1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static void f2fs_read_end_io(struct bio *bio) 33 { 34 struct bio_vec *bvec; 35 int i; 36 37 if (f2fs_bio_encrypted(bio)) { 38 if (bio->bi_error) { 39 fscrypt_release_ctx(bio->bi_private); 40 } else { 41 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 42 return; 43 } 44 } 45 46 bio_for_each_segment_all(bvec, bio, i) { 47 struct page *page = bvec->bv_page; 48 49 if (!bio->bi_error) { 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 } else { 53 ClearPageUptodate(page); 54 SetPageError(page); 55 } 56 unlock_page(page); 57 } 58 bio_put(bio); 59 } 60 61 static void f2fs_write_end_io(struct bio *bio) 62 { 63 struct f2fs_sb_info *sbi = bio->bi_private; 64 struct bio_vec *bvec; 65 int i; 66 67 bio_for_each_segment_all(bvec, bio, i) { 68 struct page *page = bvec->bv_page; 69 70 fscrypt_pullback_bio_page(&page, true); 71 72 if (unlikely(bio->bi_error)) { 73 set_bit(AS_EIO, &page->mapping->flags); 74 f2fs_stop_checkpoint(sbi, true); 75 } 76 end_page_writeback(page); 77 } 78 if (atomic_dec_and_test(&sbi->nr_wb_bios) && 79 wq_has_sleeper(&sbi->cp_wait)) 80 wake_up(&sbi->cp_wait); 81 82 bio_put(bio); 83 } 84 85 /* 86 * Low-level block read/write IO operations. 87 */ 88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 89 int npages, bool is_read) 90 { 91 struct bio *bio; 92 93 bio = f2fs_bio_alloc(npages); 94 95 bio->bi_bdev = sbi->sb->s_bdev; 96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 98 bio->bi_private = is_read ? NULL : sbi; 99 100 return bio; 101 } 102 103 static inline void __submit_bio(struct f2fs_sb_info *sbi, 104 struct bio *bio, enum page_type type) 105 { 106 if (!is_read_io(bio_op(bio))) { 107 atomic_inc(&sbi->nr_wb_bios); 108 if (f2fs_sb_mounted_hmsmr(sbi->sb) && 109 current->plug && (type == DATA || type == NODE)) 110 blk_finish_plug(current->plug); 111 } 112 submit_bio(bio); 113 } 114 115 static void __submit_merged_bio(struct f2fs_bio_info *io) 116 { 117 struct f2fs_io_info *fio = &io->fio; 118 119 if (!io->bio) 120 return; 121 122 if (is_read_io(fio->op)) 123 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); 124 else 125 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); 126 127 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 128 129 __submit_bio(io->sbi, io->bio, fio->type); 130 io->bio = NULL; 131 } 132 133 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 134 struct page *page, nid_t ino) 135 { 136 struct bio_vec *bvec; 137 struct page *target; 138 int i; 139 140 if (!io->bio) 141 return false; 142 143 if (!inode && !page && !ino) 144 return true; 145 146 bio_for_each_segment_all(bvec, io->bio, i) { 147 148 if (bvec->bv_page->mapping) 149 target = bvec->bv_page; 150 else 151 target = fscrypt_control_page(bvec->bv_page); 152 153 if (inode && inode == target->mapping->host) 154 return true; 155 if (page && page == target) 156 return true; 157 if (ino && ino == ino_of_node(target)) 158 return true; 159 } 160 161 return false; 162 } 163 164 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 165 struct page *page, nid_t ino, 166 enum page_type type) 167 { 168 enum page_type btype = PAGE_TYPE_OF_BIO(type); 169 struct f2fs_bio_info *io = &sbi->write_io[btype]; 170 bool ret; 171 172 down_read(&io->io_rwsem); 173 ret = __has_merged_page(io, inode, page, ino); 174 up_read(&io->io_rwsem); 175 return ret; 176 } 177 178 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 179 struct inode *inode, struct page *page, 180 nid_t ino, enum page_type type, int rw) 181 { 182 enum page_type btype = PAGE_TYPE_OF_BIO(type); 183 struct f2fs_bio_info *io; 184 185 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 186 187 down_write(&io->io_rwsem); 188 189 if (!__has_merged_page(io, inode, page, ino)) 190 goto out; 191 192 /* change META to META_FLUSH in the checkpoint procedure */ 193 if (type >= META_FLUSH) { 194 io->fio.type = META_FLUSH; 195 io->fio.op = REQ_OP_WRITE; 196 if (test_opt(sbi, NOBARRIER)) 197 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO; 198 else 199 io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META | 200 REQ_PRIO; 201 } 202 __submit_merged_bio(io); 203 out: 204 up_write(&io->io_rwsem); 205 } 206 207 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 208 int rw) 209 { 210 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw); 211 } 212 213 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 214 struct inode *inode, struct page *page, 215 nid_t ino, enum page_type type, int rw) 216 { 217 if (has_merged_page(sbi, inode, page, ino, type)) 218 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw); 219 } 220 221 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 222 { 223 f2fs_submit_merged_bio(sbi, DATA, WRITE); 224 f2fs_submit_merged_bio(sbi, NODE, WRITE); 225 f2fs_submit_merged_bio(sbi, META, WRITE); 226 } 227 228 /* 229 * Fill the locked page with data located in the block address. 230 * Return unlocked page. 231 */ 232 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 233 { 234 struct bio *bio; 235 struct page *page = fio->encrypted_page ? 236 fio->encrypted_page : fio->page; 237 238 trace_f2fs_submit_page_bio(page, fio); 239 f2fs_trace_ios(fio, 0); 240 241 /* Allocate a new bio */ 242 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 243 244 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 245 bio_put(bio); 246 return -EFAULT; 247 } 248 bio_set_op_attrs(bio, fio->op, fio->op_flags); 249 250 __submit_bio(fio->sbi, bio, fio->type); 251 return 0; 252 } 253 254 void f2fs_submit_page_mbio(struct f2fs_io_info *fio) 255 { 256 struct f2fs_sb_info *sbi = fio->sbi; 257 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 258 struct f2fs_bio_info *io; 259 bool is_read = is_read_io(fio->op); 260 struct page *bio_page; 261 262 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 263 264 if (fio->old_blkaddr != NEW_ADDR) 265 verify_block_addr(sbi, fio->old_blkaddr); 266 verify_block_addr(sbi, fio->new_blkaddr); 267 268 down_write(&io->io_rwsem); 269 270 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 271 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags))) 272 __submit_merged_bio(io); 273 alloc_new: 274 if (io->bio == NULL) { 275 int bio_blocks = MAX_BIO_BLOCKS(sbi); 276 277 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 278 bio_blocks, is_read); 279 io->fio = *fio; 280 } 281 282 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 283 284 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 285 PAGE_SIZE) { 286 __submit_merged_bio(io); 287 goto alloc_new; 288 } 289 290 io->last_block_in_bio = fio->new_blkaddr; 291 f2fs_trace_ios(fio, 0); 292 293 up_write(&io->io_rwsem); 294 trace_f2fs_submit_page_mbio(fio->page, fio); 295 } 296 297 static void __set_data_blkaddr(struct dnode_of_data *dn) 298 { 299 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 300 __le32 *addr_array; 301 302 /* Get physical address of data block */ 303 addr_array = blkaddr_in_node(rn); 304 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 305 } 306 307 /* 308 * Lock ordering for the change of data block address: 309 * ->data_page 310 * ->node_page 311 * update block addresses in the node page 312 */ 313 void set_data_blkaddr(struct dnode_of_data *dn) 314 { 315 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 316 __set_data_blkaddr(dn); 317 if (set_page_dirty(dn->node_page)) 318 dn->node_changed = true; 319 } 320 321 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 322 { 323 dn->data_blkaddr = blkaddr; 324 set_data_blkaddr(dn); 325 f2fs_update_extent_cache(dn); 326 } 327 328 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 329 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 330 { 331 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 332 333 if (!count) 334 return 0; 335 336 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 337 return -EPERM; 338 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 339 return -ENOSPC; 340 341 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 342 dn->ofs_in_node, count); 343 344 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 345 346 for (; count > 0; dn->ofs_in_node++) { 347 block_t blkaddr = 348 datablock_addr(dn->node_page, dn->ofs_in_node); 349 if (blkaddr == NULL_ADDR) { 350 dn->data_blkaddr = NEW_ADDR; 351 __set_data_blkaddr(dn); 352 count--; 353 } 354 } 355 356 if (set_page_dirty(dn->node_page)) 357 dn->node_changed = true; 358 return 0; 359 } 360 361 /* Should keep dn->ofs_in_node unchanged */ 362 int reserve_new_block(struct dnode_of_data *dn) 363 { 364 unsigned int ofs_in_node = dn->ofs_in_node; 365 int ret; 366 367 ret = reserve_new_blocks(dn, 1); 368 dn->ofs_in_node = ofs_in_node; 369 return ret; 370 } 371 372 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 373 { 374 bool need_put = dn->inode_page ? false : true; 375 int err; 376 377 err = get_dnode_of_data(dn, index, ALLOC_NODE); 378 if (err) 379 return err; 380 381 if (dn->data_blkaddr == NULL_ADDR) 382 err = reserve_new_block(dn); 383 if (err || need_put) 384 f2fs_put_dnode(dn); 385 return err; 386 } 387 388 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 389 { 390 struct extent_info ei; 391 struct inode *inode = dn->inode; 392 393 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 394 dn->data_blkaddr = ei.blk + index - ei.fofs; 395 return 0; 396 } 397 398 return f2fs_reserve_block(dn, index); 399 } 400 401 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 402 int op_flags, bool for_write) 403 { 404 struct address_space *mapping = inode->i_mapping; 405 struct dnode_of_data dn; 406 struct page *page; 407 struct extent_info ei; 408 int err; 409 struct f2fs_io_info fio = { 410 .sbi = F2FS_I_SB(inode), 411 .type = DATA, 412 .op = REQ_OP_READ, 413 .op_flags = op_flags, 414 .encrypted_page = NULL, 415 }; 416 417 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 418 return read_mapping_page(mapping, index, NULL); 419 420 page = f2fs_grab_cache_page(mapping, index, for_write); 421 if (!page) 422 return ERR_PTR(-ENOMEM); 423 424 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 425 dn.data_blkaddr = ei.blk + index - ei.fofs; 426 goto got_it; 427 } 428 429 set_new_dnode(&dn, inode, NULL, NULL, 0); 430 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 431 if (err) 432 goto put_err; 433 f2fs_put_dnode(&dn); 434 435 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 436 err = -ENOENT; 437 goto put_err; 438 } 439 got_it: 440 if (PageUptodate(page)) { 441 unlock_page(page); 442 return page; 443 } 444 445 /* 446 * A new dentry page is allocated but not able to be written, since its 447 * new inode page couldn't be allocated due to -ENOSPC. 448 * In such the case, its blkaddr can be remained as NEW_ADDR. 449 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 450 */ 451 if (dn.data_blkaddr == NEW_ADDR) { 452 zero_user_segment(page, 0, PAGE_SIZE); 453 if (!PageUptodate(page)) 454 SetPageUptodate(page); 455 unlock_page(page); 456 return page; 457 } 458 459 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 460 fio.page = page; 461 err = f2fs_submit_page_bio(&fio); 462 if (err) 463 goto put_err; 464 return page; 465 466 put_err: 467 f2fs_put_page(page, 1); 468 return ERR_PTR(err); 469 } 470 471 struct page *find_data_page(struct inode *inode, pgoff_t index) 472 { 473 struct address_space *mapping = inode->i_mapping; 474 struct page *page; 475 476 page = find_get_page(mapping, index); 477 if (page && PageUptodate(page)) 478 return page; 479 f2fs_put_page(page, 0); 480 481 page = get_read_data_page(inode, index, READ_SYNC, false); 482 if (IS_ERR(page)) 483 return page; 484 485 if (PageUptodate(page)) 486 return page; 487 488 wait_on_page_locked(page); 489 if (unlikely(!PageUptodate(page))) { 490 f2fs_put_page(page, 0); 491 return ERR_PTR(-EIO); 492 } 493 return page; 494 } 495 496 /* 497 * If it tries to access a hole, return an error. 498 * Because, the callers, functions in dir.c and GC, should be able to know 499 * whether this page exists or not. 500 */ 501 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 502 bool for_write) 503 { 504 struct address_space *mapping = inode->i_mapping; 505 struct page *page; 506 repeat: 507 page = get_read_data_page(inode, index, READ_SYNC, for_write); 508 if (IS_ERR(page)) 509 return page; 510 511 /* wait for read completion */ 512 lock_page(page); 513 if (unlikely(page->mapping != mapping)) { 514 f2fs_put_page(page, 1); 515 goto repeat; 516 } 517 if (unlikely(!PageUptodate(page))) { 518 f2fs_put_page(page, 1); 519 return ERR_PTR(-EIO); 520 } 521 return page; 522 } 523 524 /* 525 * Caller ensures that this data page is never allocated. 526 * A new zero-filled data page is allocated in the page cache. 527 * 528 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 529 * f2fs_unlock_op(). 530 * Note that, ipage is set only by make_empty_dir, and if any error occur, 531 * ipage should be released by this function. 532 */ 533 struct page *get_new_data_page(struct inode *inode, 534 struct page *ipage, pgoff_t index, bool new_i_size) 535 { 536 struct address_space *mapping = inode->i_mapping; 537 struct page *page; 538 struct dnode_of_data dn; 539 int err; 540 541 page = f2fs_grab_cache_page(mapping, index, true); 542 if (!page) { 543 /* 544 * before exiting, we should make sure ipage will be released 545 * if any error occur. 546 */ 547 f2fs_put_page(ipage, 1); 548 return ERR_PTR(-ENOMEM); 549 } 550 551 set_new_dnode(&dn, inode, ipage, NULL, 0); 552 err = f2fs_reserve_block(&dn, index); 553 if (err) { 554 f2fs_put_page(page, 1); 555 return ERR_PTR(err); 556 } 557 if (!ipage) 558 f2fs_put_dnode(&dn); 559 560 if (PageUptodate(page)) 561 goto got_it; 562 563 if (dn.data_blkaddr == NEW_ADDR) { 564 zero_user_segment(page, 0, PAGE_SIZE); 565 if (!PageUptodate(page)) 566 SetPageUptodate(page); 567 } else { 568 f2fs_put_page(page, 1); 569 570 /* if ipage exists, blkaddr should be NEW_ADDR */ 571 f2fs_bug_on(F2FS_I_SB(inode), ipage); 572 page = get_lock_data_page(inode, index, true); 573 if (IS_ERR(page)) 574 return page; 575 } 576 got_it: 577 if (new_i_size && i_size_read(inode) < 578 ((loff_t)(index + 1) << PAGE_SHIFT)) 579 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 580 return page; 581 } 582 583 static int __allocate_data_block(struct dnode_of_data *dn) 584 { 585 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 586 struct f2fs_summary sum; 587 struct node_info ni; 588 int seg = CURSEG_WARM_DATA; 589 pgoff_t fofs; 590 blkcnt_t count = 1; 591 592 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 593 return -EPERM; 594 595 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 596 if (dn->data_blkaddr == NEW_ADDR) 597 goto alloc; 598 599 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 600 return -ENOSPC; 601 602 alloc: 603 get_node_info(sbi, dn->nid, &ni); 604 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 605 606 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) 607 seg = CURSEG_DIRECT_IO; 608 609 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 610 &sum, seg); 611 set_data_blkaddr(dn); 612 613 /* update i_size */ 614 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 615 dn->ofs_in_node; 616 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 617 f2fs_i_size_write(dn->inode, 618 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 619 return 0; 620 } 621 622 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 623 { 624 struct inode *inode = file_inode(iocb->ki_filp); 625 struct f2fs_map_blocks map; 626 ssize_t ret = 0; 627 628 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 629 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from)); 630 map.m_next_pgofs = NULL; 631 632 if (f2fs_encrypted_inode(inode)) 633 return 0; 634 635 if (iocb->ki_flags & IOCB_DIRECT) { 636 ret = f2fs_convert_inline_inode(inode); 637 if (ret) 638 return ret; 639 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 640 } 641 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 642 ret = f2fs_convert_inline_inode(inode); 643 if (ret) 644 return ret; 645 } 646 if (!f2fs_has_inline_data(inode)) 647 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 648 return ret; 649 } 650 651 /* 652 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 653 * f2fs_map_blocks structure. 654 * If original data blocks are allocated, then give them to blockdev. 655 * Otherwise, 656 * a. preallocate requested block addresses 657 * b. do not use extent cache for better performance 658 * c. give the block addresses to blockdev 659 */ 660 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 661 int create, int flag) 662 { 663 unsigned int maxblocks = map->m_len; 664 struct dnode_of_data dn; 665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 666 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 667 pgoff_t pgofs, end_offset, end; 668 int err = 0, ofs = 1; 669 unsigned int ofs_in_node, last_ofs_in_node; 670 blkcnt_t prealloc; 671 struct extent_info ei; 672 bool allocated = false; 673 block_t blkaddr; 674 675 map->m_len = 0; 676 map->m_flags = 0; 677 678 /* it only supports block size == page size */ 679 pgofs = (pgoff_t)map->m_lblk; 680 end = pgofs + maxblocks; 681 682 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 683 map->m_pblk = ei.blk + pgofs - ei.fofs; 684 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 685 map->m_flags = F2FS_MAP_MAPPED; 686 goto out; 687 } 688 689 next_dnode: 690 if (create) 691 f2fs_lock_op(sbi); 692 693 /* When reading holes, we need its node page */ 694 set_new_dnode(&dn, inode, NULL, NULL, 0); 695 err = get_dnode_of_data(&dn, pgofs, mode); 696 if (err) { 697 if (flag == F2FS_GET_BLOCK_BMAP) 698 map->m_pblk = 0; 699 if (err == -ENOENT) { 700 err = 0; 701 if (map->m_next_pgofs) 702 *map->m_next_pgofs = 703 get_next_page_offset(&dn, pgofs); 704 } 705 goto unlock_out; 706 } 707 708 prealloc = 0; 709 ofs_in_node = dn.ofs_in_node; 710 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 next_block: 713 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 714 715 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 716 if (create) { 717 if (unlikely(f2fs_cp_error(sbi))) { 718 err = -EIO; 719 goto sync_out; 720 } 721 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 722 if (blkaddr == NULL_ADDR) { 723 prealloc++; 724 last_ofs_in_node = dn.ofs_in_node; 725 } 726 } else { 727 err = __allocate_data_block(&dn); 728 if (!err) { 729 set_inode_flag(inode, FI_APPEND_WRITE); 730 allocated = true; 731 } 732 } 733 if (err) 734 goto sync_out; 735 map->m_flags = F2FS_MAP_NEW; 736 blkaddr = dn.data_blkaddr; 737 } else { 738 if (flag == F2FS_GET_BLOCK_BMAP) { 739 map->m_pblk = 0; 740 goto sync_out; 741 } 742 if (flag == F2FS_GET_BLOCK_FIEMAP && 743 blkaddr == NULL_ADDR) { 744 if (map->m_next_pgofs) 745 *map->m_next_pgofs = pgofs + 1; 746 } 747 if (flag != F2FS_GET_BLOCK_FIEMAP || 748 blkaddr != NEW_ADDR) 749 goto sync_out; 750 } 751 } 752 753 if (flag == F2FS_GET_BLOCK_PRE_AIO) 754 goto skip; 755 756 if (map->m_len == 0) { 757 /* preallocated unwritten block should be mapped for fiemap. */ 758 if (blkaddr == NEW_ADDR) 759 map->m_flags |= F2FS_MAP_UNWRITTEN; 760 map->m_flags |= F2FS_MAP_MAPPED; 761 762 map->m_pblk = blkaddr; 763 map->m_len = 1; 764 } else if ((map->m_pblk != NEW_ADDR && 765 blkaddr == (map->m_pblk + ofs)) || 766 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 767 flag == F2FS_GET_BLOCK_PRE_DIO) { 768 ofs++; 769 map->m_len++; 770 } else { 771 goto sync_out; 772 } 773 774 skip: 775 dn.ofs_in_node++; 776 pgofs++; 777 778 /* preallocate blocks in batch for one dnode page */ 779 if (flag == F2FS_GET_BLOCK_PRE_AIO && 780 (pgofs == end || dn.ofs_in_node == end_offset)) { 781 782 dn.ofs_in_node = ofs_in_node; 783 err = reserve_new_blocks(&dn, prealloc); 784 if (err) 785 goto sync_out; 786 787 map->m_len += dn.ofs_in_node - ofs_in_node; 788 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 789 err = -ENOSPC; 790 goto sync_out; 791 } 792 dn.ofs_in_node = end_offset; 793 } 794 795 if (pgofs >= end) 796 goto sync_out; 797 else if (dn.ofs_in_node < end_offset) 798 goto next_block; 799 800 f2fs_put_dnode(&dn); 801 802 if (create) { 803 f2fs_unlock_op(sbi); 804 f2fs_balance_fs(sbi, allocated); 805 } 806 allocated = false; 807 goto next_dnode; 808 809 sync_out: 810 f2fs_put_dnode(&dn); 811 unlock_out: 812 if (create) { 813 f2fs_unlock_op(sbi); 814 f2fs_balance_fs(sbi, allocated); 815 } 816 out: 817 trace_f2fs_map_blocks(inode, map, err); 818 return err; 819 } 820 821 static int __get_data_block(struct inode *inode, sector_t iblock, 822 struct buffer_head *bh, int create, int flag, 823 pgoff_t *next_pgofs) 824 { 825 struct f2fs_map_blocks map; 826 int ret; 827 828 map.m_lblk = iblock; 829 map.m_len = bh->b_size >> inode->i_blkbits; 830 map.m_next_pgofs = next_pgofs; 831 832 ret = f2fs_map_blocks(inode, &map, create, flag); 833 if (!ret) { 834 map_bh(bh, inode->i_sb, map.m_pblk); 835 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 836 bh->b_size = map.m_len << inode->i_blkbits; 837 } 838 return ret; 839 } 840 841 static int get_data_block(struct inode *inode, sector_t iblock, 842 struct buffer_head *bh_result, int create, int flag, 843 pgoff_t *next_pgofs) 844 { 845 return __get_data_block(inode, iblock, bh_result, create, 846 flag, next_pgofs); 847 } 848 849 static int get_data_block_dio(struct inode *inode, sector_t iblock, 850 struct buffer_head *bh_result, int create) 851 { 852 return __get_data_block(inode, iblock, bh_result, create, 853 F2FS_GET_BLOCK_DIO, NULL); 854 } 855 856 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 857 struct buffer_head *bh_result, int create) 858 { 859 /* Block number less than F2FS MAX BLOCKS */ 860 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 861 return -EFBIG; 862 863 return __get_data_block(inode, iblock, bh_result, create, 864 F2FS_GET_BLOCK_BMAP, NULL); 865 } 866 867 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 868 { 869 return (offset >> inode->i_blkbits); 870 } 871 872 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 873 { 874 return (blk << inode->i_blkbits); 875 } 876 877 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 878 u64 start, u64 len) 879 { 880 struct buffer_head map_bh; 881 sector_t start_blk, last_blk; 882 pgoff_t next_pgofs; 883 loff_t isize; 884 u64 logical = 0, phys = 0, size = 0; 885 u32 flags = 0; 886 int ret = 0; 887 888 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 889 if (ret) 890 return ret; 891 892 if (f2fs_has_inline_data(inode)) { 893 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 894 if (ret != -EAGAIN) 895 return ret; 896 } 897 898 inode_lock(inode); 899 900 isize = i_size_read(inode); 901 if (start >= isize) 902 goto out; 903 904 if (start + len > isize) 905 len = isize - start; 906 907 if (logical_to_blk(inode, len) == 0) 908 len = blk_to_logical(inode, 1); 909 910 start_blk = logical_to_blk(inode, start); 911 last_blk = logical_to_blk(inode, start + len - 1); 912 913 next: 914 memset(&map_bh, 0, sizeof(struct buffer_head)); 915 map_bh.b_size = len; 916 917 ret = get_data_block(inode, start_blk, &map_bh, 0, 918 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 919 if (ret) 920 goto out; 921 922 /* HOLE */ 923 if (!buffer_mapped(&map_bh)) { 924 start_blk = next_pgofs; 925 /* Go through holes util pass the EOF */ 926 if (blk_to_logical(inode, start_blk) < isize) 927 goto prep_next; 928 /* Found a hole beyond isize means no more extents. 929 * Note that the premise is that filesystems don't 930 * punch holes beyond isize and keep size unchanged. 931 */ 932 flags |= FIEMAP_EXTENT_LAST; 933 } 934 935 if (size) { 936 if (f2fs_encrypted_inode(inode)) 937 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 938 939 ret = fiemap_fill_next_extent(fieinfo, logical, 940 phys, size, flags); 941 } 942 943 if (start_blk > last_blk || ret) 944 goto out; 945 946 logical = blk_to_logical(inode, start_blk); 947 phys = blk_to_logical(inode, map_bh.b_blocknr); 948 size = map_bh.b_size; 949 flags = 0; 950 if (buffer_unwritten(&map_bh)) 951 flags = FIEMAP_EXTENT_UNWRITTEN; 952 953 start_blk += logical_to_blk(inode, size); 954 955 prep_next: 956 cond_resched(); 957 if (fatal_signal_pending(current)) 958 ret = -EINTR; 959 else 960 goto next; 961 out: 962 if (ret == 1) 963 ret = 0; 964 965 inode_unlock(inode); 966 return ret; 967 } 968 969 struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 970 unsigned nr_pages) 971 { 972 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 973 struct fscrypt_ctx *ctx = NULL; 974 struct block_device *bdev = sbi->sb->s_bdev; 975 struct bio *bio; 976 977 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 978 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 979 if (IS_ERR(ctx)) 980 return ERR_CAST(ctx); 981 982 /* wait the page to be moved by cleaning */ 983 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 984 } 985 986 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 987 if (!bio) { 988 if (ctx) 989 fscrypt_release_ctx(ctx); 990 return ERR_PTR(-ENOMEM); 991 } 992 bio->bi_bdev = bdev; 993 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr); 994 bio->bi_end_io = f2fs_read_end_io; 995 bio->bi_private = ctx; 996 997 return bio; 998 } 999 1000 /* 1001 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1002 * Major change was from block_size == page_size in f2fs by default. 1003 */ 1004 static int f2fs_mpage_readpages(struct address_space *mapping, 1005 struct list_head *pages, struct page *page, 1006 unsigned nr_pages) 1007 { 1008 struct bio *bio = NULL; 1009 unsigned page_idx; 1010 sector_t last_block_in_bio = 0; 1011 struct inode *inode = mapping->host; 1012 const unsigned blkbits = inode->i_blkbits; 1013 const unsigned blocksize = 1 << blkbits; 1014 sector_t block_in_file; 1015 sector_t last_block; 1016 sector_t last_block_in_file; 1017 sector_t block_nr; 1018 struct f2fs_map_blocks map; 1019 1020 map.m_pblk = 0; 1021 map.m_lblk = 0; 1022 map.m_len = 0; 1023 map.m_flags = 0; 1024 map.m_next_pgofs = NULL; 1025 1026 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1027 1028 prefetchw(&page->flags); 1029 if (pages) { 1030 page = list_entry(pages->prev, struct page, lru); 1031 list_del(&page->lru); 1032 if (add_to_page_cache_lru(page, mapping, 1033 page->index, 1034 readahead_gfp_mask(mapping))) 1035 goto next_page; 1036 } 1037 1038 block_in_file = (sector_t)page->index; 1039 last_block = block_in_file + nr_pages; 1040 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1041 blkbits; 1042 if (last_block > last_block_in_file) 1043 last_block = last_block_in_file; 1044 1045 /* 1046 * Map blocks using the previous result first. 1047 */ 1048 if ((map.m_flags & F2FS_MAP_MAPPED) && 1049 block_in_file > map.m_lblk && 1050 block_in_file < (map.m_lblk + map.m_len)) 1051 goto got_it; 1052 1053 /* 1054 * Then do more f2fs_map_blocks() calls until we are 1055 * done with this page. 1056 */ 1057 map.m_flags = 0; 1058 1059 if (block_in_file < last_block) { 1060 map.m_lblk = block_in_file; 1061 map.m_len = last_block - block_in_file; 1062 1063 if (f2fs_map_blocks(inode, &map, 0, 1064 F2FS_GET_BLOCK_READ)) 1065 goto set_error_page; 1066 } 1067 got_it: 1068 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1069 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1070 SetPageMappedToDisk(page); 1071 1072 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1073 SetPageUptodate(page); 1074 goto confused; 1075 } 1076 } else { 1077 zero_user_segment(page, 0, PAGE_SIZE); 1078 if (!PageUptodate(page)) 1079 SetPageUptodate(page); 1080 unlock_page(page); 1081 goto next_page; 1082 } 1083 1084 /* 1085 * This page will go to BIO. Do we need to send this 1086 * BIO off first? 1087 */ 1088 if (bio && (last_block_in_bio != block_nr - 1)) { 1089 submit_and_realloc: 1090 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1091 bio = NULL; 1092 } 1093 if (bio == NULL) { 1094 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1095 if (IS_ERR(bio)) { 1096 bio = NULL; 1097 goto set_error_page; 1098 } 1099 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1100 } 1101 1102 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1103 goto submit_and_realloc; 1104 1105 last_block_in_bio = block_nr; 1106 goto next_page; 1107 set_error_page: 1108 SetPageError(page); 1109 zero_user_segment(page, 0, PAGE_SIZE); 1110 unlock_page(page); 1111 goto next_page; 1112 confused: 1113 if (bio) { 1114 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1115 bio = NULL; 1116 } 1117 unlock_page(page); 1118 next_page: 1119 if (pages) 1120 put_page(page); 1121 } 1122 BUG_ON(pages && !list_empty(pages)); 1123 if (bio) 1124 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1125 return 0; 1126 } 1127 1128 static int f2fs_read_data_page(struct file *file, struct page *page) 1129 { 1130 struct inode *inode = page->mapping->host; 1131 int ret = -EAGAIN; 1132 1133 trace_f2fs_readpage(page, DATA); 1134 1135 /* If the file has inline data, try to read it directly */ 1136 if (f2fs_has_inline_data(inode)) 1137 ret = f2fs_read_inline_data(inode, page); 1138 if (ret == -EAGAIN) 1139 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1140 return ret; 1141 } 1142 1143 static int f2fs_read_data_pages(struct file *file, 1144 struct address_space *mapping, 1145 struct list_head *pages, unsigned nr_pages) 1146 { 1147 struct inode *inode = file->f_mapping->host; 1148 struct page *page = list_entry(pages->prev, struct page, lru); 1149 1150 trace_f2fs_readpages(inode, page, nr_pages); 1151 1152 /* If the file has inline data, skip readpages */ 1153 if (f2fs_has_inline_data(inode)) 1154 return 0; 1155 1156 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1157 } 1158 1159 int do_write_data_page(struct f2fs_io_info *fio) 1160 { 1161 struct page *page = fio->page; 1162 struct inode *inode = page->mapping->host; 1163 struct dnode_of_data dn; 1164 int err = 0; 1165 1166 set_new_dnode(&dn, inode, NULL, NULL, 0); 1167 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1168 if (err) 1169 return err; 1170 1171 fio->old_blkaddr = dn.data_blkaddr; 1172 1173 /* This page is already truncated */ 1174 if (fio->old_blkaddr == NULL_ADDR) { 1175 ClearPageUptodate(page); 1176 goto out_writepage; 1177 } 1178 1179 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1180 gfp_t gfp_flags = GFP_NOFS; 1181 1182 /* wait for GCed encrypted page writeback */ 1183 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1184 fio->old_blkaddr); 1185 retry_encrypt: 1186 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1187 gfp_flags); 1188 if (IS_ERR(fio->encrypted_page)) { 1189 err = PTR_ERR(fio->encrypted_page); 1190 if (err == -ENOMEM) { 1191 /* flush pending ios and wait for a while */ 1192 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1193 congestion_wait(BLK_RW_ASYNC, HZ/50); 1194 gfp_flags |= __GFP_NOFAIL; 1195 err = 0; 1196 goto retry_encrypt; 1197 } 1198 goto out_writepage; 1199 } 1200 } 1201 1202 set_page_writeback(page); 1203 1204 /* 1205 * If current allocation needs SSR, 1206 * it had better in-place writes for updated data. 1207 */ 1208 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1209 !is_cold_data(page) && 1210 !IS_ATOMIC_WRITTEN_PAGE(page) && 1211 need_inplace_update(inode))) { 1212 rewrite_data_page(fio); 1213 set_inode_flag(inode, FI_UPDATE_WRITE); 1214 trace_f2fs_do_write_data_page(page, IPU); 1215 } else { 1216 write_data_page(&dn, fio); 1217 trace_f2fs_do_write_data_page(page, OPU); 1218 set_inode_flag(inode, FI_APPEND_WRITE); 1219 if (page->index == 0) 1220 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1221 } 1222 out_writepage: 1223 f2fs_put_dnode(&dn); 1224 return err; 1225 } 1226 1227 static int f2fs_write_data_page(struct page *page, 1228 struct writeback_control *wbc) 1229 { 1230 struct inode *inode = page->mapping->host; 1231 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1232 loff_t i_size = i_size_read(inode); 1233 const pgoff_t end_index = ((unsigned long long) i_size) 1234 >> PAGE_SHIFT; 1235 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1236 unsigned offset = 0; 1237 bool need_balance_fs = false; 1238 int err = 0; 1239 struct f2fs_io_info fio = { 1240 .sbi = sbi, 1241 .type = DATA, 1242 .op = REQ_OP_WRITE, 1243 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0, 1244 .page = page, 1245 .encrypted_page = NULL, 1246 }; 1247 1248 trace_f2fs_writepage(page, DATA); 1249 1250 if (page->index < end_index) 1251 goto write; 1252 1253 /* 1254 * If the offset is out-of-range of file size, 1255 * this page does not have to be written to disk. 1256 */ 1257 offset = i_size & (PAGE_SIZE - 1); 1258 if ((page->index >= end_index + 1) || !offset) 1259 goto out; 1260 1261 zero_user_segment(page, offset, PAGE_SIZE); 1262 write: 1263 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1264 goto redirty_out; 1265 if (f2fs_is_drop_cache(inode)) 1266 goto out; 1267 /* we should not write 0'th page having journal header */ 1268 if (f2fs_is_volatile_file(inode) && (!page->index || 1269 (!wbc->for_reclaim && 1270 available_free_memory(sbi, BASE_CHECK)))) 1271 goto redirty_out; 1272 1273 /* we should bypass data pages to proceed the kworkder jobs */ 1274 if (unlikely(f2fs_cp_error(sbi))) { 1275 mapping_set_error(page->mapping, -EIO); 1276 goto out; 1277 } 1278 1279 /* Dentry blocks are controlled by checkpoint */ 1280 if (S_ISDIR(inode->i_mode)) { 1281 err = do_write_data_page(&fio); 1282 goto done; 1283 } 1284 1285 if (!wbc->for_reclaim) 1286 need_balance_fs = true; 1287 else if (has_not_enough_free_secs(sbi, 0)) 1288 goto redirty_out; 1289 1290 err = -EAGAIN; 1291 f2fs_lock_op(sbi); 1292 if (f2fs_has_inline_data(inode)) 1293 err = f2fs_write_inline_data(inode, page); 1294 if (err == -EAGAIN) 1295 err = do_write_data_page(&fio); 1296 if (F2FS_I(inode)->last_disk_size < psize) 1297 F2FS_I(inode)->last_disk_size = psize; 1298 f2fs_unlock_op(sbi); 1299 done: 1300 if (err && err != -ENOENT) 1301 goto redirty_out; 1302 1303 clear_cold_data(page); 1304 out: 1305 inode_dec_dirty_pages(inode); 1306 if (err) 1307 ClearPageUptodate(page); 1308 1309 if (wbc->for_reclaim) { 1310 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE); 1311 remove_dirty_inode(inode); 1312 } 1313 1314 unlock_page(page); 1315 f2fs_balance_fs(sbi, need_balance_fs); 1316 1317 if (unlikely(f2fs_cp_error(sbi))) 1318 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1319 1320 return 0; 1321 1322 redirty_out: 1323 redirty_page_for_writepage(wbc, page); 1324 unlock_page(page); 1325 return err; 1326 } 1327 1328 /* 1329 * This function was copied from write_cche_pages from mm/page-writeback.c. 1330 * The major change is making write step of cold data page separately from 1331 * warm/hot data page. 1332 */ 1333 static int f2fs_write_cache_pages(struct address_space *mapping, 1334 struct writeback_control *wbc) 1335 { 1336 int ret = 0; 1337 int done = 0; 1338 struct pagevec pvec; 1339 int nr_pages; 1340 pgoff_t uninitialized_var(writeback_index); 1341 pgoff_t index; 1342 pgoff_t end; /* Inclusive */ 1343 pgoff_t done_index; 1344 int cycled; 1345 int range_whole = 0; 1346 int tag; 1347 1348 pagevec_init(&pvec, 0); 1349 1350 if (wbc->range_cyclic) { 1351 writeback_index = mapping->writeback_index; /* prev offset */ 1352 index = writeback_index; 1353 if (index == 0) 1354 cycled = 1; 1355 else 1356 cycled = 0; 1357 end = -1; 1358 } else { 1359 index = wbc->range_start >> PAGE_SHIFT; 1360 end = wbc->range_end >> PAGE_SHIFT; 1361 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1362 range_whole = 1; 1363 cycled = 1; /* ignore range_cyclic tests */ 1364 } 1365 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1366 tag = PAGECACHE_TAG_TOWRITE; 1367 else 1368 tag = PAGECACHE_TAG_DIRTY; 1369 retry: 1370 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1371 tag_pages_for_writeback(mapping, index, end); 1372 done_index = index; 1373 while (!done && (index <= end)) { 1374 int i; 1375 1376 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1377 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1378 if (nr_pages == 0) 1379 break; 1380 1381 for (i = 0; i < nr_pages; i++) { 1382 struct page *page = pvec.pages[i]; 1383 1384 if (page->index > end) { 1385 done = 1; 1386 break; 1387 } 1388 1389 done_index = page->index; 1390 1391 lock_page(page); 1392 1393 if (unlikely(page->mapping != mapping)) { 1394 continue_unlock: 1395 unlock_page(page); 1396 continue; 1397 } 1398 1399 if (!PageDirty(page)) { 1400 /* someone wrote it for us */ 1401 goto continue_unlock; 1402 } 1403 1404 if (PageWriteback(page)) { 1405 if (wbc->sync_mode != WB_SYNC_NONE) 1406 f2fs_wait_on_page_writeback(page, 1407 DATA, true); 1408 else 1409 goto continue_unlock; 1410 } 1411 1412 BUG_ON(PageWriteback(page)); 1413 if (!clear_page_dirty_for_io(page)) 1414 goto continue_unlock; 1415 1416 ret = mapping->a_ops->writepage(page, wbc); 1417 if (unlikely(ret)) { 1418 done_index = page->index + 1; 1419 done = 1; 1420 break; 1421 } 1422 1423 if (--wbc->nr_to_write <= 0 && 1424 wbc->sync_mode == WB_SYNC_NONE) { 1425 done = 1; 1426 break; 1427 } 1428 } 1429 pagevec_release(&pvec); 1430 cond_resched(); 1431 } 1432 1433 if (!cycled && !done) { 1434 cycled = 1; 1435 index = 0; 1436 end = writeback_index - 1; 1437 goto retry; 1438 } 1439 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1440 mapping->writeback_index = done_index; 1441 1442 return ret; 1443 } 1444 1445 static int f2fs_write_data_pages(struct address_space *mapping, 1446 struct writeback_control *wbc) 1447 { 1448 struct inode *inode = mapping->host; 1449 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1450 struct blk_plug plug; 1451 int ret; 1452 1453 /* deal with chardevs and other special file */ 1454 if (!mapping->a_ops->writepage) 1455 return 0; 1456 1457 /* skip writing if there is no dirty page in this inode */ 1458 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1459 return 0; 1460 1461 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1462 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1463 available_free_memory(sbi, DIRTY_DENTS)) 1464 goto skip_write; 1465 1466 /* skip writing during file defragment */ 1467 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1468 goto skip_write; 1469 1470 /* during POR, we don't need to trigger writepage at all. */ 1471 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1472 goto skip_write; 1473 1474 trace_f2fs_writepages(mapping->host, wbc, DATA); 1475 1476 blk_start_plug(&plug); 1477 ret = f2fs_write_cache_pages(mapping, wbc); 1478 blk_finish_plug(&plug); 1479 /* 1480 * if some pages were truncated, we cannot guarantee its mapping->host 1481 * to detect pending bios. 1482 */ 1483 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1484 1485 remove_dirty_inode(inode); 1486 return ret; 1487 1488 skip_write: 1489 wbc->pages_skipped += get_dirty_pages(inode); 1490 trace_f2fs_writepages(mapping->host, wbc, DATA); 1491 return 0; 1492 } 1493 1494 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1495 { 1496 struct inode *inode = mapping->host; 1497 loff_t i_size = i_size_read(inode); 1498 1499 if (to > i_size) { 1500 truncate_pagecache(inode, i_size); 1501 truncate_blocks(inode, i_size, true); 1502 } 1503 } 1504 1505 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1506 struct page *page, loff_t pos, unsigned len, 1507 block_t *blk_addr, bool *node_changed) 1508 { 1509 struct inode *inode = page->mapping->host; 1510 pgoff_t index = page->index; 1511 struct dnode_of_data dn; 1512 struct page *ipage; 1513 bool locked = false; 1514 struct extent_info ei; 1515 int err = 0; 1516 1517 /* 1518 * we already allocated all the blocks, so we don't need to get 1519 * the block addresses when there is no need to fill the page. 1520 */ 1521 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) && 1522 len == PAGE_SIZE) 1523 return 0; 1524 1525 if (f2fs_has_inline_data(inode) || 1526 (pos & PAGE_MASK) >= i_size_read(inode)) { 1527 f2fs_lock_op(sbi); 1528 locked = true; 1529 } 1530 restart: 1531 /* check inline_data */ 1532 ipage = get_node_page(sbi, inode->i_ino); 1533 if (IS_ERR(ipage)) { 1534 err = PTR_ERR(ipage); 1535 goto unlock_out; 1536 } 1537 1538 set_new_dnode(&dn, inode, ipage, ipage, 0); 1539 1540 if (f2fs_has_inline_data(inode)) { 1541 if (pos + len <= MAX_INLINE_DATA) { 1542 read_inline_data(page, ipage); 1543 set_inode_flag(inode, FI_DATA_EXIST); 1544 if (inode->i_nlink) 1545 set_inline_node(ipage); 1546 } else { 1547 err = f2fs_convert_inline_page(&dn, page); 1548 if (err) 1549 goto out; 1550 if (dn.data_blkaddr == NULL_ADDR) 1551 err = f2fs_get_block(&dn, index); 1552 } 1553 } else if (locked) { 1554 err = f2fs_get_block(&dn, index); 1555 } else { 1556 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1557 dn.data_blkaddr = ei.blk + index - ei.fofs; 1558 } else { 1559 /* hole case */ 1560 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1561 if (err || dn.data_blkaddr == NULL_ADDR) { 1562 f2fs_put_dnode(&dn); 1563 f2fs_lock_op(sbi); 1564 locked = true; 1565 goto restart; 1566 } 1567 } 1568 } 1569 1570 /* convert_inline_page can make node_changed */ 1571 *blk_addr = dn.data_blkaddr; 1572 *node_changed = dn.node_changed; 1573 out: 1574 f2fs_put_dnode(&dn); 1575 unlock_out: 1576 if (locked) 1577 f2fs_unlock_op(sbi); 1578 return err; 1579 } 1580 1581 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1582 loff_t pos, unsigned len, unsigned flags, 1583 struct page **pagep, void **fsdata) 1584 { 1585 struct inode *inode = mapping->host; 1586 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1587 struct page *page = NULL; 1588 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1589 bool need_balance = false; 1590 block_t blkaddr = NULL_ADDR; 1591 int err = 0; 1592 1593 trace_f2fs_write_begin(inode, pos, len, flags); 1594 1595 /* 1596 * We should check this at this moment to avoid deadlock on inode page 1597 * and #0 page. The locking rule for inline_data conversion should be: 1598 * lock_page(page #0) -> lock_page(inode_page) 1599 */ 1600 if (index != 0) { 1601 err = f2fs_convert_inline_inode(inode); 1602 if (err) 1603 goto fail; 1604 } 1605 repeat: 1606 page = grab_cache_page_write_begin(mapping, index, flags); 1607 if (!page) { 1608 err = -ENOMEM; 1609 goto fail; 1610 } 1611 1612 *pagep = page; 1613 1614 err = prepare_write_begin(sbi, page, pos, len, 1615 &blkaddr, &need_balance); 1616 if (err) 1617 goto fail; 1618 1619 if (need_balance && has_not_enough_free_secs(sbi, 0)) { 1620 unlock_page(page); 1621 f2fs_balance_fs(sbi, true); 1622 lock_page(page); 1623 if (page->mapping != mapping) { 1624 /* The page got truncated from under us */ 1625 f2fs_put_page(page, 1); 1626 goto repeat; 1627 } 1628 } 1629 1630 f2fs_wait_on_page_writeback(page, DATA, false); 1631 1632 /* wait for GCed encrypted page writeback */ 1633 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1634 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1635 1636 if (len == PAGE_SIZE) 1637 goto out_update; 1638 if (PageUptodate(page)) 1639 goto out_clear; 1640 1641 if ((pos & PAGE_MASK) >= i_size_read(inode)) { 1642 unsigned start = pos & (PAGE_SIZE - 1); 1643 unsigned end = start + len; 1644 1645 /* Reading beyond i_size is simple: memset to zero */ 1646 zero_user_segments(page, 0, start, end, PAGE_SIZE); 1647 goto out_update; 1648 } 1649 1650 if (blkaddr == NEW_ADDR) { 1651 zero_user_segment(page, 0, PAGE_SIZE); 1652 } else { 1653 struct bio *bio; 1654 1655 bio = f2fs_grab_bio(inode, blkaddr, 1); 1656 if (IS_ERR(bio)) { 1657 err = PTR_ERR(bio); 1658 goto fail; 1659 } 1660 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC); 1661 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1662 bio_put(bio); 1663 err = -EFAULT; 1664 goto fail; 1665 } 1666 1667 __submit_bio(sbi, bio, DATA); 1668 1669 lock_page(page); 1670 if (unlikely(page->mapping != mapping)) { 1671 f2fs_put_page(page, 1); 1672 goto repeat; 1673 } 1674 if (unlikely(!PageUptodate(page))) { 1675 err = -EIO; 1676 goto fail; 1677 } 1678 } 1679 out_update: 1680 if (!PageUptodate(page)) 1681 SetPageUptodate(page); 1682 out_clear: 1683 clear_cold_data(page); 1684 return 0; 1685 1686 fail: 1687 f2fs_put_page(page, 1); 1688 f2fs_write_failed(mapping, pos + len); 1689 return err; 1690 } 1691 1692 static int f2fs_write_end(struct file *file, 1693 struct address_space *mapping, 1694 loff_t pos, unsigned len, unsigned copied, 1695 struct page *page, void *fsdata) 1696 { 1697 struct inode *inode = page->mapping->host; 1698 1699 trace_f2fs_write_end(inode, pos, len, copied); 1700 1701 set_page_dirty(page); 1702 f2fs_put_page(page, 1); 1703 1704 if (pos + copied > i_size_read(inode)) 1705 f2fs_i_size_write(inode, pos + copied); 1706 1707 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1708 return copied; 1709 } 1710 1711 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1712 loff_t offset) 1713 { 1714 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1715 1716 if (offset & blocksize_mask) 1717 return -EINVAL; 1718 1719 if (iov_iter_alignment(iter) & blocksize_mask) 1720 return -EINVAL; 1721 1722 return 0; 1723 } 1724 1725 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1726 { 1727 struct address_space *mapping = iocb->ki_filp->f_mapping; 1728 struct inode *inode = mapping->host; 1729 size_t count = iov_iter_count(iter); 1730 loff_t offset = iocb->ki_pos; 1731 int rw = iov_iter_rw(iter); 1732 int err; 1733 1734 err = check_direct_IO(inode, iter, offset); 1735 if (err) 1736 return err; 1737 1738 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1739 return 0; 1740 if (test_opt(F2FS_I_SB(inode), LFS)) 1741 return 0; 1742 1743 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1744 1745 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1746 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1747 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1748 1749 if (rw == WRITE) { 1750 if (err > 0) 1751 set_inode_flag(inode, FI_UPDATE_WRITE); 1752 else if (err < 0) 1753 f2fs_write_failed(mapping, offset + count); 1754 } 1755 1756 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1757 1758 return err; 1759 } 1760 1761 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1762 unsigned int length) 1763 { 1764 struct inode *inode = page->mapping->host; 1765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1766 1767 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1768 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1769 return; 1770 1771 if (PageDirty(page)) { 1772 if (inode->i_ino == F2FS_META_INO(sbi)) 1773 dec_page_count(sbi, F2FS_DIRTY_META); 1774 else if (inode->i_ino == F2FS_NODE_INO(sbi)) 1775 dec_page_count(sbi, F2FS_DIRTY_NODES); 1776 else 1777 inode_dec_dirty_pages(inode); 1778 } 1779 1780 /* This is atomic written page, keep Private */ 1781 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1782 return; 1783 1784 set_page_private(page, 0); 1785 ClearPagePrivate(page); 1786 } 1787 1788 int f2fs_release_page(struct page *page, gfp_t wait) 1789 { 1790 /* If this is dirty page, keep PagePrivate */ 1791 if (PageDirty(page)) 1792 return 0; 1793 1794 /* This is atomic written page, keep Private */ 1795 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1796 return 0; 1797 1798 set_page_private(page, 0); 1799 ClearPagePrivate(page); 1800 return 1; 1801 } 1802 1803 /* 1804 * This was copied from __set_page_dirty_buffers which gives higher performance 1805 * in very high speed storages. (e.g., pmem) 1806 */ 1807 void f2fs_set_page_dirty_nobuffers(struct page *page) 1808 { 1809 struct address_space *mapping = page->mapping; 1810 unsigned long flags; 1811 1812 if (unlikely(!mapping)) 1813 return; 1814 1815 spin_lock(&mapping->private_lock); 1816 lock_page_memcg(page); 1817 SetPageDirty(page); 1818 spin_unlock(&mapping->private_lock); 1819 1820 spin_lock_irqsave(&mapping->tree_lock, flags); 1821 WARN_ON_ONCE(!PageUptodate(page)); 1822 account_page_dirtied(page, mapping); 1823 radix_tree_tag_set(&mapping->page_tree, 1824 page_index(page), PAGECACHE_TAG_DIRTY); 1825 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1826 unlock_page_memcg(page); 1827 1828 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1829 return; 1830 } 1831 1832 static int f2fs_set_data_page_dirty(struct page *page) 1833 { 1834 struct address_space *mapping = page->mapping; 1835 struct inode *inode = mapping->host; 1836 1837 trace_f2fs_set_page_dirty(page, DATA); 1838 1839 if (!PageUptodate(page)) 1840 SetPageUptodate(page); 1841 1842 if (f2fs_is_atomic_file(inode)) { 1843 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 1844 register_inmem_page(inode, page); 1845 return 1; 1846 } 1847 /* 1848 * Previously, this page has been registered, we just 1849 * return here. 1850 */ 1851 return 0; 1852 } 1853 1854 if (!PageDirty(page)) { 1855 f2fs_set_page_dirty_nobuffers(page); 1856 update_dirty_page(inode, page); 1857 return 1; 1858 } 1859 return 0; 1860 } 1861 1862 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 1863 { 1864 struct inode *inode = mapping->host; 1865 1866 if (f2fs_has_inline_data(inode)) 1867 return 0; 1868 1869 /* make sure allocating whole blocks */ 1870 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1871 filemap_write_and_wait(mapping); 1872 1873 return generic_block_bmap(mapping, block, get_data_block_bmap); 1874 } 1875 1876 const struct address_space_operations f2fs_dblock_aops = { 1877 .readpage = f2fs_read_data_page, 1878 .readpages = f2fs_read_data_pages, 1879 .writepage = f2fs_write_data_page, 1880 .writepages = f2fs_write_data_pages, 1881 .write_begin = f2fs_write_begin, 1882 .write_end = f2fs_write_end, 1883 .set_page_dirty = f2fs_set_data_page_dirty, 1884 .invalidatepage = f2fs_invalidate_page, 1885 .releasepage = f2fs_release_page, 1886 .direct_IO = f2fs_direct_IO, 1887 .bmap = f2fs_bmap, 1888 }; 1889