xref: /openbmc/linux/fs/f2fs/data.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54 						unsigned int nr_iovecs)
55 {
56 	return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 }
58 
59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 {
61 	if (noio) {
62 		/* No failure on bio allocation */
63 		return __f2fs_bio_alloc(GFP_NOIO, npages);
64 	}
65 
66 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67 		f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68 		return NULL;
69 	}
70 
71 	return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 }
73 
74 static bool __is_cp_guaranteed(struct page *page)
75 {
76 	struct address_space *mapping = page->mapping;
77 	struct inode *inode;
78 	struct f2fs_sb_info *sbi;
79 
80 	if (!mapping)
81 		return false;
82 
83 	if (f2fs_is_compressed_page(page))
84 		return false;
85 
86 	inode = mapping->host;
87 	sbi = F2FS_I_SB(inode);
88 
89 	if (inode->i_ino == F2FS_META_INO(sbi) ||
90 			inode->i_ino == F2FS_NODE_INO(sbi) ||
91 			S_ISDIR(inode->i_mode) ||
92 			(S_ISREG(inode->i_mode) &&
93 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94 			is_cold_data(page))
95 		return true;
96 	return false;
97 }
98 
99 static enum count_type __read_io_type(struct page *page)
100 {
101 	struct address_space *mapping = page_file_mapping(page);
102 
103 	if (mapping) {
104 		struct inode *inode = mapping->host;
105 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106 
107 		if (inode->i_ino == F2FS_META_INO(sbi))
108 			return F2FS_RD_META;
109 
110 		if (inode->i_ino == F2FS_NODE_INO(sbi))
111 			return F2FS_RD_NODE;
112 	}
113 	return F2FS_RD_DATA;
114 }
115 
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
118 	STEP_DECRYPT,
119 	STEP_DECOMPRESS_NOWQ,		/* handle normal cluster data inplace */
120 	STEP_DECOMPRESS,		/* handle compressed cluster data in workqueue */
121 	STEP_VERITY,
122 };
123 
124 struct bio_post_read_ctx {
125 	struct bio *bio;
126 	struct f2fs_sb_info *sbi;
127 	struct work_struct work;
128 	unsigned int enabled_steps;
129 };
130 
131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 {
133 	struct page *page;
134 	struct bio_vec *bv;
135 	struct bvec_iter_all iter_all;
136 
137 	bio_for_each_segment_all(bv, bio, iter_all) {
138 		page = bv->bv_page;
139 
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141 		if (compr && f2fs_is_compressed_page(page)) {
142 			f2fs_decompress_pages(bio, page, verity);
143 			continue;
144 		}
145 		if (verity)
146 			continue;
147 #endif
148 
149 		/* PG_error was set if any post_read step failed */
150 		if (bio->bi_status || PageError(page)) {
151 			ClearPageUptodate(page);
152 			/* will re-read again later */
153 			ClearPageError(page);
154 		} else {
155 			SetPageUptodate(page);
156 		}
157 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158 		unlock_page(page);
159 	}
160 }
161 
162 static void f2fs_release_read_bio(struct bio *bio);
163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 {
165 	if (!compr)
166 		__read_end_io(bio, false, verity);
167 	f2fs_release_read_bio(bio);
168 }
169 
170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 {
172 	__read_end_io(bio, true, verity);
173 }
174 
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176 
177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 {
179 	fscrypt_decrypt_bio(ctx->bio);
180 }
181 
182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 {
184 	f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185 }
186 
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 {
190 	f2fs_decompress_end_io(rpages, cluster_size, false, true);
191 }
192 
193 static void f2fs_verify_bio(struct bio *bio)
194 {
195 	struct bio_vec *bv;
196 	struct bvec_iter_all iter_all;
197 
198 	bio_for_each_segment_all(bv, bio, iter_all) {
199 		struct page *page = bv->bv_page;
200 		struct decompress_io_ctx *dic;
201 
202 		dic = (struct decompress_io_ctx *)page_private(page);
203 
204 		if (dic) {
205 			if (atomic_dec_return(&dic->verity_pages))
206 				continue;
207 			f2fs_verify_pages(dic->rpages,
208 						dic->cluster_size);
209 			f2fs_free_dic(dic);
210 			continue;
211 		}
212 
213 		if (bio->bi_status || PageError(page))
214 			goto clear_uptodate;
215 
216 		if (fsverity_verify_page(page)) {
217 			SetPageUptodate(page);
218 			goto unlock;
219 		}
220 clear_uptodate:
221 		ClearPageUptodate(page);
222 		ClearPageError(page);
223 unlock:
224 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225 		unlock_page(page);
226 	}
227 }
228 #endif
229 
230 static void f2fs_verity_work(struct work_struct *work)
231 {
232 	struct bio_post_read_ctx *ctx =
233 		container_of(work, struct bio_post_read_ctx, work);
234 	struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236 	unsigned int enabled_steps = ctx->enabled_steps;
237 #endif
238 
239 	/*
240 	 * fsverity_verify_bio() may call readpages() again, and while verity
241 	 * will be disabled for this, decryption may still be needed, resulting
242 	 * in another bio_post_read_ctx being allocated.  So to prevent
243 	 * deadlocks we need to release the current ctx to the mempool first.
244 	 * This assumes that verity is the last post-read step.
245 	 */
246 	mempool_free(ctx, bio_post_read_ctx_pool);
247 	bio->bi_private = NULL;
248 
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250 	/* previous step is decompression */
251 	if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252 		f2fs_verify_bio(bio);
253 		f2fs_release_read_bio(bio);
254 		return;
255 	}
256 #endif
257 
258 	fsverity_verify_bio(bio);
259 	__f2fs_read_end_io(bio, false, false);
260 }
261 
262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264 	struct bio_post_read_ctx *ctx =
265 		container_of(work, struct bio_post_read_ctx, work);
266 
267 	if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268 		f2fs_decrypt_work(ctx);
269 
270 	if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271 		f2fs_decompress_work(ctx);
272 
273 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274 		INIT_WORK(&ctx->work, f2fs_verity_work);
275 		fsverity_enqueue_verify_work(&ctx->work);
276 		return;
277 	}
278 
279 	__f2fs_read_end_io(ctx->bio,
280 		ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281 }
282 
283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284 						struct work_struct *work)
285 {
286 	queue_work(sbi->post_read_wq, work);
287 }
288 
289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290 {
291 	/*
292 	 * We use different work queues for decryption and for verity because
293 	 * verity may require reading metadata pages that need decryption, and
294 	 * we shouldn't recurse to the same workqueue.
295 	 */
296 
297 	if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298 		ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299 		INIT_WORK(&ctx->work, f2fs_post_read_work);
300 		f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301 		return;
302 	}
303 
304 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305 		INIT_WORK(&ctx->work, f2fs_verity_work);
306 		fsverity_enqueue_verify_work(&ctx->work);
307 		return;
308 	}
309 
310 	__f2fs_read_end_io(ctx->bio, false, false);
311 }
312 
313 static bool f2fs_bio_post_read_required(struct bio *bio)
314 {
315 	return bio->bi_private;
316 }
317 
318 static void f2fs_read_end_io(struct bio *bio)
319 {
320 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321 
322 	if (time_to_inject(sbi, FAULT_READ_IO)) {
323 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
324 		bio->bi_status = BLK_STS_IOERR;
325 	}
326 
327 	if (f2fs_bio_post_read_required(bio)) {
328 		struct bio_post_read_ctx *ctx = bio->bi_private;
329 
330 		bio_post_read_processing(ctx);
331 		return;
332 	}
333 
334 	__f2fs_read_end_io(bio, false, false);
335 }
336 
337 static void f2fs_write_end_io(struct bio *bio)
338 {
339 	struct f2fs_sb_info *sbi = bio->bi_private;
340 	struct bio_vec *bvec;
341 	struct bvec_iter_all iter_all;
342 
343 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345 		bio->bi_status = BLK_STS_IOERR;
346 	}
347 
348 	bio_for_each_segment_all(bvec, bio, iter_all) {
349 		struct page *page = bvec->bv_page;
350 		enum count_type type = WB_DATA_TYPE(page);
351 
352 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
353 			set_page_private(page, (unsigned long)NULL);
354 			ClearPagePrivate(page);
355 			unlock_page(page);
356 			mempool_free(page, sbi->write_io_dummy);
357 
358 			if (unlikely(bio->bi_status))
359 				f2fs_stop_checkpoint(sbi, true);
360 			continue;
361 		}
362 
363 		fscrypt_finalize_bounce_page(&page);
364 
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366 		if (f2fs_is_compressed_page(page)) {
367 			f2fs_compress_write_end_io(bio, page);
368 			continue;
369 		}
370 #endif
371 
372 		if (unlikely(bio->bi_status)) {
373 			mapping_set_error(page->mapping, -EIO);
374 			if (type == F2FS_WB_CP_DATA)
375 				f2fs_stop_checkpoint(sbi, true);
376 		}
377 
378 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379 					page->index != nid_of_node(page));
380 
381 		dec_page_count(sbi, type);
382 		if (f2fs_in_warm_node_list(sbi, page))
383 			f2fs_del_fsync_node_entry(sbi, page);
384 		clear_cold_data(page);
385 		end_page_writeback(page);
386 	}
387 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388 				wq_has_sleeper(&sbi->cp_wait))
389 		wake_up(&sbi->cp_wait);
390 
391 	bio_put(bio);
392 }
393 
394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395 				block_t blk_addr, struct bio *bio)
396 {
397 	struct block_device *bdev = sbi->sb->s_bdev;
398 	int i;
399 
400 	if (f2fs_is_multi_device(sbi)) {
401 		for (i = 0; i < sbi->s_ndevs; i++) {
402 			if (FDEV(i).start_blk <= blk_addr &&
403 			    FDEV(i).end_blk >= blk_addr) {
404 				blk_addr -= FDEV(i).start_blk;
405 				bdev = FDEV(i).bdev;
406 				break;
407 			}
408 		}
409 	}
410 	if (bio) {
411 		bio_set_dev(bio, bdev);
412 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413 	}
414 	return bdev;
415 }
416 
417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 {
419 	int i;
420 
421 	if (!f2fs_is_multi_device(sbi))
422 		return 0;
423 
424 	for (i = 0; i < sbi->s_ndevs; i++)
425 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426 			return i;
427 	return 0;
428 }
429 
430 /*
431  * Return true, if pre_bio's bdev is same as its target device.
432  */
433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434 				block_t blk_addr, struct bio *bio)
435 {
436 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438 }
439 
440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 {
442 	struct f2fs_sb_info *sbi = fio->sbi;
443 	struct bio *bio;
444 
445 	bio = f2fs_bio_alloc(sbi, npages, true);
446 
447 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
448 	if (is_read_io(fio->op)) {
449 		bio->bi_end_io = f2fs_read_end_io;
450 		bio->bi_private = NULL;
451 	} else {
452 		bio->bi_end_io = f2fs_write_end_io;
453 		bio->bi_private = sbi;
454 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455 						fio->type, fio->temp);
456 	}
457 	if (fio->io_wbc)
458 		wbc_init_bio(fio->io_wbc, bio);
459 
460 	return bio;
461 }
462 
463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464 				  pgoff_t first_idx,
465 				  const struct f2fs_io_info *fio,
466 				  gfp_t gfp_mask)
467 {
468 	/*
469 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
470 	 * read/write raw data without encryption.
471 	 */
472 	if (!fio || !fio->encrypted_page)
473 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474 }
475 
476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477 				     pgoff_t next_idx,
478 				     const struct f2fs_io_info *fio)
479 {
480 	/*
481 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
482 	 * read/write raw data without encryption.
483 	 */
484 	if (fio && fio->encrypted_page)
485 		return !bio_has_crypt_ctx(bio);
486 
487 	return fscrypt_mergeable_bio(bio, inode, next_idx);
488 }
489 
490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491 				struct bio *bio, enum page_type type)
492 {
493 	if (!is_read_io(bio_op(bio))) {
494 		unsigned int start;
495 
496 		if (type != DATA && type != NODE)
497 			goto submit_io;
498 
499 		if (f2fs_lfs_mode(sbi) && current->plug)
500 			blk_finish_plug(current->plug);
501 
502 		if (F2FS_IO_ALIGNED(sbi))
503 			goto submit_io;
504 
505 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506 		start %= F2FS_IO_SIZE(sbi);
507 
508 		if (start == 0)
509 			goto submit_io;
510 
511 		/* fill dummy pages */
512 		for (; start < F2FS_IO_SIZE(sbi); start++) {
513 			struct page *page =
514 				mempool_alloc(sbi->write_io_dummy,
515 					      GFP_NOIO | __GFP_NOFAIL);
516 			f2fs_bug_on(sbi, !page);
517 
518 			zero_user_segment(page, 0, PAGE_SIZE);
519 			SetPagePrivate(page);
520 			set_page_private(page, DUMMY_WRITTEN_PAGE);
521 			lock_page(page);
522 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523 				f2fs_bug_on(sbi, 1);
524 		}
525 		/*
526 		 * In the NODE case, we lose next block address chain. So, we
527 		 * need to do checkpoint in f2fs_sync_file.
528 		 */
529 		if (type == NODE)
530 			set_sbi_flag(sbi, SBI_NEED_CP);
531 	}
532 submit_io:
533 	if (is_read_io(bio_op(bio)))
534 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535 	else
536 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537 	submit_bio(bio);
538 }
539 
540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541 				struct bio *bio, enum page_type type)
542 {
543 	__submit_bio(sbi, bio, type);
544 }
545 
546 static void __attach_io_flag(struct f2fs_io_info *fio)
547 {
548 	struct f2fs_sb_info *sbi = fio->sbi;
549 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550 	unsigned int io_flag, fua_flag, meta_flag;
551 
552 	if (fio->type == DATA)
553 		io_flag = sbi->data_io_flag;
554 	else if (fio->type == NODE)
555 		io_flag = sbi->node_io_flag;
556 	else
557 		return;
558 
559 	fua_flag = io_flag & temp_mask;
560 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561 
562 	/*
563 	 * data/node io flag bits per temp:
564 	 *      REQ_META     |      REQ_FUA      |
565 	 *    5 |    4 |   3 |    2 |    1 |   0 |
566 	 * Cold | Warm | Hot | Cold | Warm | Hot |
567 	 */
568 	if ((1 << fio->temp) & meta_flag)
569 		fio->op_flags |= REQ_META;
570 	if ((1 << fio->temp) & fua_flag)
571 		fio->op_flags |= REQ_FUA;
572 }
573 
574 static void __submit_merged_bio(struct f2fs_bio_info *io)
575 {
576 	struct f2fs_io_info *fio = &io->fio;
577 
578 	if (!io->bio)
579 		return;
580 
581 	__attach_io_flag(fio);
582 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583 
584 	if (is_read_io(fio->op))
585 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 	else
587 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588 
589 	__submit_bio(io->sbi, io->bio, fio->type);
590 	io->bio = NULL;
591 }
592 
593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594 						struct page *page, nid_t ino)
595 {
596 	struct bio_vec *bvec;
597 	struct bvec_iter_all iter_all;
598 
599 	if (!bio)
600 		return false;
601 
602 	if (!inode && !page && !ino)
603 		return true;
604 
605 	bio_for_each_segment_all(bvec, bio, iter_all) {
606 		struct page *target = bvec->bv_page;
607 
608 		if (fscrypt_is_bounce_page(target)) {
609 			target = fscrypt_pagecache_page(target);
610 			if (IS_ERR(target))
611 				continue;
612 		}
613 		if (f2fs_is_compressed_page(target)) {
614 			target = f2fs_compress_control_page(target);
615 			if (IS_ERR(target))
616 				continue;
617 		}
618 
619 		if (inode && inode == target->mapping->host)
620 			return true;
621 		if (page && page == target)
622 			return true;
623 		if (ino && ino == ino_of_node(target))
624 			return true;
625 	}
626 
627 	return false;
628 }
629 
630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631 				enum page_type type, enum temp_type temp)
632 {
633 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
634 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635 
636 	down_write(&io->io_rwsem);
637 
638 	/* change META to META_FLUSH in the checkpoint procedure */
639 	if (type >= META_FLUSH) {
640 		io->fio.type = META_FLUSH;
641 		io->fio.op = REQ_OP_WRITE;
642 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643 		if (!test_opt(sbi, NOBARRIER))
644 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645 	}
646 	__submit_merged_bio(io);
647 	up_write(&io->io_rwsem);
648 }
649 
650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651 				struct inode *inode, struct page *page,
652 				nid_t ino, enum page_type type, bool force)
653 {
654 	enum temp_type temp;
655 	bool ret = true;
656 
657 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658 		if (!force)	{
659 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
660 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661 
662 			down_read(&io->io_rwsem);
663 			ret = __has_merged_page(io->bio, inode, page, ino);
664 			up_read(&io->io_rwsem);
665 		}
666 		if (ret)
667 			__f2fs_submit_merged_write(sbi, type, temp);
668 
669 		/* TODO: use HOT temp only for meta pages now. */
670 		if (type >= META)
671 			break;
672 	}
673 }
674 
675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679 
680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681 				struct inode *inode, struct page *page,
682 				nid_t ino, enum page_type type)
683 {
684 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686 
687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689 	f2fs_submit_merged_write(sbi, DATA);
690 	f2fs_submit_merged_write(sbi, NODE);
691 	f2fs_submit_merged_write(sbi, META);
692 }
693 
694 /*
695  * Fill the locked page with data located in the block address.
696  * A caller needs to unlock the page on failure.
697  */
698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700 	struct bio *bio;
701 	struct page *page = fio->encrypted_page ?
702 			fio->encrypted_page : fio->page;
703 
704 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
706 			META_GENERIC : DATA_GENERIC_ENHANCE)))
707 		return -EFSCORRUPTED;
708 
709 	trace_f2fs_submit_page_bio(page, fio);
710 	f2fs_trace_ios(fio, 0);
711 
712 	/* Allocate a new bio */
713 	bio = __bio_alloc(fio, 1);
714 
715 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716 			       fio->page->index, fio, GFP_NOIO);
717 
718 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719 		bio_put(bio);
720 		return -EFAULT;
721 	}
722 
723 	if (fio->io_wbc && !is_read_io(fio->op))
724 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
725 
726 	__attach_io_flag(fio);
727 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
728 
729 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
730 			__read_io_type(page): WB_DATA_TYPE(fio->page));
731 
732 	__submit_bio(fio->sbi, bio, fio->type);
733 	return 0;
734 }
735 
736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737 				block_t last_blkaddr, block_t cur_blkaddr)
738 {
739 	if (unlikely(sbi->max_io_bytes &&
740 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
741 		return false;
742 	if (last_blkaddr + 1 != cur_blkaddr)
743 		return false;
744 	return __same_bdev(sbi, cur_blkaddr, bio);
745 }
746 
747 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
748 						struct f2fs_io_info *fio)
749 {
750 	if (io->fio.op != fio->op)
751 		return false;
752 	return io->fio.op_flags == fio->op_flags;
753 }
754 
755 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
756 					struct f2fs_bio_info *io,
757 					struct f2fs_io_info *fio,
758 					block_t last_blkaddr,
759 					block_t cur_blkaddr)
760 {
761 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
762 		unsigned int filled_blocks =
763 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
764 		unsigned int io_size = F2FS_IO_SIZE(sbi);
765 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
766 
767 		/* IOs in bio is aligned and left space of vectors is not enough */
768 		if (!(filled_blocks % io_size) && left_vecs < io_size)
769 			return false;
770 	}
771 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
772 		return false;
773 	return io_type_is_mergeable(io, fio);
774 }
775 
776 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
777 				struct page *page, enum temp_type temp)
778 {
779 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
780 	struct bio_entry *be;
781 
782 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
783 	be->bio = bio;
784 	bio_get(bio);
785 
786 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
787 		f2fs_bug_on(sbi, 1);
788 
789 	down_write(&io->bio_list_lock);
790 	list_add_tail(&be->list, &io->bio_list);
791 	up_write(&io->bio_list_lock);
792 }
793 
794 static void del_bio_entry(struct bio_entry *be)
795 {
796 	list_del(&be->list);
797 	kmem_cache_free(bio_entry_slab, be);
798 }
799 
800 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
801 							struct page *page)
802 {
803 	struct f2fs_sb_info *sbi = fio->sbi;
804 	enum temp_type temp;
805 	bool found = false;
806 	int ret = -EAGAIN;
807 
808 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
809 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
810 		struct list_head *head = &io->bio_list;
811 		struct bio_entry *be;
812 
813 		down_write(&io->bio_list_lock);
814 		list_for_each_entry(be, head, list) {
815 			if (be->bio != *bio)
816 				continue;
817 
818 			found = true;
819 
820 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
821 							    *fio->last_block,
822 							    fio->new_blkaddr));
823 			if (f2fs_crypt_mergeable_bio(*bio,
824 					fio->page->mapping->host,
825 					fio->page->index, fio) &&
826 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
827 					PAGE_SIZE) {
828 				ret = 0;
829 				break;
830 			}
831 
832 			/* page can't be merged into bio; submit the bio */
833 			del_bio_entry(be);
834 			__submit_bio(sbi, *bio, DATA);
835 			break;
836 		}
837 		up_write(&io->bio_list_lock);
838 	}
839 
840 	if (ret) {
841 		bio_put(*bio);
842 		*bio = NULL;
843 	}
844 
845 	return ret;
846 }
847 
848 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
849 					struct bio **bio, struct page *page)
850 {
851 	enum temp_type temp;
852 	bool found = false;
853 	struct bio *target = bio ? *bio : NULL;
854 
855 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
856 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
857 		struct list_head *head = &io->bio_list;
858 		struct bio_entry *be;
859 
860 		if (list_empty(head))
861 			continue;
862 
863 		down_read(&io->bio_list_lock);
864 		list_for_each_entry(be, head, list) {
865 			if (target)
866 				found = (target == be->bio);
867 			else
868 				found = __has_merged_page(be->bio, NULL,
869 								page, 0);
870 			if (found)
871 				break;
872 		}
873 		up_read(&io->bio_list_lock);
874 
875 		if (!found)
876 			continue;
877 
878 		found = false;
879 
880 		down_write(&io->bio_list_lock);
881 		list_for_each_entry(be, head, list) {
882 			if (target)
883 				found = (target == be->bio);
884 			else
885 				found = __has_merged_page(be->bio, NULL,
886 								page, 0);
887 			if (found) {
888 				target = be->bio;
889 				del_bio_entry(be);
890 				break;
891 			}
892 		}
893 		up_write(&io->bio_list_lock);
894 	}
895 
896 	if (found)
897 		__submit_bio(sbi, target, DATA);
898 	if (bio && *bio) {
899 		bio_put(*bio);
900 		*bio = NULL;
901 	}
902 }
903 
904 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
905 {
906 	struct bio *bio = *fio->bio;
907 	struct page *page = fio->encrypted_page ?
908 			fio->encrypted_page : fio->page;
909 
910 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
911 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
912 		return -EFSCORRUPTED;
913 
914 	trace_f2fs_submit_page_bio(page, fio);
915 	f2fs_trace_ios(fio, 0);
916 
917 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
918 						fio->new_blkaddr))
919 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
920 alloc_new:
921 	if (!bio) {
922 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
923 		__attach_io_flag(fio);
924 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
925 				       fio->page->index, fio, GFP_NOIO);
926 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
927 
928 		add_bio_entry(fio->sbi, bio, page, fio->temp);
929 	} else {
930 		if (add_ipu_page(fio, &bio, page))
931 			goto alloc_new;
932 	}
933 
934 	if (fio->io_wbc)
935 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
936 
937 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
938 
939 	*fio->last_block = fio->new_blkaddr;
940 	*fio->bio = bio;
941 
942 	return 0;
943 }
944 
945 void f2fs_submit_page_write(struct f2fs_io_info *fio)
946 {
947 	struct f2fs_sb_info *sbi = fio->sbi;
948 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
949 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
950 	struct page *bio_page;
951 
952 	f2fs_bug_on(sbi, is_read_io(fio->op));
953 
954 	down_write(&io->io_rwsem);
955 next:
956 	if (fio->in_list) {
957 		spin_lock(&io->io_lock);
958 		if (list_empty(&io->io_list)) {
959 			spin_unlock(&io->io_lock);
960 			goto out;
961 		}
962 		fio = list_first_entry(&io->io_list,
963 						struct f2fs_io_info, list);
964 		list_del(&fio->list);
965 		spin_unlock(&io->io_lock);
966 	}
967 
968 	verify_fio_blkaddr(fio);
969 
970 	if (fio->encrypted_page)
971 		bio_page = fio->encrypted_page;
972 	else if (fio->compressed_page)
973 		bio_page = fio->compressed_page;
974 	else
975 		bio_page = fio->page;
976 
977 	/* set submitted = true as a return value */
978 	fio->submitted = true;
979 
980 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
981 
982 	if (io->bio &&
983 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
984 			      fio->new_blkaddr) ||
985 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
986 				       bio_page->index, fio)))
987 		__submit_merged_bio(io);
988 alloc_new:
989 	if (io->bio == NULL) {
990 		if (F2FS_IO_ALIGNED(sbi) &&
991 				(fio->type == DATA || fio->type == NODE) &&
992 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
993 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
994 			fio->retry = true;
995 			goto skip;
996 		}
997 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
998 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
999 				       bio_page->index, fio, GFP_NOIO);
1000 		io->fio = *fio;
1001 	}
1002 
1003 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1004 		__submit_merged_bio(io);
1005 		goto alloc_new;
1006 	}
1007 
1008 	if (fio->io_wbc)
1009 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1010 
1011 	io->last_block_in_bio = fio->new_blkaddr;
1012 	f2fs_trace_ios(fio, 0);
1013 
1014 	trace_f2fs_submit_page_write(fio->page, fio);
1015 skip:
1016 	if (fio->in_list)
1017 		goto next;
1018 out:
1019 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1020 				!f2fs_is_checkpoint_ready(sbi))
1021 		__submit_merged_bio(io);
1022 	up_write(&io->io_rwsem);
1023 }
1024 
1025 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1026 {
1027 	return fsverity_active(inode) &&
1028 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1029 }
1030 
1031 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1032 				      unsigned nr_pages, unsigned op_flag,
1033 				      pgoff_t first_idx, bool for_write,
1034 				      bool for_verity)
1035 {
1036 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1037 	struct bio *bio;
1038 	struct bio_post_read_ctx *ctx;
1039 	unsigned int post_read_steps = 0;
1040 
1041 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1042 								for_write);
1043 	if (!bio)
1044 		return ERR_PTR(-ENOMEM);
1045 
1046 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1047 
1048 	f2fs_target_device(sbi, blkaddr, bio);
1049 	bio->bi_end_io = f2fs_read_end_io;
1050 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1051 
1052 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1053 		post_read_steps |= 1 << STEP_DECRYPT;
1054 	if (f2fs_compressed_file(inode))
1055 		post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1056 	if (for_verity && f2fs_need_verity(inode, first_idx))
1057 		post_read_steps |= 1 << STEP_VERITY;
1058 
1059 	if (post_read_steps) {
1060 		/* Due to the mempool, this never fails. */
1061 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1062 		ctx->bio = bio;
1063 		ctx->sbi = sbi;
1064 		ctx->enabled_steps = post_read_steps;
1065 		bio->bi_private = ctx;
1066 	}
1067 
1068 	return bio;
1069 }
1070 
1071 static void f2fs_release_read_bio(struct bio *bio)
1072 {
1073 	if (bio->bi_private)
1074 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1075 	bio_put(bio);
1076 }
1077 
1078 /* This can handle encryption stuffs */
1079 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1080 				 block_t blkaddr, int op_flags, bool for_write)
1081 {
1082 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1083 	struct bio *bio;
1084 
1085 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1086 					page->index, for_write, true);
1087 	if (IS_ERR(bio))
1088 		return PTR_ERR(bio);
1089 
1090 	/* wait for GCed page writeback via META_MAPPING */
1091 	f2fs_wait_on_block_writeback(inode, blkaddr);
1092 
1093 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1094 		bio_put(bio);
1095 		return -EFAULT;
1096 	}
1097 	ClearPageError(page);
1098 	inc_page_count(sbi, F2FS_RD_DATA);
1099 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1100 	__submit_bio(sbi, bio, DATA);
1101 	return 0;
1102 }
1103 
1104 static void __set_data_blkaddr(struct dnode_of_data *dn)
1105 {
1106 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1107 	__le32 *addr_array;
1108 	int base = 0;
1109 
1110 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1111 		base = get_extra_isize(dn->inode);
1112 
1113 	/* Get physical address of data block */
1114 	addr_array = blkaddr_in_node(rn);
1115 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1116 }
1117 
1118 /*
1119  * Lock ordering for the change of data block address:
1120  * ->data_page
1121  *  ->node_page
1122  *    update block addresses in the node page
1123  */
1124 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1125 {
1126 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1127 	__set_data_blkaddr(dn);
1128 	if (set_page_dirty(dn->node_page))
1129 		dn->node_changed = true;
1130 }
1131 
1132 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1133 {
1134 	dn->data_blkaddr = blkaddr;
1135 	f2fs_set_data_blkaddr(dn);
1136 	f2fs_update_extent_cache(dn);
1137 }
1138 
1139 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1140 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1141 {
1142 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1143 	int err;
1144 
1145 	if (!count)
1146 		return 0;
1147 
1148 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1149 		return -EPERM;
1150 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1151 		return err;
1152 
1153 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1154 						dn->ofs_in_node, count);
1155 
1156 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1157 
1158 	for (; count > 0; dn->ofs_in_node++) {
1159 		block_t blkaddr = f2fs_data_blkaddr(dn);
1160 		if (blkaddr == NULL_ADDR) {
1161 			dn->data_blkaddr = NEW_ADDR;
1162 			__set_data_blkaddr(dn);
1163 			count--;
1164 		}
1165 	}
1166 
1167 	if (set_page_dirty(dn->node_page))
1168 		dn->node_changed = true;
1169 	return 0;
1170 }
1171 
1172 /* Should keep dn->ofs_in_node unchanged */
1173 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1174 {
1175 	unsigned int ofs_in_node = dn->ofs_in_node;
1176 	int ret;
1177 
1178 	ret = f2fs_reserve_new_blocks(dn, 1);
1179 	dn->ofs_in_node = ofs_in_node;
1180 	return ret;
1181 }
1182 
1183 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1184 {
1185 	bool need_put = dn->inode_page ? false : true;
1186 	int err;
1187 
1188 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1189 	if (err)
1190 		return err;
1191 
1192 	if (dn->data_blkaddr == NULL_ADDR)
1193 		err = f2fs_reserve_new_block(dn);
1194 	if (err || need_put)
1195 		f2fs_put_dnode(dn);
1196 	return err;
1197 }
1198 
1199 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1200 {
1201 	struct extent_info ei = {0, 0, 0};
1202 	struct inode *inode = dn->inode;
1203 
1204 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1205 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1206 		return 0;
1207 	}
1208 
1209 	return f2fs_reserve_block(dn, index);
1210 }
1211 
1212 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1213 						int op_flags, bool for_write)
1214 {
1215 	struct address_space *mapping = inode->i_mapping;
1216 	struct dnode_of_data dn;
1217 	struct page *page;
1218 	struct extent_info ei = {0,0,0};
1219 	int err;
1220 
1221 	page = f2fs_grab_cache_page(mapping, index, for_write);
1222 	if (!page)
1223 		return ERR_PTR(-ENOMEM);
1224 
1225 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1226 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1227 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1228 						DATA_GENERIC_ENHANCE_READ)) {
1229 			err = -EFSCORRUPTED;
1230 			goto put_err;
1231 		}
1232 		goto got_it;
1233 	}
1234 
1235 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1236 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1237 	if (err)
1238 		goto put_err;
1239 	f2fs_put_dnode(&dn);
1240 
1241 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1242 		err = -ENOENT;
1243 		goto put_err;
1244 	}
1245 	if (dn.data_blkaddr != NEW_ADDR &&
1246 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1247 						dn.data_blkaddr,
1248 						DATA_GENERIC_ENHANCE)) {
1249 		err = -EFSCORRUPTED;
1250 		goto put_err;
1251 	}
1252 got_it:
1253 	if (PageUptodate(page)) {
1254 		unlock_page(page);
1255 		return page;
1256 	}
1257 
1258 	/*
1259 	 * A new dentry page is allocated but not able to be written, since its
1260 	 * new inode page couldn't be allocated due to -ENOSPC.
1261 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1262 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1263 	 * f2fs_init_inode_metadata.
1264 	 */
1265 	if (dn.data_blkaddr == NEW_ADDR) {
1266 		zero_user_segment(page, 0, PAGE_SIZE);
1267 		if (!PageUptodate(page))
1268 			SetPageUptodate(page);
1269 		unlock_page(page);
1270 		return page;
1271 	}
1272 
1273 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1274 						op_flags, for_write);
1275 	if (err)
1276 		goto put_err;
1277 	return page;
1278 
1279 put_err:
1280 	f2fs_put_page(page, 1);
1281 	return ERR_PTR(err);
1282 }
1283 
1284 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1285 {
1286 	struct address_space *mapping = inode->i_mapping;
1287 	struct page *page;
1288 
1289 	page = find_get_page(mapping, index);
1290 	if (page && PageUptodate(page))
1291 		return page;
1292 	f2fs_put_page(page, 0);
1293 
1294 	page = f2fs_get_read_data_page(inode, index, 0, false);
1295 	if (IS_ERR(page))
1296 		return page;
1297 
1298 	if (PageUptodate(page))
1299 		return page;
1300 
1301 	wait_on_page_locked(page);
1302 	if (unlikely(!PageUptodate(page))) {
1303 		f2fs_put_page(page, 0);
1304 		return ERR_PTR(-EIO);
1305 	}
1306 	return page;
1307 }
1308 
1309 /*
1310  * If it tries to access a hole, return an error.
1311  * Because, the callers, functions in dir.c and GC, should be able to know
1312  * whether this page exists or not.
1313  */
1314 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1315 							bool for_write)
1316 {
1317 	struct address_space *mapping = inode->i_mapping;
1318 	struct page *page;
1319 repeat:
1320 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1321 	if (IS_ERR(page))
1322 		return page;
1323 
1324 	/* wait for read completion */
1325 	lock_page(page);
1326 	if (unlikely(page->mapping != mapping)) {
1327 		f2fs_put_page(page, 1);
1328 		goto repeat;
1329 	}
1330 	if (unlikely(!PageUptodate(page))) {
1331 		f2fs_put_page(page, 1);
1332 		return ERR_PTR(-EIO);
1333 	}
1334 	return page;
1335 }
1336 
1337 /*
1338  * Caller ensures that this data page is never allocated.
1339  * A new zero-filled data page is allocated in the page cache.
1340  *
1341  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1342  * f2fs_unlock_op().
1343  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1344  * ipage should be released by this function.
1345  */
1346 struct page *f2fs_get_new_data_page(struct inode *inode,
1347 		struct page *ipage, pgoff_t index, bool new_i_size)
1348 {
1349 	struct address_space *mapping = inode->i_mapping;
1350 	struct page *page;
1351 	struct dnode_of_data dn;
1352 	int err;
1353 
1354 	page = f2fs_grab_cache_page(mapping, index, true);
1355 	if (!page) {
1356 		/*
1357 		 * before exiting, we should make sure ipage will be released
1358 		 * if any error occur.
1359 		 */
1360 		f2fs_put_page(ipage, 1);
1361 		return ERR_PTR(-ENOMEM);
1362 	}
1363 
1364 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1365 	err = f2fs_reserve_block(&dn, index);
1366 	if (err) {
1367 		f2fs_put_page(page, 1);
1368 		return ERR_PTR(err);
1369 	}
1370 	if (!ipage)
1371 		f2fs_put_dnode(&dn);
1372 
1373 	if (PageUptodate(page))
1374 		goto got_it;
1375 
1376 	if (dn.data_blkaddr == NEW_ADDR) {
1377 		zero_user_segment(page, 0, PAGE_SIZE);
1378 		if (!PageUptodate(page))
1379 			SetPageUptodate(page);
1380 	} else {
1381 		f2fs_put_page(page, 1);
1382 
1383 		/* if ipage exists, blkaddr should be NEW_ADDR */
1384 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1385 		page = f2fs_get_lock_data_page(inode, index, true);
1386 		if (IS_ERR(page))
1387 			return page;
1388 	}
1389 got_it:
1390 	if (new_i_size && i_size_read(inode) <
1391 				((loff_t)(index + 1) << PAGE_SHIFT))
1392 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1393 	return page;
1394 }
1395 
1396 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1397 {
1398 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399 	struct f2fs_summary sum;
1400 	struct node_info ni;
1401 	block_t old_blkaddr;
1402 	blkcnt_t count = 1;
1403 	int err;
1404 
1405 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1406 		return -EPERM;
1407 
1408 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1409 	if (err)
1410 		return err;
1411 
1412 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1413 	if (dn->data_blkaddr != NULL_ADDR)
1414 		goto alloc;
1415 
1416 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1417 		return err;
1418 
1419 alloc:
1420 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1421 	old_blkaddr = dn->data_blkaddr;
1422 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1423 				&sum, seg_type, NULL);
1424 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1425 		invalidate_mapping_pages(META_MAPPING(sbi),
1426 					old_blkaddr, old_blkaddr);
1427 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1428 
1429 	/*
1430 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1431 	 * data from unwritten block via dio_read.
1432 	 */
1433 	return 0;
1434 }
1435 
1436 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1437 {
1438 	struct inode *inode = file_inode(iocb->ki_filp);
1439 	struct f2fs_map_blocks map;
1440 	int flag;
1441 	int err = 0;
1442 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1443 
1444 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1445 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1446 	if (map.m_len > map.m_lblk)
1447 		map.m_len -= map.m_lblk;
1448 	else
1449 		map.m_len = 0;
1450 
1451 	map.m_next_pgofs = NULL;
1452 	map.m_next_extent = NULL;
1453 	map.m_seg_type = NO_CHECK_TYPE;
1454 	map.m_may_create = true;
1455 
1456 	if (direct_io) {
1457 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1458 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1459 					F2FS_GET_BLOCK_PRE_AIO :
1460 					F2FS_GET_BLOCK_PRE_DIO;
1461 		goto map_blocks;
1462 	}
1463 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1464 		err = f2fs_convert_inline_inode(inode);
1465 		if (err)
1466 			return err;
1467 	}
1468 	if (f2fs_has_inline_data(inode))
1469 		return err;
1470 
1471 	flag = F2FS_GET_BLOCK_PRE_AIO;
1472 
1473 map_blocks:
1474 	err = f2fs_map_blocks(inode, &map, 1, flag);
1475 	if (map.m_len > 0 && err == -ENOSPC) {
1476 		if (!direct_io)
1477 			set_inode_flag(inode, FI_NO_PREALLOC);
1478 		err = 0;
1479 	}
1480 	return err;
1481 }
1482 
1483 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1484 {
1485 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1486 		if (lock)
1487 			down_read(&sbi->node_change);
1488 		else
1489 			up_read(&sbi->node_change);
1490 	} else {
1491 		if (lock)
1492 			f2fs_lock_op(sbi);
1493 		else
1494 			f2fs_unlock_op(sbi);
1495 	}
1496 }
1497 
1498 /*
1499  * f2fs_map_blocks() tries to find or build mapping relationship which
1500  * maps continuous logical blocks to physical blocks, and return such
1501  * info via f2fs_map_blocks structure.
1502  */
1503 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1504 						int create, int flag)
1505 {
1506 	unsigned int maxblocks = map->m_len;
1507 	struct dnode_of_data dn;
1508 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1509 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1510 	pgoff_t pgofs, end_offset, end;
1511 	int err = 0, ofs = 1;
1512 	unsigned int ofs_in_node, last_ofs_in_node;
1513 	blkcnt_t prealloc;
1514 	struct extent_info ei = {0,0,0};
1515 	block_t blkaddr;
1516 	unsigned int start_pgofs;
1517 
1518 	if (!maxblocks)
1519 		return 0;
1520 
1521 	map->m_len = 0;
1522 	map->m_flags = 0;
1523 
1524 	/* it only supports block size == page size */
1525 	pgofs =	(pgoff_t)map->m_lblk;
1526 	end = pgofs + maxblocks;
1527 
1528 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1529 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1530 							map->m_may_create)
1531 			goto next_dnode;
1532 
1533 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1534 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1535 		map->m_flags = F2FS_MAP_MAPPED;
1536 		if (map->m_next_extent)
1537 			*map->m_next_extent = pgofs + map->m_len;
1538 
1539 		/* for hardware encryption, but to avoid potential issue in future */
1540 		if (flag == F2FS_GET_BLOCK_DIO)
1541 			f2fs_wait_on_block_writeback_range(inode,
1542 						map->m_pblk, map->m_len);
1543 		goto out;
1544 	}
1545 
1546 next_dnode:
1547 	if (map->m_may_create)
1548 		f2fs_do_map_lock(sbi, flag, true);
1549 
1550 	/* When reading holes, we need its node page */
1551 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1552 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1553 	if (err) {
1554 		if (flag == F2FS_GET_BLOCK_BMAP)
1555 			map->m_pblk = 0;
1556 		if (err == -ENOENT) {
1557 			err = 0;
1558 			if (map->m_next_pgofs)
1559 				*map->m_next_pgofs =
1560 					f2fs_get_next_page_offset(&dn, pgofs);
1561 			if (map->m_next_extent)
1562 				*map->m_next_extent =
1563 					f2fs_get_next_page_offset(&dn, pgofs);
1564 		}
1565 		goto unlock_out;
1566 	}
1567 
1568 	start_pgofs = pgofs;
1569 	prealloc = 0;
1570 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1571 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1572 
1573 next_block:
1574 	blkaddr = f2fs_data_blkaddr(&dn);
1575 
1576 	if (__is_valid_data_blkaddr(blkaddr) &&
1577 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1578 		err = -EFSCORRUPTED;
1579 		goto sync_out;
1580 	}
1581 
1582 	if (__is_valid_data_blkaddr(blkaddr)) {
1583 		/* use out-place-update for driect IO under LFS mode */
1584 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1585 							map->m_may_create) {
1586 			err = __allocate_data_block(&dn, map->m_seg_type);
1587 			if (err)
1588 				goto sync_out;
1589 			blkaddr = dn.data_blkaddr;
1590 			set_inode_flag(inode, FI_APPEND_WRITE);
1591 		}
1592 	} else {
1593 		if (create) {
1594 			if (unlikely(f2fs_cp_error(sbi))) {
1595 				err = -EIO;
1596 				goto sync_out;
1597 			}
1598 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1599 				if (blkaddr == NULL_ADDR) {
1600 					prealloc++;
1601 					last_ofs_in_node = dn.ofs_in_node;
1602 				}
1603 			} else {
1604 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1605 					flag != F2FS_GET_BLOCK_DIO);
1606 				err = __allocate_data_block(&dn,
1607 							map->m_seg_type);
1608 				if (!err)
1609 					set_inode_flag(inode, FI_APPEND_WRITE);
1610 			}
1611 			if (err)
1612 				goto sync_out;
1613 			map->m_flags |= F2FS_MAP_NEW;
1614 			blkaddr = dn.data_blkaddr;
1615 		} else {
1616 			if (flag == F2FS_GET_BLOCK_BMAP) {
1617 				map->m_pblk = 0;
1618 				goto sync_out;
1619 			}
1620 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1621 				goto sync_out;
1622 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1623 						blkaddr == NULL_ADDR) {
1624 				if (map->m_next_pgofs)
1625 					*map->m_next_pgofs = pgofs + 1;
1626 				goto sync_out;
1627 			}
1628 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1629 				/* for defragment case */
1630 				if (map->m_next_pgofs)
1631 					*map->m_next_pgofs = pgofs + 1;
1632 				goto sync_out;
1633 			}
1634 		}
1635 	}
1636 
1637 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1638 		goto skip;
1639 
1640 	if (map->m_len == 0) {
1641 		/* preallocated unwritten block should be mapped for fiemap. */
1642 		if (blkaddr == NEW_ADDR)
1643 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1644 		map->m_flags |= F2FS_MAP_MAPPED;
1645 
1646 		map->m_pblk = blkaddr;
1647 		map->m_len = 1;
1648 	} else if ((map->m_pblk != NEW_ADDR &&
1649 			blkaddr == (map->m_pblk + ofs)) ||
1650 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1651 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1652 		ofs++;
1653 		map->m_len++;
1654 	} else {
1655 		goto sync_out;
1656 	}
1657 
1658 skip:
1659 	dn.ofs_in_node++;
1660 	pgofs++;
1661 
1662 	/* preallocate blocks in batch for one dnode page */
1663 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1664 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1665 
1666 		dn.ofs_in_node = ofs_in_node;
1667 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1668 		if (err)
1669 			goto sync_out;
1670 
1671 		map->m_len += dn.ofs_in_node - ofs_in_node;
1672 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1673 			err = -ENOSPC;
1674 			goto sync_out;
1675 		}
1676 		dn.ofs_in_node = end_offset;
1677 	}
1678 
1679 	if (pgofs >= end)
1680 		goto sync_out;
1681 	else if (dn.ofs_in_node < end_offset)
1682 		goto next_block;
1683 
1684 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1685 		if (map->m_flags & F2FS_MAP_MAPPED) {
1686 			unsigned int ofs = start_pgofs - map->m_lblk;
1687 
1688 			f2fs_update_extent_cache_range(&dn,
1689 				start_pgofs, map->m_pblk + ofs,
1690 				map->m_len - ofs);
1691 		}
1692 	}
1693 
1694 	f2fs_put_dnode(&dn);
1695 
1696 	if (map->m_may_create) {
1697 		f2fs_do_map_lock(sbi, flag, false);
1698 		f2fs_balance_fs(sbi, dn.node_changed);
1699 	}
1700 	goto next_dnode;
1701 
1702 sync_out:
1703 
1704 	/* for hardware encryption, but to avoid potential issue in future */
1705 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1706 		f2fs_wait_on_block_writeback_range(inode,
1707 						map->m_pblk, map->m_len);
1708 
1709 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1710 		if (map->m_flags & F2FS_MAP_MAPPED) {
1711 			unsigned int ofs = start_pgofs - map->m_lblk;
1712 
1713 			f2fs_update_extent_cache_range(&dn,
1714 				start_pgofs, map->m_pblk + ofs,
1715 				map->m_len - ofs);
1716 		}
1717 		if (map->m_next_extent)
1718 			*map->m_next_extent = pgofs + 1;
1719 	}
1720 	f2fs_put_dnode(&dn);
1721 unlock_out:
1722 	if (map->m_may_create) {
1723 		f2fs_do_map_lock(sbi, flag, false);
1724 		f2fs_balance_fs(sbi, dn.node_changed);
1725 	}
1726 out:
1727 	trace_f2fs_map_blocks(inode, map, err);
1728 	return err;
1729 }
1730 
1731 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1732 {
1733 	struct f2fs_map_blocks map;
1734 	block_t last_lblk;
1735 	int err;
1736 
1737 	if (pos + len > i_size_read(inode))
1738 		return false;
1739 
1740 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1741 	map.m_next_pgofs = NULL;
1742 	map.m_next_extent = NULL;
1743 	map.m_seg_type = NO_CHECK_TYPE;
1744 	map.m_may_create = false;
1745 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1746 
1747 	while (map.m_lblk < last_lblk) {
1748 		map.m_len = last_lblk - map.m_lblk;
1749 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1750 		if (err || map.m_len == 0)
1751 			return false;
1752 		map.m_lblk += map.m_len;
1753 	}
1754 	return true;
1755 }
1756 
1757 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1758 {
1759 	return (bytes >> inode->i_blkbits);
1760 }
1761 
1762 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1763 {
1764 	return (blks << inode->i_blkbits);
1765 }
1766 
1767 static int __get_data_block(struct inode *inode, sector_t iblock,
1768 			struct buffer_head *bh, int create, int flag,
1769 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1770 {
1771 	struct f2fs_map_blocks map;
1772 	int err;
1773 
1774 	map.m_lblk = iblock;
1775 	map.m_len = bytes_to_blks(inode, bh->b_size);
1776 	map.m_next_pgofs = next_pgofs;
1777 	map.m_next_extent = NULL;
1778 	map.m_seg_type = seg_type;
1779 	map.m_may_create = may_write;
1780 
1781 	err = f2fs_map_blocks(inode, &map, create, flag);
1782 	if (!err) {
1783 		map_bh(bh, inode->i_sb, map.m_pblk);
1784 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1785 		bh->b_size = blks_to_bytes(inode, map.m_len);
1786 	}
1787 	return err;
1788 }
1789 
1790 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1791 			struct buffer_head *bh_result, int create)
1792 {
1793 	return __get_data_block(inode, iblock, bh_result, create,
1794 				F2FS_GET_BLOCK_DIO, NULL,
1795 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1796 				IS_SWAPFILE(inode) ? false : true);
1797 }
1798 
1799 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1800 			struct buffer_head *bh_result, int create)
1801 {
1802 	return __get_data_block(inode, iblock, bh_result, create,
1803 				F2FS_GET_BLOCK_DIO, NULL,
1804 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1805 				false);
1806 }
1807 
1808 static int f2fs_xattr_fiemap(struct inode *inode,
1809 				struct fiemap_extent_info *fieinfo)
1810 {
1811 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1812 	struct page *page;
1813 	struct node_info ni;
1814 	__u64 phys = 0, len;
1815 	__u32 flags;
1816 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1817 	int err = 0;
1818 
1819 	if (f2fs_has_inline_xattr(inode)) {
1820 		int offset;
1821 
1822 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1823 						inode->i_ino, false);
1824 		if (!page)
1825 			return -ENOMEM;
1826 
1827 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1828 		if (err) {
1829 			f2fs_put_page(page, 1);
1830 			return err;
1831 		}
1832 
1833 		phys = blks_to_bytes(inode, ni.blk_addr);
1834 		offset = offsetof(struct f2fs_inode, i_addr) +
1835 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1836 					get_inline_xattr_addrs(inode));
1837 
1838 		phys += offset;
1839 		len = inline_xattr_size(inode);
1840 
1841 		f2fs_put_page(page, 1);
1842 
1843 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1844 
1845 		if (!xnid)
1846 			flags |= FIEMAP_EXTENT_LAST;
1847 
1848 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1849 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1850 		if (err || err == 1)
1851 			return err;
1852 	}
1853 
1854 	if (xnid) {
1855 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1856 		if (!page)
1857 			return -ENOMEM;
1858 
1859 		err = f2fs_get_node_info(sbi, xnid, &ni);
1860 		if (err) {
1861 			f2fs_put_page(page, 1);
1862 			return err;
1863 		}
1864 
1865 		phys = blks_to_bytes(inode, ni.blk_addr);
1866 		len = inode->i_sb->s_blocksize;
1867 
1868 		f2fs_put_page(page, 1);
1869 
1870 		flags = FIEMAP_EXTENT_LAST;
1871 	}
1872 
1873 	if (phys) {
1874 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1875 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1876 	}
1877 
1878 	return (err < 0 ? err : 0);
1879 }
1880 
1881 static loff_t max_inode_blocks(struct inode *inode)
1882 {
1883 	loff_t result = ADDRS_PER_INODE(inode);
1884 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1885 
1886 	/* two direct node blocks */
1887 	result += (leaf_count * 2);
1888 
1889 	/* two indirect node blocks */
1890 	leaf_count *= NIDS_PER_BLOCK;
1891 	result += (leaf_count * 2);
1892 
1893 	/* one double indirect node block */
1894 	leaf_count *= NIDS_PER_BLOCK;
1895 	result += leaf_count;
1896 
1897 	return result;
1898 }
1899 
1900 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1901 		u64 start, u64 len)
1902 {
1903 	struct f2fs_map_blocks map;
1904 	sector_t start_blk, last_blk;
1905 	pgoff_t next_pgofs;
1906 	u64 logical = 0, phys = 0, size = 0;
1907 	u32 flags = 0;
1908 	int ret = 0;
1909 	bool compr_cluster = false;
1910 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1911 
1912 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1913 		ret = f2fs_precache_extents(inode);
1914 		if (ret)
1915 			return ret;
1916 	}
1917 
1918 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1919 	if (ret)
1920 		return ret;
1921 
1922 	inode_lock(inode);
1923 
1924 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1925 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1926 		goto out;
1927 	}
1928 
1929 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1930 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1931 		if (ret != -EAGAIN)
1932 			goto out;
1933 	}
1934 
1935 	if (bytes_to_blks(inode, len) == 0)
1936 		len = blks_to_bytes(inode, 1);
1937 
1938 	start_blk = bytes_to_blks(inode, start);
1939 	last_blk = bytes_to_blks(inode, start + len - 1);
1940 
1941 next:
1942 	memset(&map, 0, sizeof(map));
1943 	map.m_lblk = start_blk;
1944 	map.m_len = bytes_to_blks(inode, len);
1945 	map.m_next_pgofs = &next_pgofs;
1946 	map.m_seg_type = NO_CHECK_TYPE;
1947 
1948 	if (compr_cluster)
1949 		map.m_len = cluster_size - 1;
1950 
1951 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1952 	if (ret)
1953 		goto out;
1954 
1955 	/* HOLE */
1956 	if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1957 		start_blk = next_pgofs;
1958 
1959 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1960 						max_inode_blocks(inode)))
1961 			goto prep_next;
1962 
1963 		flags |= FIEMAP_EXTENT_LAST;
1964 	}
1965 
1966 	if (size) {
1967 		if (IS_ENCRYPTED(inode))
1968 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1969 
1970 		ret = fiemap_fill_next_extent(fieinfo, logical,
1971 				phys, size, flags);
1972 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1973 		if (ret)
1974 			goto out;
1975 		size = 0;
1976 	}
1977 
1978 	if (start_blk > last_blk)
1979 		goto out;
1980 
1981 	if (compr_cluster) {
1982 		compr_cluster = false;
1983 
1984 
1985 		logical = blks_to_bytes(inode, start_blk - 1);
1986 		phys = blks_to_bytes(inode, map.m_pblk);
1987 		size = blks_to_bytes(inode, cluster_size);
1988 
1989 		flags |= FIEMAP_EXTENT_ENCODED;
1990 
1991 		start_blk += cluster_size - 1;
1992 
1993 		if (start_blk > last_blk)
1994 			goto out;
1995 
1996 		goto prep_next;
1997 	}
1998 
1999 	if (map.m_pblk == COMPRESS_ADDR) {
2000 		compr_cluster = true;
2001 		start_blk++;
2002 		goto prep_next;
2003 	}
2004 
2005 	logical = blks_to_bytes(inode, start_blk);
2006 	phys = blks_to_bytes(inode, map.m_pblk);
2007 	size = blks_to_bytes(inode, map.m_len);
2008 	flags = 0;
2009 	if (map.m_flags & F2FS_MAP_UNWRITTEN)
2010 		flags = FIEMAP_EXTENT_UNWRITTEN;
2011 
2012 	start_blk += bytes_to_blks(inode, size);
2013 
2014 prep_next:
2015 	cond_resched();
2016 	if (fatal_signal_pending(current))
2017 		ret = -EINTR;
2018 	else
2019 		goto next;
2020 out:
2021 	if (ret == 1)
2022 		ret = 0;
2023 
2024 	inode_unlock(inode);
2025 	return ret;
2026 }
2027 
2028 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2029 {
2030 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2031 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2032 		return inode->i_sb->s_maxbytes;
2033 
2034 	return i_size_read(inode);
2035 }
2036 
2037 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2038 					unsigned nr_pages,
2039 					struct f2fs_map_blocks *map,
2040 					struct bio **bio_ret,
2041 					sector_t *last_block_in_bio,
2042 					bool is_readahead)
2043 {
2044 	struct bio *bio = *bio_ret;
2045 	const unsigned blocksize = blks_to_bytes(inode, 1);
2046 	sector_t block_in_file;
2047 	sector_t last_block;
2048 	sector_t last_block_in_file;
2049 	sector_t block_nr;
2050 	int ret = 0;
2051 
2052 	block_in_file = (sector_t)page_index(page);
2053 	last_block = block_in_file + nr_pages;
2054 	last_block_in_file = bytes_to_blks(inode,
2055 			f2fs_readpage_limit(inode) + blocksize - 1);
2056 	if (last_block > last_block_in_file)
2057 		last_block = last_block_in_file;
2058 
2059 	/* just zeroing out page which is beyond EOF */
2060 	if (block_in_file >= last_block)
2061 		goto zero_out;
2062 	/*
2063 	 * Map blocks using the previous result first.
2064 	 */
2065 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2066 			block_in_file > map->m_lblk &&
2067 			block_in_file < (map->m_lblk + map->m_len))
2068 		goto got_it;
2069 
2070 	/*
2071 	 * Then do more f2fs_map_blocks() calls until we are
2072 	 * done with this page.
2073 	 */
2074 	map->m_lblk = block_in_file;
2075 	map->m_len = last_block - block_in_file;
2076 
2077 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2078 	if (ret)
2079 		goto out;
2080 got_it:
2081 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2082 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2083 		SetPageMappedToDisk(page);
2084 
2085 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2086 					!cleancache_get_page(page))) {
2087 			SetPageUptodate(page);
2088 			goto confused;
2089 		}
2090 
2091 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2092 						DATA_GENERIC_ENHANCE_READ)) {
2093 			ret = -EFSCORRUPTED;
2094 			goto out;
2095 		}
2096 	} else {
2097 zero_out:
2098 		zero_user_segment(page, 0, PAGE_SIZE);
2099 		if (f2fs_need_verity(inode, page->index) &&
2100 		    !fsverity_verify_page(page)) {
2101 			ret = -EIO;
2102 			goto out;
2103 		}
2104 		if (!PageUptodate(page))
2105 			SetPageUptodate(page);
2106 		unlock_page(page);
2107 		goto out;
2108 	}
2109 
2110 	/*
2111 	 * This page will go to BIO.  Do we need to send this
2112 	 * BIO off first?
2113 	 */
2114 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2115 				       *last_block_in_bio, block_nr) ||
2116 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2117 submit_and_realloc:
2118 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2119 		bio = NULL;
2120 	}
2121 	if (bio == NULL) {
2122 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2123 				is_readahead ? REQ_RAHEAD : 0, page->index,
2124 				false, true);
2125 		if (IS_ERR(bio)) {
2126 			ret = PTR_ERR(bio);
2127 			bio = NULL;
2128 			goto out;
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * If the page is under writeback, we need to wait for
2134 	 * its completion to see the correct decrypted data.
2135 	 */
2136 	f2fs_wait_on_block_writeback(inode, block_nr);
2137 
2138 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2139 		goto submit_and_realloc;
2140 
2141 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2142 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2143 	ClearPageError(page);
2144 	*last_block_in_bio = block_nr;
2145 	goto out;
2146 confused:
2147 	if (bio) {
2148 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2149 		bio = NULL;
2150 	}
2151 	unlock_page(page);
2152 out:
2153 	*bio_ret = bio;
2154 	return ret;
2155 }
2156 
2157 #ifdef CONFIG_F2FS_FS_COMPRESSION
2158 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2159 				unsigned nr_pages, sector_t *last_block_in_bio,
2160 				bool is_readahead, bool for_write)
2161 {
2162 	struct dnode_of_data dn;
2163 	struct inode *inode = cc->inode;
2164 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2165 	struct bio *bio = *bio_ret;
2166 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2167 	sector_t last_block_in_file;
2168 	const unsigned blocksize = blks_to_bytes(inode, 1);
2169 	struct decompress_io_ctx *dic = NULL;
2170 	struct bio_post_read_ctx *ctx;
2171 	bool for_verity = false;
2172 	int i;
2173 	int ret = 0;
2174 
2175 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2176 
2177 	last_block_in_file = bytes_to_blks(inode,
2178 			f2fs_readpage_limit(inode) + blocksize - 1);
2179 
2180 	/* get rid of pages beyond EOF */
2181 	for (i = 0; i < cc->cluster_size; i++) {
2182 		struct page *page = cc->rpages[i];
2183 
2184 		if (!page)
2185 			continue;
2186 		if ((sector_t)page->index >= last_block_in_file) {
2187 			zero_user_segment(page, 0, PAGE_SIZE);
2188 			if (!PageUptodate(page))
2189 				SetPageUptodate(page);
2190 		} else if (!PageUptodate(page)) {
2191 			continue;
2192 		}
2193 		unlock_page(page);
2194 		cc->rpages[i] = NULL;
2195 		cc->nr_rpages--;
2196 	}
2197 
2198 	/* we are done since all pages are beyond EOF */
2199 	if (f2fs_cluster_is_empty(cc))
2200 		goto out;
2201 
2202 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2203 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2204 	if (ret)
2205 		goto out;
2206 
2207 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2208 
2209 	for (i = 1; i < cc->cluster_size; i++) {
2210 		block_t blkaddr;
2211 
2212 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2213 						dn.ofs_in_node + i);
2214 
2215 		if (!__is_valid_data_blkaddr(blkaddr))
2216 			break;
2217 
2218 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2219 			ret = -EFAULT;
2220 			goto out_put_dnode;
2221 		}
2222 		cc->nr_cpages++;
2223 	}
2224 
2225 	/* nothing to decompress */
2226 	if (cc->nr_cpages == 0) {
2227 		ret = 0;
2228 		goto out_put_dnode;
2229 	}
2230 
2231 	dic = f2fs_alloc_dic(cc);
2232 	if (IS_ERR(dic)) {
2233 		ret = PTR_ERR(dic);
2234 		goto out_put_dnode;
2235 	}
2236 
2237 	/*
2238 	 * It's possible to enable fsverity on the fly when handling a cluster,
2239 	 * which requires complicated error handling. Instead of adding more
2240 	 * complexity, let's give a rule where end_io post-processes fsverity
2241 	 * per cluster. In order to do that, we need to submit bio, if previous
2242 	 * bio sets a different post-process policy.
2243 	 */
2244 	if (fsverity_active(cc->inode)) {
2245 		atomic_set(&dic->verity_pages, cc->nr_cpages);
2246 		for_verity = true;
2247 
2248 		if (bio) {
2249 			ctx = bio->bi_private;
2250 			if (!(ctx->enabled_steps & (1 << STEP_VERITY))) {
2251 				__submit_bio(sbi, bio, DATA);
2252 				bio = NULL;
2253 			}
2254 		}
2255 	}
2256 
2257 	for (i = 0; i < dic->nr_cpages; i++) {
2258 		struct page *page = dic->cpages[i];
2259 		block_t blkaddr;
2260 
2261 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2262 						dn.ofs_in_node + i + 1);
2263 
2264 		if (bio && (!page_is_mergeable(sbi, bio,
2265 					*last_block_in_bio, blkaddr) ||
2266 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2267 submit_and_realloc:
2268 			__submit_bio(sbi, bio, DATA);
2269 			bio = NULL;
2270 		}
2271 
2272 		if (!bio) {
2273 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2274 					is_readahead ? REQ_RAHEAD : 0,
2275 					page->index, for_write, for_verity);
2276 			if (IS_ERR(bio)) {
2277 				unsigned int remained = dic->nr_cpages - i;
2278 				bool release = false;
2279 
2280 				ret = PTR_ERR(bio);
2281 				dic->failed = true;
2282 
2283 				if (for_verity) {
2284 					if (!atomic_sub_return(remained,
2285 						&dic->verity_pages))
2286 						release = true;
2287 				} else {
2288 					if (!atomic_sub_return(remained,
2289 						&dic->pending_pages))
2290 						release = true;
2291 				}
2292 
2293 				if (release) {
2294 					f2fs_decompress_end_io(dic->rpages,
2295 						cc->cluster_size, true,
2296 						false);
2297 					f2fs_free_dic(dic);
2298 				}
2299 
2300 				f2fs_put_dnode(&dn);
2301 				*bio_ret = NULL;
2302 				return ret;
2303 			}
2304 		}
2305 
2306 		f2fs_wait_on_block_writeback(inode, blkaddr);
2307 
2308 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2309 			goto submit_and_realloc;
2310 
2311 		/* tag STEP_DECOMPRESS to handle IO in wq */
2312 		ctx = bio->bi_private;
2313 		if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2314 			ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2315 
2316 		inc_page_count(sbi, F2FS_RD_DATA);
2317 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2318 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2319 		ClearPageError(page);
2320 		*last_block_in_bio = blkaddr;
2321 	}
2322 
2323 	f2fs_put_dnode(&dn);
2324 
2325 	*bio_ret = bio;
2326 	return 0;
2327 
2328 out_put_dnode:
2329 	f2fs_put_dnode(&dn);
2330 out:
2331 	f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2332 	*bio_ret = bio;
2333 	return ret;
2334 }
2335 #endif
2336 
2337 /*
2338  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2339  * Major change was from block_size == page_size in f2fs by default.
2340  *
2341  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2342  * this function ever deviates from doing just read-ahead, it should either
2343  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2344  * from read-ahead.
2345  */
2346 static int f2fs_mpage_readpages(struct inode *inode,
2347 		struct readahead_control *rac, struct page *page)
2348 {
2349 	struct bio *bio = NULL;
2350 	sector_t last_block_in_bio = 0;
2351 	struct f2fs_map_blocks map;
2352 #ifdef CONFIG_F2FS_FS_COMPRESSION
2353 	struct compress_ctx cc = {
2354 		.inode = inode,
2355 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2356 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2357 		.cluster_idx = NULL_CLUSTER,
2358 		.rpages = NULL,
2359 		.cpages = NULL,
2360 		.nr_rpages = 0,
2361 		.nr_cpages = 0,
2362 	};
2363 #endif
2364 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2365 	unsigned max_nr_pages = nr_pages;
2366 	int ret = 0;
2367 	bool drop_ra = false;
2368 
2369 	map.m_pblk = 0;
2370 	map.m_lblk = 0;
2371 	map.m_len = 0;
2372 	map.m_flags = 0;
2373 	map.m_next_pgofs = NULL;
2374 	map.m_next_extent = NULL;
2375 	map.m_seg_type = NO_CHECK_TYPE;
2376 	map.m_may_create = false;
2377 
2378 	/*
2379 	 * Two readahead threads for same address range can cause race condition
2380 	 * which fragments sequential read IOs. So let's avoid each other.
2381 	 */
2382 	if (rac && readahead_count(rac)) {
2383 		if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2384 			drop_ra = true;
2385 		else
2386 			WRITE_ONCE(F2FS_I(inode)->ra_offset,
2387 						readahead_index(rac));
2388 	}
2389 
2390 	for (; nr_pages; nr_pages--) {
2391 		if (rac) {
2392 			page = readahead_page(rac);
2393 			prefetchw(&page->flags);
2394 			if (drop_ra) {
2395 				f2fs_put_page(page, 1);
2396 				continue;
2397 			}
2398 		}
2399 
2400 #ifdef CONFIG_F2FS_FS_COMPRESSION
2401 		if (f2fs_compressed_file(inode)) {
2402 			/* there are remained comressed pages, submit them */
2403 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2404 				ret = f2fs_read_multi_pages(&cc, &bio,
2405 							max_nr_pages,
2406 							&last_block_in_bio,
2407 							rac != NULL, false);
2408 				f2fs_destroy_compress_ctx(&cc);
2409 				if (ret)
2410 					goto set_error_page;
2411 			}
2412 			ret = f2fs_is_compressed_cluster(inode, page->index);
2413 			if (ret < 0)
2414 				goto set_error_page;
2415 			else if (!ret)
2416 				goto read_single_page;
2417 
2418 			ret = f2fs_init_compress_ctx(&cc);
2419 			if (ret)
2420 				goto set_error_page;
2421 
2422 			f2fs_compress_ctx_add_page(&cc, page);
2423 
2424 			goto next_page;
2425 		}
2426 read_single_page:
2427 #endif
2428 
2429 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2430 					&bio, &last_block_in_bio, rac);
2431 		if (ret) {
2432 #ifdef CONFIG_F2FS_FS_COMPRESSION
2433 set_error_page:
2434 #endif
2435 			SetPageError(page);
2436 			zero_user_segment(page, 0, PAGE_SIZE);
2437 			unlock_page(page);
2438 		}
2439 #ifdef CONFIG_F2FS_FS_COMPRESSION
2440 next_page:
2441 #endif
2442 		if (rac)
2443 			put_page(page);
2444 
2445 #ifdef CONFIG_F2FS_FS_COMPRESSION
2446 		if (f2fs_compressed_file(inode)) {
2447 			/* last page */
2448 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2449 				ret = f2fs_read_multi_pages(&cc, &bio,
2450 							max_nr_pages,
2451 							&last_block_in_bio,
2452 							rac != NULL, false);
2453 				f2fs_destroy_compress_ctx(&cc);
2454 			}
2455 		}
2456 #endif
2457 	}
2458 	if (bio)
2459 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2460 
2461 	if (rac && readahead_count(rac) && !drop_ra)
2462 		WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2463 	return ret;
2464 }
2465 
2466 static int f2fs_read_data_page(struct file *file, struct page *page)
2467 {
2468 	struct inode *inode = page_file_mapping(page)->host;
2469 	int ret = -EAGAIN;
2470 
2471 	trace_f2fs_readpage(page, DATA);
2472 
2473 	if (!f2fs_is_compress_backend_ready(inode)) {
2474 		unlock_page(page);
2475 		return -EOPNOTSUPP;
2476 	}
2477 
2478 	/* If the file has inline data, try to read it directly */
2479 	if (f2fs_has_inline_data(inode))
2480 		ret = f2fs_read_inline_data(inode, page);
2481 	if (ret == -EAGAIN)
2482 		ret = f2fs_mpage_readpages(inode, NULL, page);
2483 	return ret;
2484 }
2485 
2486 static void f2fs_readahead(struct readahead_control *rac)
2487 {
2488 	struct inode *inode = rac->mapping->host;
2489 
2490 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2491 
2492 	if (!f2fs_is_compress_backend_ready(inode))
2493 		return;
2494 
2495 	/* If the file has inline data, skip readpages */
2496 	if (f2fs_has_inline_data(inode))
2497 		return;
2498 
2499 	f2fs_mpage_readpages(inode, rac, NULL);
2500 }
2501 
2502 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2503 {
2504 	struct inode *inode = fio->page->mapping->host;
2505 	struct page *mpage, *page;
2506 	gfp_t gfp_flags = GFP_NOFS;
2507 
2508 	if (!f2fs_encrypted_file(inode))
2509 		return 0;
2510 
2511 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2512 
2513 	/* wait for GCed page writeback via META_MAPPING */
2514 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2515 
2516 	if (fscrypt_inode_uses_inline_crypto(inode))
2517 		return 0;
2518 
2519 retry_encrypt:
2520 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2521 					PAGE_SIZE, 0, gfp_flags);
2522 	if (IS_ERR(fio->encrypted_page)) {
2523 		/* flush pending IOs and wait for a while in the ENOMEM case */
2524 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2525 			f2fs_flush_merged_writes(fio->sbi);
2526 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2527 			gfp_flags |= __GFP_NOFAIL;
2528 			goto retry_encrypt;
2529 		}
2530 		return PTR_ERR(fio->encrypted_page);
2531 	}
2532 
2533 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2534 	if (mpage) {
2535 		if (PageUptodate(mpage))
2536 			memcpy(page_address(mpage),
2537 				page_address(fio->encrypted_page), PAGE_SIZE);
2538 		f2fs_put_page(mpage, 1);
2539 	}
2540 	return 0;
2541 }
2542 
2543 static inline bool check_inplace_update_policy(struct inode *inode,
2544 				struct f2fs_io_info *fio)
2545 {
2546 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2547 	unsigned int policy = SM_I(sbi)->ipu_policy;
2548 
2549 	if (policy & (0x1 << F2FS_IPU_FORCE))
2550 		return true;
2551 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2552 		return true;
2553 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2554 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2555 		return true;
2556 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2557 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2558 		return true;
2559 
2560 	/*
2561 	 * IPU for rewrite async pages
2562 	 */
2563 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2564 			fio && fio->op == REQ_OP_WRITE &&
2565 			!(fio->op_flags & REQ_SYNC) &&
2566 			!IS_ENCRYPTED(inode))
2567 		return true;
2568 
2569 	/* this is only set during fdatasync */
2570 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2571 			is_inode_flag_set(inode, FI_NEED_IPU))
2572 		return true;
2573 
2574 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2575 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2576 		return true;
2577 
2578 	return false;
2579 }
2580 
2581 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2582 {
2583 	if (f2fs_is_pinned_file(inode))
2584 		return true;
2585 
2586 	/* if this is cold file, we should overwrite to avoid fragmentation */
2587 	if (file_is_cold(inode))
2588 		return true;
2589 
2590 	return check_inplace_update_policy(inode, fio);
2591 }
2592 
2593 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2594 {
2595 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2596 
2597 	if (f2fs_lfs_mode(sbi))
2598 		return true;
2599 	if (S_ISDIR(inode->i_mode))
2600 		return true;
2601 	if (IS_NOQUOTA(inode))
2602 		return true;
2603 	if (f2fs_is_atomic_file(inode))
2604 		return true;
2605 	if (fio) {
2606 		if (is_cold_data(fio->page))
2607 			return true;
2608 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2609 			return true;
2610 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2611 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2612 			return true;
2613 	}
2614 	return false;
2615 }
2616 
2617 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2618 {
2619 	struct inode *inode = fio->page->mapping->host;
2620 
2621 	if (f2fs_should_update_outplace(inode, fio))
2622 		return false;
2623 
2624 	return f2fs_should_update_inplace(inode, fio);
2625 }
2626 
2627 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2628 {
2629 	struct page *page = fio->page;
2630 	struct inode *inode = page->mapping->host;
2631 	struct dnode_of_data dn;
2632 	struct extent_info ei = {0,0,0};
2633 	struct node_info ni;
2634 	bool ipu_force = false;
2635 	int err = 0;
2636 
2637 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2638 	if (need_inplace_update(fio) &&
2639 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2640 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2641 
2642 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2643 						DATA_GENERIC_ENHANCE))
2644 			return -EFSCORRUPTED;
2645 
2646 		ipu_force = true;
2647 		fio->need_lock = LOCK_DONE;
2648 		goto got_it;
2649 	}
2650 
2651 	/* Deadlock due to between page->lock and f2fs_lock_op */
2652 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2653 		return -EAGAIN;
2654 
2655 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2656 	if (err)
2657 		goto out;
2658 
2659 	fio->old_blkaddr = dn.data_blkaddr;
2660 
2661 	/* This page is already truncated */
2662 	if (fio->old_blkaddr == NULL_ADDR) {
2663 		ClearPageUptodate(page);
2664 		clear_cold_data(page);
2665 		goto out_writepage;
2666 	}
2667 got_it:
2668 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2669 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2670 						DATA_GENERIC_ENHANCE)) {
2671 		err = -EFSCORRUPTED;
2672 		goto out_writepage;
2673 	}
2674 	/*
2675 	 * If current allocation needs SSR,
2676 	 * it had better in-place writes for updated data.
2677 	 */
2678 	if (ipu_force ||
2679 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2680 					need_inplace_update(fio))) {
2681 		err = f2fs_encrypt_one_page(fio);
2682 		if (err)
2683 			goto out_writepage;
2684 
2685 		set_page_writeback(page);
2686 		ClearPageError(page);
2687 		f2fs_put_dnode(&dn);
2688 		if (fio->need_lock == LOCK_REQ)
2689 			f2fs_unlock_op(fio->sbi);
2690 		err = f2fs_inplace_write_data(fio);
2691 		if (err) {
2692 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2693 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2694 			if (PageWriteback(page))
2695 				end_page_writeback(page);
2696 		} else {
2697 			set_inode_flag(inode, FI_UPDATE_WRITE);
2698 		}
2699 		trace_f2fs_do_write_data_page(fio->page, IPU);
2700 		return err;
2701 	}
2702 
2703 	if (fio->need_lock == LOCK_RETRY) {
2704 		if (!f2fs_trylock_op(fio->sbi)) {
2705 			err = -EAGAIN;
2706 			goto out_writepage;
2707 		}
2708 		fio->need_lock = LOCK_REQ;
2709 	}
2710 
2711 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2712 	if (err)
2713 		goto out_writepage;
2714 
2715 	fio->version = ni.version;
2716 
2717 	err = f2fs_encrypt_one_page(fio);
2718 	if (err)
2719 		goto out_writepage;
2720 
2721 	set_page_writeback(page);
2722 	ClearPageError(page);
2723 
2724 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2725 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2726 
2727 	/* LFS mode write path */
2728 	f2fs_outplace_write_data(&dn, fio);
2729 	trace_f2fs_do_write_data_page(page, OPU);
2730 	set_inode_flag(inode, FI_APPEND_WRITE);
2731 	if (page->index == 0)
2732 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2733 out_writepage:
2734 	f2fs_put_dnode(&dn);
2735 out:
2736 	if (fio->need_lock == LOCK_REQ)
2737 		f2fs_unlock_op(fio->sbi);
2738 	return err;
2739 }
2740 
2741 int f2fs_write_single_data_page(struct page *page, int *submitted,
2742 				struct bio **bio,
2743 				sector_t *last_block,
2744 				struct writeback_control *wbc,
2745 				enum iostat_type io_type,
2746 				int compr_blocks)
2747 {
2748 	struct inode *inode = page->mapping->host;
2749 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2750 	loff_t i_size = i_size_read(inode);
2751 	const pgoff_t end_index = ((unsigned long long)i_size)
2752 							>> PAGE_SHIFT;
2753 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2754 	unsigned offset = 0;
2755 	bool need_balance_fs = false;
2756 	int err = 0;
2757 	struct f2fs_io_info fio = {
2758 		.sbi = sbi,
2759 		.ino = inode->i_ino,
2760 		.type = DATA,
2761 		.op = REQ_OP_WRITE,
2762 		.op_flags = wbc_to_write_flags(wbc),
2763 		.old_blkaddr = NULL_ADDR,
2764 		.page = page,
2765 		.encrypted_page = NULL,
2766 		.submitted = false,
2767 		.compr_blocks = compr_blocks,
2768 		.need_lock = LOCK_RETRY,
2769 		.io_type = io_type,
2770 		.io_wbc = wbc,
2771 		.bio = bio,
2772 		.last_block = last_block,
2773 	};
2774 
2775 	trace_f2fs_writepage(page, DATA);
2776 
2777 	/* we should bypass data pages to proceed the kworkder jobs */
2778 	if (unlikely(f2fs_cp_error(sbi))) {
2779 		mapping_set_error(page->mapping, -EIO);
2780 		/*
2781 		 * don't drop any dirty dentry pages for keeping lastest
2782 		 * directory structure.
2783 		 */
2784 		if (S_ISDIR(inode->i_mode))
2785 			goto redirty_out;
2786 		goto out;
2787 	}
2788 
2789 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2790 		goto redirty_out;
2791 
2792 	if (page->index < end_index ||
2793 			f2fs_verity_in_progress(inode) ||
2794 			compr_blocks)
2795 		goto write;
2796 
2797 	/*
2798 	 * If the offset is out-of-range of file size,
2799 	 * this page does not have to be written to disk.
2800 	 */
2801 	offset = i_size & (PAGE_SIZE - 1);
2802 	if ((page->index >= end_index + 1) || !offset)
2803 		goto out;
2804 
2805 	zero_user_segment(page, offset, PAGE_SIZE);
2806 write:
2807 	if (f2fs_is_drop_cache(inode))
2808 		goto out;
2809 	/* we should not write 0'th page having journal header */
2810 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2811 			(!wbc->for_reclaim &&
2812 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2813 		goto redirty_out;
2814 
2815 	/* Dentry/quota blocks are controlled by checkpoint */
2816 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2817 		/*
2818 		 * We need to wait for node_write to avoid block allocation during
2819 		 * checkpoint. This can only happen to quota writes which can cause
2820 		 * the below discard race condition.
2821 		 */
2822 		if (IS_NOQUOTA(inode))
2823 			down_read(&sbi->node_write);
2824 
2825 		fio.need_lock = LOCK_DONE;
2826 		err = f2fs_do_write_data_page(&fio);
2827 
2828 		if (IS_NOQUOTA(inode))
2829 			up_read(&sbi->node_write);
2830 
2831 		goto done;
2832 	}
2833 
2834 	if (!wbc->for_reclaim)
2835 		need_balance_fs = true;
2836 	else if (has_not_enough_free_secs(sbi, 0, 0))
2837 		goto redirty_out;
2838 	else
2839 		set_inode_flag(inode, FI_HOT_DATA);
2840 
2841 	err = -EAGAIN;
2842 	if (f2fs_has_inline_data(inode)) {
2843 		err = f2fs_write_inline_data(inode, page);
2844 		if (!err)
2845 			goto out;
2846 	}
2847 
2848 	if (err == -EAGAIN) {
2849 		err = f2fs_do_write_data_page(&fio);
2850 		if (err == -EAGAIN) {
2851 			fio.need_lock = LOCK_REQ;
2852 			err = f2fs_do_write_data_page(&fio);
2853 		}
2854 	}
2855 
2856 	if (err) {
2857 		file_set_keep_isize(inode);
2858 	} else {
2859 		spin_lock(&F2FS_I(inode)->i_size_lock);
2860 		if (F2FS_I(inode)->last_disk_size < psize)
2861 			F2FS_I(inode)->last_disk_size = psize;
2862 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2863 	}
2864 
2865 done:
2866 	if (err && err != -ENOENT)
2867 		goto redirty_out;
2868 
2869 out:
2870 	inode_dec_dirty_pages(inode);
2871 	if (err) {
2872 		ClearPageUptodate(page);
2873 		clear_cold_data(page);
2874 	}
2875 
2876 	if (wbc->for_reclaim) {
2877 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2878 		clear_inode_flag(inode, FI_HOT_DATA);
2879 		f2fs_remove_dirty_inode(inode);
2880 		submitted = NULL;
2881 	}
2882 	unlock_page(page);
2883 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2884 					!F2FS_I(inode)->cp_task)
2885 		f2fs_balance_fs(sbi, need_balance_fs);
2886 
2887 	if (unlikely(f2fs_cp_error(sbi))) {
2888 		f2fs_submit_merged_write(sbi, DATA);
2889 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2890 		submitted = NULL;
2891 	}
2892 
2893 	if (submitted)
2894 		*submitted = fio.submitted ? 1 : 0;
2895 
2896 	return 0;
2897 
2898 redirty_out:
2899 	redirty_page_for_writepage(wbc, page);
2900 	/*
2901 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2902 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2903 	 * file_write_and_wait_range() will see EIO error, which is critical
2904 	 * to return value of fsync() followed by atomic_write failure to user.
2905 	 */
2906 	if (!err || wbc->for_reclaim)
2907 		return AOP_WRITEPAGE_ACTIVATE;
2908 	unlock_page(page);
2909 	return err;
2910 }
2911 
2912 static int f2fs_write_data_page(struct page *page,
2913 					struct writeback_control *wbc)
2914 {
2915 #ifdef CONFIG_F2FS_FS_COMPRESSION
2916 	struct inode *inode = page->mapping->host;
2917 
2918 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2919 		goto out;
2920 
2921 	if (f2fs_compressed_file(inode)) {
2922 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2923 			redirty_page_for_writepage(wbc, page);
2924 			return AOP_WRITEPAGE_ACTIVATE;
2925 		}
2926 	}
2927 out:
2928 #endif
2929 
2930 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2931 						wbc, FS_DATA_IO, 0);
2932 }
2933 
2934 /*
2935  * This function was copied from write_cche_pages from mm/page-writeback.c.
2936  * The major change is making write step of cold data page separately from
2937  * warm/hot data page.
2938  */
2939 static int f2fs_write_cache_pages(struct address_space *mapping,
2940 					struct writeback_control *wbc,
2941 					enum iostat_type io_type)
2942 {
2943 	int ret = 0;
2944 	int done = 0, retry = 0;
2945 	struct pagevec pvec;
2946 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2947 	struct bio *bio = NULL;
2948 	sector_t last_block;
2949 #ifdef CONFIG_F2FS_FS_COMPRESSION
2950 	struct inode *inode = mapping->host;
2951 	struct compress_ctx cc = {
2952 		.inode = inode,
2953 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2954 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2955 		.cluster_idx = NULL_CLUSTER,
2956 		.rpages = NULL,
2957 		.nr_rpages = 0,
2958 		.cpages = NULL,
2959 		.rbuf = NULL,
2960 		.cbuf = NULL,
2961 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2962 		.private = NULL,
2963 	};
2964 #endif
2965 	int nr_pages;
2966 	pgoff_t index;
2967 	pgoff_t end;		/* Inclusive */
2968 	pgoff_t done_index;
2969 	int range_whole = 0;
2970 	xa_mark_t tag;
2971 	int nwritten = 0;
2972 	int submitted = 0;
2973 	int i;
2974 
2975 	pagevec_init(&pvec);
2976 
2977 	if (get_dirty_pages(mapping->host) <=
2978 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2979 		set_inode_flag(mapping->host, FI_HOT_DATA);
2980 	else
2981 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2982 
2983 	if (wbc->range_cyclic) {
2984 		index = mapping->writeback_index; /* prev offset */
2985 		end = -1;
2986 	} else {
2987 		index = wbc->range_start >> PAGE_SHIFT;
2988 		end = wbc->range_end >> PAGE_SHIFT;
2989 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2990 			range_whole = 1;
2991 	}
2992 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2993 		tag = PAGECACHE_TAG_TOWRITE;
2994 	else
2995 		tag = PAGECACHE_TAG_DIRTY;
2996 retry:
2997 	retry = 0;
2998 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2999 		tag_pages_for_writeback(mapping, index, end);
3000 	done_index = index;
3001 	while (!done && !retry && (index <= end)) {
3002 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3003 				tag);
3004 		if (nr_pages == 0)
3005 			break;
3006 
3007 		for (i = 0; i < nr_pages; i++) {
3008 			struct page *page = pvec.pages[i];
3009 			bool need_readd;
3010 readd:
3011 			need_readd = false;
3012 #ifdef CONFIG_F2FS_FS_COMPRESSION
3013 			if (f2fs_compressed_file(inode)) {
3014 				ret = f2fs_init_compress_ctx(&cc);
3015 				if (ret) {
3016 					done = 1;
3017 					break;
3018 				}
3019 
3020 				if (!f2fs_cluster_can_merge_page(&cc,
3021 								page->index)) {
3022 					ret = f2fs_write_multi_pages(&cc,
3023 						&submitted, wbc, io_type);
3024 					if (!ret)
3025 						need_readd = true;
3026 					goto result;
3027 				}
3028 
3029 				if (unlikely(f2fs_cp_error(sbi)))
3030 					goto lock_page;
3031 
3032 				if (f2fs_cluster_is_empty(&cc)) {
3033 					void *fsdata = NULL;
3034 					struct page *pagep;
3035 					int ret2;
3036 
3037 					ret2 = f2fs_prepare_compress_overwrite(
3038 							inode, &pagep,
3039 							page->index, &fsdata);
3040 					if (ret2 < 0) {
3041 						ret = ret2;
3042 						done = 1;
3043 						break;
3044 					} else if (ret2 &&
3045 						!f2fs_compress_write_end(inode,
3046 								fsdata, page->index,
3047 								1)) {
3048 						retry = 1;
3049 						break;
3050 					}
3051 				} else {
3052 					goto lock_page;
3053 				}
3054 			}
3055 #endif
3056 			/* give a priority to WB_SYNC threads */
3057 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3058 					wbc->sync_mode == WB_SYNC_NONE) {
3059 				done = 1;
3060 				break;
3061 			}
3062 #ifdef CONFIG_F2FS_FS_COMPRESSION
3063 lock_page:
3064 #endif
3065 			done_index = page->index;
3066 retry_write:
3067 			lock_page(page);
3068 
3069 			if (unlikely(page->mapping != mapping)) {
3070 continue_unlock:
3071 				unlock_page(page);
3072 				continue;
3073 			}
3074 
3075 			if (!PageDirty(page)) {
3076 				/* someone wrote it for us */
3077 				goto continue_unlock;
3078 			}
3079 
3080 			if (PageWriteback(page)) {
3081 				if (wbc->sync_mode != WB_SYNC_NONE)
3082 					f2fs_wait_on_page_writeback(page,
3083 							DATA, true, true);
3084 				else
3085 					goto continue_unlock;
3086 			}
3087 
3088 			if (!clear_page_dirty_for_io(page))
3089 				goto continue_unlock;
3090 
3091 #ifdef CONFIG_F2FS_FS_COMPRESSION
3092 			if (f2fs_compressed_file(inode)) {
3093 				get_page(page);
3094 				f2fs_compress_ctx_add_page(&cc, page);
3095 				continue;
3096 			}
3097 #endif
3098 			ret = f2fs_write_single_data_page(page, &submitted,
3099 					&bio, &last_block, wbc, io_type, 0);
3100 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3101 				unlock_page(page);
3102 #ifdef CONFIG_F2FS_FS_COMPRESSION
3103 result:
3104 #endif
3105 			nwritten += submitted;
3106 			wbc->nr_to_write -= submitted;
3107 
3108 			if (unlikely(ret)) {
3109 				/*
3110 				 * keep nr_to_write, since vfs uses this to
3111 				 * get # of written pages.
3112 				 */
3113 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3114 					ret = 0;
3115 					goto next;
3116 				} else if (ret == -EAGAIN) {
3117 					ret = 0;
3118 					if (wbc->sync_mode == WB_SYNC_ALL) {
3119 						cond_resched();
3120 						congestion_wait(BLK_RW_ASYNC,
3121 							DEFAULT_IO_TIMEOUT);
3122 						goto retry_write;
3123 					}
3124 					goto next;
3125 				}
3126 				done_index = page->index + 1;
3127 				done = 1;
3128 				break;
3129 			}
3130 
3131 			if (wbc->nr_to_write <= 0 &&
3132 					wbc->sync_mode == WB_SYNC_NONE) {
3133 				done = 1;
3134 				break;
3135 			}
3136 next:
3137 			if (need_readd)
3138 				goto readd;
3139 		}
3140 		pagevec_release(&pvec);
3141 		cond_resched();
3142 	}
3143 #ifdef CONFIG_F2FS_FS_COMPRESSION
3144 	/* flush remained pages in compress cluster */
3145 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3146 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3147 		nwritten += submitted;
3148 		wbc->nr_to_write -= submitted;
3149 		if (ret) {
3150 			done = 1;
3151 			retry = 0;
3152 		}
3153 	}
3154 	if (f2fs_compressed_file(inode))
3155 		f2fs_destroy_compress_ctx(&cc);
3156 #endif
3157 	if (retry) {
3158 		index = 0;
3159 		end = -1;
3160 		goto retry;
3161 	}
3162 	if (wbc->range_cyclic && !done)
3163 		done_index = 0;
3164 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3165 		mapping->writeback_index = done_index;
3166 
3167 	if (nwritten)
3168 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3169 								NULL, 0, DATA);
3170 	/* submit cached bio of IPU write */
3171 	if (bio)
3172 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3173 
3174 	return ret;
3175 }
3176 
3177 static inline bool __should_serialize_io(struct inode *inode,
3178 					struct writeback_control *wbc)
3179 {
3180 	/* to avoid deadlock in path of data flush */
3181 	if (F2FS_I(inode)->cp_task)
3182 		return false;
3183 
3184 	if (!S_ISREG(inode->i_mode))
3185 		return false;
3186 	if (IS_NOQUOTA(inode))
3187 		return false;
3188 
3189 	if (f2fs_need_compress_data(inode))
3190 		return true;
3191 	if (wbc->sync_mode != WB_SYNC_ALL)
3192 		return true;
3193 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3194 		return true;
3195 	return false;
3196 }
3197 
3198 static int __f2fs_write_data_pages(struct address_space *mapping,
3199 						struct writeback_control *wbc,
3200 						enum iostat_type io_type)
3201 {
3202 	struct inode *inode = mapping->host;
3203 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3204 	struct blk_plug plug;
3205 	int ret;
3206 	bool locked = false;
3207 
3208 	/* deal with chardevs and other special file */
3209 	if (!mapping->a_ops->writepage)
3210 		return 0;
3211 
3212 	/* skip writing if there is no dirty page in this inode */
3213 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3214 		return 0;
3215 
3216 	/* during POR, we don't need to trigger writepage at all. */
3217 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3218 		goto skip_write;
3219 
3220 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3221 			wbc->sync_mode == WB_SYNC_NONE &&
3222 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3223 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3224 		goto skip_write;
3225 
3226 	/* skip writing during file defragment */
3227 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3228 		goto skip_write;
3229 
3230 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3231 
3232 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3233 	if (wbc->sync_mode == WB_SYNC_ALL)
3234 		atomic_inc(&sbi->wb_sync_req[DATA]);
3235 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
3236 		goto skip_write;
3237 
3238 	if (__should_serialize_io(inode, wbc)) {
3239 		mutex_lock(&sbi->writepages);
3240 		locked = true;
3241 	}
3242 
3243 	blk_start_plug(&plug);
3244 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3245 	blk_finish_plug(&plug);
3246 
3247 	if (locked)
3248 		mutex_unlock(&sbi->writepages);
3249 
3250 	if (wbc->sync_mode == WB_SYNC_ALL)
3251 		atomic_dec(&sbi->wb_sync_req[DATA]);
3252 	/*
3253 	 * if some pages were truncated, we cannot guarantee its mapping->host
3254 	 * to detect pending bios.
3255 	 */
3256 
3257 	f2fs_remove_dirty_inode(inode);
3258 	return ret;
3259 
3260 skip_write:
3261 	wbc->pages_skipped += get_dirty_pages(inode);
3262 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3263 	return 0;
3264 }
3265 
3266 static int f2fs_write_data_pages(struct address_space *mapping,
3267 			    struct writeback_control *wbc)
3268 {
3269 	struct inode *inode = mapping->host;
3270 
3271 	return __f2fs_write_data_pages(mapping, wbc,
3272 			F2FS_I(inode)->cp_task == current ?
3273 			FS_CP_DATA_IO : FS_DATA_IO);
3274 }
3275 
3276 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3277 {
3278 	struct inode *inode = mapping->host;
3279 	loff_t i_size = i_size_read(inode);
3280 
3281 	if (IS_NOQUOTA(inode))
3282 		return;
3283 
3284 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3285 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3286 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3287 		down_write(&F2FS_I(inode)->i_mmap_sem);
3288 
3289 		truncate_pagecache(inode, i_size);
3290 		f2fs_truncate_blocks(inode, i_size, true);
3291 
3292 		up_write(&F2FS_I(inode)->i_mmap_sem);
3293 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3294 	}
3295 }
3296 
3297 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3298 			struct page *page, loff_t pos, unsigned len,
3299 			block_t *blk_addr, bool *node_changed)
3300 {
3301 	struct inode *inode = page->mapping->host;
3302 	pgoff_t index = page->index;
3303 	struct dnode_of_data dn;
3304 	struct page *ipage;
3305 	bool locked = false;
3306 	struct extent_info ei = {0,0,0};
3307 	int err = 0;
3308 	int flag;
3309 
3310 	/*
3311 	 * we already allocated all the blocks, so we don't need to get
3312 	 * the block addresses when there is no need to fill the page.
3313 	 */
3314 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3315 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3316 	    !f2fs_verity_in_progress(inode))
3317 		return 0;
3318 
3319 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3320 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3321 		flag = F2FS_GET_BLOCK_DEFAULT;
3322 	else
3323 		flag = F2FS_GET_BLOCK_PRE_AIO;
3324 
3325 	if (f2fs_has_inline_data(inode) ||
3326 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3327 		f2fs_do_map_lock(sbi, flag, true);
3328 		locked = true;
3329 	}
3330 
3331 restart:
3332 	/* check inline_data */
3333 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3334 	if (IS_ERR(ipage)) {
3335 		err = PTR_ERR(ipage);
3336 		goto unlock_out;
3337 	}
3338 
3339 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3340 
3341 	if (f2fs_has_inline_data(inode)) {
3342 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3343 			f2fs_do_read_inline_data(page, ipage);
3344 			set_inode_flag(inode, FI_DATA_EXIST);
3345 			if (inode->i_nlink)
3346 				set_inline_node(ipage);
3347 		} else {
3348 			err = f2fs_convert_inline_page(&dn, page);
3349 			if (err)
3350 				goto out;
3351 			if (dn.data_blkaddr == NULL_ADDR)
3352 				err = f2fs_get_block(&dn, index);
3353 		}
3354 	} else if (locked) {
3355 		err = f2fs_get_block(&dn, index);
3356 	} else {
3357 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3358 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3359 		} else {
3360 			/* hole case */
3361 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3362 			if (err || dn.data_blkaddr == NULL_ADDR) {
3363 				f2fs_put_dnode(&dn);
3364 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3365 								true);
3366 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3367 				locked = true;
3368 				goto restart;
3369 			}
3370 		}
3371 	}
3372 
3373 	/* convert_inline_page can make node_changed */
3374 	*blk_addr = dn.data_blkaddr;
3375 	*node_changed = dn.node_changed;
3376 out:
3377 	f2fs_put_dnode(&dn);
3378 unlock_out:
3379 	if (locked)
3380 		f2fs_do_map_lock(sbi, flag, false);
3381 	return err;
3382 }
3383 
3384 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3385 		loff_t pos, unsigned len, unsigned flags,
3386 		struct page **pagep, void **fsdata)
3387 {
3388 	struct inode *inode = mapping->host;
3389 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3390 	struct page *page = NULL;
3391 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3392 	bool need_balance = false, drop_atomic = false;
3393 	block_t blkaddr = NULL_ADDR;
3394 	int err = 0;
3395 
3396 	trace_f2fs_write_begin(inode, pos, len, flags);
3397 
3398 	if (!f2fs_is_checkpoint_ready(sbi)) {
3399 		err = -ENOSPC;
3400 		goto fail;
3401 	}
3402 
3403 	if ((f2fs_is_atomic_file(inode) &&
3404 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3405 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3406 		err = -ENOMEM;
3407 		drop_atomic = true;
3408 		goto fail;
3409 	}
3410 
3411 	/*
3412 	 * We should check this at this moment to avoid deadlock on inode page
3413 	 * and #0 page. The locking rule for inline_data conversion should be:
3414 	 * lock_page(page #0) -> lock_page(inode_page)
3415 	 */
3416 	if (index != 0) {
3417 		err = f2fs_convert_inline_inode(inode);
3418 		if (err)
3419 			goto fail;
3420 	}
3421 
3422 #ifdef CONFIG_F2FS_FS_COMPRESSION
3423 	if (f2fs_compressed_file(inode)) {
3424 		int ret;
3425 
3426 		*fsdata = NULL;
3427 
3428 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3429 							index, fsdata);
3430 		if (ret < 0) {
3431 			err = ret;
3432 			goto fail;
3433 		} else if (ret) {
3434 			return 0;
3435 		}
3436 	}
3437 #endif
3438 
3439 repeat:
3440 	/*
3441 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3442 	 * wait_for_stable_page. Will wait that below with our IO control.
3443 	 */
3444 	page = f2fs_pagecache_get_page(mapping, index,
3445 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3446 	if (!page) {
3447 		err = -ENOMEM;
3448 		goto fail;
3449 	}
3450 
3451 	/* TODO: cluster can be compressed due to race with .writepage */
3452 
3453 	*pagep = page;
3454 
3455 	err = prepare_write_begin(sbi, page, pos, len,
3456 					&blkaddr, &need_balance);
3457 	if (err)
3458 		goto fail;
3459 
3460 	if (need_balance && !IS_NOQUOTA(inode) &&
3461 			has_not_enough_free_secs(sbi, 0, 0)) {
3462 		unlock_page(page);
3463 		f2fs_balance_fs(sbi, true);
3464 		lock_page(page);
3465 		if (page->mapping != mapping) {
3466 			/* The page got truncated from under us */
3467 			f2fs_put_page(page, 1);
3468 			goto repeat;
3469 		}
3470 	}
3471 
3472 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3473 
3474 	if (len == PAGE_SIZE || PageUptodate(page))
3475 		return 0;
3476 
3477 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3478 	    !f2fs_verity_in_progress(inode)) {
3479 		zero_user_segment(page, len, PAGE_SIZE);
3480 		return 0;
3481 	}
3482 
3483 	if (blkaddr == NEW_ADDR) {
3484 		zero_user_segment(page, 0, PAGE_SIZE);
3485 		SetPageUptodate(page);
3486 	} else {
3487 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3488 				DATA_GENERIC_ENHANCE_READ)) {
3489 			err = -EFSCORRUPTED;
3490 			goto fail;
3491 		}
3492 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3493 		if (err)
3494 			goto fail;
3495 
3496 		lock_page(page);
3497 		if (unlikely(page->mapping != mapping)) {
3498 			f2fs_put_page(page, 1);
3499 			goto repeat;
3500 		}
3501 		if (unlikely(!PageUptodate(page))) {
3502 			err = -EIO;
3503 			goto fail;
3504 		}
3505 	}
3506 	return 0;
3507 
3508 fail:
3509 	f2fs_put_page(page, 1);
3510 	f2fs_write_failed(mapping, pos + len);
3511 	if (drop_atomic)
3512 		f2fs_drop_inmem_pages_all(sbi, false);
3513 	return err;
3514 }
3515 
3516 static int f2fs_write_end(struct file *file,
3517 			struct address_space *mapping,
3518 			loff_t pos, unsigned len, unsigned copied,
3519 			struct page *page, void *fsdata)
3520 {
3521 	struct inode *inode = page->mapping->host;
3522 
3523 	trace_f2fs_write_end(inode, pos, len, copied);
3524 
3525 	/*
3526 	 * This should be come from len == PAGE_SIZE, and we expect copied
3527 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3528 	 * let generic_perform_write() try to copy data again through copied=0.
3529 	 */
3530 	if (!PageUptodate(page)) {
3531 		if (unlikely(copied != len))
3532 			copied = 0;
3533 		else
3534 			SetPageUptodate(page);
3535 	}
3536 
3537 #ifdef CONFIG_F2FS_FS_COMPRESSION
3538 	/* overwrite compressed file */
3539 	if (f2fs_compressed_file(inode) && fsdata) {
3540 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3541 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3542 
3543 		if (pos + copied > i_size_read(inode) &&
3544 				!f2fs_verity_in_progress(inode))
3545 			f2fs_i_size_write(inode, pos + copied);
3546 		return copied;
3547 	}
3548 #endif
3549 
3550 	if (!copied)
3551 		goto unlock_out;
3552 
3553 	set_page_dirty(page);
3554 
3555 	if (pos + copied > i_size_read(inode) &&
3556 	    !f2fs_verity_in_progress(inode))
3557 		f2fs_i_size_write(inode, pos + copied);
3558 unlock_out:
3559 	f2fs_put_page(page, 1);
3560 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3561 	return copied;
3562 }
3563 
3564 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3565 			   loff_t offset)
3566 {
3567 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3568 	unsigned blkbits = i_blkbits;
3569 	unsigned blocksize_mask = (1 << blkbits) - 1;
3570 	unsigned long align = offset | iov_iter_alignment(iter);
3571 	struct block_device *bdev = inode->i_sb->s_bdev;
3572 
3573 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3574 		return 1;
3575 
3576 	if (align & blocksize_mask) {
3577 		if (bdev)
3578 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3579 		blocksize_mask = (1 << blkbits) - 1;
3580 		if (align & blocksize_mask)
3581 			return -EINVAL;
3582 		return 1;
3583 	}
3584 	return 0;
3585 }
3586 
3587 static void f2fs_dio_end_io(struct bio *bio)
3588 {
3589 	struct f2fs_private_dio *dio = bio->bi_private;
3590 
3591 	dec_page_count(F2FS_I_SB(dio->inode),
3592 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3593 
3594 	bio->bi_private = dio->orig_private;
3595 	bio->bi_end_io = dio->orig_end_io;
3596 
3597 	kfree(dio);
3598 
3599 	bio_endio(bio);
3600 }
3601 
3602 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3603 							loff_t file_offset)
3604 {
3605 	struct f2fs_private_dio *dio;
3606 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3607 
3608 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3609 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3610 	if (!dio)
3611 		goto out;
3612 
3613 	dio->inode = inode;
3614 	dio->orig_end_io = bio->bi_end_io;
3615 	dio->orig_private = bio->bi_private;
3616 	dio->write = write;
3617 
3618 	bio->bi_end_io = f2fs_dio_end_io;
3619 	bio->bi_private = dio;
3620 
3621 	inc_page_count(F2FS_I_SB(inode),
3622 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3623 
3624 	submit_bio(bio);
3625 	return;
3626 out:
3627 	bio->bi_status = BLK_STS_IOERR;
3628 	bio_endio(bio);
3629 }
3630 
3631 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3632 {
3633 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3634 	struct inode *inode = mapping->host;
3635 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3636 	struct f2fs_inode_info *fi = F2FS_I(inode);
3637 	size_t count = iov_iter_count(iter);
3638 	loff_t offset = iocb->ki_pos;
3639 	int rw = iov_iter_rw(iter);
3640 	int err;
3641 	enum rw_hint hint = iocb->ki_hint;
3642 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3643 	bool do_opu;
3644 
3645 	err = check_direct_IO(inode, iter, offset);
3646 	if (err)
3647 		return err < 0 ? err : 0;
3648 
3649 	if (f2fs_force_buffered_io(inode, iocb, iter))
3650 		return 0;
3651 
3652 	do_opu = allow_outplace_dio(inode, iocb, iter);
3653 
3654 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3655 
3656 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3657 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3658 
3659 	if (iocb->ki_flags & IOCB_NOWAIT) {
3660 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3661 			iocb->ki_hint = hint;
3662 			err = -EAGAIN;
3663 			goto out;
3664 		}
3665 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3666 			up_read(&fi->i_gc_rwsem[rw]);
3667 			iocb->ki_hint = hint;
3668 			err = -EAGAIN;
3669 			goto out;
3670 		}
3671 	} else {
3672 		down_read(&fi->i_gc_rwsem[rw]);
3673 		if (do_opu)
3674 			down_read(&fi->i_gc_rwsem[READ]);
3675 	}
3676 
3677 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3678 			iter, rw == WRITE ? get_data_block_dio_write :
3679 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3680 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3681 			DIO_SKIP_HOLES);
3682 
3683 	if (do_opu)
3684 		up_read(&fi->i_gc_rwsem[READ]);
3685 
3686 	up_read(&fi->i_gc_rwsem[rw]);
3687 
3688 	if (rw == WRITE) {
3689 		if (whint_mode == WHINT_MODE_OFF)
3690 			iocb->ki_hint = hint;
3691 		if (err > 0) {
3692 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3693 									err);
3694 			if (!do_opu)
3695 				set_inode_flag(inode, FI_UPDATE_WRITE);
3696 		} else if (err == -EIOCBQUEUED) {
3697 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3698 						count - iov_iter_count(iter));
3699 		} else if (err < 0) {
3700 			f2fs_write_failed(mapping, offset + count);
3701 		}
3702 	} else {
3703 		if (err > 0)
3704 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3705 		else if (err == -EIOCBQUEUED)
3706 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3707 						count - iov_iter_count(iter));
3708 	}
3709 
3710 out:
3711 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3712 
3713 	return err;
3714 }
3715 
3716 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3717 							unsigned int length)
3718 {
3719 	struct inode *inode = page->mapping->host;
3720 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3721 
3722 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3723 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3724 		return;
3725 
3726 	if (PageDirty(page)) {
3727 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3728 			dec_page_count(sbi, F2FS_DIRTY_META);
3729 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3730 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3731 		} else {
3732 			inode_dec_dirty_pages(inode);
3733 			f2fs_remove_dirty_inode(inode);
3734 		}
3735 	}
3736 
3737 	clear_cold_data(page);
3738 
3739 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3740 		return f2fs_drop_inmem_page(inode, page);
3741 
3742 	f2fs_clear_page_private(page);
3743 }
3744 
3745 int f2fs_release_page(struct page *page, gfp_t wait)
3746 {
3747 	/* If this is dirty page, keep PagePrivate */
3748 	if (PageDirty(page))
3749 		return 0;
3750 
3751 	/* This is atomic written page, keep Private */
3752 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3753 		return 0;
3754 
3755 	clear_cold_data(page);
3756 	f2fs_clear_page_private(page);
3757 	return 1;
3758 }
3759 
3760 static int f2fs_set_data_page_dirty(struct page *page)
3761 {
3762 	struct inode *inode = page_file_mapping(page)->host;
3763 
3764 	trace_f2fs_set_page_dirty(page, DATA);
3765 
3766 	if (!PageUptodate(page))
3767 		SetPageUptodate(page);
3768 	if (PageSwapCache(page))
3769 		return __set_page_dirty_nobuffers(page);
3770 
3771 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3772 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3773 			f2fs_register_inmem_page(inode, page);
3774 			return 1;
3775 		}
3776 		/*
3777 		 * Previously, this page has been registered, we just
3778 		 * return here.
3779 		 */
3780 		return 0;
3781 	}
3782 
3783 	if (!PageDirty(page)) {
3784 		__set_page_dirty_nobuffers(page);
3785 		f2fs_update_dirty_page(inode, page);
3786 		return 1;
3787 	}
3788 	return 0;
3789 }
3790 
3791 
3792 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3793 {
3794 #ifdef CONFIG_F2FS_FS_COMPRESSION
3795 	struct dnode_of_data dn;
3796 	sector_t start_idx, blknr = 0;
3797 	int ret;
3798 
3799 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3800 
3801 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3802 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3803 	if (ret)
3804 		return 0;
3805 
3806 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3807 		dn.ofs_in_node += block - start_idx;
3808 		blknr = f2fs_data_blkaddr(&dn);
3809 		if (!__is_valid_data_blkaddr(blknr))
3810 			blknr = 0;
3811 	}
3812 
3813 	f2fs_put_dnode(&dn);
3814 	return blknr;
3815 #else
3816 	return 0;
3817 #endif
3818 }
3819 
3820 
3821 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3822 {
3823 	struct inode *inode = mapping->host;
3824 	sector_t blknr = 0;
3825 
3826 	if (f2fs_has_inline_data(inode))
3827 		goto out;
3828 
3829 	/* make sure allocating whole blocks */
3830 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3831 		filemap_write_and_wait(mapping);
3832 
3833 	/* Block number less than F2FS MAX BLOCKS */
3834 	if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
3835 		goto out;
3836 
3837 	if (f2fs_compressed_file(inode)) {
3838 		blknr = f2fs_bmap_compress(inode, block);
3839 	} else {
3840 		struct f2fs_map_blocks map;
3841 
3842 		memset(&map, 0, sizeof(map));
3843 		map.m_lblk = block;
3844 		map.m_len = 1;
3845 		map.m_next_pgofs = NULL;
3846 		map.m_seg_type = NO_CHECK_TYPE;
3847 
3848 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3849 			blknr = map.m_pblk;
3850 	}
3851 out:
3852 	trace_f2fs_bmap(inode, block, blknr);
3853 	return blknr;
3854 }
3855 
3856 #ifdef CONFIG_MIGRATION
3857 #include <linux/migrate.h>
3858 
3859 int f2fs_migrate_page(struct address_space *mapping,
3860 		struct page *newpage, struct page *page, enum migrate_mode mode)
3861 {
3862 	int rc, extra_count;
3863 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3864 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3865 
3866 	BUG_ON(PageWriteback(page));
3867 
3868 	/* migrating an atomic written page is safe with the inmem_lock hold */
3869 	if (atomic_written) {
3870 		if (mode != MIGRATE_SYNC)
3871 			return -EBUSY;
3872 		if (!mutex_trylock(&fi->inmem_lock))
3873 			return -EAGAIN;
3874 	}
3875 
3876 	/* one extra reference was held for atomic_write page */
3877 	extra_count = atomic_written ? 1 : 0;
3878 	rc = migrate_page_move_mapping(mapping, newpage,
3879 				page, extra_count);
3880 	if (rc != MIGRATEPAGE_SUCCESS) {
3881 		if (atomic_written)
3882 			mutex_unlock(&fi->inmem_lock);
3883 		return rc;
3884 	}
3885 
3886 	if (atomic_written) {
3887 		struct inmem_pages *cur;
3888 		list_for_each_entry(cur, &fi->inmem_pages, list)
3889 			if (cur->page == page) {
3890 				cur->page = newpage;
3891 				break;
3892 			}
3893 		mutex_unlock(&fi->inmem_lock);
3894 		put_page(page);
3895 		get_page(newpage);
3896 	}
3897 
3898 	if (PagePrivate(page)) {
3899 		f2fs_set_page_private(newpage, page_private(page));
3900 		f2fs_clear_page_private(page);
3901 	}
3902 
3903 	if (mode != MIGRATE_SYNC_NO_COPY)
3904 		migrate_page_copy(newpage, page);
3905 	else
3906 		migrate_page_states(newpage, page);
3907 
3908 	return MIGRATEPAGE_SUCCESS;
3909 }
3910 #endif
3911 
3912 #ifdef CONFIG_SWAP
3913 static int check_swap_activate_fast(struct swap_info_struct *sis,
3914 				struct file *swap_file, sector_t *span)
3915 {
3916 	struct address_space *mapping = swap_file->f_mapping;
3917 	struct inode *inode = mapping->host;
3918 	sector_t cur_lblock;
3919 	sector_t last_lblock;
3920 	sector_t pblock;
3921 	sector_t lowest_pblock = -1;
3922 	sector_t highest_pblock = 0;
3923 	int nr_extents = 0;
3924 	unsigned long nr_pblocks;
3925 	u64 len;
3926 	int ret;
3927 
3928 	/*
3929 	 * Map all the blocks into the extent list.  This code doesn't try
3930 	 * to be very smart.
3931 	 */
3932 	cur_lblock = 0;
3933 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3934 	len = i_size_read(inode);
3935 
3936 	while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3937 		struct f2fs_map_blocks map;
3938 		pgoff_t next_pgofs;
3939 
3940 		cond_resched();
3941 
3942 		memset(&map, 0, sizeof(map));
3943 		map.m_lblk = cur_lblock;
3944 		map.m_len = bytes_to_blks(inode, len) - cur_lblock;
3945 		map.m_next_pgofs = &next_pgofs;
3946 		map.m_seg_type = NO_CHECK_TYPE;
3947 
3948 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3949 		if (ret)
3950 			goto err_out;
3951 
3952 		/* hole */
3953 		if (!(map.m_flags & F2FS_MAP_FLAGS))
3954 			goto err_out;
3955 
3956 		pblock = map.m_pblk;
3957 		nr_pblocks = map.m_len;
3958 
3959 		if (cur_lblock + nr_pblocks >= sis->max)
3960 			nr_pblocks = sis->max - cur_lblock;
3961 
3962 		if (cur_lblock) {	/* exclude the header page */
3963 			if (pblock < lowest_pblock)
3964 				lowest_pblock = pblock;
3965 			if (pblock + nr_pblocks - 1 > highest_pblock)
3966 				highest_pblock = pblock + nr_pblocks - 1;
3967 		}
3968 
3969 		/*
3970 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3971 		 */
3972 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3973 		if (ret < 0)
3974 			goto out;
3975 		nr_extents += ret;
3976 		cur_lblock += nr_pblocks;
3977 	}
3978 	ret = nr_extents;
3979 	*span = 1 + highest_pblock - lowest_pblock;
3980 	if (cur_lblock == 0)
3981 		cur_lblock = 1;	/* force Empty message */
3982 	sis->max = cur_lblock;
3983 	sis->pages = cur_lblock - 1;
3984 	sis->highest_bit = cur_lblock - 1;
3985 out:
3986 	return ret;
3987 err_out:
3988 	pr_err("swapon: swapfile has holes\n");
3989 	return -EINVAL;
3990 }
3991 
3992 /* Copied from generic_swapfile_activate() to check any holes */
3993 static int check_swap_activate(struct swap_info_struct *sis,
3994 				struct file *swap_file, sector_t *span)
3995 {
3996 	struct address_space *mapping = swap_file->f_mapping;
3997 	struct inode *inode = mapping->host;
3998 	unsigned blocks_per_page;
3999 	unsigned long page_no;
4000 	sector_t probe_block;
4001 	sector_t last_block;
4002 	sector_t lowest_block = -1;
4003 	sector_t highest_block = 0;
4004 	int nr_extents = 0;
4005 	int ret;
4006 
4007 	if (PAGE_SIZE == F2FS_BLKSIZE)
4008 		return check_swap_activate_fast(sis, swap_file, span);
4009 
4010 	blocks_per_page = bytes_to_blks(inode, PAGE_SIZE);
4011 
4012 	/*
4013 	 * Map all the blocks into the extent list.  This code doesn't try
4014 	 * to be very smart.
4015 	 */
4016 	probe_block = 0;
4017 	page_no = 0;
4018 	last_block = bytes_to_blks(inode, i_size_read(inode));
4019 	while ((probe_block + blocks_per_page) <= last_block &&
4020 			page_no < sis->max) {
4021 		unsigned block_in_page;
4022 		sector_t first_block;
4023 		sector_t block = 0;
4024 		int	 err = 0;
4025 
4026 		cond_resched();
4027 
4028 		block = probe_block;
4029 		err = bmap(inode, &block);
4030 		if (err || !block)
4031 			goto bad_bmap;
4032 		first_block = block;
4033 
4034 		/*
4035 		 * It must be PAGE_SIZE aligned on-disk
4036 		 */
4037 		if (first_block & (blocks_per_page - 1)) {
4038 			probe_block++;
4039 			goto reprobe;
4040 		}
4041 
4042 		for (block_in_page = 1; block_in_page < blocks_per_page;
4043 					block_in_page++) {
4044 
4045 			block = probe_block + block_in_page;
4046 			err = bmap(inode, &block);
4047 
4048 			if (err || !block)
4049 				goto bad_bmap;
4050 
4051 			if (block != first_block + block_in_page) {
4052 				/* Discontiguity */
4053 				probe_block++;
4054 				goto reprobe;
4055 			}
4056 		}
4057 
4058 		first_block >>= (PAGE_SHIFT - inode->i_blkbits);
4059 		if (page_no) {	/* exclude the header page */
4060 			if (first_block < lowest_block)
4061 				lowest_block = first_block;
4062 			if (first_block > highest_block)
4063 				highest_block = first_block;
4064 		}
4065 
4066 		/*
4067 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4068 		 */
4069 		ret = add_swap_extent(sis, page_no, 1, first_block);
4070 		if (ret < 0)
4071 			goto out;
4072 		nr_extents += ret;
4073 		page_no++;
4074 		probe_block += blocks_per_page;
4075 reprobe:
4076 		continue;
4077 	}
4078 	ret = nr_extents;
4079 	*span = 1 + highest_block - lowest_block;
4080 	if (page_no == 0)
4081 		page_no = 1;	/* force Empty message */
4082 	sis->max = page_no;
4083 	sis->pages = page_no - 1;
4084 	sis->highest_bit = page_no - 1;
4085 out:
4086 	return ret;
4087 bad_bmap:
4088 	pr_err("swapon: swapfile has holes\n");
4089 	return -EINVAL;
4090 }
4091 
4092 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4093 				sector_t *span)
4094 {
4095 	struct inode *inode = file_inode(file);
4096 	int ret;
4097 
4098 	if (!S_ISREG(inode->i_mode))
4099 		return -EINVAL;
4100 
4101 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4102 		return -EROFS;
4103 
4104 	ret = f2fs_convert_inline_inode(inode);
4105 	if (ret)
4106 		return ret;
4107 
4108 	if (!f2fs_disable_compressed_file(inode))
4109 		return -EINVAL;
4110 
4111 	ret = check_swap_activate(sis, file, span);
4112 	if (ret < 0)
4113 		return ret;
4114 
4115 	set_inode_flag(inode, FI_PIN_FILE);
4116 	f2fs_precache_extents(inode);
4117 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4118 	return ret;
4119 }
4120 
4121 static void f2fs_swap_deactivate(struct file *file)
4122 {
4123 	struct inode *inode = file_inode(file);
4124 
4125 	clear_inode_flag(inode, FI_PIN_FILE);
4126 }
4127 #else
4128 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4129 				sector_t *span)
4130 {
4131 	return -EOPNOTSUPP;
4132 }
4133 
4134 static void f2fs_swap_deactivate(struct file *file)
4135 {
4136 }
4137 #endif
4138 
4139 const struct address_space_operations f2fs_dblock_aops = {
4140 	.readpage	= f2fs_read_data_page,
4141 	.readahead	= f2fs_readahead,
4142 	.writepage	= f2fs_write_data_page,
4143 	.writepages	= f2fs_write_data_pages,
4144 	.write_begin	= f2fs_write_begin,
4145 	.write_end	= f2fs_write_end,
4146 	.set_page_dirty	= f2fs_set_data_page_dirty,
4147 	.invalidatepage	= f2fs_invalidate_page,
4148 	.releasepage	= f2fs_release_page,
4149 	.direct_IO	= f2fs_direct_IO,
4150 	.bmap		= f2fs_bmap,
4151 	.swap_activate  = f2fs_swap_activate,
4152 	.swap_deactivate = f2fs_swap_deactivate,
4153 #ifdef CONFIG_MIGRATION
4154 	.migratepage    = f2fs_migrate_page,
4155 #endif
4156 };
4157 
4158 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4159 {
4160 	struct address_space *mapping = page_mapping(page);
4161 	unsigned long flags;
4162 
4163 	xa_lock_irqsave(&mapping->i_pages, flags);
4164 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4165 						PAGECACHE_TAG_DIRTY);
4166 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4167 }
4168 
4169 int __init f2fs_init_post_read_processing(void)
4170 {
4171 	bio_post_read_ctx_cache =
4172 		kmem_cache_create("f2fs_bio_post_read_ctx",
4173 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4174 	if (!bio_post_read_ctx_cache)
4175 		goto fail;
4176 	bio_post_read_ctx_pool =
4177 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4178 					 bio_post_read_ctx_cache);
4179 	if (!bio_post_read_ctx_pool)
4180 		goto fail_free_cache;
4181 	return 0;
4182 
4183 fail_free_cache:
4184 	kmem_cache_destroy(bio_post_read_ctx_cache);
4185 fail:
4186 	return -ENOMEM;
4187 }
4188 
4189 void f2fs_destroy_post_read_processing(void)
4190 {
4191 	mempool_destroy(bio_post_read_ctx_pool);
4192 	kmem_cache_destroy(bio_post_read_ctx_cache);
4193 }
4194 
4195 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4196 {
4197 	if (!f2fs_sb_has_encrypt(sbi) &&
4198 		!f2fs_sb_has_verity(sbi) &&
4199 		!f2fs_sb_has_compression(sbi))
4200 		return 0;
4201 
4202 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4203 						 WQ_UNBOUND | WQ_HIGHPRI,
4204 						 num_online_cpus());
4205 	if (!sbi->post_read_wq)
4206 		return -ENOMEM;
4207 	return 0;
4208 }
4209 
4210 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4211 {
4212 	if (sbi->post_read_wq)
4213 		destroy_workqueue(sbi->post_read_wq);
4214 }
4215 
4216 int __init f2fs_init_bio_entry_cache(void)
4217 {
4218 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4219 			sizeof(struct bio_entry));
4220 	if (!bio_entry_slab)
4221 		return -ENOMEM;
4222 	return 0;
4223 }
4224 
4225 void f2fs_destroy_bio_entry_cache(void)
4226 {
4227 	kmem_cache_destroy(bio_entry_slab);
4228 }
4229