err == -EAGAIN) { 2831 err = f2fs_do_write_data_page(&fio); 2832 if (err == -EAGAIN) { 2833 fio.need_lock = LOCK_REQ; 2834 err = f2fs_do_write_data_page(&fio); 2835 } 2836 } 2837 2838 if (err) { 2839 file_set_keep_isize(inode); 2840 } else { 2841 spin_lock(&F2FS_I(inode)->i_size_lock); 2842 if (F2FS_I(inode)->last_disk_size < psize) 2843 F2FS_I(inode)->last_disk_size = psize; 2844 spin_unlock(&F2FS_I(inode)->i_size_lock); 2845 } 2846 2847 done: 2848 if (err && err != -ENOENT) 2849 goto redirty_out; 2850 2851 out: 2852 inode_dec_dirty_pages(inode); 2853 if (err) { 2854 ClearPageUptodate(page); 2855 clear_cold_data(page); 2856 } 2857 2858 if (wbc->for_reclaim) { 2859 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2860 clear_inode_flag(inode, FI_HOT_DATA); 2861 f2fs_remove_dirty_inode(inode); 2862 submitted = NULL; 2863 } 2864 unlock_page(page); 2865 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2866 !F2FS_I(inode)->cp_task) 2867 f2fs_balance_fs(sbi, need_balance_fs); 2868 2869 if (unlikely(f2fs_cp_error(sbi))) { 2870 f2fs_submit_merged_write(sbi, DATA); 2871 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2872 submitted = NULL; 2873 } 2874 2875 if (submitted) 2876 *submitted = fio.submitted ? 1 : 0; 2877 2878 return 0; 2879 2880 redirty_out: 2881 redirty_page_for_writepage(wbc, page); 2882 /* 2883 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2884 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2885 * file_write_and_wait_range() will see EIO error, which is critical 2886 * to return value of fsync() followed by atomic_write failure to user. 2887 */ 2888 if (!err || wbc->for_reclaim) 2889 return AOP_WRITEPAGE_ACTIVATE; 2890 unlock_page(page); 2891 return err; 2892 } 2893 2894 static int f2fs_write_data_page(struct page *page, 2895 struct writeback_control *wbc) 2896 { 2897 #ifdef CONFIG_F2FS_FS_COMPRESSION 2898 struct inode *inode = page->mapping->host; 2899 2900 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2901 goto out; 2902 2903 if (f2fs_compressed_file(inode)) { 2904 if (f2fs_is_compressed_cluster(inode, page->index)) { 2905 redirty_page_for_writepage(wbc, page); 2906 return AOP_WRITEPAGE_ACTIVATE; 2907 } 2908 } 2909 out: 2910 #endif 2911 2912 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2913 wbc, FS_DATA_IO, 0); 2914 } 2915 2916 /* 2917 * This function was copied from write_cche_pages from mm/page-writeback.c. 2918 * The major change is making write step of cold data page separately from 2919 * warm/hot data page. 2920 */ 2921 static int f2fs_write_cache_pages(struct address_space *mapping, 2922 struct writeback_control *wbc, 2923 enum iostat_type io_type) 2924 { 2925 int ret = 0; 2926 int done = 0, retry = 0; 2927 struct pagevec pvec; 2928 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2929 struct bio *bio = NULL; 2930 sector_t last_block; 2931 #ifdef CONFIG_F2FS_FS_COMPRESSION 2932 struct inode *inode = mapping->host; 2933 struct compress_ctx cc = { 2934 .inode = inode, 2935 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2936 .cluster_size = F2FS_I(inode)->i_cluster_size, 2937 .cluster_idx = NULL_CLUSTER, 2938 .rpages = NULL, 2939 .nr_rpages = 0, 2940 .cpages = NULL, 2941 .rbuf = NULL, 2942 .cbuf = NULL, 2943 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2944 .private = NULL, 2945 }; 2946 #endif 2947 int nr_pages; 2948 pgoff_t index; 2949 pgoff_t end; /* Inclusive */ 2950 pgoff_t done_index; 2951 int range_whole = 0; 2952 xa_mark_t tag; 2953 int nwritten = 0; 2954 int submitted = 0; 2955 int i; 2956 2957 pagevec_init(&pvec); 2958 2959 if (get_dirty_pages(mapping->host) <= 2960 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2961 set_inode_flag(mapping->host, FI_HOT_DATA); 2962 else 2963 clear_inode_flag(mapping->host, FI_HOT_DATA); 2964 2965 if (wbc->range_cyclic) { 2966 index = mapping->writeback_index; /* prev offset */ 2967 end = -1; 2968 } else { 2969 index = wbc->range_start >> PAGE_SHIFT; 2970 end = wbc->range_end >> PAGE_SHIFT; 2971 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2972 range_whole = 1; 2973 } 2974 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2975 tag = PAGECACHE_TAG_TOWRITE; 2976 else 2977 tag = PAGECACHE_TAG_DIRTY; 2978 retry: 2979 retry = 0; 2980 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2981 tag_pages_for_writeback(mapping, index, end); 2982 done_index = index; 2983 while (!done && !retry && (index <= end)) { 2984 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2985 tag); 2986 if (nr_pages == 0) 2987 break; 2988 2989 for (i = 0; i < nr_pages; i++) { 2990 struct page *page = pvec.pages[i]; 2991 bool need_readd; 2992 readd: 2993 need_readd = false; 2994 #ifdef CONFIG_F2FS_FS_COMPRESSION 2995 if (f2fs_compressed_file(inode)) { 2996 ret = f2fs_init_compress_ctx(&cc); 2997 if (ret) { 2998 done = 1; 2999 break; 3000 } 3001 3002 if (!f2fs_cluster_can_merge_page(&cc, 3003 page->index)) { 3004 ret = f2fs_write_multi_pages(&cc, 3005 &submitted, wbc, io_type); 3006 if (!ret) 3007 need_readd = true; 3008 goto result; 3009 } 3010 3011 if (unlikely(f2fs_cp_error(sbi))) 3012 goto lock_page; 3013 3014 if (f2fs_cluster_is_empty(&cc)) { 3015 void *fsdata = NULL; 3016 struct page *pagep; 3017 int ret2; 3018 3019 ret2 = f2fs_prepare_compress_overwrite( 3020 inode, &pagep, 3021 page->index, &fsdata); 3022 if (ret2 < 0) { 3023 ret = ret2; 3024 done = 1; 3025 break; 3026 } else if (ret2 && 3027 !f2fs_compress_write_end(inode, 3028 fsdata, page->index, 3029 1)) { 3030 retry = 1; 3031 break; 3032 } 3033 } else { 3034 goto lock_page; 3035 } 3036 } 3037 #endif 3038 /* give a priority to WB_SYNC threads */ 3039 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3040 wbc->sync_mode == WB_SYNC_NONE) { 3041 done = 1; 3042 break; 3043 } 3044 #ifdef CONFIG_F2FS_FS_COMPRESSION 3045 lock_page: 3046 #endif 3047 done_index = page->index; 3048 retry_write: 3049 lock_page(page); 3050 3051 if (unlikely(page->mapping != mapping)) { 3052 continue_unlock: 3053 unlock_page(page); 3054 continue; 3055 } 3056 3057 if (!PageDirty(page)) { 3058 /* someone wrote it for us */ 3059 goto continue_unlock; 3060 } 3061 3062 if (PageWriteback(page)) { 3063 if (wbc->sync_mode != WB_SYNC_NONE) 3064 f2fs_wait_on_page_writeback(page, 3065 DATA, true, true); 3066 else 3067 goto continue_unlock; 3068 } 3069 3070 if (!clear_page_dirty_for_io(page)) 3071 goto continue_unlock; 3072 3073 #ifdef CONFIG_F2FS_FS_COMPRESSION 3074 if (f2fs_compressed_file(inode)) { 3075 get_page(page); 3076 f2fs_compress_ctx_add_page(&cc, page); 3077 continue; 3078 } 3079 #endif 3080 ret = f2fs_write_single_data_page(page, &submitted, 3081 &bio, &last_block, wbc, io_type, 0); 3082 if (ret == AOP_WRITEPAGE_ACTIVATE) 3083 unlock_page(page); 3084 #ifdef CONFIG_F2FS_FS_COMPRESSION 3085 result: 3086 #endif 3087 nwritten += submitted; 3088 wbc->nr_to_write -= submitted; 3089 3090 if (unlikely(ret)) { 3091 /* 3092 * keep nr_to_write, since vfs uses this to 3093 * get # of written pages. 3094 */ 3095 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3096 ret = 0; 3097 goto next; 3098 } else if (ret == -EAGAIN) { 3099 ret = 0; 3100 if (wbc->sync_mode == WB_SYNC_ALL) { 3101 cond_resched(); 3102 congestion_wait(BLK_RW_ASYNC, 3103 DEFAULT_IO_TIMEOUT); 3104 goto retry_write; 3105 } 3106 goto next; 3107 } 3108 done_index = page->index + 1; 3109 done = 1; 3110 break; 3111 } 3112 3113 if (wbc->nr_to_write <= 0 && 3114 wbc->sync_mode == WB_SYNC_NONE) { 3115 done = 1; 3116 break; 3117 } 3118 next: 3119 if (need_readd) 3120 goto readd; 3121 } 3122 pagevec_release(&pvec); 3123 cond_resched(); 3124 } 3125 #ifdef CONFIG_F2FS_FS_COMPRESSION 3126 /* flush remained pages in compress cluster */ 3127 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3128 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3129 nwritten += submitted; 3130 wbc->nr_to_write -= submitted; 3131 if (ret) { 3132 done = 1; 3133 retry = 0; 3134 } 3135 } 3136 #endif 3137 if (retry) { 3138 index = 0; 3139 end = -1; 3140 goto retry; 3141 } 3142 if (wbc->range_cyclic && !done) 3143 done_index = 0; 3144 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3145 mapping->writeback_index = done_index; 3146 3147 if (nwritten) 3148 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3149 NULL, 0, DATA); 3150 /* submit cached bio of IPU write */ 3151 if (bio) 3152 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3153 3154 return ret; 3155 } 3156 3157 static inline bool __should_serialize_io(struct inode *inode, 3158 struct writeback_control *wbc) 3159 { 3160 /* to avoid deadlock in path of data flush */ 3161 if (F2FS_I(inode)->cp_task) 3162 return false; 3163 3164 if (!S_ISREG(inode->i_mode)) 3165 return false; 3166 if (IS_NOQUOTA(inode)) 3167 return false; 3168 3169 if (f2fs_compressed_file(inode)) 3170 return true; 3171 if (wbc->sync_mode != WB_SYNC_ALL) 3172 return true; 3173 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3174 return true; 3175 return false; 3176 } 3177 3178 static int __f2fs_write_data_pages(struct address_space *mapping, 3179 struct writeback_control *wbc, 3180 enum iostat_type io_type) 3181 { 3182 struct inode *inode = mapping->host; 3183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3184 struct blk_plug plug; 3185 int ret; 3186 bool locked = false; 3187 3188 /* deal with chardevs and other special file */ 3189 if (!mapping->a_ops->writepage) 3190 return 0; 3191 3192 /* skip writing if there is no dirty page in this inode */ 3193 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3194 return 0; 3195 3196 /* during POR, we don't need to trigger writepage at all. */ 3197 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3198 goto skip_write; 3199 3200 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3201 wbc->sync_mode == WB_SYNC_NONE && 3202 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3203 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3204 goto skip_write; 3205 3206 /* skip writing during file defragment */ 3207 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3208 goto skip_write; 3209 3210 trace_f2fs_writepages(mapping->host, wbc, DATA); 3211 3212 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3213 if (wbc->sync_mode == WB_SYNC_ALL) 3214 atomic_inc(&sbi->wb_sync_req[DATA]); 3215 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3216 goto skip_write; 3217 3218 if (__should_serialize_io(inode, wbc)) { 3219 mutex_lock(&sbi->writepages); 3220 locked = true; 3221 } 3222 3223 blk_start_plug(&plug); 3224 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3225 blk_finish_plug(&plug); 3226 3227 if (locked) 3228 mutex_unlock(&sbi->writepages); 3229 3230 if (wbc->sync_mode == WB_SYNC_ALL) 3231 atomic_dec(&sbi->wb_sync_req[DATA]); 3232 /* 3233 * if some pages were truncated, we cannot guarantee its mapping->host 3234 * to detect pending bios. 3235 */ 3236 3237 f2fs_remove_dirty_inode(inode); 3238 return ret; 3239 3240 skip_write: 3241 wbc->pages_skipped += get_dirty_pages(inode); 3242 trace_f2fs_writepages(mapping->host, wbc, DATA); 3243 return 0; 3244 } 3245 3246 static int f2fs_write_data_pages(struct address_space *mapping, 3247 struct writeback_control *wbc) 3248 { 3249 struct inode *inode = mapping->host; 3250 3251 return __f2fs_write_data_pages(mapping, wbc, 3252 F2FS_I(inode)->cp_task == current ? 3253 FS_CP_DATA_IO : FS_DATA_IO); 3254 } 3255 3256 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 3257 { 3258 struct inode *inode = mapping->host; 3259 loff_t i_size = i_size_read(inode); 3260 3261 if (IS_NOQUOTA(inode)) 3262 return; 3263 3264 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3265 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3266 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3267 down_write(&F2FS_I(inode)->i_mmap_sem); 3268 3269 truncate_pagecache(inode, i_size); 3270 f2fs_truncate_blocks(inode, i_size, true); 3271 3272 up_write(&F2FS_I(inode)->i_mmap_sem); 3273 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3274 } 3275 } 3276 3277 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3278 struct page *page, loff_t pos, unsigned len, 3279 block_t *blk_addr, bool *node_changed) 3280 { 3281 struct inode *inode = page->mapping->host; 3282 pgoff_t index = page->index; 3283 struct dnode_of_data dn; 3284 struct page *ipage; 3285 bool locked = false; 3286 struct extent_info ei = {0,0,0}; 3287 int err = 0; 3288 int flag; 3289 3290 /* 3291 * we already allocated all the blocks, so we don't need to get 3292 * the block addresses when there is no need to fill the page. 3293 */ 3294 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 3295 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 3296 !f2fs_verity_in_progress(inode)) 3297 return 0; 3298 3299 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3300 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3301 flag = F2FS_GET_BLOCK_DEFAULT; 3302 else 3303 flag = F2FS_GET_BLOCK_PRE_AIO; 3304 3305 if (f2fs_has_inline_data(inode) || 3306 (pos & PAGE_MASK) >= i_size_read(inode)) { 3307 f2fs_do_map_lock(sbi, flag, true); 3308 locked = true; 3309 } 3310 3311 restart: 3312 /* check inline_data */ 3313 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3314 if (IS_ERR(ipage)) { 3315 err = PTR_ERR(ipage); 3316 goto unlock_out; 3317 } 3318 3319 set_new_dnode(&dn, inode, ipage, ipage, 0); 3320 3321 if (f2fs_has_inline_data(inode)) { 3322 if (pos + len <= MAX_INLINE_DATA(inode)) { 3323 f2fs_do_read_inline_data(page, ipage); 3324 set_inode_flag(inode, FI_DATA_EXIST); 3325 if (inode->i_nlink) 3326 set_inline_node(ipage); 3327 } else { 3328 err = f2fs_convert_inline_page(&dn, page); 3329 if (err) 3330 goto out; 3331 if (dn.data_blkaddr == NULL_ADDR) 3332 err = f2fs_get_block(&dn, index); 3333 } 3334 } else if (locked) { 3335 err = f2fs_get_block(&dn, index); 3336 } else { 3337 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3338 dn.data_blkaddr = ei.blk + index - ei.fofs; 3339 } else { 3340 /* hole case */ 3341 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3342 if (err || dn.data_blkaddr == NULL_ADDR) { 3343 f2fs_put_dnode(&dn); 3344 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3345 true); 3346 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3347 locked = true; 3348 goto restart; 3349 } 3350 } 3351 } 3352 3353 /* convert_inline_page can make node_changed */ 3354 *blk_addr = dn.data_blkaddr; 3355 *node_changed = dn.node_changed; 3356 out: 3357 f2fs_put_dnode(&dn); 3358 unlock_out: 3359 if (locked) 3360 f2fs_do_map_lock(sbi, flag, false); 3361 return err; 3362 } 3363 3364 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3365 loff_t pos, unsigned len, unsigned flags, 3366 struct page **pagep, void **fsdata) 3367 { 3368 struct inode *inode = mapping->host; 3369 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3370 struct page *page = NULL; 3371 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3372 bool need_balance = false, drop_atomic = false; 3373 block_t blkaddr = NULL_ADDR; 3374 int err = 0; 3375 3376 trace_f2fs_write_begin(inode, pos, len, flags); 3377 3378 if (!f2fs_is_checkpoint_ready(sbi)) { 3379 err = -ENOSPC; 3380 goto fail; 3381 } 3382 3383 if ((f2fs_is_atomic_file(inode) && 3384 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3385 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3386 err = -ENOMEM; 3387 drop_atomic = true; 3388 goto fail; 3389 } 3390 3391 /* 3392 * We should check this at this moment to avoid deadlock on inode page 3393 * and #0 page. The locking rule for inline_data conversion should be: 3394 * lock_page(page #0) -> lock_page(inode_page) 3395 */ 3396 if (index != 0) { 3397 err = f2fs_convert_inline_inode(inode); 3398 if (err) 3399 goto fail; 3400 } 3401 3402 #ifdef CONFIG_F2FS_FS_COMPRESSION 3403 if (f2fs_compressed_file(inode)) { 3404 int ret; 3405 3406 *fsdata = NULL; 3407 3408 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3409 index, fsdata); 3410 if (ret < 0) { 3411 err = ret; 3412 goto fail; 3413 } else if (ret) { 3414 return 0; 3415 } 3416 } 3417 #endif 3418 3419 repeat: 3420 /* 3421 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3422 * wait_for_stable_page. Will wait that below with our IO control. 3423 */ 3424 page = f2fs_pagecache_get_page(mapping, index, 3425 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3426 if (!page) { 3427 err = -ENOMEM; 3428 goto fail; 3429 } 3430 3431 /* TODO: cluster can be compressed due to race with .writepage */ 3432 3433 *pagep = page; 3434 3435 err = prepare_write_begin(sbi, page, pos, len, 3436 &blkaddr, &need_balance); 3437 if (err) 3438 goto fail; 3439 3440 if (need_balance && !IS_NOQUOTA(inode) && 3441 has_not_enough_free_secs(sbi, 0, 0)) { 3442 unlock_page(page); 3443 f2fs_balance_fs(sbi, true); 3444 lock_page(page); 3445 if (page->mapping != mapping) { 3446 /* The page got truncated from under us */ 3447 f2fs_put_page(page, 1); 3448 goto repeat; 3449 } 3450 } 3451 3452 f2fs_wait_on_page_writeback(page, DATA, false, true); 3453 3454 if (len == PAGE_SIZE || PageUptodate(page)) 3455 return 0; 3456 3457 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3458 !f2fs_verity_in_progress(inode)) { 3459 zero_user_segment(page, len, PAGE_SIZE); 3460 return 0; 3461 } 3462 3463 if (blkaddr == NEW_ADDR) { 3464 zero_user_segment(page, 0, PAGE_SIZE); 3465 SetPageUptodate(page); 3466 } else { 3467 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3468 DATA_GENERIC_ENHANCE_READ)) { 3469 err = -EFSCORRUPTED; 3470 goto fail; 3471 } 3472 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3473 if (err) 3474 goto fail; 3475 3476 lock_page(page); 3477 if (unlikely(page->mapping != mapping)) { 3478 f2fs_put_page(page, 1); 3479 goto repeat; 3480 } 3481 if (unlikely(!PageUptodate(page))) { 3482 err = -EIO; 3483 goto fail; 3484 } 3485 } 3486 return 0; 3487 3488 fail: 3489 f2fs_put_page(page, 1); 3490 f2fs_write_failed(mapping, pos + len); 3491 if (drop_atomic) 3492 f2fs_drop_inmem_pages_all(sbi, false); 3493 return err; 3494 } 3495 3496 static int f2fs_write_end(struct file *file, 3497 struct address_space *mapping, 3498 loff_t pos, unsigned len, unsigned copied, 3499 struct page *page, void *fsdata) 3500 { 3501 struct inode *inode = page->mapping->host; 3502 3503 trace_f2fs_write_end(inode, pos, len, copied); 3504 3505 /* 3506 * This should be come from len == PAGE_SIZE, and we expect copied 3507 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3508 * let generic_perform_write() try to copy data again through copied=0. 3509 */ 3510 if (!PageUptodate(page)) { 3511 if (unlikely(copied != len)) 3512 copied = 0; 3513 else 3514 SetPageUptodate(page); 3515 } 3516 3517 #ifdef CONFIG_F2FS_FS_COMPRESSION 3518 /* overwrite compressed file */ 3519 if (f2fs_compressed_file(inode) && fsdata) { 3520 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3521 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3522 3523 if (pos + copied > i_size_read(inode) && 3524 !f2fs_verity_in_progress(inode)) 3525 f2fs_i_size_write(inode, pos + copied); 3526 return copied; 3527 } 3528 #endif 3529 3530 if (!copied) 3531 goto unlock_out; 3532 3533 set_page_dirty(page); 3534 3535 if (pos + copied > i_size_read(inode) && 3536 !f2fs_verity_in_progress(inode)) 3537 f2fs_i_size_write(inode, pos + copied); 3538 unlock_out: 3539 f2fs_put_page(page, 1); 3540 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3541 return copied; 3542 } 3543 3544 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 3545 loff_t offset) 3546 { 3547 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 3548 unsigned blkbits = i_blkbits; 3549 unsigned blocksize_mask = (1 << blkbits) - 1; 3550 unsigned long align = offset | iov_iter_alignment(iter); 3551 struct block_device *bdev = inode->i_sb->s_bdev; 3552 3553 if (align & blocksize_mask) { 3554 if (bdev) 3555 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 3556 blocksize_mask = (1 << blkbits) - 1; 3557 if (align & blocksize_mask) 3558 return -EINVAL; 3559 return 1; 3560 } 3561 return 0; 3562 } 3563 3564 static void f2fs_dio_end_io(struct bio *bio) 3565 { 3566 struct f2fs_private_dio *dio = bio->bi_private; 3567 3568 dec_page_count(F2FS_I_SB(dio->inode), 3569 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3570 3571 bio->bi_private = dio->orig_private; 3572 bio->bi_end_io = dio->orig_end_io; 3573 3574 kvfree(dio); 3575 3576 bio_endio(bio); 3577 } 3578 3579 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 3580 loff_t file_offset) 3581 { 3582 struct f2fs_private_dio *dio; 3583 bool write = (bio_op(bio) == REQ_OP_WRITE); 3584 3585 dio = f2fs_kzalloc(F2FS_I_SB(inode), 3586 sizeof(struct f2fs_private_dio), GFP_NOFS); 3587 if (!dio) 3588 goto out; 3589 3590 dio->inode = inode; 3591 dio->orig_end_io = bio->bi_end_io; 3592 dio->orig_private = bio->bi_private; 3593 dio->write = write; 3594 3595 bio->bi_end_io = f2fs_dio_end_io; 3596 bio->bi_private = dio; 3597 3598 inc_page_count(F2FS_I_SB(inode), 3599 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3600 3601 submit_bio(bio); 3602 return; 3603 out: 3604 bio->bi_status = BLK_STS_IOERR; 3605 bio_endio(bio); 3606 } 3607 3608 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3609 { 3610 struct address_space *mapping = iocb->ki_filp->f_mapping; 3611 struct inode *inode = mapping->host; 3612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3613 struct f2fs_inode_info *fi = F2FS_I(inode); 3614 size_t count = iov_iter_count(iter); 3615 loff_t offset = iocb->ki_pos; 3616 int rw = iov_iter_rw(iter); 3617 int err; 3618 enum rw_hint hint = iocb->ki_hint; 3619 int whint_mode = F2FS_OPTION(sbi).whint_mode; 3620 bool do_opu; 3621 3622 err = check_direct_IO(inode, iter, offset); 3623 if (err) 3624 return err < 0 ? err : 0; 3625 3626 if (f2fs_force_buffered_io(inode, iocb, iter)) 3627 return 0; 3628 3629 do_opu = allow_outplace_dio(inode, iocb, iter); 3630 3631 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 3632 3633 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 3634 iocb->ki_hint = WRITE_LIFE_NOT_SET; 3635 3636 if (iocb->ki_flags & IOCB_NOWAIT) { 3637 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 3638 iocb->ki_hint = hint; 3639 err = -EAGAIN; 3640 goto out; 3641 } 3642 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 3643 up_read(&fi->i_gc_rwsem[rw]); 3644 iocb->ki_hint = hint; 3645 err = -EAGAIN; 3646 goto out; 3647 } 3648 } else { 3649 down_read(&fi->i_gc_rwsem[rw]); 3650 if (do_opu) 3651 down_read(&fi->i_gc_rwsem[READ]); 3652 } 3653 3654 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3655 iter, rw == WRITE ? get_data_block_dio_write : 3656 get_data_block_dio, NULL, f2fs_dio_submit_bio, 3657 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : 3658 DIO_SKIP_HOLES); 3659 3660 if (do_opu) 3661 up_read(&fi->i_gc_rwsem[READ]); 3662 3663 up_read(&fi->i_gc_rwsem[rw]); 3664 3665 if (rw == WRITE) { 3666 if (whint_mode == WHINT_MODE_OFF) 3667 iocb->ki_hint = hint; 3668 if (err > 0) { 3669 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3670 err); 3671 if (!do_opu) 3672 set_inode_flag(inode, FI_UPDATE_WRITE); 3673 } else if (err < 0) { 3674 f2fs_write_failed(mapping, offset + count); 3675 } 3676 } else { 3677 if (err > 0) 3678 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); 3679 } 3680 3681 out: 3682 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 3683 3684 return err; 3685 } 3686 3687 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3688 unsigned int length) 3689 { 3690 struct inode *inode = page->mapping->host; 3691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3692 3693 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3694 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3695 return; 3696 3697 if (PageDirty(page)) { 3698 if (inode->i_ino == F2FS_META_INO(sbi)) { 3699 dec_page_count(sbi, F2FS_DIRTY_META); 3700 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3701 dec_page_count(sbi, F2FS_DIRTY_NODES); 3702 } else { 3703 inode_dec_dirty_pages(inode); 3704 f2fs_remove_dirty_inode(inode); 3705 } 3706 } 3707 3708 clear_cold_data(page); 3709 3710 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3711 return f2fs_drop_inmem_page(inode, page); 3712 3713 f2fs_clear_page_private(page); 3714 } 3715 3716 int f2fs_release_page(struct page *page, gfp_t wait) 3717 { 3718 /* If this is dirty page, keep PagePrivate */ 3719 if (PageDirty(page)) 3720 return 0; 3721 3722 /* This is atomic written page, keep Private */ 3723 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3724 return 0; 3725 3726 clear_cold_data(page); 3727 f2fs_clear_page_private(page); 3728 return 1; 3729 } 3730 3731 static int f2fs_set_data_page_dirty(struct page *page) 3732 { 3733 struct inode *inode = page_file_mapping(page)->host; 3734 3735 trace_f2fs_set_page_dirty(page, DATA); 3736 3737 if (!PageUptodate(page)) 3738 SetPageUptodate(page); 3739 if (PageSwapCache(page)) 3740 return __set_page_dirty_nobuffers(page); 3741 3742 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3743 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 3744 f2fs_register_inmem_page(inode, page); 3745 return 1; 3746 } 3747 /* 3748 * Previously, this page has been registered, we just 3749 * return here. 3750 */ 3751 return 0; 3752 } 3753 3754 if (!PageDirty(page)) { 3755 __set_page_dirty_nobuffers(page); 3756 f2fs_update_dirty_page(inode, page); 3757 return 1; 3758 } 3759 return 0; 3760 } 3761 3762 3763 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3764 { 3765 #ifdef CONFIG_F2FS_FS_COMPRESSION 3766 struct dnode_of_data dn; 3767 sector_t start_idx, blknr = 0; 3768 int ret; 3769 3770 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3771 3772 set_new_dnode(&dn, inode, NULL, NULL, 0); 3773 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3774 if (ret) 3775 return 0; 3776 3777 if (dn.data_blkaddr != COMPRESS_ADDR) { 3778 dn.ofs_in_node += block - start_idx; 3779 blknr = f2fs_data_blkaddr(&dn); 3780 if (!__is_valid_data_blkaddr(blknr)) 3781 blknr = 0; 3782 } 3783 3784 f2fs_put_dnode(&dn); 3785 return blknr; 3786 #else 3787 return 0; 3788 #endif 3789 } 3790 3791 3792 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3793 { 3794 struct inode *inode = mapping->host; 3795 struct buffer_head tmp = { 3796 .b_size = i_blocksize(inode), 3797 }; 3798 sector_t blknr = 0; 3799 3800 if (f2fs_has_inline_data(inode)) 3801 goto out; 3802 3803 /* make sure allocating whole blocks */ 3804 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3805 filemap_write_and_wait(mapping); 3806 3807 if (f2fs_compressed_file(inode)) 3808 blknr = f2fs_bmap_compress(inode, block); 3809 3810 if (!get_data_block_bmap(inode, block, &tmp, 0)) 3811 blknr = tmp.b_blocknr; 3812 out: 3813 trace_f2fs_bmap(inode, block, blknr); 3814 return blknr; 3815 } 3816 3817 #ifdef CONFIG_MIGRATION 3818 #include <linux/migrate.h> 3819 3820 int f2fs_migrate_page(struct address_space *mapping, 3821 struct page *newpage, struct page *page, enum migrate_mode mode) 3822 { 3823 int rc, extra_count; 3824 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3825 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 3826 3827 BUG_ON(PageWriteback(page)); 3828 3829 /* migrating an atomic written page is safe with the inmem_lock hold */ 3830 if (atomic_written) { 3831 if (mode != MIGRATE_SYNC) 3832 return -EBUSY; 3833 if (!mutex_trylock(&fi->inmem_lock)) 3834 return -EAGAIN; 3835 } 3836 3837 /* one extra reference was held for atomic_write page */ 3838 extra_count = atomic_written ? 1 : 0; 3839 rc = migrate_page_move_mapping(mapping, newpage, 3840 page, extra_count); 3841 if (rc != MIGRATEPAGE_SUCCESS) { 3842 if (atomic_written) 3843 mutex_unlock(&fi->inmem_lock); 3844 return rc; 3845 } 3846 3847 if (atomic_written) { 3848 struct inmem_pages *cur; 3849 list_for_each_entry(cur, &fi->inmem_pages, list) 3850 if (cur->page == page) { 3851 cur->page = newpage; 3852 break; 3853 } 3854 mutex_unlock(&fi->inmem_lock); 3855 put_page(page); 3856 get_page(newpage); 3857 } 3858 3859 if (PagePrivate(page)) { 3860 f2fs_set_page_private(newpage, page_private(page)); 3861 f2fs_clear_page_private(page); 3862 } 3863 3864 if (mode != MIGRATE_SYNC_NO_COPY) 3865 migrate_page_copy(newpage, page); 3866 else 3867 migrate_page_states(newpage, page); 3868 3869 return MIGRATEPAGE_SUCCESS; 3870 } 3871 #endif 3872 3873 #ifdef CONFIG_SWAP 3874 /* Copied from generic_swapfile_activate() to check any holes */ 3875 static int check_swap_activate(struct swap_info_struct *sis, 3876 struct file *swap_file, sector_t *span) 3877 { 3878 struct address_space *mapping = swap_file->f_mapping; 3879 struct inode *inode = mapping->host; 3880 unsigned blocks_per_page; 3881 unsigned long page_no; 3882 unsigned blkbits; 3883 sector_t probe_block; 3884 sector_t last_block; 3885 sector_t lowest_block = -1; 3886 sector_t highest_block = 0; 3887 int nr_extents = 0; 3888 int ret; 3889 3890 blkbits = inode->i_blkbits; 3891 blocks_per_page = PAGE_SIZE >> blkbits; 3892 3893 /* 3894 * Map all the blocks into the extent list. This code doesn't try 3895 * to be very smart. 3896 */ 3897 probe_block = 0; 3898 page_no = 0; 3899 last_block = i_size_read(inode) >> blkbits; 3900 while ((probe_block + blocks_per_page) <= last_block && 3901 page_no < sis->max) { 3902 unsigned block_in_page; 3903 sector_t first_block; 3904 sector_t block = 0; 3905 int err = 0; 3906 3907 cond_resched(); 3908 3909 block = probe_block; 3910 err = bmap(inode, &block); 3911 if (err || !block) 3912 goto bad_bmap; 3913 first_block = block; 3914 3915 /* 3916 * It must be PAGE_SIZE aligned on-disk 3917 */ 3918 if (first_block & (blocks_per_page - 1)) { 3919 probe_block++; 3920 goto reprobe; 3921 } 3922 3923 for (block_in_page = 1; block_in_page < blocks_per_page; 3924 block_in_page++) { 3925 3926 block = probe_block + block_in_page; 3927 err = bmap(inode, &block); 3928 3929 if (err || !block) 3930 goto bad_bmap; 3931 3932 if (block != first_block + block_in_page) { 3933 /* Discontiguity */ 3934 probe_block++; 3935 goto reprobe; 3936 } 3937 } 3938 3939 first_block >>= (PAGE_SHIFT - blkbits); 3940 if (page_no) { /* exclude the header page */ 3941 if (first_block < lowest_block) 3942 lowest_block = first_block; 3943 if (first_block > highest_block) 3944 highest_block = first_block; 3945 } 3946 3947 /* 3948 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3949 */ 3950 ret = add_swap_extent(sis, page_no, 1, first_block); 3951 if (ret < 0) 3952 goto out; 3953 nr_extents += ret; 3954 page_no++; 3955 probe_block += blocks_per_page; 3956 reprobe: 3957 continue; 3958 } 3959 ret = nr_extents; 3960 *span = 1 + highest_block - lowest_block; 3961 if (page_no == 0) 3962 page_no = 1; /* force Empty message */ 3963 sis->max = page_no; 3964 sis->pages = page_no - 1; 3965 sis->highest_bit = page_no - 1; 3966 out: 3967 return ret; 3968 bad_bmap: 3969 pr_err("swapon: swapfile has holes\n"); 3970 return -EINVAL; 3971 } 3972 3973 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3974 sector_t *span) 3975 { 3976 struct inode *inode = file_inode(file); 3977 int ret; 3978 3979 if (!S_ISREG(inode->i_mode)) 3980 return -EINVAL; 3981 3982 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3983 return -EROFS; 3984 3985 ret = f2fs_convert_inline_inode(inode); 3986 if (ret) 3987 return ret; 3988 3989 if (f2fs_disable_compressed_file(inode)) 3990 return -EINVAL; 3991 3992 ret = check_swap_activate(sis, file, span); 3993 if (ret < 0) 3994 return ret; 3995 3996 set_inode_flag(inode, FI_PIN_FILE); 3997 f2fs_precache_extents(inode); 3998 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3999 return ret; 4000 } 4001 4002 static void f2fs_swap_deactivate(struct file *file) 4003 { 4004 struct inode *inode = file_inode(file); 4005 4006 clear_inode_flag(inode, FI_PIN_FILE); 4007 } 4008 #else 4009 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4010 sector_t *span) 4011 { 4012 return -EOPNOTSUPP; 4013 } 4014 4015 static void f2fs_swap_deactivate(struct file *file) 4016 { 4017 } 4018 #endif 4019 4020 const struct address_space_operations f2fs_dblock_aops = { 4021 .readpage = f2fs_read_data_page, 4022 .readahead = f2fs_readahead, 4023 .writepage = f2fs_write_data_page, 4024 .writepages = f2fs_write_data_pages, 4025 .write_begin = f2fs_write_begin, 4026 .write_end = f2fs_write_end, 4027 .set_page_dirty = f2fs_set_data_page_dirty, 4028 .invalidatepage = f2fs_invalidate_page, 4029 .releasepage = f2fs_release_page, 4030 .direct_IO = f2fs_direct_IO, 4031 .bmap = f2fs_bmap, 4032 .swap_activate = f2fs_swap_activate, 4033 .swap_deactivate = f2fs_swap_deactivate, 4034 #ifdef CONFIG_MIGRATION 4035 .migratepage = f2fs_migrate_page, 4036 #endif 4037 }; 4038 4039 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4040 { 4041 struct address_space *mapping = page_mapping(page); 4042 unsigned long flags; 4043 4044 xa_lock_irqsave(&mapping->i_pages, flags); 4045 __xa_clear_mark(&mapping->i_pages, page_index(page), 4046 PAGECACHE_TAG_DIRTY); 4047 xa_unlock_irqrestore(&mapping->i_pages, flags); 4048 } 4049 4050 int __init f2fs_init_post_read_processing(void) 4051 { 4052 bio_post_read_ctx_cache = 4053 kmem_cache_create("f2fs_bio_post_read_ctx", 4054 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4055 if (!bio_post_read_ctx_cache) 4056 goto fail; 4057 bio_post_read_ctx_pool = 4058 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4059 bio_post_read_ctx_cache); 4060 if (!bio_post_read_ctx_pool) 4061 goto fail_free_cache; 4062 return 0; 4063 4064 fail_free_cache: 4065 kmem_cache_destroy(bio_post_read_ctx_cache); 4066 fail: 4067 return -ENOMEM; 4068 } 4069 4070 void f2fs_destroy_post_read_processing(void) 4071 { 4072 mempool_destroy(bio_post_read_ctx_pool); 4073 kmem_cache_destroy(bio_post_read_ctx_cache); 4074 } 4075 4076 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4077 { 4078 if (!f2fs_sb_has_encrypt(sbi) && 4079 !f2fs_sb_has_verity(sbi) && 4080 !f2fs_sb_has_compression(sbi)) 4081 return 0; 4082 4083 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4084 WQ_UNBOUND | WQ_HIGHPRI, 4085 num_online_cpus()); 4086 if (!sbi->post_read_wq) 4087 return -ENOMEM; 4088 return 0; 4089 } 4090 4091 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4092 { 4093 if (sbi->post_read_wq) 4094 destroy_workqueue(sbi->post_read_wq); 4095 } 4096 4097 int __init f2fs_init_bio_entry_cache(void) 4098 { 4099 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4100 sizeof(struct bio_entry)); 4101 if (!bio_entry_slab) 4102 return -ENOMEM; 4103 return 0; 4104 } 4105 4106 void f2fs_destroy_bio_entry_cache(void) 4107 { 4108 kmem_cache_destroy(bio_entry_slab); 4109 } 4110