1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/cleancache.h> 22 #include <linux/sched/signal.h> 23 #include <linux/fiemap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "trace.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask, 54 unsigned int nr_iovecs) 55 { 56 return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset); 57 } 58 59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio) 60 { 61 if (noio) { 62 /* No failure on bio allocation */ 63 return __f2fs_bio_alloc(GFP_NOIO, npages); 64 } 65 66 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 67 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO); 68 return NULL; 69 } 70 71 return __f2fs_bio_alloc(GFP_KERNEL, npages); 72 } 73 74 static bool __is_cp_guaranteed(struct page *page) 75 { 76 struct address_space *mapping = page->mapping; 77 struct inode *inode; 78 struct f2fs_sb_info *sbi; 79 80 if (!mapping) 81 return false; 82 83 if (f2fs_is_compressed_page(page)) 84 return false; 85 86 inode = mapping->host; 87 sbi = F2FS_I_SB(inode); 88 89 if (inode->i_ino == F2FS_META_INO(sbi) || 90 inode->i_ino == F2FS_NODE_INO(sbi) || 91 S_ISDIR(inode->i_mode) || 92 (S_ISREG(inode->i_mode) && 93 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 94 is_cold_data(page)) 95 return true; 96 return false; 97 } 98 99 static enum count_type __read_io_type(struct page *page) 100 { 101 struct address_space *mapping = page_file_mapping(page); 102 103 if (mapping) { 104 struct inode *inode = mapping->host; 105 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 106 107 if (inode->i_ino == F2FS_META_INO(sbi)) 108 return F2FS_RD_META; 109 110 if (inode->i_ino == F2FS_NODE_INO(sbi)) 111 return F2FS_RD_NODE; 112 } 113 return F2FS_RD_DATA; 114 } 115 116 /* postprocessing steps for read bios */ 117 enum bio_post_read_step { 118 STEP_DECRYPT, 119 STEP_DECOMPRESS_NOWQ, /* handle normal cluster data inplace */ 120 STEP_DECOMPRESS, /* handle compressed cluster data in workqueue */ 121 STEP_VERITY, 122 }; 123 124 struct bio_post_read_ctx { 125 struct bio *bio; 126 struct f2fs_sb_info *sbi; 127 struct work_struct work; 128 unsigned int enabled_steps; 129 }; 130 131 static void __read_end_io(struct bio *bio, bool compr, bool verity) 132 { 133 struct page *page; 134 struct bio_vec *bv; 135 struct bvec_iter_all iter_all; 136 137 bio_for_each_segment_all(bv, bio, iter_all) { 138 page = bv->bv_page; 139 140 #ifdef CONFIG_F2FS_FS_COMPRESSION 141 if (compr && f2fs_is_compressed_page(page)) { 142 f2fs_decompress_pages(bio, page, verity); 143 continue; 144 } 145 if (verity) 146 continue; 147 #endif 148 149 /* PG_error was set if any post_read step failed */ 150 if (bio->bi_status || PageError(page)) { 151 ClearPageUptodate(page); 152 /* will re-read again later */ 153 ClearPageError(page); 154 } else { 155 SetPageUptodate(page); 156 } 157 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 158 unlock_page(page); 159 } 160 } 161 162 static void f2fs_release_read_bio(struct bio *bio); 163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity) 164 { 165 if (!compr) 166 __read_end_io(bio, false, verity); 167 f2fs_release_read_bio(bio); 168 } 169 170 static void f2fs_decompress_bio(struct bio *bio, bool verity) 171 { 172 __read_end_io(bio, true, verity); 173 } 174 175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 176 177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx) 178 { 179 fscrypt_decrypt_bio(ctx->bio); 180 } 181 182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx) 183 { 184 f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY)); 185 } 186 187 #ifdef CONFIG_F2FS_FS_COMPRESSION 188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size) 189 { 190 f2fs_decompress_end_io(rpages, cluster_size, false, true); 191 } 192 193 static void f2fs_verify_bio(struct bio *bio) 194 { 195 struct bio_vec *bv; 196 struct bvec_iter_all iter_all; 197 198 bio_for_each_segment_all(bv, bio, iter_all) { 199 struct page *page = bv->bv_page; 200 struct decompress_io_ctx *dic; 201 202 dic = (struct decompress_io_ctx *)page_private(page); 203 204 if (dic) { 205 if (atomic_dec_return(&dic->pending_pages)) 206 continue; 207 f2fs_verify_pages(dic->rpages, 208 dic->cluster_size); 209 f2fs_free_dic(dic); 210 continue; 211 } 212 213 if (bio->bi_status || PageError(page)) 214 goto clear_uptodate; 215 216 if (fsverity_verify_page(page)) { 217 SetPageUptodate(page); 218 goto unlock; 219 } 220 clear_uptodate: 221 ClearPageUptodate(page); 222 ClearPageError(page); 223 unlock: 224 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 225 unlock_page(page); 226 } 227 } 228 #endif 229 230 static void f2fs_verity_work(struct work_struct *work) 231 { 232 struct bio_post_read_ctx *ctx = 233 container_of(work, struct bio_post_read_ctx, work); 234 struct bio *bio = ctx->bio; 235 #ifdef CONFIG_F2FS_FS_COMPRESSION 236 unsigned int enabled_steps = ctx->enabled_steps; 237 #endif 238 239 /* 240 * fsverity_verify_bio() may call readpages() again, and while verity 241 * will be disabled for this, decryption may still be needed, resulting 242 * in another bio_post_read_ctx being allocated. So to prevent 243 * deadlocks we need to release the current ctx to the mempool first. 244 * This assumes that verity is the last post-read step. 245 */ 246 mempool_free(ctx, bio_post_read_ctx_pool); 247 bio->bi_private = NULL; 248 249 #ifdef CONFIG_F2FS_FS_COMPRESSION 250 /* previous step is decompression */ 251 if (enabled_steps & (1 << STEP_DECOMPRESS)) { 252 f2fs_verify_bio(bio); 253 f2fs_release_read_bio(bio); 254 return; 255 } 256 #endif 257 258 fsverity_verify_bio(bio); 259 __f2fs_read_end_io(bio, false, false); 260 } 261 262 static void f2fs_post_read_work(struct work_struct *work) 263 { 264 struct bio_post_read_ctx *ctx = 265 container_of(work, struct bio_post_read_ctx, work); 266 267 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) 268 f2fs_decrypt_work(ctx); 269 270 if (ctx->enabled_steps & (1 << STEP_DECOMPRESS)) 271 f2fs_decompress_work(ctx); 272 273 if (ctx->enabled_steps & (1 << STEP_VERITY)) { 274 INIT_WORK(&ctx->work, f2fs_verity_work); 275 fsverity_enqueue_verify_work(&ctx->work); 276 return; 277 } 278 279 __f2fs_read_end_io(ctx->bio, 280 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false); 281 } 282 283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi, 284 struct work_struct *work) 285 { 286 queue_work(sbi->post_read_wq, work); 287 } 288 289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 290 { 291 /* 292 * We use different work queues for decryption and for verity because 293 * verity may require reading metadata pages that need decryption, and 294 * we shouldn't recurse to the same workqueue. 295 */ 296 297 if (ctx->enabled_steps & (1 << STEP_DECRYPT) || 298 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) { 299 INIT_WORK(&ctx->work, f2fs_post_read_work); 300 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work); 301 return; 302 } 303 304 if (ctx->enabled_steps & (1 << STEP_VERITY)) { 305 INIT_WORK(&ctx->work, f2fs_verity_work); 306 fsverity_enqueue_verify_work(&ctx->work); 307 return; 308 } 309 310 __f2fs_read_end_io(ctx->bio, false, false); 311 } 312 313 static bool f2fs_bio_post_read_required(struct bio *bio) 314 { 315 return bio->bi_private; 316 } 317 318 static void f2fs_read_end_io(struct bio *bio) 319 { 320 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 321 322 if (time_to_inject(sbi, FAULT_READ_IO)) { 323 f2fs_show_injection_info(sbi, FAULT_READ_IO); 324 bio->bi_status = BLK_STS_IOERR; 325 } 326 327 if (f2fs_bio_post_read_required(bio)) { 328 struct bio_post_read_ctx *ctx = bio->bi_private; 329 330 bio_post_read_processing(ctx); 331 return; 332 } 333 334 __f2fs_read_end_io(bio, false, false); 335 } 336 337 static void f2fs_write_end_io(struct bio *bio) 338 { 339 struct f2fs_sb_info *sbi = bio->bi_private; 340 struct bio_vec *bvec; 341 struct bvec_iter_all iter_all; 342 343 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 344 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 345 bio->bi_status = BLK_STS_IOERR; 346 } 347 348 bio_for_each_segment_all(bvec, bio, iter_all) { 349 struct page *page = bvec->bv_page; 350 enum count_type type = WB_DATA_TYPE(page); 351 352 if (IS_DUMMY_WRITTEN_PAGE(page)) { 353 set_page_private(page, (unsigned long)NULL); 354 ClearPagePrivate(page); 355 unlock_page(page); 356 mempool_free(page, sbi->write_io_dummy); 357 358 if (unlikely(bio->bi_status)) 359 f2fs_stop_checkpoint(sbi, true); 360 continue; 361 } 362 363 fscrypt_finalize_bounce_page(&page); 364 365 #ifdef CONFIG_F2FS_FS_COMPRESSION 366 if (f2fs_is_compressed_page(page)) { 367 f2fs_compress_write_end_io(bio, page); 368 continue; 369 } 370 #endif 371 372 if (unlikely(bio->bi_status)) { 373 mapping_set_error(page->mapping, -EIO); 374 if (type == F2FS_WB_CP_DATA) 375 f2fs_stop_checkpoint(sbi, true); 376 } 377 378 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 379 page->index != nid_of_node(page)); 380 381 dec_page_count(sbi, type); 382 if (f2fs_in_warm_node_list(sbi, page)) 383 f2fs_del_fsync_node_entry(sbi, page); 384 clear_cold_data(page); 385 end_page_writeback(page); 386 } 387 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 388 wq_has_sleeper(&sbi->cp_wait)) 389 wake_up(&sbi->cp_wait); 390 391 bio_put(bio); 392 } 393 394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 395 block_t blk_addr, struct bio *bio) 396 { 397 struct block_device *bdev = sbi->sb->s_bdev; 398 int i; 399 400 if (f2fs_is_multi_device(sbi)) { 401 for (i = 0; i < sbi->s_ndevs; i++) { 402 if (FDEV(i).start_blk <= blk_addr && 403 FDEV(i).end_blk >= blk_addr) { 404 blk_addr -= FDEV(i).start_blk; 405 bdev = FDEV(i).bdev; 406 break; 407 } 408 } 409 } 410 if (bio) { 411 bio_set_dev(bio, bdev); 412 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 413 } 414 return bdev; 415 } 416 417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 418 { 419 int i; 420 421 if (!f2fs_is_multi_device(sbi)) 422 return 0; 423 424 for (i = 0; i < sbi->s_ndevs; i++) 425 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 426 return i; 427 return 0; 428 } 429 430 /* 431 * Return true, if pre_bio's bdev is same as its target device. 432 */ 433 static bool __same_bdev(struct f2fs_sb_info *sbi, 434 block_t blk_addr, struct bio *bio) 435 { 436 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 437 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 438 } 439 440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 441 { 442 struct f2fs_sb_info *sbi = fio->sbi; 443 struct bio *bio; 444 445 bio = f2fs_bio_alloc(sbi, npages, true); 446 447 f2fs_target_device(sbi, fio->new_blkaddr, bio); 448 if (is_read_io(fio->op)) { 449 bio->bi_end_io = f2fs_read_end_io; 450 bio->bi_private = NULL; 451 } else { 452 bio->bi_end_io = f2fs_write_end_io; 453 bio->bi_private = sbi; 454 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 455 fio->type, fio->temp); 456 } 457 if (fio->io_wbc) 458 wbc_init_bio(fio->io_wbc, bio); 459 460 return bio; 461 } 462 463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 464 pgoff_t first_idx, 465 const struct f2fs_io_info *fio, 466 gfp_t gfp_mask) 467 { 468 /* 469 * The f2fs garbage collector sets ->encrypted_page when it wants to 470 * read/write raw data without encryption. 471 */ 472 if (!fio || !fio->encrypted_page) 473 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 474 } 475 476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 477 pgoff_t next_idx, 478 const struct f2fs_io_info *fio) 479 { 480 /* 481 * The f2fs garbage collector sets ->encrypted_page when it wants to 482 * read/write raw data without encryption. 483 */ 484 if (fio && fio->encrypted_page) 485 return !bio_has_crypt_ctx(bio); 486 487 return fscrypt_mergeable_bio(bio, inode, next_idx); 488 } 489 490 static inline void __submit_bio(struct f2fs_sb_info *sbi, 491 struct bio *bio, enum page_type type) 492 { 493 if (!is_read_io(bio_op(bio))) { 494 unsigned int start; 495 496 if (type != DATA && type != NODE) 497 goto submit_io; 498 499 if (f2fs_lfs_mode(sbi) && current->plug) 500 blk_finish_plug(current->plug); 501 502 if (F2FS_IO_ALIGNED(sbi)) 503 goto submit_io; 504 505 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 506 start %= F2FS_IO_SIZE(sbi); 507 508 if (start == 0) 509 goto submit_io; 510 511 /* fill dummy pages */ 512 for (; start < F2FS_IO_SIZE(sbi); start++) { 513 struct page *page = 514 mempool_alloc(sbi->write_io_dummy, 515 GFP_NOIO | __GFP_NOFAIL); 516 f2fs_bug_on(sbi, !page); 517 518 zero_user_segment(page, 0, PAGE_SIZE); 519 SetPagePrivate(page); 520 set_page_private(page, DUMMY_WRITTEN_PAGE); 521 lock_page(page); 522 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 523 f2fs_bug_on(sbi, 1); 524 } 525 /* 526 * In the NODE case, we lose next block address chain. So, we 527 * need to do checkpoint in f2fs_sync_file. 528 */ 529 if (type == NODE) 530 set_sbi_flag(sbi, SBI_NEED_CP); 531 } 532 submit_io: 533 if (is_read_io(bio_op(bio))) 534 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 535 else 536 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 537 submit_bio(bio); 538 } 539 540 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 541 struct bio *bio, enum page_type type) 542 { 543 __submit_bio(sbi, bio, type); 544 } 545 546 static void __attach_io_flag(struct f2fs_io_info *fio) 547 { 548 struct f2fs_sb_info *sbi = fio->sbi; 549 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 550 unsigned int io_flag, fua_flag, meta_flag; 551 552 if (fio->type == DATA) 553 io_flag = sbi->data_io_flag; 554 else if (fio->type == NODE) 555 io_flag = sbi->node_io_flag; 556 else 557 return; 558 559 fua_flag = io_flag & temp_mask; 560 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 561 562 /* 563 * data/node io flag bits per temp: 564 * REQ_META | REQ_FUA | 565 * 5 | 4 | 3 | 2 | 1 | 0 | 566 * Cold | Warm | Hot | Cold | Warm | Hot | 567 */ 568 if ((1 << fio->temp) & meta_flag) 569 fio->op_flags |= REQ_META; 570 if ((1 << fio->temp) & fua_flag) 571 fio->op_flags |= REQ_FUA; 572 } 573 574 static void __submit_merged_bio(struct f2fs_bio_info *io) 575 { 576 struct f2fs_io_info *fio = &io->fio; 577 578 if (!io->bio) 579 return; 580 581 __attach_io_flag(fio); 582 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 583 584 if (is_read_io(fio->op)) 585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 586 else 587 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 588 589 __submit_bio(io->sbi, io->bio, fio->type); 590 io->bio = NULL; 591 } 592 593 static bool __has_merged_page(struct bio *bio, struct inode *inode, 594 struct page *page, nid_t ino) 595 { 596 struct bio_vec *bvec; 597 struct bvec_iter_all iter_all; 598 599 if (!bio) 600 return false; 601 602 if (!inode && !page && !ino) 603 return true; 604 605 bio_for_each_segment_all(bvec, bio, iter_all) { 606 struct page *target = bvec->bv_page; 607 608 if (fscrypt_is_bounce_page(target)) { 609 target = fscrypt_pagecache_page(target); 610 if (IS_ERR(target)) 611 continue; 612 } 613 if (f2fs_is_compressed_page(target)) { 614 target = f2fs_compress_control_page(target); 615 if (IS_ERR(target)) 616 continue; 617 } 618 619 if (inode && inode == target->mapping->host) 620 return true; 621 if (page && page == target) 622 return true; 623 if (ino && ino == ino_of_node(target)) 624 return true; 625 } 626 627 return false; 628 } 629 630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 631 enum page_type type, enum temp_type temp) 632 { 633 enum page_type btype = PAGE_TYPE_OF_BIO(type); 634 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 635 636 down_write(&io->io_rwsem); 637 638 /* change META to META_FLUSH in the checkpoint procedure */ 639 if (type >= META_FLUSH) { 640 io->fio.type = META_FLUSH; 641 io->fio.op = REQ_OP_WRITE; 642 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 643 if (!test_opt(sbi, NOBARRIER)) 644 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 645 } 646 __submit_merged_bio(io); 647 up_write(&io->io_rwsem); 648 } 649 650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 651 struct inode *inode, struct page *page, 652 nid_t ino, enum page_type type, bool force) 653 { 654 enum temp_type temp; 655 bool ret = true; 656 657 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 658 if (!force) { 659 enum page_type btype = PAGE_TYPE_OF_BIO(type); 660 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 661 662 down_read(&io->io_rwsem); 663 ret = __has_merged_page(io->bio, inode, page, ino); 664 up_read(&io->io_rwsem); 665 } 666 if (ret) 667 __f2fs_submit_merged_write(sbi, type, temp); 668 669 /* TODO: use HOT temp only for meta pages now. */ 670 if (type >= META) 671 break; 672 } 673 } 674 675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 676 { 677 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 678 } 679 680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 681 struct inode *inode, struct page *page, 682 nid_t ino, enum page_type type) 683 { 684 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 685 } 686 687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 688 { 689 f2fs_submit_merged_write(sbi, DATA); 690 f2fs_submit_merged_write(sbi, NODE); 691 f2fs_submit_merged_write(sbi, META); 692 } 693 694 /* 695 * Fill the locked page with data located in the block address. 696 * A caller needs to unlock the page on failure. 697 */ 698 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 699 { 700 struct bio *bio; 701 struct page *page = fio->encrypted_page ? 702 fio->encrypted_page : fio->page; 703 704 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 705 fio->is_por ? META_POR : (__is_meta_io(fio) ? 706 META_GENERIC : DATA_GENERIC_ENHANCE))) 707 return -EFSCORRUPTED; 708 709 trace_f2fs_submit_page_bio(page, fio); 710 f2fs_trace_ios(fio, 0); 711 712 /* Allocate a new bio */ 713 bio = __bio_alloc(fio, 1); 714 715 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 716 fio->page->index, fio, GFP_NOIO); 717 718 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 719 bio_put(bio); 720 return -EFAULT; 721 } 722 723 if (fio->io_wbc && !is_read_io(fio->op)) 724 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 725 726 __attach_io_flag(fio); 727 bio_set_op_attrs(bio, fio->op, fio->op_flags); 728 729 inc_page_count(fio->sbi, is_read_io(fio->op) ? 730 __read_io_type(page): WB_DATA_TYPE(fio->page)); 731 732 __submit_bio(fio->sbi, bio, fio->type); 733 return 0; 734 } 735 736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 737 block_t last_blkaddr, block_t cur_blkaddr) 738 { 739 if (last_blkaddr + 1 != cur_blkaddr) 740 return false; 741 return __same_bdev(sbi, cur_blkaddr, bio); 742 } 743 744 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 745 struct f2fs_io_info *fio) 746 { 747 if (io->fio.op != fio->op) 748 return false; 749 return io->fio.op_flags == fio->op_flags; 750 } 751 752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 753 struct f2fs_bio_info *io, 754 struct f2fs_io_info *fio, 755 block_t last_blkaddr, 756 block_t cur_blkaddr) 757 { 758 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 759 unsigned int filled_blocks = 760 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 761 unsigned int io_size = F2FS_IO_SIZE(sbi); 762 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 763 764 /* IOs in bio is aligned and left space of vectors is not enough */ 765 if (!(filled_blocks % io_size) && left_vecs < io_size) 766 return false; 767 } 768 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 769 return false; 770 return io_type_is_mergeable(io, fio); 771 } 772 773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 774 struct page *page, enum temp_type temp) 775 { 776 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 777 struct bio_entry *be; 778 779 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 780 be->bio = bio; 781 bio_get(bio); 782 783 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 784 f2fs_bug_on(sbi, 1); 785 786 down_write(&io->bio_list_lock); 787 list_add_tail(&be->list, &io->bio_list); 788 up_write(&io->bio_list_lock); 789 } 790 791 static void del_bio_entry(struct bio_entry *be) 792 { 793 list_del(&be->list); 794 kmem_cache_free(bio_entry_slab, be); 795 } 796 797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 798 struct page *page) 799 { 800 struct f2fs_sb_info *sbi = fio->sbi; 801 enum temp_type temp; 802 bool found = false; 803 int ret = -EAGAIN; 804 805 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 806 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 807 struct list_head *head = &io->bio_list; 808 struct bio_entry *be; 809 810 down_write(&io->bio_list_lock); 811 list_for_each_entry(be, head, list) { 812 if (be->bio != *bio) 813 continue; 814 815 found = true; 816 817 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 818 *fio->last_block, 819 fio->new_blkaddr)); 820 if (f2fs_crypt_mergeable_bio(*bio, 821 fio->page->mapping->host, 822 fio->page->index, fio) && 823 bio_add_page(*bio, page, PAGE_SIZE, 0) == 824 PAGE_SIZE) { 825 ret = 0; 826 break; 827 } 828 829 /* page can't be merged into bio; submit the bio */ 830 del_bio_entry(be); 831 __submit_bio(sbi, *bio, DATA); 832 break; 833 } 834 up_write(&io->bio_list_lock); 835 } 836 837 if (ret) { 838 bio_put(*bio); 839 *bio = NULL; 840 } 841 842 return ret; 843 } 844 845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 846 struct bio **bio, struct page *page) 847 { 848 enum temp_type temp; 849 bool found = false; 850 struct bio *target = bio ? *bio : NULL; 851 852 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 853 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 854 struct list_head *head = &io->bio_list; 855 struct bio_entry *be; 856 857 if (list_empty(head)) 858 continue; 859 860 down_read(&io->bio_list_lock); 861 list_for_each_entry(be, head, list) { 862 if (target) 863 found = (target == be->bio); 864 else 865 found = __has_merged_page(be->bio, NULL, 866 page, 0); 867 if (found) 868 break; 869 } 870 up_read(&io->bio_list_lock); 871 872 if (!found) 873 continue; 874 875 found = false; 876 877 down_write(&io->bio_list_lock); 878 list_for_each_entry(be, head, list) { 879 if (target) 880 found = (target == be->bio); 881 else 882 found = __has_merged_page(be->bio, NULL, 883 page, 0); 884 if (found) { 885 target = be->bio; 886 del_bio_entry(be); 887 break; 888 } 889 } 890 up_write(&io->bio_list_lock); 891 } 892 893 if (found) 894 __submit_bio(sbi, target, DATA); 895 if (bio && *bio) { 896 bio_put(*bio); 897 *bio = NULL; 898 } 899 } 900 901 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 902 { 903 struct bio *bio = *fio->bio; 904 struct page *page = fio->encrypted_page ? 905 fio->encrypted_page : fio->page; 906 907 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 908 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 909 return -EFSCORRUPTED; 910 911 trace_f2fs_submit_page_bio(page, fio); 912 f2fs_trace_ios(fio, 0); 913 914 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 915 fio->new_blkaddr)) 916 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 917 alloc_new: 918 if (!bio) { 919 bio = __bio_alloc(fio, BIO_MAX_PAGES); 920 __attach_io_flag(fio); 921 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 922 fio->page->index, fio, GFP_NOIO); 923 bio_set_op_attrs(bio, fio->op, fio->op_flags); 924 925 add_bio_entry(fio->sbi, bio, page, fio->temp); 926 } else { 927 if (add_ipu_page(fio, &bio, page)) 928 goto alloc_new; 929 } 930 931 if (fio->io_wbc) 932 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 933 934 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 935 936 *fio->last_block = fio->new_blkaddr; 937 *fio->bio = bio; 938 939 return 0; 940 } 941 942 void f2fs_submit_page_write(struct f2fs_io_info *fio) 943 { 944 struct f2fs_sb_info *sbi = fio->sbi; 945 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 946 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 947 struct page *bio_page; 948 949 f2fs_bug_on(sbi, is_read_io(fio->op)); 950 951 down_write(&io->io_rwsem); 952 next: 953 if (fio->in_list) { 954 spin_lock(&io->io_lock); 955 if (list_empty(&io->io_list)) { 956 spin_unlock(&io->io_lock); 957 goto out; 958 } 959 fio = list_first_entry(&io->io_list, 960 struct f2fs_io_info, list); 961 list_del(&fio->list); 962 spin_unlock(&io->io_lock); 963 } 964 965 verify_fio_blkaddr(fio); 966 967 if (fio->encrypted_page) 968 bio_page = fio->encrypted_page; 969 else if (fio->compressed_page) 970 bio_page = fio->compressed_page; 971 else 972 bio_page = fio->page; 973 974 /* set submitted = true as a return value */ 975 fio->submitted = true; 976 977 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 978 979 if (io->bio && 980 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 981 fio->new_blkaddr) || 982 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 983 bio_page->index, fio))) 984 __submit_merged_bio(io); 985 alloc_new: 986 if (io->bio == NULL) { 987 if (F2FS_IO_ALIGNED(sbi) && 988 (fio->type == DATA || fio->type == NODE) && 989 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 990 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 991 fio->retry = true; 992 goto skip; 993 } 994 io->bio = __bio_alloc(fio, BIO_MAX_PAGES); 995 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 996 bio_page->index, fio, GFP_NOIO); 997 io->fio = *fio; 998 } 999 1000 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1001 __submit_merged_bio(io); 1002 goto alloc_new; 1003 } 1004 1005 if (fio->io_wbc) 1006 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 1007 1008 io->last_block_in_bio = fio->new_blkaddr; 1009 f2fs_trace_ios(fio, 0); 1010 1011 trace_f2fs_submit_page_write(fio->page, fio); 1012 skip: 1013 if (fio->in_list) 1014 goto next; 1015 out: 1016 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1017 !f2fs_is_checkpoint_ready(sbi)) 1018 __submit_merged_bio(io); 1019 up_write(&io->io_rwsem); 1020 } 1021 1022 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 1023 { 1024 return fsverity_active(inode) && 1025 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 1026 } 1027 1028 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1029 unsigned nr_pages, unsigned op_flag, 1030 pgoff_t first_idx, bool for_write) 1031 { 1032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1033 struct bio *bio; 1034 struct bio_post_read_ctx *ctx; 1035 unsigned int post_read_steps = 0; 1036 1037 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), 1038 for_write); 1039 if (!bio) 1040 return ERR_PTR(-ENOMEM); 1041 1042 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1043 1044 f2fs_target_device(sbi, blkaddr, bio); 1045 bio->bi_end_io = f2fs_read_end_io; 1046 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 1047 1048 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1049 post_read_steps |= 1 << STEP_DECRYPT; 1050 if (f2fs_compressed_file(inode)) 1051 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ; 1052 if (f2fs_need_verity(inode, first_idx)) 1053 post_read_steps |= 1 << STEP_VERITY; 1054 1055 if (post_read_steps) { 1056 /* Due to the mempool, this never fails. */ 1057 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1058 ctx->bio = bio; 1059 ctx->sbi = sbi; 1060 ctx->enabled_steps = post_read_steps; 1061 bio->bi_private = ctx; 1062 } 1063 1064 return bio; 1065 } 1066 1067 static void f2fs_release_read_bio(struct bio *bio) 1068 { 1069 if (bio->bi_private) 1070 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1071 bio_put(bio); 1072 } 1073 1074 /* This can handle encryption stuffs */ 1075 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1076 block_t blkaddr, int op_flags, bool for_write) 1077 { 1078 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1079 struct bio *bio; 1080 1081 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1082 page->index, for_write); 1083 if (IS_ERR(bio)) 1084 return PTR_ERR(bio); 1085 1086 /* wait for GCed page writeback via META_MAPPING */ 1087 f2fs_wait_on_block_writeback(inode, blkaddr); 1088 1089 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1090 bio_put(bio); 1091 return -EFAULT; 1092 } 1093 ClearPageError(page); 1094 inc_page_count(sbi, F2FS_RD_DATA); 1095 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1096 __submit_bio(sbi, bio, DATA); 1097 return 0; 1098 } 1099 1100 static void __set_data_blkaddr(struct dnode_of_data *dn) 1101 { 1102 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1103 __le32 *addr_array; 1104 int base = 0; 1105 1106 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1107 base = get_extra_isize(dn->inode); 1108 1109 /* Get physical address of data block */ 1110 addr_array = blkaddr_in_node(rn); 1111 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1112 } 1113 1114 /* 1115 * Lock ordering for the change of data block address: 1116 * ->data_page 1117 * ->node_page 1118 * update block addresses in the node page 1119 */ 1120 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1121 { 1122 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1123 __set_data_blkaddr(dn); 1124 if (set_page_dirty(dn->node_page)) 1125 dn->node_changed = true; 1126 } 1127 1128 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1129 { 1130 dn->data_blkaddr = blkaddr; 1131 f2fs_set_data_blkaddr(dn); 1132 f2fs_update_extent_cache(dn); 1133 } 1134 1135 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1136 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1137 { 1138 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1139 int err; 1140 1141 if (!count) 1142 return 0; 1143 1144 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1145 return -EPERM; 1146 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1147 return err; 1148 1149 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1150 dn->ofs_in_node, count); 1151 1152 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1153 1154 for (; count > 0; dn->ofs_in_node++) { 1155 block_t blkaddr = f2fs_data_blkaddr(dn); 1156 if (blkaddr == NULL_ADDR) { 1157 dn->data_blkaddr = NEW_ADDR; 1158 __set_data_blkaddr(dn); 1159 count--; 1160 } 1161 } 1162 1163 if (set_page_dirty(dn->node_page)) 1164 dn->node_changed = true; 1165 return 0; 1166 } 1167 1168 /* Should keep dn->ofs_in_node unchanged */ 1169 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1170 { 1171 unsigned int ofs_in_node = dn->ofs_in_node; 1172 int ret; 1173 1174 ret = f2fs_reserve_new_blocks(dn, 1); 1175 dn->ofs_in_node = ofs_in_node; 1176 return ret; 1177 } 1178 1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1180 { 1181 bool need_put = dn->inode_page ? false : true; 1182 int err; 1183 1184 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1185 if (err) 1186 return err; 1187 1188 if (dn->data_blkaddr == NULL_ADDR) 1189 err = f2fs_reserve_new_block(dn); 1190 if (err || need_put) 1191 f2fs_put_dnode(dn); 1192 return err; 1193 } 1194 1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1196 { 1197 struct extent_info ei = {0, 0, 0}; 1198 struct inode *inode = dn->inode; 1199 1200 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1201 dn->data_blkaddr = ei.blk + index - ei.fofs; 1202 return 0; 1203 } 1204 1205 return f2fs_reserve_block(dn, index); 1206 } 1207 1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1209 int op_flags, bool for_write) 1210 { 1211 struct address_space *mapping = inode->i_mapping; 1212 struct dnode_of_data dn; 1213 struct page *page; 1214 struct extent_info ei = {0,0,0}; 1215 int err; 1216 1217 page = f2fs_grab_cache_page(mapping, index, for_write); 1218 if (!page) 1219 return ERR_PTR(-ENOMEM); 1220 1221 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1222 dn.data_blkaddr = ei.blk + index - ei.fofs; 1223 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1224 DATA_GENERIC_ENHANCE_READ)) { 1225 err = -EFSCORRUPTED; 1226 goto put_err; 1227 } 1228 goto got_it; 1229 } 1230 1231 set_new_dnode(&dn, inode, NULL, NULL, 0); 1232 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1233 if (err) 1234 goto put_err; 1235 f2fs_put_dnode(&dn); 1236 1237 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1238 err = -ENOENT; 1239 goto put_err; 1240 } 1241 if (dn.data_blkaddr != NEW_ADDR && 1242 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1243 dn.data_blkaddr, 1244 DATA_GENERIC_ENHANCE)) { 1245 err = -EFSCORRUPTED; 1246 goto put_err; 1247 } 1248 got_it: 1249 if (PageUptodate(page)) { 1250 unlock_page(page); 1251 return page; 1252 } 1253 1254 /* 1255 * A new dentry page is allocated but not able to be written, since its 1256 * new inode page couldn't be allocated due to -ENOSPC. 1257 * In such the case, its blkaddr can be remained as NEW_ADDR. 1258 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1259 * f2fs_init_inode_metadata. 1260 */ 1261 if (dn.data_blkaddr == NEW_ADDR) { 1262 zero_user_segment(page, 0, PAGE_SIZE); 1263 if (!PageUptodate(page)) 1264 SetPageUptodate(page); 1265 unlock_page(page); 1266 return page; 1267 } 1268 1269 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1270 op_flags, for_write); 1271 if (err) 1272 goto put_err; 1273 return page; 1274 1275 put_err: 1276 f2fs_put_page(page, 1); 1277 return ERR_PTR(err); 1278 } 1279 1280 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1281 { 1282 struct address_space *mapping = inode->i_mapping; 1283 struct page *page; 1284 1285 page = find_get_page(mapping, index); 1286 if (page && PageUptodate(page)) 1287 return page; 1288 f2fs_put_page(page, 0); 1289 1290 page = f2fs_get_read_data_page(inode, index, 0, false); 1291 if (IS_ERR(page)) 1292 return page; 1293 1294 if (PageUptodate(page)) 1295 return page; 1296 1297 wait_on_page_locked(page); 1298 if (unlikely(!PageUptodate(page))) { 1299 f2fs_put_page(page, 0); 1300 return ERR_PTR(-EIO); 1301 } 1302 return page; 1303 } 1304 1305 /* 1306 * If it tries to access a hole, return an error. 1307 * Because, the callers, functions in dir.c and GC, should be able to know 1308 * whether this page exists or not. 1309 */ 1310 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1311 bool for_write) 1312 { 1313 struct address_space *mapping = inode->i_mapping; 1314 struct page *page; 1315 repeat: 1316 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1317 if (IS_ERR(page)) 1318 return page; 1319 1320 /* wait for read completion */ 1321 lock_page(page); 1322 if (unlikely(page->mapping != mapping)) { 1323 f2fs_put_page(page, 1); 1324 goto repeat; 1325 } 1326 if (unlikely(!PageUptodate(page))) { 1327 f2fs_put_page(page, 1); 1328 return ERR_PTR(-EIO); 1329 } 1330 return page; 1331 } 1332 1333 /* 1334 * Caller ensures that this data page is never allocated. 1335 * A new zero-filled data page is allocated in the page cache. 1336 * 1337 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1338 * f2fs_unlock_op(). 1339 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1340 * ipage should be released by this function. 1341 */ 1342 struct page *f2fs_get_new_data_page(struct inode *inode, 1343 struct page *ipage, pgoff_t index, bool new_i_size) 1344 { 1345 struct address_space *mapping = inode->i_mapping; 1346 struct page *page; 1347 struct dnode_of_data dn; 1348 int err; 1349 1350 page = f2fs_grab_cache_page(mapping, index, true); 1351 if (!page) { 1352 /* 1353 * before exiting, we should make sure ipage will be released 1354 * if any error occur. 1355 */ 1356 f2fs_put_page(ipage, 1); 1357 return ERR_PTR(-ENOMEM); 1358 } 1359 1360 set_new_dnode(&dn, inode, ipage, NULL, 0); 1361 err = f2fs_reserve_block(&dn, index); 1362 if (err) { 1363 f2fs_put_page(page, 1); 1364 return ERR_PTR(err); 1365 } 1366 if (!ipage) 1367 f2fs_put_dnode(&dn); 1368 1369 if (PageUptodate(page)) 1370 goto got_it; 1371 1372 if (dn.data_blkaddr == NEW_ADDR) { 1373 zero_user_segment(page, 0, PAGE_SIZE); 1374 if (!PageUptodate(page)) 1375 SetPageUptodate(page); 1376 } else { 1377 f2fs_put_page(page, 1); 1378 1379 /* if ipage exists, blkaddr should be NEW_ADDR */ 1380 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1381 page = f2fs_get_lock_data_page(inode, index, true); 1382 if (IS_ERR(page)) 1383 return page; 1384 } 1385 got_it: 1386 if (new_i_size && i_size_read(inode) < 1387 ((loff_t)(index + 1) << PAGE_SHIFT)) 1388 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1389 return page; 1390 } 1391 1392 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1393 { 1394 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1395 struct f2fs_summary sum; 1396 struct node_info ni; 1397 block_t old_blkaddr; 1398 blkcnt_t count = 1; 1399 int err; 1400 1401 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1402 return -EPERM; 1403 1404 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1405 if (err) 1406 return err; 1407 1408 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1409 if (dn->data_blkaddr != NULL_ADDR) 1410 goto alloc; 1411 1412 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1413 return err; 1414 1415 alloc: 1416 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1417 old_blkaddr = dn->data_blkaddr; 1418 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1419 &sum, seg_type, NULL); 1420 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1421 invalidate_mapping_pages(META_MAPPING(sbi), 1422 old_blkaddr, old_blkaddr); 1423 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1424 1425 /* 1426 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1427 * data from unwritten block via dio_read. 1428 */ 1429 return 0; 1430 } 1431 1432 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1433 { 1434 struct inode *inode = file_inode(iocb->ki_filp); 1435 struct f2fs_map_blocks map; 1436 int flag; 1437 int err = 0; 1438 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1439 1440 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1441 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1442 if (map.m_len > map.m_lblk) 1443 map.m_len -= map.m_lblk; 1444 else 1445 map.m_len = 0; 1446 1447 map.m_next_pgofs = NULL; 1448 map.m_next_extent = NULL; 1449 map.m_seg_type = NO_CHECK_TYPE; 1450 map.m_may_create = true; 1451 1452 if (direct_io) { 1453 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1454 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1455 F2FS_GET_BLOCK_PRE_AIO : 1456 F2FS_GET_BLOCK_PRE_DIO; 1457 goto map_blocks; 1458 } 1459 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1460 err = f2fs_convert_inline_inode(inode); 1461 if (err) 1462 return err; 1463 } 1464 if (f2fs_has_inline_data(inode)) 1465 return err; 1466 1467 flag = F2FS_GET_BLOCK_PRE_AIO; 1468 1469 map_blocks: 1470 err = f2fs_map_blocks(inode, &map, 1, flag); 1471 if (map.m_len > 0 && err == -ENOSPC) { 1472 if (!direct_io) 1473 set_inode_flag(inode, FI_NO_PREALLOC); 1474 err = 0; 1475 } 1476 return err; 1477 } 1478 1479 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1480 { 1481 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1482 if (lock) 1483 down_read(&sbi->node_change); 1484 else 1485 up_read(&sbi->node_change); 1486 } else { 1487 if (lock) 1488 f2fs_lock_op(sbi); 1489 else 1490 f2fs_unlock_op(sbi); 1491 } 1492 } 1493 1494 /* 1495 * f2fs_map_blocks() tries to find or build mapping relationship which 1496 * maps continuous logical blocks to physical blocks, and return such 1497 * info via f2fs_map_blocks structure. 1498 */ 1499 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1500 int create, int flag) 1501 { 1502 unsigned int maxblocks = map->m_len; 1503 struct dnode_of_data dn; 1504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1505 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1506 pgoff_t pgofs, end_offset, end; 1507 int err = 0, ofs = 1; 1508 unsigned int ofs_in_node, last_ofs_in_node; 1509 blkcnt_t prealloc; 1510 struct extent_info ei = {0,0,0}; 1511 block_t blkaddr; 1512 unsigned int start_pgofs; 1513 1514 if (!maxblocks) 1515 return 0; 1516 1517 map->m_len = 0; 1518 map->m_flags = 0; 1519 1520 /* it only supports block size == page size */ 1521 pgofs = (pgoff_t)map->m_lblk; 1522 end = pgofs + maxblocks; 1523 1524 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1525 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1526 map->m_may_create) 1527 goto next_dnode; 1528 1529 map->m_pblk = ei.blk + pgofs - ei.fofs; 1530 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1531 map->m_flags = F2FS_MAP_MAPPED; 1532 if (map->m_next_extent) 1533 *map->m_next_extent = pgofs + map->m_len; 1534 1535 /* for hardware encryption, but to avoid potential issue in future */ 1536 if (flag == F2FS_GET_BLOCK_DIO) 1537 f2fs_wait_on_block_writeback_range(inode, 1538 map->m_pblk, map->m_len); 1539 goto out; 1540 } 1541 1542 next_dnode: 1543 if (map->m_may_create) 1544 f2fs_do_map_lock(sbi, flag, true); 1545 1546 /* When reading holes, we need its node page */ 1547 set_new_dnode(&dn, inode, NULL, NULL, 0); 1548 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1549 if (err) { 1550 if (flag == F2FS_GET_BLOCK_BMAP) 1551 map->m_pblk = 0; 1552 if (err == -ENOENT) { 1553 err = 0; 1554 if (map->m_next_pgofs) 1555 *map->m_next_pgofs = 1556 f2fs_get_next_page_offset(&dn, pgofs); 1557 if (map->m_next_extent) 1558 *map->m_next_extent = 1559 f2fs_get_next_page_offset(&dn, pgofs); 1560 } 1561 goto unlock_out; 1562 } 1563 1564 start_pgofs = pgofs; 1565 prealloc = 0; 1566 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1567 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1568 1569 next_block: 1570 blkaddr = f2fs_data_blkaddr(&dn); 1571 1572 if (__is_valid_data_blkaddr(blkaddr) && 1573 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1574 err = -EFSCORRUPTED; 1575 goto sync_out; 1576 } 1577 1578 if (__is_valid_data_blkaddr(blkaddr)) { 1579 /* use out-place-update for driect IO under LFS mode */ 1580 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1581 map->m_may_create) { 1582 err = __allocate_data_block(&dn, map->m_seg_type); 1583 if (err) 1584 goto sync_out; 1585 blkaddr = dn.data_blkaddr; 1586 set_inode_flag(inode, FI_APPEND_WRITE); 1587 } 1588 } else { 1589 if (create) { 1590 if (unlikely(f2fs_cp_error(sbi))) { 1591 err = -EIO; 1592 goto sync_out; 1593 } 1594 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1595 if (blkaddr == NULL_ADDR) { 1596 prealloc++; 1597 last_ofs_in_node = dn.ofs_in_node; 1598 } 1599 } else { 1600 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1601 flag != F2FS_GET_BLOCK_DIO); 1602 err = __allocate_data_block(&dn, 1603 map->m_seg_type); 1604 if (!err) 1605 set_inode_flag(inode, FI_APPEND_WRITE); 1606 } 1607 if (err) 1608 goto sync_out; 1609 map->m_flags |= F2FS_MAP_NEW; 1610 blkaddr = dn.data_blkaddr; 1611 } else { 1612 if (flag == F2FS_GET_BLOCK_BMAP) { 1613 map->m_pblk = 0; 1614 goto sync_out; 1615 } 1616 if (flag == F2FS_GET_BLOCK_PRECACHE) 1617 goto sync_out; 1618 if (flag == F2FS_GET_BLOCK_FIEMAP && 1619 blkaddr == NULL_ADDR) { 1620 if (map->m_next_pgofs) 1621 *map->m_next_pgofs = pgofs + 1; 1622 goto sync_out; 1623 } 1624 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1625 /* for defragment case */ 1626 if (map->m_next_pgofs) 1627 *map->m_next_pgofs = pgofs + 1; 1628 goto sync_out; 1629 } 1630 } 1631 } 1632 1633 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1634 goto skip; 1635 1636 if (map->m_len == 0) { 1637 /* preallocated unwritten block should be mapped for fiemap. */ 1638 if (blkaddr == NEW_ADDR) 1639 map->m_flags |= F2FS_MAP_UNWRITTEN; 1640 map->m_flags |= F2FS_MAP_MAPPED; 1641 1642 map->m_pblk = blkaddr; 1643 map->m_len = 1; 1644 } else if ((map->m_pblk != NEW_ADDR && 1645 blkaddr == (map->m_pblk + ofs)) || 1646 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1647 flag == F2FS_GET_BLOCK_PRE_DIO) { 1648 ofs++; 1649 map->m_len++; 1650 } else { 1651 goto sync_out; 1652 } 1653 1654 skip: 1655 dn.ofs_in_node++; 1656 pgofs++; 1657 1658 /* preallocate blocks in batch for one dnode page */ 1659 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1660 (pgofs == end || dn.ofs_in_node == end_offset)) { 1661 1662 dn.ofs_in_node = ofs_in_node; 1663 err = f2fs_reserve_new_blocks(&dn, prealloc); 1664 if (err) 1665 goto sync_out; 1666 1667 map->m_len += dn.ofs_in_node - ofs_in_node; 1668 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1669 err = -ENOSPC; 1670 goto sync_out; 1671 } 1672 dn.ofs_in_node = end_offset; 1673 } 1674 1675 if (pgofs >= end) 1676 goto sync_out; 1677 else if (dn.ofs_in_node < end_offset) 1678 goto next_block; 1679 1680 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1681 if (map->m_flags & F2FS_MAP_MAPPED) { 1682 unsigned int ofs = start_pgofs - map->m_lblk; 1683 1684 f2fs_update_extent_cache_range(&dn, 1685 start_pgofs, map->m_pblk + ofs, 1686 map->m_len - ofs); 1687 } 1688 } 1689 1690 f2fs_put_dnode(&dn); 1691 1692 if (map->m_may_create) { 1693 f2fs_do_map_lock(sbi, flag, false); 1694 f2fs_balance_fs(sbi, dn.node_changed); 1695 } 1696 goto next_dnode; 1697 1698 sync_out: 1699 1700 /* for hardware encryption, but to avoid potential issue in future */ 1701 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1702 f2fs_wait_on_block_writeback_range(inode, 1703 map->m_pblk, map->m_len); 1704 1705 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1706 if (map->m_flags & F2FS_MAP_MAPPED) { 1707 unsigned int ofs = start_pgofs - map->m_lblk; 1708 1709 f2fs_update_extent_cache_range(&dn, 1710 start_pgofs, map->m_pblk + ofs, 1711 map->m_len - ofs); 1712 } 1713 if (map->m_next_extent) 1714 *map->m_next_extent = pgofs + 1; 1715 } 1716 f2fs_put_dnode(&dn); 1717 unlock_out: 1718 if (map->m_may_create) { 1719 f2fs_do_map_lock(sbi, flag, false); 1720 f2fs_balance_fs(sbi, dn.node_changed); 1721 } 1722 out: 1723 trace_f2fs_map_blocks(inode, map, err); 1724 return err; 1725 } 1726 1727 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1728 { 1729 struct f2fs_map_blocks map; 1730 block_t last_lblk; 1731 int err; 1732 1733 if (pos + len > i_size_read(inode)) 1734 return false; 1735 1736 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1737 map.m_next_pgofs = NULL; 1738 map.m_next_extent = NULL; 1739 map.m_seg_type = NO_CHECK_TYPE; 1740 map.m_may_create = false; 1741 last_lblk = F2FS_BLK_ALIGN(pos + len); 1742 1743 while (map.m_lblk < last_lblk) { 1744 map.m_len = last_lblk - map.m_lblk; 1745 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1746 if (err || map.m_len == 0) 1747 return false; 1748 map.m_lblk += map.m_len; 1749 } 1750 return true; 1751 } 1752 1753 static int __get_data_block(struct inode *inode, sector_t iblock, 1754 struct buffer_head *bh, int create, int flag, 1755 pgoff_t *next_pgofs, int seg_type, bool may_write) 1756 { 1757 struct f2fs_map_blocks map; 1758 int err; 1759 1760 map.m_lblk = iblock; 1761 map.m_len = bh->b_size >> inode->i_blkbits; 1762 map.m_next_pgofs = next_pgofs; 1763 map.m_next_extent = NULL; 1764 map.m_seg_type = seg_type; 1765 map.m_may_create = may_write; 1766 1767 err = f2fs_map_blocks(inode, &map, create, flag); 1768 if (!err) { 1769 map_bh(bh, inode->i_sb, map.m_pblk); 1770 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1771 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1772 } 1773 return err; 1774 } 1775 1776 static int get_data_block(struct inode *inode, sector_t iblock, 1777 struct buffer_head *bh_result, int create, int flag, 1778 pgoff_t *next_pgofs) 1779 { 1780 return __get_data_block(inode, iblock, bh_result, create, 1781 flag, next_pgofs, 1782 NO_CHECK_TYPE, create); 1783 } 1784 1785 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1786 struct buffer_head *bh_result, int create) 1787 { 1788 return __get_data_block(inode, iblock, bh_result, create, 1789 F2FS_GET_BLOCK_DIO, NULL, 1790 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1791 IS_SWAPFILE(inode) ? false : true); 1792 } 1793 1794 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1795 struct buffer_head *bh_result, int create) 1796 { 1797 return __get_data_block(inode, iblock, bh_result, create, 1798 F2FS_GET_BLOCK_DIO, NULL, 1799 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1800 false); 1801 } 1802 1803 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1804 struct buffer_head *bh_result, int create) 1805 { 1806 return __get_data_block(inode, iblock, bh_result, create, 1807 F2FS_GET_BLOCK_BMAP, NULL, 1808 NO_CHECK_TYPE, create); 1809 } 1810 1811 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1812 { 1813 return (offset >> inode->i_blkbits); 1814 } 1815 1816 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1817 { 1818 return (blk << inode->i_blkbits); 1819 } 1820 1821 static int f2fs_xattr_fiemap(struct inode *inode, 1822 struct fiemap_extent_info *fieinfo) 1823 { 1824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1825 struct page *page; 1826 struct node_info ni; 1827 __u64 phys = 0, len; 1828 __u32 flags; 1829 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1830 int err = 0; 1831 1832 if (f2fs_has_inline_xattr(inode)) { 1833 int offset; 1834 1835 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1836 inode->i_ino, false); 1837 if (!page) 1838 return -ENOMEM; 1839 1840 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1841 if (err) { 1842 f2fs_put_page(page, 1); 1843 return err; 1844 } 1845 1846 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1847 offset = offsetof(struct f2fs_inode, i_addr) + 1848 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1849 get_inline_xattr_addrs(inode)); 1850 1851 phys += offset; 1852 len = inline_xattr_size(inode); 1853 1854 f2fs_put_page(page, 1); 1855 1856 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1857 1858 if (!xnid) 1859 flags |= FIEMAP_EXTENT_LAST; 1860 1861 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1862 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1863 if (err || err == 1) 1864 return err; 1865 } 1866 1867 if (xnid) { 1868 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1869 if (!page) 1870 return -ENOMEM; 1871 1872 err = f2fs_get_node_info(sbi, xnid, &ni); 1873 if (err) { 1874 f2fs_put_page(page, 1); 1875 return err; 1876 } 1877 1878 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1879 len = inode->i_sb->s_blocksize; 1880 1881 f2fs_put_page(page, 1); 1882 1883 flags = FIEMAP_EXTENT_LAST; 1884 } 1885 1886 if (phys) { 1887 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1888 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1889 } 1890 1891 return (err < 0 ? err : 0); 1892 } 1893 1894 static loff_t max_inode_blocks(struct inode *inode) 1895 { 1896 loff_t result = ADDRS_PER_INODE(inode); 1897 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1898 1899 /* two direct node blocks */ 1900 result += (leaf_count * 2); 1901 1902 /* two indirect node blocks */ 1903 leaf_count *= NIDS_PER_BLOCK; 1904 result += (leaf_count * 2); 1905 1906 /* one double indirect node block */ 1907 leaf_count *= NIDS_PER_BLOCK; 1908 result += leaf_count; 1909 1910 return result; 1911 } 1912 1913 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1914 u64 start, u64 len) 1915 { 1916 struct buffer_head map_bh; 1917 sector_t start_blk, last_blk; 1918 pgoff_t next_pgofs; 1919 u64 logical = 0, phys = 0, size = 0; 1920 u32 flags = 0; 1921 int ret = 0; 1922 bool compr_cluster = false; 1923 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1924 1925 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1926 ret = f2fs_precache_extents(inode); 1927 if (ret) 1928 return ret; 1929 } 1930 1931 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1932 if (ret) 1933 return ret; 1934 1935 inode_lock(inode); 1936 1937 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1938 ret = f2fs_xattr_fiemap(inode, fieinfo); 1939 goto out; 1940 } 1941 1942 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1943 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1944 if (ret != -EAGAIN) 1945 goto out; 1946 } 1947 1948 if (logical_to_blk(inode, len) == 0) 1949 len = blk_to_logical(inode, 1); 1950 1951 start_blk = logical_to_blk(inode, start); 1952 last_blk = logical_to_blk(inode, start + len - 1); 1953 1954 next: 1955 memset(&map_bh, 0, sizeof(struct buffer_head)); 1956 map_bh.b_size = len; 1957 1958 if (compr_cluster) 1959 map_bh.b_size = blk_to_logical(inode, cluster_size - 1); 1960 1961 ret = get_data_block(inode, start_blk, &map_bh, 0, 1962 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1963 if (ret) 1964 goto out; 1965 1966 /* HOLE */ 1967 if (!buffer_mapped(&map_bh)) { 1968 start_blk = next_pgofs; 1969 1970 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1971 max_inode_blocks(inode))) 1972 goto prep_next; 1973 1974 flags |= FIEMAP_EXTENT_LAST; 1975 } 1976 1977 if (size) { 1978 if (IS_ENCRYPTED(inode)) 1979 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1980 1981 ret = fiemap_fill_next_extent(fieinfo, logical, 1982 phys, size, flags); 1983 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1984 if (ret) 1985 goto out; 1986 size = 0; 1987 } 1988 1989 if (start_blk > last_blk) 1990 goto out; 1991 1992 if (compr_cluster) { 1993 compr_cluster = false; 1994 1995 1996 logical = blk_to_logical(inode, start_blk - 1); 1997 phys = blk_to_logical(inode, map_bh.b_blocknr); 1998 size = blk_to_logical(inode, cluster_size); 1999 2000 flags |= FIEMAP_EXTENT_ENCODED; 2001 2002 start_blk += cluster_size - 1; 2003 2004 if (start_blk > last_blk) 2005 goto out; 2006 2007 goto prep_next; 2008 } 2009 2010 if (map_bh.b_blocknr == COMPRESS_ADDR) { 2011 compr_cluster = true; 2012 start_blk++; 2013 goto prep_next; 2014 } 2015 2016 logical = blk_to_logical(inode, start_blk); 2017 phys = blk_to_logical(inode, map_bh.b_blocknr); 2018 size = map_bh.b_size; 2019 flags = 0; 2020 if (buffer_unwritten(&map_bh)) 2021 flags = FIEMAP_EXTENT_UNWRITTEN; 2022 2023 start_blk += logical_to_blk(inode, size); 2024 2025 prep_next: 2026 cond_resched(); 2027 if (fatal_signal_pending(current)) 2028 ret = -EINTR; 2029 else 2030 goto next; 2031 out: 2032 if (ret == 1) 2033 ret = 0; 2034 2035 inode_unlock(inode); 2036 return ret; 2037 } 2038 2039 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2040 { 2041 if (IS_ENABLED(CONFIG_FS_VERITY) && 2042 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2043 return inode->i_sb->s_maxbytes; 2044 2045 return i_size_read(inode); 2046 } 2047 2048 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2049 unsigned nr_pages, 2050 struct f2fs_map_blocks *map, 2051 struct bio **bio_ret, 2052 sector_t *last_block_in_bio, 2053 bool is_readahead) 2054 { 2055 struct bio *bio = *bio_ret; 2056 const unsigned blkbits = inode->i_blkbits; 2057 const unsigned blocksize = 1 << blkbits; 2058 sector_t block_in_file; 2059 sector_t last_block; 2060 sector_t last_block_in_file; 2061 sector_t block_nr; 2062 int ret = 0; 2063 2064 block_in_file = (sector_t)page_index(page); 2065 last_block = block_in_file + nr_pages; 2066 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >> 2067 blkbits; 2068 if (last_block > last_block_in_file) 2069 last_block = last_block_in_file; 2070 2071 /* just zeroing out page which is beyond EOF */ 2072 if (block_in_file >= last_block) 2073 goto zero_out; 2074 /* 2075 * Map blocks using the previous result first. 2076 */ 2077 if ((map->m_flags & F2FS_MAP_MAPPED) && 2078 block_in_file > map->m_lblk && 2079 block_in_file < (map->m_lblk + map->m_len)) 2080 goto got_it; 2081 2082 /* 2083 * Then do more f2fs_map_blocks() calls until we are 2084 * done with this page. 2085 */ 2086 map->m_lblk = block_in_file; 2087 map->m_len = last_block - block_in_file; 2088 2089 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2090 if (ret) 2091 goto out; 2092 got_it: 2093 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2094 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2095 SetPageMappedToDisk(page); 2096 2097 if (!PageUptodate(page) && (!PageSwapCache(page) && 2098 !cleancache_get_page(page))) { 2099 SetPageUptodate(page); 2100 goto confused; 2101 } 2102 2103 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2104 DATA_GENERIC_ENHANCE_READ)) { 2105 ret = -EFSCORRUPTED; 2106 goto out; 2107 } 2108 } else { 2109 zero_out: 2110 zero_user_segment(page, 0, PAGE_SIZE); 2111 if (f2fs_need_verity(inode, page->index) && 2112 !fsverity_verify_page(page)) { 2113 ret = -EIO; 2114 goto out; 2115 } 2116 if (!PageUptodate(page)) 2117 SetPageUptodate(page); 2118 unlock_page(page); 2119 goto out; 2120 } 2121 2122 /* 2123 * This page will go to BIO. Do we need to send this 2124 * BIO off first? 2125 */ 2126 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2127 *last_block_in_bio, block_nr) || 2128 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2129 submit_and_realloc: 2130 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2131 bio = NULL; 2132 } 2133 if (bio == NULL) { 2134 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2135 is_readahead ? REQ_RAHEAD : 0, page->index, 2136 false); 2137 if (IS_ERR(bio)) { 2138 ret = PTR_ERR(bio); 2139 bio = NULL; 2140 goto out; 2141 } 2142 } 2143 2144 /* 2145 * If the page is under writeback, we need to wait for 2146 * its completion to see the correct decrypted data. 2147 */ 2148 f2fs_wait_on_block_writeback(inode, block_nr); 2149 2150 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2151 goto submit_and_realloc; 2152 2153 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2154 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2155 ClearPageError(page); 2156 *last_block_in_bio = block_nr; 2157 goto out; 2158 confused: 2159 if (bio) { 2160 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2161 bio = NULL; 2162 } 2163 unlock_page(page); 2164 out: 2165 *bio_ret = bio; 2166 return ret; 2167 } 2168 2169 #ifdef CONFIG_F2FS_FS_COMPRESSION 2170 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2171 unsigned nr_pages, sector_t *last_block_in_bio, 2172 bool is_readahead, bool for_write) 2173 { 2174 struct dnode_of_data dn; 2175 struct inode *inode = cc->inode; 2176 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2177 struct bio *bio = *bio_ret; 2178 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2179 sector_t last_block_in_file; 2180 const unsigned blkbits = inode->i_blkbits; 2181 const unsigned blocksize = 1 << blkbits; 2182 struct decompress_io_ctx *dic = NULL; 2183 int i; 2184 int ret = 0; 2185 2186 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2187 2188 last_block_in_file = (f2fs_readpage_limit(inode) + 2189 blocksize - 1) >> blkbits; 2190 2191 /* get rid of pages beyond EOF */ 2192 for (i = 0; i < cc->cluster_size; i++) { 2193 struct page *page = cc->rpages[i]; 2194 2195 if (!page) 2196 continue; 2197 if ((sector_t)page->index >= last_block_in_file) { 2198 zero_user_segment(page, 0, PAGE_SIZE); 2199 if (!PageUptodate(page)) 2200 SetPageUptodate(page); 2201 } else if (!PageUptodate(page)) { 2202 continue; 2203 } 2204 unlock_page(page); 2205 cc->rpages[i] = NULL; 2206 cc->nr_rpages--; 2207 } 2208 2209 /* we are done since all pages are beyond EOF */ 2210 if (f2fs_cluster_is_empty(cc)) 2211 goto out; 2212 2213 set_new_dnode(&dn, inode, NULL, NULL, 0); 2214 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2215 if (ret) 2216 goto out; 2217 2218 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2219 2220 for (i = 1; i < cc->cluster_size; i++) { 2221 block_t blkaddr; 2222 2223 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2224 dn.ofs_in_node + i); 2225 2226 if (!__is_valid_data_blkaddr(blkaddr)) 2227 break; 2228 2229 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2230 ret = -EFAULT; 2231 goto out_put_dnode; 2232 } 2233 cc->nr_cpages++; 2234 } 2235 2236 /* nothing to decompress */ 2237 if (cc->nr_cpages == 0) { 2238 ret = 0; 2239 goto out_put_dnode; 2240 } 2241 2242 dic = f2fs_alloc_dic(cc); 2243 if (IS_ERR(dic)) { 2244 ret = PTR_ERR(dic); 2245 goto out_put_dnode; 2246 } 2247 2248 for (i = 0; i < dic->nr_cpages; i++) { 2249 struct page *page = dic->cpages[i]; 2250 block_t blkaddr; 2251 struct bio_post_read_ctx *ctx; 2252 2253 blkaddr = data_blkaddr(dn.inode, dn.node_page, 2254 dn.ofs_in_node + i + 1); 2255 2256 if (bio && (!page_is_mergeable(sbi, bio, 2257 *last_block_in_bio, blkaddr) || 2258 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2259 submit_and_realloc: 2260 __submit_bio(sbi, bio, DATA); 2261 bio = NULL; 2262 } 2263 2264 if (!bio) { 2265 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2266 is_readahead ? REQ_RAHEAD : 0, 2267 page->index, for_write); 2268 if (IS_ERR(bio)) { 2269 ret = PTR_ERR(bio); 2270 dic->failed = true; 2271 if (!atomic_sub_return(dic->nr_cpages - i, 2272 &dic->pending_pages)) { 2273 f2fs_decompress_end_io(dic->rpages, 2274 cc->cluster_size, true, 2275 false); 2276 f2fs_free_dic(dic); 2277 } 2278 f2fs_put_dnode(&dn); 2279 *bio_ret = NULL; 2280 return ret; 2281 } 2282 } 2283 2284 f2fs_wait_on_block_writeback(inode, blkaddr); 2285 2286 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2287 goto submit_and_realloc; 2288 2289 /* tag STEP_DECOMPRESS to handle IO in wq */ 2290 ctx = bio->bi_private; 2291 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS))) 2292 ctx->enabled_steps |= 1 << STEP_DECOMPRESS; 2293 2294 inc_page_count(sbi, F2FS_RD_DATA); 2295 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2296 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2297 ClearPageError(page); 2298 *last_block_in_bio = blkaddr; 2299 } 2300 2301 f2fs_put_dnode(&dn); 2302 2303 *bio_ret = bio; 2304 return 0; 2305 2306 out_put_dnode: 2307 f2fs_put_dnode(&dn); 2308 out: 2309 f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false); 2310 *bio_ret = bio; 2311 return ret; 2312 } 2313 #endif 2314 2315 /* 2316 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2317 * Major change was from block_size == page_size in f2fs by default. 2318 * 2319 * Note that the aops->readpages() function is ONLY used for read-ahead. If 2320 * this function ever deviates from doing just read-ahead, it should either 2321 * use ->readpage() or do the necessary surgery to decouple ->readpages() 2322 * from read-ahead. 2323 */ 2324 static int f2fs_mpage_readpages(struct inode *inode, 2325 struct readahead_control *rac, struct page *page) 2326 { 2327 struct bio *bio = NULL; 2328 sector_t last_block_in_bio = 0; 2329 struct f2fs_map_blocks map; 2330 #ifdef CONFIG_F2FS_FS_COMPRESSION 2331 struct compress_ctx cc = { 2332 .inode = inode, 2333 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2334 .cluster_size = F2FS_I(inode)->i_cluster_size, 2335 .cluster_idx = NULL_CLUSTER, 2336 .rpages = NULL, 2337 .cpages = NULL, 2338 .nr_rpages = 0, 2339 .nr_cpages = 0, 2340 }; 2341 #endif 2342 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2343 unsigned max_nr_pages = nr_pages; 2344 int ret = 0; 2345 bool drop_ra = false; 2346 2347 map.m_pblk = 0; 2348 map.m_lblk = 0; 2349 map.m_len = 0; 2350 map.m_flags = 0; 2351 map.m_next_pgofs = NULL; 2352 map.m_next_extent = NULL; 2353 map.m_seg_type = NO_CHECK_TYPE; 2354 map.m_may_create = false; 2355 2356 /* 2357 * Two readahead threads for same address range can cause race condition 2358 * which fragments sequential read IOs. So let's avoid each other. 2359 */ 2360 if (rac && readahead_count(rac)) { 2361 if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac)) 2362 drop_ra = true; 2363 else 2364 WRITE_ONCE(F2FS_I(inode)->ra_offset, 2365 readahead_index(rac)); 2366 } 2367 2368 for (; nr_pages; nr_pages--) { 2369 if (rac) { 2370 page = readahead_page(rac); 2371 prefetchw(&page->flags); 2372 if (drop_ra) { 2373 f2fs_put_page(page, 1); 2374 continue; 2375 } 2376 } 2377 2378 #ifdef CONFIG_F2FS_FS_COMPRESSION 2379 if (f2fs_compressed_file(inode)) { 2380 /* there are remained comressed pages, submit them */ 2381 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2382 ret = f2fs_read_multi_pages(&cc, &bio, 2383 max_nr_pages, 2384 &last_block_in_bio, 2385 rac != NULL, false); 2386 f2fs_destroy_compress_ctx(&cc); 2387 if (ret) 2388 goto set_error_page; 2389 } 2390 ret = f2fs_is_compressed_cluster(inode, page->index); 2391 if (ret < 0) 2392 goto set_error_page; 2393 else if (!ret) 2394 goto read_single_page; 2395 2396 ret = f2fs_init_compress_ctx(&cc); 2397 if (ret) 2398 goto set_error_page; 2399 2400 f2fs_compress_ctx_add_page(&cc, page); 2401 2402 goto next_page; 2403 } 2404 read_single_page: 2405 #endif 2406 2407 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2408 &bio, &last_block_in_bio, rac); 2409 if (ret) { 2410 #ifdef CONFIG_F2FS_FS_COMPRESSION 2411 set_error_page: 2412 #endif 2413 SetPageError(page); 2414 zero_user_segment(page, 0, PAGE_SIZE); 2415 unlock_page(page); 2416 } 2417 #ifdef CONFIG_F2FS_FS_COMPRESSION 2418 next_page: 2419 #endif 2420 if (rac) 2421 put_page(page); 2422 2423 #ifdef CONFIG_F2FS_FS_COMPRESSION 2424 if (f2fs_compressed_file(inode)) { 2425 /* last page */ 2426 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2427 ret = f2fs_read_multi_pages(&cc, &bio, 2428 max_nr_pages, 2429 &last_block_in_bio, 2430 rac != NULL, false); 2431 f2fs_destroy_compress_ctx(&cc); 2432 } 2433 } 2434 #endif 2435 } 2436 if (bio) 2437 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2438 2439 if (rac && readahead_count(rac) && !drop_ra) 2440 WRITE_ONCE(F2FS_I(inode)->ra_offset, -1); 2441 return ret; 2442 } 2443 2444 static int f2fs_read_data_page(struct file *file, struct page *page) 2445 { 2446 struct inode *inode = page_file_mapping(page)->host; 2447 int ret = -EAGAIN; 2448 2449 trace_f2fs_readpage(page, DATA); 2450 2451 if (!f2fs_is_compress_backend_ready(inode)) { 2452 unlock_page(page); 2453 return -EOPNOTSUPP; 2454 } 2455 2456 /* If the file has inline data, try to read it directly */ 2457 if (f2fs_has_inline_data(inode)) 2458 ret = f2fs_read_inline_data(inode, page); 2459 if (ret == -EAGAIN) 2460 ret = f2fs_mpage_readpages(inode, NULL, page); 2461 return ret; 2462 } 2463 2464 static void f2fs_readahead(struct readahead_control *rac) 2465 { 2466 struct inode *inode = rac->mapping->host; 2467 2468 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2469 2470 if (!f2fs_is_compress_backend_ready(inode)) 2471 return; 2472 2473 /* If the file has inline data, skip readpages */ 2474 if (f2fs_has_inline_data(inode)) 2475 return; 2476 2477 f2fs_mpage_readpages(inode, rac, NULL); 2478 } 2479 2480 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2481 { 2482 struct inode *inode = fio->page->mapping->host; 2483 struct page *mpage, *page; 2484 gfp_t gfp_flags = GFP_NOFS; 2485 2486 if (!f2fs_encrypted_file(inode)) 2487 return 0; 2488 2489 page = fio->compressed_page ? fio->compressed_page : fio->page; 2490 2491 /* wait for GCed page writeback via META_MAPPING */ 2492 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2493 2494 if (fscrypt_inode_uses_inline_crypto(inode)) 2495 return 0; 2496 2497 retry_encrypt: 2498 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2499 PAGE_SIZE, 0, gfp_flags); 2500 if (IS_ERR(fio->encrypted_page)) { 2501 /* flush pending IOs and wait for a while in the ENOMEM case */ 2502 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2503 f2fs_flush_merged_writes(fio->sbi); 2504 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2505 gfp_flags |= __GFP_NOFAIL; 2506 goto retry_encrypt; 2507 } 2508 return PTR_ERR(fio->encrypted_page); 2509 } 2510 2511 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2512 if (mpage) { 2513 if (PageUptodate(mpage)) 2514 memcpy(page_address(mpage), 2515 page_address(fio->encrypted_page), PAGE_SIZE); 2516 f2fs_put_page(mpage, 1); 2517 } 2518 return 0; 2519 } 2520 2521 static inline bool check_inplace_update_policy(struct inode *inode, 2522 struct f2fs_io_info *fio) 2523 { 2524 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2525 unsigned int policy = SM_I(sbi)->ipu_policy; 2526 2527 if (policy & (0x1 << F2FS_IPU_FORCE)) 2528 return true; 2529 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2530 return true; 2531 if (policy & (0x1 << F2FS_IPU_UTIL) && 2532 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2533 return true; 2534 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2535 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2536 return true; 2537 2538 /* 2539 * IPU for rewrite async pages 2540 */ 2541 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2542 fio && fio->op == REQ_OP_WRITE && 2543 !(fio->op_flags & REQ_SYNC) && 2544 !IS_ENCRYPTED(inode)) 2545 return true; 2546 2547 /* this is only set during fdatasync */ 2548 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2549 is_inode_flag_set(inode, FI_NEED_IPU)) 2550 return true; 2551 2552 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2553 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2554 return true; 2555 2556 return false; 2557 } 2558 2559 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2560 { 2561 if (f2fs_is_pinned_file(inode)) 2562 return true; 2563 2564 /* if this is cold file, we should overwrite to avoid fragmentation */ 2565 if (file_is_cold(inode)) 2566 return true; 2567 2568 return check_inplace_update_policy(inode, fio); 2569 } 2570 2571 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2572 { 2573 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2574 2575 if (f2fs_lfs_mode(sbi)) 2576 return true; 2577 if (S_ISDIR(inode->i_mode)) 2578 return true; 2579 if (IS_NOQUOTA(inode)) 2580 return true; 2581 if (f2fs_is_atomic_file(inode)) 2582 return true; 2583 if (fio) { 2584 if (is_cold_data(fio->page)) 2585 return true; 2586 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 2587 return true; 2588 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2589 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2590 return true; 2591 } 2592 return false; 2593 } 2594 2595 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2596 { 2597 struct inode *inode = fio->page->mapping->host; 2598 2599 if (f2fs_should_update_outplace(inode, fio)) 2600 return false; 2601 2602 return f2fs_should_update_inplace(inode, fio); 2603 } 2604 2605 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2606 { 2607 struct page *page = fio->page; 2608 struct inode *inode = page->mapping->host; 2609 struct dnode_of_data dn; 2610 struct extent_info ei = {0,0,0}; 2611 struct node_info ni; 2612 bool ipu_force = false; 2613 int err = 0; 2614 2615 set_new_dnode(&dn, inode, NULL, NULL, 0); 2616 if (need_inplace_update(fio) && 2617 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2618 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2619 2620 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2621 DATA_GENERIC_ENHANCE)) 2622 return -EFSCORRUPTED; 2623 2624 ipu_force = true; 2625 fio->need_lock = LOCK_DONE; 2626 goto got_it; 2627 } 2628 2629 /* Deadlock due to between page->lock and f2fs_lock_op */ 2630 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2631 return -EAGAIN; 2632 2633 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2634 if (err) 2635 goto out; 2636 2637 fio->old_blkaddr = dn.data_blkaddr; 2638 2639 /* This page is already truncated */ 2640 if (fio->old_blkaddr == NULL_ADDR) { 2641 ClearPageUptodate(page); 2642 clear_cold_data(page); 2643 goto out_writepage; 2644 } 2645 got_it: 2646 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2647 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2648 DATA_GENERIC_ENHANCE)) { 2649 err = -EFSCORRUPTED; 2650 goto out_writepage; 2651 } 2652 /* 2653 * If current allocation needs SSR, 2654 * it had better in-place writes for updated data. 2655 */ 2656 if (ipu_force || 2657 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2658 need_inplace_update(fio))) { 2659 err = f2fs_encrypt_one_page(fio); 2660 if (err) 2661 goto out_writepage; 2662 2663 set_page_writeback(page); 2664 ClearPageError(page); 2665 f2fs_put_dnode(&dn); 2666 if (fio->need_lock == LOCK_REQ) 2667 f2fs_unlock_op(fio->sbi); 2668 err = f2fs_inplace_write_data(fio); 2669 if (err) { 2670 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2671 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2672 if (PageWriteback(page)) 2673 end_page_writeback(page); 2674 } else { 2675 set_inode_flag(inode, FI_UPDATE_WRITE); 2676 } 2677 trace_f2fs_do_write_data_page(fio->page, IPU); 2678 return err; 2679 } 2680 2681 if (fio->need_lock == LOCK_RETRY) { 2682 if (!f2fs_trylock_op(fio->sbi)) { 2683 err = -EAGAIN; 2684 goto out_writepage; 2685 } 2686 fio->need_lock = LOCK_REQ; 2687 } 2688 2689 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2690 if (err) 2691 goto out_writepage; 2692 2693 fio->version = ni.version; 2694 2695 err = f2fs_encrypt_one_page(fio); 2696 if (err) 2697 goto out_writepage; 2698 2699 set_page_writeback(page); 2700 ClearPageError(page); 2701 2702 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2703 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2704 2705 /* LFS mode write path */ 2706 f2fs_outplace_write_data(&dn, fio); 2707 trace_f2fs_do_write_data_page(page, OPU); 2708 set_inode_flag(inode, FI_APPEND_WRITE); 2709 if (page->index == 0) 2710 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2711 out_writepage: 2712 f2fs_put_dnode(&dn); 2713 out: 2714 if (fio->need_lock == LOCK_REQ) 2715 f2fs_unlock_op(fio->sbi); 2716 return err; 2717 } 2718 2719 int f2fs_write_single_data_page(struct page *page, int *submitted, 2720 struct bio **bio, 2721 sector_t *last_block, 2722 struct writeback_control *wbc, 2723 enum iostat_type io_type, 2724 int compr_blocks) 2725 { 2726 struct inode *inode = page->mapping->host; 2727 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2728 loff_t i_size = i_size_read(inode); 2729 const pgoff_t end_index = ((unsigned long long)i_size) 2730 >> PAGE_SHIFT; 2731 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2732 unsigned offset = 0; 2733 bool need_balance_fs = false; 2734 int err = 0; 2735 struct f2fs_io_info fio = { 2736 .sbi = sbi, 2737 .ino = inode->i_ino, 2738 .type = DATA, 2739 .op = REQ_OP_WRITE, 2740 .op_flags = wbc_to_write_flags(wbc), 2741 .old_blkaddr = NULL_ADDR, 2742 .page = page, 2743 .encrypted_page = NULL, 2744 .submitted = false, 2745 .compr_blocks = compr_blocks, 2746 .need_lock = LOCK_RETRY, 2747 .io_type = io_type, 2748 .io_wbc = wbc, 2749 .bio = bio, 2750 .last_block = last_block, 2751 }; 2752 2753 trace_f2fs_writepage(page, DATA); 2754 2755 /* we should bypass data pages to proceed the kworkder jobs */ 2756 if (unlikely(f2fs_cp_error(sbi))) { 2757 mapping_set_error(page->mapping, -EIO); 2758 /* 2759 * don't drop any dirty dentry pages for keeping lastest 2760 * directory structure. 2761 */ 2762 if (S_ISDIR(inode->i_mode)) 2763 goto redirty_out; 2764 goto out; 2765 } 2766 2767 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2768 goto redirty_out; 2769 2770 if (page->index < end_index || 2771 f2fs_verity_in_progress(inode) || 2772 compr_blocks) 2773 goto write; 2774 2775 /* 2776 * If the offset is out-of-range of file size, 2777 * this page does not have to be written to disk. 2778 */ 2779 offset = i_size & (PAGE_SIZE - 1); 2780 if ((page->index >= end_index + 1) || !offset) 2781 goto out; 2782 2783 zero_user_segment(page, offset, PAGE_SIZE); 2784 write: 2785 if (f2fs_is_drop_cache(inode)) 2786 goto out; 2787 /* we should not write 0'th page having journal header */ 2788 if (f2fs_is_volatile_file(inode) && (!page->index || 2789 (!wbc->for_reclaim && 2790 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2791 goto redirty_out; 2792 2793 /* Dentry/quota blocks are controlled by checkpoint */ 2794 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2795 /* 2796 * We need to wait for node_write to avoid block allocation during 2797 * checkpoint. This can only happen to quota writes which can cause 2798 * the below discard race condition. 2799 */ 2800 if (IS_NOQUOTA(inode)) 2801 down_read(&sbi->node_write); 2802 2803 fio.need_lock = LOCK_DONE; 2804 err = f2fs_do_write_data_page(&fio); 2805 2806 if (IS_NOQUOTA(inode)) 2807 up_read(&sbi->node_write); 2808 2809 goto done; 2810 } 2811 2812 if (!wbc->for_reclaim) 2813 need_balance_fs = true; 2814 else if (has_not_enough_free_secs(sbi, 0, 0)) 2815 goto redirty_out; 2816 else 2817 set_inode_flag(inode, FI_HOT_DATA); 2818 2819 err = -EAGAIN; 2820 if (f2fs_has_inline_data(inode)) { 2821 err = f2fs_write_inline_data(inode, page); 2822 if (!err) 2823 goto out; 2824 } 2825 2826 if (err == -EAGAIN) { 2827 err = f2fs_do_write_data_page(&fio); 2828 if (err == -EAGAIN) { 2829 fio.need_lock = LOCK_REQ; 2830 err = f2fs_do_write_data_page(&fio); 2831 } 2832 } 2833 2834 if (err) { 2835 file_set_keep_isize(inode); 2836 } else { 2837 spin_lock(&F2FS_I(inode)->i_size_lock); 2838 if (F2FS_I(inode)->last_disk_size < psize) 2839 F2FS_I(inode)->last_disk_size = psize; 2840 spin_unlock(&F2FS_I(inode)->i_size_lock); 2841 } 2842 2843 done: 2844 if (err && err != -ENOENT) 2845 goto redirty_out; 2846 2847 out: 2848 inode_dec_dirty_pages(inode); 2849 if (err) { 2850 ClearPageUptodate(page); 2851 clear_cold_data(page); 2852 } 2853 2854 if (wbc->for_reclaim) { 2855 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2856 clear_inode_flag(inode, FI_HOT_DATA); 2857 f2fs_remove_dirty_inode(inode); 2858 submitted = NULL; 2859 } 2860 unlock_page(page); 2861 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2862 !F2FS_I(inode)->cp_task) 2863 f2fs_balance_fs(sbi, need_balance_fs); 2864 2865 if (unlikely(f2fs_cp_error(sbi))) { 2866 f2fs_submit_merged_write(sbi, DATA); 2867 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2868 submitted = NULL; 2869 } 2870 2871 if (submitted) 2872 *submitted = fio.submitted ? 1 : 0; 2873 2874 return 0; 2875 2876 redirty_out: 2877 redirty_page_for_writepage(wbc, page); 2878 /* 2879 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2880 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2881 * file_write_and_wait_range() will see EIO error, which is critical 2882 * to return value of fsync() followed by atomic_write failure to user. 2883 */ 2884 if (!err || wbc->for_reclaim) 2885 return AOP_WRITEPAGE_ACTIVATE; 2886 unlock_page(page); 2887 return err; 2888 } 2889 2890 static int f2fs_write_data_page(struct page *page, 2891 struct writeback_control *wbc) 2892 { 2893 #ifdef CONFIG_F2FS_FS_COMPRESSION 2894 struct inode *inode = page->mapping->host; 2895 2896 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2897 goto out; 2898 2899 if (f2fs_compressed_file(inode)) { 2900 if (f2fs_is_compressed_cluster(inode, page->index)) { 2901 redirty_page_for_writepage(wbc, page); 2902 return AOP_WRITEPAGE_ACTIVATE; 2903 } 2904 } 2905 out: 2906 #endif 2907 2908 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2909 wbc, FS_DATA_IO, 0); 2910 } 2911 2912 /* 2913 * This function was copied from write_cche_pages from mm/page-writeback.c. 2914 * The major change is making write step of cold data page separately from 2915 * warm/hot data page. 2916 */ 2917 static int f2fs_write_cache_pages(struct address_space *mapping, 2918 struct writeback_control *wbc, 2919 enum iostat_type io_type) 2920 { 2921 int ret = 0; 2922 int done = 0, retry = 0; 2923 struct pagevec pvec; 2924 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2925 struct bio *bio = NULL; 2926 sector_t last_block; 2927 #ifdef CONFIG_F2FS_FS_COMPRESSION 2928 struct inode *inode = mapping->host; 2929 struct compress_ctx cc = { 2930 .inode = inode, 2931 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2932 .cluster_size = F2FS_I(inode)->i_cluster_size, 2933 .cluster_idx = NULL_CLUSTER, 2934 .rpages = NULL, 2935 .nr_rpages = 0, 2936 .cpages = NULL, 2937 .rbuf = NULL, 2938 .cbuf = NULL, 2939 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2940 .private = NULL, 2941 }; 2942 #endif 2943 int nr_pages; 2944 pgoff_t index; 2945 pgoff_t end; /* Inclusive */ 2946 pgoff_t done_index; 2947 int range_whole = 0; 2948 xa_mark_t tag; 2949 int nwritten = 0; 2950 int submitted = 0; 2951 int i; 2952 2953 pagevec_init(&pvec); 2954 2955 if (get_dirty_pages(mapping->host) <= 2956 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2957 set_inode_flag(mapping->host, FI_HOT_DATA); 2958 else 2959 clear_inode_flag(mapping->host, FI_HOT_DATA); 2960 2961 if (wbc->range_cyclic) { 2962 index = mapping->writeback_index; /* prev offset */ 2963 end = -1; 2964 } else { 2965 index = wbc->range_start >> PAGE_SHIFT; 2966 end = wbc->range_end >> PAGE_SHIFT; 2967 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2968 range_whole = 1; 2969 } 2970 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2971 tag = PAGECACHE_TAG_TOWRITE; 2972 else 2973 tag = PAGECACHE_TAG_DIRTY; 2974 retry: 2975 retry = 0; 2976 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2977 tag_pages_for_writeback(mapping, index, end); 2978 done_index = index; 2979 while (!done && !retry && (index <= end)) { 2980 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2981 tag); 2982 if (nr_pages == 0) 2983 break; 2984 2985 for (i = 0; i < nr_pages; i++) { 2986 struct page *page = pvec.pages[i]; 2987 bool need_readd; 2988 readd: 2989 need_readd = false; 2990 #ifdef CONFIG_F2FS_FS_COMPRESSION 2991 if (f2fs_compressed_file(inode)) { 2992 ret = f2fs_init_compress_ctx(&cc); 2993 if (ret) { 2994 done = 1; 2995 break; 2996 } 2997 2998 if (!f2fs_cluster_can_merge_page(&cc, 2999 page->index)) { 3000 ret = f2fs_write_multi_pages(&cc, 3001 &submitted, wbc, io_type); 3002 if (!ret) 3003 need_readd = true; 3004 goto result; 3005 } 3006 3007 if (unlikely(f2fs_cp_error(sbi))) 3008 goto lock_page; 3009 3010 if (f2fs_cluster_is_empty(&cc)) { 3011 void *fsdata = NULL; 3012 struct page *pagep; 3013 int ret2; 3014 3015 ret2 = f2fs_prepare_compress_overwrite( 3016 inode, &pagep, 3017 page->index, &fsdata); 3018 if (ret2 < 0) { 3019 ret = ret2; 3020 done = 1; 3021 break; 3022 } else if (ret2 && 3023 !f2fs_compress_write_end(inode, 3024 fsdata, page->index, 3025 1)) { 3026 retry = 1; 3027 break; 3028 } 3029 } else { 3030 goto lock_page; 3031 } 3032 } 3033 #endif 3034 /* give a priority to WB_SYNC threads */ 3035 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3036 wbc->sync_mode == WB_SYNC_NONE) { 3037 done = 1; 3038 break; 3039 } 3040 #ifdef CONFIG_F2FS_FS_COMPRESSION 3041 lock_page: 3042 #endif 3043 done_index = page->index; 3044 retry_write: 3045 lock_page(page); 3046 3047 if (unlikely(page->mapping != mapping)) { 3048 continue_unlock: 3049 unlock_page(page); 3050 continue; 3051 } 3052 3053 if (!PageDirty(page)) { 3054 /* someone wrote it for us */ 3055 goto continue_unlock; 3056 } 3057 3058 if (PageWriteback(page)) { 3059 if (wbc->sync_mode != WB_SYNC_NONE) 3060 f2fs_wait_on_page_writeback(page, 3061 DATA, true, true); 3062 else 3063 goto continue_unlock; 3064 } 3065 3066 if (!clear_page_dirty_for_io(page)) 3067 goto continue_unlock; 3068 3069 #ifdef CONFIG_F2FS_FS_COMPRESSION 3070 if (f2fs_compressed_file(inode)) { 3071 get_page(page); 3072 f2fs_compress_ctx_add_page(&cc, page); 3073 continue; 3074 } 3075 #endif 3076 ret = f2fs_write_single_data_page(page, &submitted, 3077 &bio, &last_block, wbc, io_type, 0); 3078 if (ret == AOP_WRITEPAGE_ACTIVATE) 3079 unlock_page(page); 3080 #ifdef CONFIG_F2FS_FS_COMPRESSION 3081 result: 3082 #endif 3083 nwritten += submitted; 3084 wbc->nr_to_write -= submitted; 3085 3086 if (unlikely(ret)) { 3087 /* 3088 * keep nr_to_write, since vfs uses this to 3089 * get # of written pages. 3090 */ 3091 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3092 ret = 0; 3093 goto next; 3094 } else if (ret == -EAGAIN) { 3095 ret = 0; 3096 if (wbc->sync_mode == WB_SYNC_ALL) { 3097 cond_resched(); 3098 congestion_wait(BLK_RW_ASYNC, 3099 DEFAULT_IO_TIMEOUT); 3100 goto retry_write; 3101 } 3102 goto next; 3103 } 3104 done_index = page->index + 1; 3105 done = 1; 3106 break; 3107 } 3108 3109 if (wbc->nr_to_write <= 0 && 3110 wbc->sync_mode == WB_SYNC_NONE) { 3111 done = 1; 3112 break; 3113 } 3114 next: 3115 if (need_readd) 3116 goto readd; 3117 } 3118 pagevec_release(&pvec); 3119 cond_resched(); 3120 } 3121 #ifdef CONFIG_F2FS_FS_COMPRESSION 3122 /* flush remained pages in compress cluster */ 3123 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3124 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3125 nwritten += submitted; 3126 wbc->nr_to_write -= submitted; 3127 if (ret) { 3128 done = 1; 3129 retry = 0; 3130 } 3131 } 3132 if (f2fs_compressed_file(inode)) 3133 f2fs_destroy_compress_ctx(&cc); 3134 #endif 3135 if (retry) { 3136 index = 0; 3137 end = -1; 3138 goto retry; 3139 } 3140 if (wbc->range_cyclic && !done) 3141 done_index = 0; 3142 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3143 mapping->writeback_index = done_index; 3144 3145 if (nwritten) 3146 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3147 NULL, 0, DATA); 3148 /* submit cached bio of IPU write */ 3149 if (bio) 3150 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3151 3152 return ret; 3153 } 3154 3155 static inline bool __should_serialize_io(struct inode *inode, 3156 struct writeback_control *wbc) 3157 { 3158 /* to avoid deadlock in path of data flush */ 3159 if (F2FS_I(inode)->cp_task) 3160 return false; 3161 3162 if (!S_ISREG(inode->i_mode)) 3163 return false; 3164 if (IS_NOQUOTA(inode)) 3165 return false; 3166 3167 if (f2fs_compressed_file(inode)) 3168 return true; 3169 if (wbc->sync_mode != WB_SYNC_ALL) 3170 return true; 3171 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3172 return true; 3173 return false; 3174 } 3175 3176 static int __f2fs_write_data_pages(struct address_space *mapping, 3177 struct writeback_control *wbc, 3178 enum iostat_type io_type) 3179 { 3180 struct inode *inode = mapping->host; 3181 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3182 struct blk_plug plug; 3183 int ret; 3184 bool locked = false; 3185 3186 /* deal with chardevs and other special file */ 3187 if (!mapping->a_ops->writepage) 3188 return 0; 3189 3190 /* skip writing if there is no dirty page in this inode */ 3191 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3192 return 0; 3193 3194 /* during POR, we don't need to trigger writepage at all. */ 3195 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3196 goto skip_write; 3197 3198 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3199 wbc->sync_mode == WB_SYNC_NONE && 3200 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3201 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3202 goto skip_write; 3203 3204 /* skip writing during file defragment */ 3205 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3206 goto skip_write; 3207 3208 trace_f2fs_writepages(mapping->host, wbc, DATA); 3209 3210 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3211 if (wbc->sync_mode == WB_SYNC_ALL) 3212 atomic_inc(&sbi->wb_sync_req[DATA]); 3213 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3214 goto skip_write; 3215 3216 if (__should_serialize_io(inode, wbc)) { 3217 mutex_lock(&sbi->writepages); 3218 locked = true; 3219 } 3220 3221 blk_start_plug(&plug); 3222 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3223 blk_finish_plug(&plug); 3224 3225 if (locked) 3226 mutex_unlock(&sbi->writepages); 3227 3228 if (wbc->sync_mode == WB_SYNC_ALL) 3229 atomic_dec(&sbi->wb_sync_req[DATA]); 3230 /* 3231 * if some pages were truncated, we cannot guarantee its mapping->host 3232 * to detect pending bios. 3233 */ 3234 3235 f2fs_remove_dirty_inode(inode); 3236 return ret; 3237 3238 skip_write: 3239 wbc->pages_skipped += get_dirty_pages(inode); 3240 trace_f2fs_writepages(mapping->host, wbc, DATA); 3241 return 0; 3242 } 3243 3244 static int f2fs_write_data_pages(struct address_space *mapping, 3245 struct writeback_control *wbc) 3246 { 3247 struct inode *inode = mapping->host; 3248 3249 return __f2fs_write_data_pages(mapping, wbc, 3250 F2FS_I(inode)->cp_task == current ? 3251 FS_CP_DATA_IO : FS_DATA_IO); 3252 } 3253 3254 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 3255 { 3256 struct inode *inode = mapping->host; 3257 loff_t i_size = i_size_read(inode); 3258 3259 if (IS_NOQUOTA(inode)) 3260 return; 3261 3262 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3263 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3264 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3265 down_write(&F2FS_I(inode)->i_mmap_sem); 3266 3267 truncate_pagecache(inode, i_size); 3268 f2fs_truncate_blocks(inode, i_size, true); 3269 3270 up_write(&F2FS_I(inode)->i_mmap_sem); 3271 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3272 } 3273 } 3274 3275 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3276 struct page *page, loff_t pos, unsigned len, 3277 block_t *blk_addr, bool *node_changed) 3278 { 3279 struct inode *inode = page->mapping->host; 3280 pgoff_t index = page->index; 3281 struct dnode_of_data dn; 3282 struct page *ipage; 3283 bool locked = false; 3284 struct extent_info ei = {0,0,0}; 3285 int err = 0; 3286 int flag; 3287 3288 /* 3289 * we already allocated all the blocks, so we don't need to get 3290 * the block addresses when there is no need to fill the page. 3291 */ 3292 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 3293 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 3294 !f2fs_verity_in_progress(inode)) 3295 return 0; 3296 3297 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3298 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3299 flag = F2FS_GET_BLOCK_DEFAULT; 3300 else 3301 flag = F2FS_GET_BLOCK_PRE_AIO; 3302 3303 if (f2fs_has_inline_data(inode) || 3304 (pos & PAGE_MASK) >= i_size_read(inode)) { 3305 f2fs_do_map_lock(sbi, flag, true); 3306 locked = true; 3307 } 3308 3309 restart: 3310 /* check inline_data */ 3311 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3312 if (IS_ERR(ipage)) { 3313 err = PTR_ERR(ipage); 3314 goto unlock_out; 3315 } 3316 3317 set_new_dnode(&dn, inode, ipage, ipage, 0); 3318 3319 if (f2fs_has_inline_data(inode)) { 3320 if (pos + len <= MAX_INLINE_DATA(inode)) { 3321 f2fs_do_read_inline_data(page, ipage); 3322 set_inode_flag(inode, FI_DATA_EXIST); 3323 if (inode->i_nlink) 3324 set_inline_node(ipage); 3325 } else { 3326 err = f2fs_convert_inline_page(&dn, page); 3327 if (err) 3328 goto out; 3329 if (dn.data_blkaddr == NULL_ADDR) 3330 err = f2fs_get_block(&dn, index); 3331 } 3332 } else if (locked) { 3333 err = f2fs_get_block(&dn, index); 3334 } else { 3335 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3336 dn.data_blkaddr = ei.blk + index - ei.fofs; 3337 } else { 3338 /* hole case */ 3339 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3340 if (err || dn.data_blkaddr == NULL_ADDR) { 3341 f2fs_put_dnode(&dn); 3342 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3343 true); 3344 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3345 locked = true; 3346 goto restart; 3347 } 3348 } 3349 } 3350 3351 /* convert_inline_page can make node_changed */ 3352 *blk_addr = dn.data_blkaddr; 3353 *node_changed = dn.node_changed; 3354 out: 3355 f2fs_put_dnode(&dn); 3356 unlock_out: 3357 if (locked) 3358 f2fs_do_map_lock(sbi, flag, false); 3359 return err; 3360 } 3361 3362 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3363 loff_t pos, unsigned len, unsigned flags, 3364 struct page **pagep, void **fsdata) 3365 { 3366 struct inode *inode = mapping->host; 3367 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3368 struct page *page = NULL; 3369 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3370 bool need_balance = false, drop_atomic = false; 3371 block_t blkaddr = NULL_ADDR; 3372 int err = 0; 3373 3374 trace_f2fs_write_begin(inode, pos, len, flags); 3375 3376 if (!f2fs_is_checkpoint_ready(sbi)) { 3377 err = -ENOSPC; 3378 goto fail; 3379 } 3380 3381 if ((f2fs_is_atomic_file(inode) && 3382 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3383 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3384 err = -ENOMEM; 3385 drop_atomic = true; 3386 goto fail; 3387 } 3388 3389 /* 3390 * We should check this at this moment to avoid deadlock on inode page 3391 * and #0 page. The locking rule for inline_data conversion should be: 3392 * lock_page(page #0) -> lock_page(inode_page) 3393 */ 3394 if (index != 0) { 3395 err = f2fs_convert_inline_inode(inode); 3396 if (err) 3397 goto fail; 3398 } 3399 3400 #ifdef CONFIG_F2FS_FS_COMPRESSION 3401 if (f2fs_compressed_file(inode)) { 3402 int ret; 3403 3404 *fsdata = NULL; 3405 3406 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3407 index, fsdata); 3408 if (ret < 0) { 3409 err = ret; 3410 goto fail; 3411 } else if (ret) { 3412 return 0; 3413 } 3414 } 3415 #endif 3416 3417 repeat: 3418 /* 3419 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3420 * wait_for_stable_page. Will wait that below with our IO control. 3421 */ 3422 page = f2fs_pagecache_get_page(mapping, index, 3423 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3424 if (!page) { 3425 err = -ENOMEM; 3426 goto fail; 3427 } 3428 3429 /* TODO: cluster can be compressed due to race with .writepage */ 3430 3431 *pagep = page; 3432 3433 err = prepare_write_begin(sbi, page, pos, len, 3434 &blkaddr, &need_balance); 3435 if (err) 3436 goto fail; 3437 3438 if (need_balance && !IS_NOQUOTA(inode) && 3439 has_not_enough_free_secs(sbi, 0, 0)) { 3440 unlock_page(page); 3441 f2fs_balance_fs(sbi, true); 3442 lock_page(page); 3443 if (page->mapping != mapping) { 3444 /* The page got truncated from under us */ 3445 f2fs_put_page(page, 1); 3446 goto repeat; 3447 } 3448 } 3449 3450 f2fs_wait_on_page_writeback(page, DATA, false, true); 3451 3452 if (len == PAGE_SIZE || PageUptodate(page)) 3453 return 0; 3454 3455 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3456 !f2fs_verity_in_progress(inode)) { 3457 zero_user_segment(page, len, PAGE_SIZE); 3458 return 0; 3459 } 3460 3461 if (blkaddr == NEW_ADDR) { 3462 zero_user_segment(page, 0, PAGE_SIZE); 3463 SetPageUptodate(page); 3464 } else { 3465 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3466 DATA_GENERIC_ENHANCE_READ)) { 3467 err = -EFSCORRUPTED; 3468 goto fail; 3469 } 3470 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3471 if (err) 3472 goto fail; 3473 3474 lock_page(page); 3475 if (unlikely(page->mapping != mapping)) { 3476 f2fs_put_page(page, 1); 3477 goto repeat; 3478 } 3479 if (unlikely(!PageUptodate(page))) { 3480 err = -EIO; 3481 goto fail; 3482 } 3483 } 3484 return 0; 3485 3486 fail: 3487 f2fs_put_page(page, 1); 3488 f2fs_write_failed(mapping, pos + len); 3489 if (drop_atomic) 3490 f2fs_drop_inmem_pages_all(sbi, false); 3491 return err; 3492 } 3493 3494 static int f2fs_write_end(struct file *file, 3495 struct address_space *mapping, 3496 loff_t pos, unsigned len, unsigned copied, 3497 struct page *page, void *fsdata) 3498 { 3499 struct inode *inode = page->mapping->host; 3500 3501 trace_f2fs_write_end(inode, pos, len, copied); 3502 3503 /* 3504 * This should be come from len == PAGE_SIZE, and we expect copied 3505 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3506 * let generic_perform_write() try to copy data again through copied=0. 3507 */ 3508 if (!PageUptodate(page)) { 3509 if (unlikely(copied != len)) 3510 copied = 0; 3511 else 3512 SetPageUptodate(page); 3513 } 3514 3515 #ifdef CONFIG_F2FS_FS_COMPRESSION 3516 /* overwrite compressed file */ 3517 if (f2fs_compressed_file(inode) && fsdata) { 3518 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3519 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3520 3521 if (pos + copied > i_size_read(inode) && 3522 !f2fs_verity_in_progress(inode)) 3523 f2fs_i_size_write(inode, pos + copied); 3524 return copied; 3525 } 3526 #endif 3527 3528 if (!copied) 3529 goto unlock_out; 3530 3531 set_page_dirty(page); 3532 3533 if (pos + copied > i_size_read(inode) && 3534 !f2fs_verity_in_progress(inode)) 3535 f2fs_i_size_write(inode, pos + copied); 3536 unlock_out: 3537 f2fs_put_page(page, 1); 3538 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3539 return copied; 3540 } 3541 3542 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 3543 loff_t offset) 3544 { 3545 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 3546 unsigned blkbits = i_blkbits; 3547 unsigned blocksize_mask = (1 << blkbits) - 1; 3548 unsigned long align = offset | iov_iter_alignment(iter); 3549 struct block_device *bdev = inode->i_sb->s_bdev; 3550 3551 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) 3552 return 1; 3553 3554 if (align & blocksize_mask) { 3555 if (bdev) 3556 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 3557 blocksize_mask = (1 << blkbits) - 1; 3558 if (align & blocksize_mask) 3559 return -EINVAL; 3560 return 1; 3561 } 3562 return 0; 3563 } 3564 3565 static void f2fs_dio_end_io(struct bio *bio) 3566 { 3567 struct f2fs_private_dio *dio = bio->bi_private; 3568 3569 dec_page_count(F2FS_I_SB(dio->inode), 3570 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3571 3572 bio->bi_private = dio->orig_private; 3573 bio->bi_end_io = dio->orig_end_io; 3574 3575 kfree(dio); 3576 3577 bio_endio(bio); 3578 } 3579 3580 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 3581 loff_t file_offset) 3582 { 3583 struct f2fs_private_dio *dio; 3584 bool write = (bio_op(bio) == REQ_OP_WRITE); 3585 3586 dio = f2fs_kzalloc(F2FS_I_SB(inode), 3587 sizeof(struct f2fs_private_dio), GFP_NOFS); 3588 if (!dio) 3589 goto out; 3590 3591 dio->inode = inode; 3592 dio->orig_end_io = bio->bi_end_io; 3593 dio->orig_private = bio->bi_private; 3594 dio->write = write; 3595 3596 bio->bi_end_io = f2fs_dio_end_io; 3597 bio->bi_private = dio; 3598 3599 inc_page_count(F2FS_I_SB(inode), 3600 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3601 3602 submit_bio(bio); 3603 return; 3604 out: 3605 bio->bi_status = BLK_STS_IOERR; 3606 bio_endio(bio); 3607 } 3608 3609 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3610 { 3611 struct address_space *mapping = iocb->ki_filp->f_mapping; 3612 struct inode *inode = mapping->host; 3613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3614 struct f2fs_inode_info *fi = F2FS_I(inode); 3615 size_t count = iov_iter_count(iter); 3616 loff_t offset = iocb->ki_pos; 3617 int rw = iov_iter_rw(iter); 3618 int err; 3619 enum rw_hint hint = iocb->ki_hint; 3620 int whint_mode = F2FS_OPTION(sbi).whint_mode; 3621 bool do_opu; 3622 3623 err = check_direct_IO(inode, iter, offset); 3624 if (err) 3625 return err < 0 ? err : 0; 3626 3627 if (f2fs_force_buffered_io(inode, iocb, iter)) 3628 return 0; 3629 3630 do_opu = allow_outplace_dio(inode, iocb, iter); 3631 3632 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 3633 3634 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 3635 iocb->ki_hint = WRITE_LIFE_NOT_SET; 3636 3637 if (iocb->ki_flags & IOCB_NOWAIT) { 3638 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 3639 iocb->ki_hint = hint; 3640 err = -EAGAIN; 3641 goto out; 3642 } 3643 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 3644 up_read(&fi->i_gc_rwsem[rw]); 3645 iocb->ki_hint = hint; 3646 err = -EAGAIN; 3647 goto out; 3648 } 3649 } else { 3650 down_read(&fi->i_gc_rwsem[rw]); 3651 if (do_opu) 3652 down_read(&fi->i_gc_rwsem[READ]); 3653 } 3654 3655 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3656 iter, rw == WRITE ? get_data_block_dio_write : 3657 get_data_block_dio, NULL, f2fs_dio_submit_bio, 3658 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : 3659 DIO_SKIP_HOLES); 3660 3661 if (do_opu) 3662 up_read(&fi->i_gc_rwsem[READ]); 3663 3664 up_read(&fi->i_gc_rwsem[rw]); 3665 3666 if (rw == WRITE) { 3667 if (whint_mode == WHINT_MODE_OFF) 3668 iocb->ki_hint = hint; 3669 if (err > 0) { 3670 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3671 err); 3672 if (!do_opu) 3673 set_inode_flag(inode, FI_UPDATE_WRITE); 3674 } else if (err == -EIOCBQUEUED) { 3675 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3676 count - iov_iter_count(iter)); 3677 } else if (err < 0) { 3678 f2fs_write_failed(mapping, offset + count); 3679 } 3680 } else { 3681 if (err > 0) 3682 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); 3683 else if (err == -EIOCBQUEUED) 3684 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, 3685 count - iov_iter_count(iter)); 3686 } 3687 3688 out: 3689 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 3690 3691 return err; 3692 } 3693 3694 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3695 unsigned int length) 3696 { 3697 struct inode *inode = page->mapping->host; 3698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3699 3700 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3701 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3702 return; 3703 3704 if (PageDirty(page)) { 3705 if (inode->i_ino == F2FS_META_INO(sbi)) { 3706 dec_page_count(sbi, F2FS_DIRTY_META); 3707 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3708 dec_page_count(sbi, F2FS_DIRTY_NODES); 3709 } else { 3710 inode_dec_dirty_pages(inode); 3711 f2fs_remove_dirty_inode(inode); 3712 } 3713 } 3714 3715 clear_cold_data(page); 3716 3717 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3718 return f2fs_drop_inmem_page(inode, page); 3719 3720 f2fs_clear_page_private(page); 3721 } 3722 3723 int f2fs_release_page(struct page *page, gfp_t wait) 3724 { 3725 /* If this is dirty page, keep PagePrivate */ 3726 if (PageDirty(page)) 3727 return 0; 3728 3729 /* This is atomic written page, keep Private */ 3730 if (IS_ATOMIC_WRITTEN_PAGE(page)) 3731 return 0; 3732 3733 clear_cold_data(page); 3734 f2fs_clear_page_private(page); 3735 return 1; 3736 } 3737 3738 static int f2fs_set_data_page_dirty(struct page *page) 3739 { 3740 struct inode *inode = page_file_mapping(page)->host; 3741 3742 trace_f2fs_set_page_dirty(page, DATA); 3743 3744 if (!PageUptodate(page)) 3745 SetPageUptodate(page); 3746 if (PageSwapCache(page)) 3747 return __set_page_dirty_nobuffers(page); 3748 3749 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3750 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 3751 f2fs_register_inmem_page(inode, page); 3752 return 1; 3753 } 3754 /* 3755 * Previously, this page has been registered, we just 3756 * return here. 3757 */ 3758 return 0; 3759 } 3760 3761 if (!PageDirty(page)) { 3762 __set_page_dirty_nobuffers(page); 3763 f2fs_update_dirty_page(inode, page); 3764 return 1; 3765 } 3766 return 0; 3767 } 3768 3769 3770 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3771 { 3772 #ifdef CONFIG_F2FS_FS_COMPRESSION 3773 struct dnode_of_data dn; 3774 sector_t start_idx, blknr = 0; 3775 int ret; 3776 3777 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3778 3779 set_new_dnode(&dn, inode, NULL, NULL, 0); 3780 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3781 if (ret) 3782 return 0; 3783 3784 if (dn.data_blkaddr != COMPRESS_ADDR) { 3785 dn.ofs_in_node += block - start_idx; 3786 blknr = f2fs_data_blkaddr(&dn); 3787 if (!__is_valid_data_blkaddr(blknr)) 3788 blknr = 0; 3789 } 3790 3791 f2fs_put_dnode(&dn); 3792 return blknr; 3793 #else 3794 return 0; 3795 #endif 3796 } 3797 3798 3799 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3800 { 3801 struct inode *inode = mapping->host; 3802 struct buffer_head tmp = { 3803 .b_size = i_blocksize(inode), 3804 }; 3805 sector_t blknr = 0; 3806 3807 if (f2fs_has_inline_data(inode)) 3808 goto out; 3809 3810 /* make sure allocating whole blocks */ 3811 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3812 filemap_write_and_wait(mapping); 3813 3814 /* Block number less than F2FS MAX BLOCKS */ 3815 if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks)) 3816 goto out; 3817 3818 if (f2fs_compressed_file(inode)) { 3819 blknr = f2fs_bmap_compress(inode, block); 3820 } else { 3821 if (!get_data_block_bmap(inode, block, &tmp, 0)) 3822 blknr = tmp.b_blocknr; 3823 } 3824 out: 3825 trace_f2fs_bmap(inode, block, blknr); 3826 return blknr; 3827 } 3828 3829 #ifdef CONFIG_MIGRATION 3830 #include <linux/migrate.h> 3831 3832 int f2fs_migrate_page(struct address_space *mapping, 3833 struct page *newpage, struct page *page, enum migrate_mode mode) 3834 { 3835 int rc, extra_count; 3836 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3837 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 3838 3839 BUG_ON(PageWriteback(page)); 3840 3841 /* migrating an atomic written page is safe with the inmem_lock hold */ 3842 if (atomic_written) { 3843 if (mode != MIGRATE_SYNC) 3844 return -EBUSY; 3845 if (!mutex_trylock(&fi->inmem_lock)) 3846 return -EAGAIN; 3847 } 3848 3849 /* one extra reference was held for atomic_write page */ 3850 extra_count = atomic_written ? 1 : 0; 3851 rc = migrate_page_move_mapping(mapping, newpage, 3852 page, extra_count); 3853 if (rc != MIGRATEPAGE_SUCCESS) { 3854 if (atomic_written) 3855 mutex_unlock(&fi->inmem_lock); 3856 return rc; 3857 } 3858 3859 if (atomic_written) { 3860 struct inmem_pages *cur; 3861 list_for_each_entry(cur, &fi->inmem_pages, list) 3862 if (cur->page == page) { 3863 cur->page = newpage; 3864 break; 3865 } 3866 mutex_unlock(&fi->inmem_lock); 3867 put_page(page); 3868 get_page(newpage); 3869 } 3870 3871 if (PagePrivate(page)) { 3872 f2fs_set_page_private(newpage, page_private(page)); 3873 f2fs_clear_page_private(page); 3874 } 3875 3876 if (mode != MIGRATE_SYNC_NO_COPY) 3877 migrate_page_copy(newpage, page); 3878 else 3879 migrate_page_states(newpage, page); 3880 3881 return MIGRATEPAGE_SUCCESS; 3882 } 3883 #endif 3884 3885 #ifdef CONFIG_SWAP 3886 static int check_swap_activate_fast(struct swap_info_struct *sis, 3887 struct file *swap_file, sector_t *span) 3888 { 3889 struct address_space *mapping = swap_file->f_mapping; 3890 struct inode *inode = mapping->host; 3891 sector_t cur_lblock; 3892 sector_t last_lblock; 3893 sector_t pblock; 3894 sector_t lowest_pblock = -1; 3895 sector_t highest_pblock = 0; 3896 int nr_extents = 0; 3897 unsigned long nr_pblocks; 3898 unsigned long len; 3899 int ret; 3900 3901 /* 3902 * Map all the blocks into the extent list. This code doesn't try 3903 * to be very smart. 3904 */ 3905 cur_lblock = 0; 3906 last_lblock = logical_to_blk(inode, i_size_read(inode)); 3907 len = i_size_read(inode); 3908 3909 while (cur_lblock <= last_lblock && cur_lblock < sis->max) { 3910 struct buffer_head map_bh; 3911 pgoff_t next_pgofs; 3912 3913 cond_resched(); 3914 3915 memset(&map_bh, 0, sizeof(struct buffer_head)); 3916 map_bh.b_size = len - cur_lblock; 3917 3918 ret = get_data_block(inode, cur_lblock, &map_bh, 0, 3919 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 3920 if (ret) 3921 goto err_out; 3922 3923 /* hole */ 3924 if (!buffer_mapped(&map_bh)) 3925 goto err_out; 3926 3927 pblock = map_bh.b_blocknr; 3928 nr_pblocks = logical_to_blk(inode, map_bh.b_size); 3929 3930 if (cur_lblock + nr_pblocks >= sis->max) 3931 nr_pblocks = sis->max - cur_lblock; 3932 3933 if (cur_lblock) { /* exclude the header page */ 3934 if (pblock < lowest_pblock) 3935 lowest_pblock = pblock; 3936 if (pblock + nr_pblocks - 1 > highest_pblock) 3937 highest_pblock = pblock + nr_pblocks - 1; 3938 } 3939 3940 /* 3941 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3942 */ 3943 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3944 if (ret < 0) 3945 goto out; 3946 nr_extents += ret; 3947 cur_lblock += nr_pblocks; 3948 } 3949 ret = nr_extents; 3950 *span = 1 + highest_pblock - lowest_pblock; 3951 if (cur_lblock == 0) 3952 cur_lblock = 1; /* force Empty message */ 3953 sis->max = cur_lblock; 3954 sis->pages = cur_lblock - 1; 3955 sis->highest_bit = cur_lblock - 1; 3956 out: 3957 return ret; 3958 err_out: 3959 pr_err("swapon: swapfile has holes\n"); 3960 return -EINVAL; 3961 } 3962 3963 /* Copied from generic_swapfile_activate() to check any holes */ 3964 static int check_swap_activate(struct swap_info_struct *sis, 3965 struct file *swap_file, sector_t *span) 3966 { 3967 struct address_space *mapping = swap_file->f_mapping; 3968 struct inode *inode = mapping->host; 3969 unsigned blocks_per_page; 3970 unsigned long page_no; 3971 unsigned blkbits; 3972 sector_t probe_block; 3973 sector_t last_block; 3974 sector_t lowest_block = -1; 3975 sector_t highest_block = 0; 3976 int nr_extents = 0; 3977 int ret; 3978 3979 if (PAGE_SIZE == F2FS_BLKSIZE) 3980 return check_swap_activate_fast(sis, swap_file, span); 3981 3982 blkbits = inode->i_blkbits; 3983 blocks_per_page = PAGE_SIZE >> blkbits; 3984 3985 /* 3986 * Map all the blocks into the extent list. This code doesn't try 3987 * to be very smart. 3988 */ 3989 probe_block = 0; 3990 page_no = 0; 3991 last_block = i_size_read(inode) >> blkbits; 3992 while ((probe_block + blocks_per_page) <= last_block && 3993 page_no < sis->max) { 3994 unsigned block_in_page; 3995 sector_t first_block; 3996 sector_t block = 0; 3997 int err = 0; 3998 3999 cond_resched(); 4000 4001 block = probe_block; 4002 err = bmap(inode, &block); 4003 if (err || !block) 4004 goto bad_bmap; 4005 first_block = block; 4006 4007 /* 4008 * It must be PAGE_SIZE aligned on-disk 4009 */ 4010 if (first_block & (blocks_per_page - 1)) { 4011 probe_block++; 4012 goto reprobe; 4013 } 4014 4015 for (block_in_page = 1; block_in_page < blocks_per_page; 4016 block_in_page++) { 4017 4018 block = probe_block + block_in_page; 4019 err = bmap(inode, &block); 4020 4021 if (err || !block) 4022 goto bad_bmap; 4023 4024 if (block != first_block + block_in_page) { 4025 /* Discontiguity */ 4026 probe_block++; 4027 goto reprobe; 4028 } 4029 } 4030 4031 first_block >>= (PAGE_SHIFT - blkbits); 4032 if (page_no) { /* exclude the header page */ 4033 if (first_block < lowest_block) 4034 lowest_block = first_block; 4035 if (first_block > highest_block) 4036 highest_block = first_block; 4037 } 4038 4039 /* 4040 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4041 */ 4042 ret = add_swap_extent(sis, page_no, 1, first_block); 4043 if (ret < 0) 4044 goto out; 4045 nr_extents += ret; 4046 page_no++; 4047 probe_block += blocks_per_page; 4048 reprobe: 4049 continue; 4050 } 4051 ret = nr_extents; 4052 *span = 1 + highest_block - lowest_block; 4053 if (page_no == 0) 4054 page_no = 1; /* force Empty message */ 4055 sis->max = page_no; 4056 sis->pages = page_no - 1; 4057 sis->highest_bit = page_no - 1; 4058 out: 4059 return ret; 4060 bad_bmap: 4061 pr_err("swapon: swapfile has holes\n"); 4062 return -EINVAL; 4063 } 4064 4065 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4066 sector_t *span) 4067 { 4068 struct inode *inode = file_inode(file); 4069 int ret; 4070 4071 if (!S_ISREG(inode->i_mode)) 4072 return -EINVAL; 4073 4074 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4075 return -EROFS; 4076 4077 ret = f2fs_convert_inline_inode(inode); 4078 if (ret) 4079 return ret; 4080 4081 if (!f2fs_disable_compressed_file(inode)) 4082 return -EINVAL; 4083 4084 ret = check_swap_activate(sis, file, span); 4085 if (ret < 0) 4086 return ret; 4087 4088 set_inode_flag(inode, FI_PIN_FILE); 4089 f2fs_precache_extents(inode); 4090 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4091 return ret; 4092 } 4093 4094 static void f2fs_swap_deactivate(struct file *file) 4095 { 4096 struct inode *inode = file_inode(file); 4097 4098 clear_inode_flag(inode, FI_PIN_FILE); 4099 } 4100 #else 4101 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4102 sector_t *span) 4103 { 4104 return -EOPNOTSUPP; 4105 } 4106 4107 static void f2fs_swap_deactivate(struct file *file) 4108 { 4109 } 4110 #endif 4111 4112 const struct address_space_operations f2fs_dblock_aops = { 4113 .readpage = f2fs_read_data_page, 4114 .readahead = f2fs_readahead, 4115 .writepage = f2fs_write_data_page, 4116 .writepages = f2fs_write_data_pages, 4117 .write_begin = f2fs_write_begin, 4118 .write_end = f2fs_write_end, 4119 .set_page_dirty = f2fs_set_data_page_dirty, 4120 .invalidatepage = f2fs_invalidate_page, 4121 .releasepage = f2fs_release_page, 4122 .direct_IO = f2fs_direct_IO, 4123 .bmap = f2fs_bmap, 4124 .swap_activate = f2fs_swap_activate, 4125 .swap_deactivate = f2fs_swap_deactivate, 4126 #ifdef CONFIG_MIGRATION 4127 .migratepage = f2fs_migrate_page, 4128 #endif 4129 }; 4130 4131 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4132 { 4133 struct address_space *mapping = page_mapping(page); 4134 unsigned long flags; 4135 4136 xa_lock_irqsave(&mapping->i_pages, flags); 4137 __xa_clear_mark(&mapping->i_pages, page_index(page), 4138 PAGECACHE_TAG_DIRTY); 4139 xa_unlock_irqrestore(&mapping->i_pages, flags); 4140 } 4141 4142 int __init f2fs_init_post_read_processing(void) 4143 { 4144 bio_post_read_ctx_cache = 4145 kmem_cache_create("f2fs_bio_post_read_ctx", 4146 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4147 if (!bio_post_read_ctx_cache) 4148 goto fail; 4149 bio_post_read_ctx_pool = 4150 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4151 bio_post_read_ctx_cache); 4152 if (!bio_post_read_ctx_pool) 4153 goto fail_free_cache; 4154 return 0; 4155 4156 fail_free_cache: 4157 kmem_cache_destroy(bio_post_read_ctx_cache); 4158 fail: 4159 return -ENOMEM; 4160 } 4161 4162 void f2fs_destroy_post_read_processing(void) 4163 { 4164 mempool_destroy(bio_post_read_ctx_pool); 4165 kmem_cache_destroy(bio_post_read_ctx_cache); 4166 } 4167 4168 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4169 { 4170 if (!f2fs_sb_has_encrypt(sbi) && 4171 !f2fs_sb_has_verity(sbi) && 4172 !f2fs_sb_has_compression(sbi)) 4173 return 0; 4174 4175 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4176 WQ_UNBOUND | WQ_HIGHPRI, 4177 num_online_cpus()); 4178 if (!sbi->post_read_wq) 4179 return -ENOMEM; 4180 return 0; 4181 } 4182 4183 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4184 { 4185 if (sbi->post_read_wq) 4186 destroy_workqueue(sbi->post_read_wq); 4187 } 4188 4189 int __init f2fs_init_bio_entry_cache(void) 4190 { 4191 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4192 sizeof(struct bio_entry)); 4193 if (!bio_entry_slab) 4194 return -ENOMEM; 4195 return 0; 4196 } 4197 4198 void f2fs_destroy_bio_entry_cache(void) 4199 { 4200 kmem_cache_destroy(bio_entry_slab); 4201 } 4202