xref: /openbmc/linux/fs/f2fs/data.c (revision 79a93295)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31 
32 static bool __is_cp_guaranteed(struct page *page)
33 {
34 	struct address_space *mapping = page->mapping;
35 	struct inode *inode;
36 	struct f2fs_sb_info *sbi;
37 
38 	if (!mapping)
39 		return false;
40 
41 	inode = mapping->host;
42 	sbi = F2FS_I_SB(inode);
43 
44 	if (inode->i_ino == F2FS_META_INO(sbi) ||
45 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
46 			S_ISDIR(inode->i_mode) ||
47 			is_cold_data(page))
48 		return true;
49 	return false;
50 }
51 
52 static void f2fs_read_end_io(struct bio *bio)
53 {
54 	struct bio_vec *bvec;
55 	int i;
56 
57 #ifdef CONFIG_F2FS_FAULT_INJECTION
58 	if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
59 		bio->bi_error = -EIO;
60 #endif
61 
62 	if (f2fs_bio_encrypted(bio)) {
63 		if (bio->bi_error) {
64 			fscrypt_release_ctx(bio->bi_private);
65 		} else {
66 			fscrypt_decrypt_bio_pages(bio->bi_private, bio);
67 			return;
68 		}
69 	}
70 
71 	bio_for_each_segment_all(bvec, bio, i) {
72 		struct page *page = bvec->bv_page;
73 
74 		if (!bio->bi_error) {
75 			if (!PageUptodate(page))
76 				SetPageUptodate(page);
77 		} else {
78 			ClearPageUptodate(page);
79 			SetPageError(page);
80 		}
81 		unlock_page(page);
82 	}
83 	bio_put(bio);
84 }
85 
86 static void f2fs_write_end_io(struct bio *bio)
87 {
88 	struct f2fs_sb_info *sbi = bio->bi_private;
89 	struct bio_vec *bvec;
90 	int i;
91 
92 	bio_for_each_segment_all(bvec, bio, i) {
93 		struct page *page = bvec->bv_page;
94 		enum count_type type = WB_DATA_TYPE(page);
95 
96 		fscrypt_pullback_bio_page(&page, true);
97 
98 		if (unlikely(bio->bi_error)) {
99 			mapping_set_error(page->mapping, -EIO);
100 			f2fs_stop_checkpoint(sbi, true);
101 		}
102 		dec_page_count(sbi, type);
103 		clear_cold_data(page);
104 		end_page_writeback(page);
105 	}
106 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
107 				wq_has_sleeper(&sbi->cp_wait))
108 		wake_up(&sbi->cp_wait);
109 
110 	bio_put(bio);
111 }
112 
113 /*
114  * Return true, if pre_bio's bdev is same as its target device.
115  */
116 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
117 				block_t blk_addr, struct bio *bio)
118 {
119 	struct block_device *bdev = sbi->sb->s_bdev;
120 	int i;
121 
122 	for (i = 0; i < sbi->s_ndevs; i++) {
123 		if (FDEV(i).start_blk <= blk_addr &&
124 					FDEV(i).end_blk >= blk_addr) {
125 			blk_addr -= FDEV(i).start_blk;
126 			bdev = FDEV(i).bdev;
127 			break;
128 		}
129 	}
130 	if (bio) {
131 		bio->bi_bdev = bdev;
132 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
133 	}
134 	return bdev;
135 }
136 
137 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
138 {
139 	int i;
140 
141 	for (i = 0; i < sbi->s_ndevs; i++)
142 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
143 			return i;
144 	return 0;
145 }
146 
147 static bool __same_bdev(struct f2fs_sb_info *sbi,
148 				block_t blk_addr, struct bio *bio)
149 {
150 	return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
151 }
152 
153 /*
154  * Low-level block read/write IO operations.
155  */
156 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
157 				int npages, bool is_read)
158 {
159 	struct bio *bio;
160 
161 	bio = f2fs_bio_alloc(npages);
162 
163 	f2fs_target_device(sbi, blk_addr, bio);
164 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
165 	bio->bi_private = is_read ? NULL : sbi;
166 
167 	return bio;
168 }
169 
170 static inline void __submit_bio(struct f2fs_sb_info *sbi,
171 				struct bio *bio, enum page_type type)
172 {
173 	if (!is_read_io(bio_op(bio))) {
174 		if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
175 			current->plug && (type == DATA || type == NODE))
176 			blk_finish_plug(current->plug);
177 	}
178 	submit_bio(bio);
179 }
180 
181 static void __submit_merged_bio(struct f2fs_bio_info *io)
182 {
183 	struct f2fs_io_info *fio = &io->fio;
184 
185 	if (!io->bio)
186 		return;
187 
188 	if (is_read_io(fio->op))
189 		trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
190 	else
191 		trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
192 
193 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
194 
195 	__submit_bio(io->sbi, io->bio, fio->type);
196 	io->bio = NULL;
197 }
198 
199 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
200 						struct page *page, nid_t ino)
201 {
202 	struct bio_vec *bvec;
203 	struct page *target;
204 	int i;
205 
206 	if (!io->bio)
207 		return false;
208 
209 	if (!inode && !page && !ino)
210 		return true;
211 
212 	bio_for_each_segment_all(bvec, io->bio, i) {
213 
214 		if (bvec->bv_page->mapping)
215 			target = bvec->bv_page;
216 		else
217 			target = fscrypt_control_page(bvec->bv_page);
218 
219 		if (inode && inode == target->mapping->host)
220 			return true;
221 		if (page && page == target)
222 			return true;
223 		if (ino && ino == ino_of_node(target))
224 			return true;
225 	}
226 
227 	return false;
228 }
229 
230 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
231 						struct page *page, nid_t ino,
232 						enum page_type type)
233 {
234 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
235 	struct f2fs_bio_info *io = &sbi->write_io[btype];
236 	bool ret;
237 
238 	down_read(&io->io_rwsem);
239 	ret = __has_merged_page(io, inode, page, ino);
240 	up_read(&io->io_rwsem);
241 	return ret;
242 }
243 
244 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
245 				struct inode *inode, struct page *page,
246 				nid_t ino, enum page_type type, int rw)
247 {
248 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
249 	struct f2fs_bio_info *io;
250 
251 	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
252 
253 	down_write(&io->io_rwsem);
254 
255 	if (!__has_merged_page(io, inode, page, ino))
256 		goto out;
257 
258 	/* change META to META_FLUSH in the checkpoint procedure */
259 	if (type >= META_FLUSH) {
260 		io->fio.type = META_FLUSH;
261 		io->fio.op = REQ_OP_WRITE;
262 		io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO;
263 		if (!test_opt(sbi, NOBARRIER))
264 			io->fio.op_flags |= REQ_FUA;
265 	}
266 	__submit_merged_bio(io);
267 out:
268 	up_write(&io->io_rwsem);
269 }
270 
271 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
272 									int rw)
273 {
274 	__f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
275 }
276 
277 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
278 				struct inode *inode, struct page *page,
279 				nid_t ino, enum page_type type, int rw)
280 {
281 	if (has_merged_page(sbi, inode, page, ino, type))
282 		__f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
283 }
284 
285 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
286 {
287 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
288 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
289 	f2fs_submit_merged_bio(sbi, META, WRITE);
290 }
291 
292 /*
293  * Fill the locked page with data located in the block address.
294  * Return unlocked page.
295  */
296 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
297 {
298 	struct bio *bio;
299 	struct page *page = fio->encrypted_page ?
300 			fio->encrypted_page : fio->page;
301 
302 	trace_f2fs_submit_page_bio(page, fio);
303 	f2fs_trace_ios(fio, 0);
304 
305 	/* Allocate a new bio */
306 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
307 
308 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
309 		bio_put(bio);
310 		return -EFAULT;
311 	}
312 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
313 
314 	__submit_bio(fio->sbi, bio, fio->type);
315 	return 0;
316 }
317 
318 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
319 {
320 	struct f2fs_sb_info *sbi = fio->sbi;
321 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
322 	struct f2fs_bio_info *io;
323 	bool is_read = is_read_io(fio->op);
324 	struct page *bio_page;
325 
326 	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
327 
328 	if (fio->old_blkaddr != NEW_ADDR)
329 		verify_block_addr(sbi, fio->old_blkaddr);
330 	verify_block_addr(sbi, fio->new_blkaddr);
331 
332 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
333 
334 	if (!is_read)
335 		inc_page_count(sbi, WB_DATA_TYPE(bio_page));
336 
337 	down_write(&io->io_rwsem);
338 
339 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
340 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
341 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
342 		__submit_merged_bio(io);
343 alloc_new:
344 	if (io->bio == NULL) {
345 		io->bio = __bio_alloc(sbi, fio->new_blkaddr,
346 						BIO_MAX_PAGES, is_read);
347 		io->fio = *fio;
348 	}
349 
350 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
351 							PAGE_SIZE) {
352 		__submit_merged_bio(io);
353 		goto alloc_new;
354 	}
355 
356 	io->last_block_in_bio = fio->new_blkaddr;
357 	f2fs_trace_ios(fio, 0);
358 
359 	up_write(&io->io_rwsem);
360 	trace_f2fs_submit_page_mbio(fio->page, fio);
361 }
362 
363 static void __set_data_blkaddr(struct dnode_of_data *dn)
364 {
365 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
366 	__le32 *addr_array;
367 
368 	/* Get physical address of data block */
369 	addr_array = blkaddr_in_node(rn);
370 	addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
371 }
372 
373 /*
374  * Lock ordering for the change of data block address:
375  * ->data_page
376  *  ->node_page
377  *    update block addresses in the node page
378  */
379 void set_data_blkaddr(struct dnode_of_data *dn)
380 {
381 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
382 	__set_data_blkaddr(dn);
383 	if (set_page_dirty(dn->node_page))
384 		dn->node_changed = true;
385 }
386 
387 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
388 {
389 	dn->data_blkaddr = blkaddr;
390 	set_data_blkaddr(dn);
391 	f2fs_update_extent_cache(dn);
392 }
393 
394 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
395 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
396 {
397 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
398 
399 	if (!count)
400 		return 0;
401 
402 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
403 		return -EPERM;
404 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
405 		return -ENOSPC;
406 
407 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
408 						dn->ofs_in_node, count);
409 
410 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
411 
412 	for (; count > 0; dn->ofs_in_node++) {
413 		block_t blkaddr =
414 			datablock_addr(dn->node_page, dn->ofs_in_node);
415 		if (blkaddr == NULL_ADDR) {
416 			dn->data_blkaddr = NEW_ADDR;
417 			__set_data_blkaddr(dn);
418 			count--;
419 		}
420 	}
421 
422 	if (set_page_dirty(dn->node_page))
423 		dn->node_changed = true;
424 	return 0;
425 }
426 
427 /* Should keep dn->ofs_in_node unchanged */
428 int reserve_new_block(struct dnode_of_data *dn)
429 {
430 	unsigned int ofs_in_node = dn->ofs_in_node;
431 	int ret;
432 
433 	ret = reserve_new_blocks(dn, 1);
434 	dn->ofs_in_node = ofs_in_node;
435 	return ret;
436 }
437 
438 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
439 {
440 	bool need_put = dn->inode_page ? false : true;
441 	int err;
442 
443 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
444 	if (err)
445 		return err;
446 
447 	if (dn->data_blkaddr == NULL_ADDR)
448 		err = reserve_new_block(dn);
449 	if (err || need_put)
450 		f2fs_put_dnode(dn);
451 	return err;
452 }
453 
454 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
455 {
456 	struct extent_info ei;
457 	struct inode *inode = dn->inode;
458 
459 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
460 		dn->data_blkaddr = ei.blk + index - ei.fofs;
461 		return 0;
462 	}
463 
464 	return f2fs_reserve_block(dn, index);
465 }
466 
467 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
468 						int op_flags, bool for_write)
469 {
470 	struct address_space *mapping = inode->i_mapping;
471 	struct dnode_of_data dn;
472 	struct page *page;
473 	struct extent_info ei;
474 	int err;
475 	struct f2fs_io_info fio = {
476 		.sbi = F2FS_I_SB(inode),
477 		.type = DATA,
478 		.op = REQ_OP_READ,
479 		.op_flags = op_flags,
480 		.encrypted_page = NULL,
481 	};
482 
483 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
484 		return read_mapping_page(mapping, index, NULL);
485 
486 	page = f2fs_grab_cache_page(mapping, index, for_write);
487 	if (!page)
488 		return ERR_PTR(-ENOMEM);
489 
490 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
491 		dn.data_blkaddr = ei.blk + index - ei.fofs;
492 		goto got_it;
493 	}
494 
495 	set_new_dnode(&dn, inode, NULL, NULL, 0);
496 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
497 	if (err)
498 		goto put_err;
499 	f2fs_put_dnode(&dn);
500 
501 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
502 		err = -ENOENT;
503 		goto put_err;
504 	}
505 got_it:
506 	if (PageUptodate(page)) {
507 		unlock_page(page);
508 		return page;
509 	}
510 
511 	/*
512 	 * A new dentry page is allocated but not able to be written, since its
513 	 * new inode page couldn't be allocated due to -ENOSPC.
514 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
515 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
516 	 */
517 	if (dn.data_blkaddr == NEW_ADDR) {
518 		zero_user_segment(page, 0, PAGE_SIZE);
519 		if (!PageUptodate(page))
520 			SetPageUptodate(page);
521 		unlock_page(page);
522 		return page;
523 	}
524 
525 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
526 	fio.page = page;
527 	err = f2fs_submit_page_bio(&fio);
528 	if (err)
529 		goto put_err;
530 	return page;
531 
532 put_err:
533 	f2fs_put_page(page, 1);
534 	return ERR_PTR(err);
535 }
536 
537 struct page *find_data_page(struct inode *inode, pgoff_t index)
538 {
539 	struct address_space *mapping = inode->i_mapping;
540 	struct page *page;
541 
542 	page = find_get_page(mapping, index);
543 	if (page && PageUptodate(page))
544 		return page;
545 	f2fs_put_page(page, 0);
546 
547 	page = get_read_data_page(inode, index, 0, false);
548 	if (IS_ERR(page))
549 		return page;
550 
551 	if (PageUptodate(page))
552 		return page;
553 
554 	wait_on_page_locked(page);
555 	if (unlikely(!PageUptodate(page))) {
556 		f2fs_put_page(page, 0);
557 		return ERR_PTR(-EIO);
558 	}
559 	return page;
560 }
561 
562 /*
563  * If it tries to access a hole, return an error.
564  * Because, the callers, functions in dir.c and GC, should be able to know
565  * whether this page exists or not.
566  */
567 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
568 							bool for_write)
569 {
570 	struct address_space *mapping = inode->i_mapping;
571 	struct page *page;
572 repeat:
573 	page = get_read_data_page(inode, index, 0, for_write);
574 	if (IS_ERR(page))
575 		return page;
576 
577 	/* wait for read completion */
578 	lock_page(page);
579 	if (unlikely(page->mapping != mapping)) {
580 		f2fs_put_page(page, 1);
581 		goto repeat;
582 	}
583 	if (unlikely(!PageUptodate(page))) {
584 		f2fs_put_page(page, 1);
585 		return ERR_PTR(-EIO);
586 	}
587 	return page;
588 }
589 
590 /*
591  * Caller ensures that this data page is never allocated.
592  * A new zero-filled data page is allocated in the page cache.
593  *
594  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
595  * f2fs_unlock_op().
596  * Note that, ipage is set only by make_empty_dir, and if any error occur,
597  * ipage should be released by this function.
598  */
599 struct page *get_new_data_page(struct inode *inode,
600 		struct page *ipage, pgoff_t index, bool new_i_size)
601 {
602 	struct address_space *mapping = inode->i_mapping;
603 	struct page *page;
604 	struct dnode_of_data dn;
605 	int err;
606 
607 	page = f2fs_grab_cache_page(mapping, index, true);
608 	if (!page) {
609 		/*
610 		 * before exiting, we should make sure ipage will be released
611 		 * if any error occur.
612 		 */
613 		f2fs_put_page(ipage, 1);
614 		return ERR_PTR(-ENOMEM);
615 	}
616 
617 	set_new_dnode(&dn, inode, ipage, NULL, 0);
618 	err = f2fs_reserve_block(&dn, index);
619 	if (err) {
620 		f2fs_put_page(page, 1);
621 		return ERR_PTR(err);
622 	}
623 	if (!ipage)
624 		f2fs_put_dnode(&dn);
625 
626 	if (PageUptodate(page))
627 		goto got_it;
628 
629 	if (dn.data_blkaddr == NEW_ADDR) {
630 		zero_user_segment(page, 0, PAGE_SIZE);
631 		if (!PageUptodate(page))
632 			SetPageUptodate(page);
633 	} else {
634 		f2fs_put_page(page, 1);
635 
636 		/* if ipage exists, blkaddr should be NEW_ADDR */
637 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
638 		page = get_lock_data_page(inode, index, true);
639 		if (IS_ERR(page))
640 			return page;
641 	}
642 got_it:
643 	if (new_i_size && i_size_read(inode) <
644 				((loff_t)(index + 1) << PAGE_SHIFT))
645 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
646 	return page;
647 }
648 
649 static int __allocate_data_block(struct dnode_of_data *dn)
650 {
651 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
652 	struct f2fs_summary sum;
653 	struct node_info ni;
654 	pgoff_t fofs;
655 	blkcnt_t count = 1;
656 
657 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
658 		return -EPERM;
659 
660 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
661 	if (dn->data_blkaddr == NEW_ADDR)
662 		goto alloc;
663 
664 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
665 		return -ENOSPC;
666 
667 alloc:
668 	get_node_info(sbi, dn->nid, &ni);
669 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
670 
671 	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
672 						&sum, CURSEG_WARM_DATA);
673 	set_data_blkaddr(dn);
674 
675 	/* update i_size */
676 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
677 							dn->ofs_in_node;
678 	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
679 		f2fs_i_size_write(dn->inode,
680 				((loff_t)(fofs + 1) << PAGE_SHIFT));
681 	return 0;
682 }
683 
684 static inline bool __force_buffered_io(struct inode *inode, int rw)
685 {
686 	return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
687 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
688 			F2FS_I_SB(inode)->s_ndevs);
689 }
690 
691 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
692 {
693 	struct inode *inode = file_inode(iocb->ki_filp);
694 	struct f2fs_map_blocks map;
695 	int err = 0;
696 
697 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
698 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
699 	if (map.m_len > map.m_lblk)
700 		map.m_len -= map.m_lblk;
701 	else
702 		map.m_len = 0;
703 
704 	map.m_next_pgofs = NULL;
705 
706 	if (iocb->ki_flags & IOCB_DIRECT) {
707 		err = f2fs_convert_inline_inode(inode);
708 		if (err)
709 			return err;
710 		return f2fs_map_blocks(inode, &map, 1,
711 			__force_buffered_io(inode, WRITE) ?
712 				F2FS_GET_BLOCK_PRE_AIO :
713 				F2FS_GET_BLOCK_PRE_DIO);
714 	}
715 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
716 		err = f2fs_convert_inline_inode(inode);
717 		if (err)
718 			return err;
719 	}
720 	if (!f2fs_has_inline_data(inode))
721 		return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
722 	return err;
723 }
724 
725 /*
726  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
727  * f2fs_map_blocks structure.
728  * If original data blocks are allocated, then give them to blockdev.
729  * Otherwise,
730  *     a. preallocate requested block addresses
731  *     b. do not use extent cache for better performance
732  *     c. give the block addresses to blockdev
733  */
734 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
735 						int create, int flag)
736 {
737 	unsigned int maxblocks = map->m_len;
738 	struct dnode_of_data dn;
739 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
740 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
741 	pgoff_t pgofs, end_offset, end;
742 	int err = 0, ofs = 1;
743 	unsigned int ofs_in_node, last_ofs_in_node;
744 	blkcnt_t prealloc;
745 	struct extent_info ei;
746 	block_t blkaddr;
747 
748 	if (!maxblocks)
749 		return 0;
750 
751 	map->m_len = 0;
752 	map->m_flags = 0;
753 
754 	/* it only supports block size == page size */
755 	pgofs =	(pgoff_t)map->m_lblk;
756 	end = pgofs + maxblocks;
757 
758 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
759 		map->m_pblk = ei.blk + pgofs - ei.fofs;
760 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
761 		map->m_flags = F2FS_MAP_MAPPED;
762 		goto out;
763 	}
764 
765 next_dnode:
766 	if (create)
767 		f2fs_lock_op(sbi);
768 
769 	/* When reading holes, we need its node page */
770 	set_new_dnode(&dn, inode, NULL, NULL, 0);
771 	err = get_dnode_of_data(&dn, pgofs, mode);
772 	if (err) {
773 		if (flag == F2FS_GET_BLOCK_BMAP)
774 			map->m_pblk = 0;
775 		if (err == -ENOENT) {
776 			err = 0;
777 			if (map->m_next_pgofs)
778 				*map->m_next_pgofs =
779 					get_next_page_offset(&dn, pgofs);
780 		}
781 		goto unlock_out;
782 	}
783 
784 	prealloc = 0;
785 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
786 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
787 
788 next_block:
789 	blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
790 
791 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
792 		if (create) {
793 			if (unlikely(f2fs_cp_error(sbi))) {
794 				err = -EIO;
795 				goto sync_out;
796 			}
797 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
798 				if (blkaddr == NULL_ADDR) {
799 					prealloc++;
800 					last_ofs_in_node = dn.ofs_in_node;
801 				}
802 			} else {
803 				err = __allocate_data_block(&dn);
804 				if (!err)
805 					set_inode_flag(inode, FI_APPEND_WRITE);
806 			}
807 			if (err)
808 				goto sync_out;
809 			map->m_flags = F2FS_MAP_NEW;
810 			blkaddr = dn.data_blkaddr;
811 		} else {
812 			if (flag == F2FS_GET_BLOCK_BMAP) {
813 				map->m_pblk = 0;
814 				goto sync_out;
815 			}
816 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
817 						blkaddr == NULL_ADDR) {
818 				if (map->m_next_pgofs)
819 					*map->m_next_pgofs = pgofs + 1;
820 			}
821 			if (flag != F2FS_GET_BLOCK_FIEMAP ||
822 						blkaddr != NEW_ADDR)
823 				goto sync_out;
824 		}
825 	}
826 
827 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
828 		goto skip;
829 
830 	if (map->m_len == 0) {
831 		/* preallocated unwritten block should be mapped for fiemap. */
832 		if (blkaddr == NEW_ADDR)
833 			map->m_flags |= F2FS_MAP_UNWRITTEN;
834 		map->m_flags |= F2FS_MAP_MAPPED;
835 
836 		map->m_pblk = blkaddr;
837 		map->m_len = 1;
838 	} else if ((map->m_pblk != NEW_ADDR &&
839 			blkaddr == (map->m_pblk + ofs)) ||
840 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
841 			flag == F2FS_GET_BLOCK_PRE_DIO) {
842 		ofs++;
843 		map->m_len++;
844 	} else {
845 		goto sync_out;
846 	}
847 
848 skip:
849 	dn.ofs_in_node++;
850 	pgofs++;
851 
852 	/* preallocate blocks in batch for one dnode page */
853 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
854 			(pgofs == end || dn.ofs_in_node == end_offset)) {
855 
856 		dn.ofs_in_node = ofs_in_node;
857 		err = reserve_new_blocks(&dn, prealloc);
858 		if (err)
859 			goto sync_out;
860 
861 		map->m_len += dn.ofs_in_node - ofs_in_node;
862 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
863 			err = -ENOSPC;
864 			goto sync_out;
865 		}
866 		dn.ofs_in_node = end_offset;
867 	}
868 
869 	if (pgofs >= end)
870 		goto sync_out;
871 	else if (dn.ofs_in_node < end_offset)
872 		goto next_block;
873 
874 	f2fs_put_dnode(&dn);
875 
876 	if (create) {
877 		f2fs_unlock_op(sbi);
878 		f2fs_balance_fs(sbi, dn.node_changed);
879 	}
880 	goto next_dnode;
881 
882 sync_out:
883 	f2fs_put_dnode(&dn);
884 unlock_out:
885 	if (create) {
886 		f2fs_unlock_op(sbi);
887 		f2fs_balance_fs(sbi, dn.node_changed);
888 	}
889 out:
890 	trace_f2fs_map_blocks(inode, map, err);
891 	return err;
892 }
893 
894 static int __get_data_block(struct inode *inode, sector_t iblock,
895 			struct buffer_head *bh, int create, int flag,
896 			pgoff_t *next_pgofs)
897 {
898 	struct f2fs_map_blocks map;
899 	int err;
900 
901 	map.m_lblk = iblock;
902 	map.m_len = bh->b_size >> inode->i_blkbits;
903 	map.m_next_pgofs = next_pgofs;
904 
905 	err = f2fs_map_blocks(inode, &map, create, flag);
906 	if (!err) {
907 		map_bh(bh, inode->i_sb, map.m_pblk);
908 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
909 		bh->b_size = map.m_len << inode->i_blkbits;
910 	}
911 	return err;
912 }
913 
914 static int get_data_block(struct inode *inode, sector_t iblock,
915 			struct buffer_head *bh_result, int create, int flag,
916 			pgoff_t *next_pgofs)
917 {
918 	return __get_data_block(inode, iblock, bh_result, create,
919 							flag, next_pgofs);
920 }
921 
922 static int get_data_block_dio(struct inode *inode, sector_t iblock,
923 			struct buffer_head *bh_result, int create)
924 {
925 	return __get_data_block(inode, iblock, bh_result, create,
926 						F2FS_GET_BLOCK_DIO, NULL);
927 }
928 
929 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
930 			struct buffer_head *bh_result, int create)
931 {
932 	/* Block number less than F2FS MAX BLOCKS */
933 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
934 		return -EFBIG;
935 
936 	return __get_data_block(inode, iblock, bh_result, create,
937 						F2FS_GET_BLOCK_BMAP, NULL);
938 }
939 
940 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
941 {
942 	return (offset >> inode->i_blkbits);
943 }
944 
945 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
946 {
947 	return (blk << inode->i_blkbits);
948 }
949 
950 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
951 		u64 start, u64 len)
952 {
953 	struct buffer_head map_bh;
954 	sector_t start_blk, last_blk;
955 	pgoff_t next_pgofs;
956 	u64 logical = 0, phys = 0, size = 0;
957 	u32 flags = 0;
958 	int ret = 0;
959 
960 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
961 	if (ret)
962 		return ret;
963 
964 	if (f2fs_has_inline_data(inode)) {
965 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
966 		if (ret != -EAGAIN)
967 			return ret;
968 	}
969 
970 	inode_lock(inode);
971 
972 	if (logical_to_blk(inode, len) == 0)
973 		len = blk_to_logical(inode, 1);
974 
975 	start_blk = logical_to_blk(inode, start);
976 	last_blk = logical_to_blk(inode, start + len - 1);
977 
978 next:
979 	memset(&map_bh, 0, sizeof(struct buffer_head));
980 	map_bh.b_size = len;
981 
982 	ret = get_data_block(inode, start_blk, &map_bh, 0,
983 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
984 	if (ret)
985 		goto out;
986 
987 	/* HOLE */
988 	if (!buffer_mapped(&map_bh)) {
989 		start_blk = next_pgofs;
990 
991 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
992 					F2FS_I_SB(inode)->max_file_blocks))
993 			goto prep_next;
994 
995 		flags |= FIEMAP_EXTENT_LAST;
996 	}
997 
998 	if (size) {
999 		if (f2fs_encrypted_inode(inode))
1000 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1001 
1002 		ret = fiemap_fill_next_extent(fieinfo, logical,
1003 				phys, size, flags);
1004 	}
1005 
1006 	if (start_blk > last_blk || ret)
1007 		goto out;
1008 
1009 	logical = blk_to_logical(inode, start_blk);
1010 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1011 	size = map_bh.b_size;
1012 	flags = 0;
1013 	if (buffer_unwritten(&map_bh))
1014 		flags = FIEMAP_EXTENT_UNWRITTEN;
1015 
1016 	start_blk += logical_to_blk(inode, size);
1017 
1018 prep_next:
1019 	cond_resched();
1020 	if (fatal_signal_pending(current))
1021 		ret = -EINTR;
1022 	else
1023 		goto next;
1024 out:
1025 	if (ret == 1)
1026 		ret = 0;
1027 
1028 	inode_unlock(inode);
1029 	return ret;
1030 }
1031 
1032 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1033 				 unsigned nr_pages)
1034 {
1035 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036 	struct fscrypt_ctx *ctx = NULL;
1037 	struct bio *bio;
1038 
1039 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1040 		ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1041 		if (IS_ERR(ctx))
1042 			return ERR_CAST(ctx);
1043 
1044 		/* wait the page to be moved by cleaning */
1045 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1046 	}
1047 
1048 	bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1049 	if (!bio) {
1050 		if (ctx)
1051 			fscrypt_release_ctx(ctx);
1052 		return ERR_PTR(-ENOMEM);
1053 	}
1054 	f2fs_target_device(sbi, blkaddr, bio);
1055 	bio->bi_end_io = f2fs_read_end_io;
1056 	bio->bi_private = ctx;
1057 
1058 	return bio;
1059 }
1060 
1061 /*
1062  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1063  * Major change was from block_size == page_size in f2fs by default.
1064  */
1065 static int f2fs_mpage_readpages(struct address_space *mapping,
1066 			struct list_head *pages, struct page *page,
1067 			unsigned nr_pages)
1068 {
1069 	struct bio *bio = NULL;
1070 	unsigned page_idx;
1071 	sector_t last_block_in_bio = 0;
1072 	struct inode *inode = mapping->host;
1073 	const unsigned blkbits = inode->i_blkbits;
1074 	const unsigned blocksize = 1 << blkbits;
1075 	sector_t block_in_file;
1076 	sector_t last_block;
1077 	sector_t last_block_in_file;
1078 	sector_t block_nr;
1079 	struct f2fs_map_blocks map;
1080 
1081 	map.m_pblk = 0;
1082 	map.m_lblk = 0;
1083 	map.m_len = 0;
1084 	map.m_flags = 0;
1085 	map.m_next_pgofs = NULL;
1086 
1087 	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1088 
1089 		prefetchw(&page->flags);
1090 		if (pages) {
1091 			page = list_entry(pages->prev, struct page, lru);
1092 			list_del(&page->lru);
1093 			if (add_to_page_cache_lru(page, mapping,
1094 						  page->index,
1095 						  readahead_gfp_mask(mapping)))
1096 				goto next_page;
1097 		}
1098 
1099 		block_in_file = (sector_t)page->index;
1100 		last_block = block_in_file + nr_pages;
1101 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1102 								blkbits;
1103 		if (last_block > last_block_in_file)
1104 			last_block = last_block_in_file;
1105 
1106 		/*
1107 		 * Map blocks using the previous result first.
1108 		 */
1109 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1110 				block_in_file > map.m_lblk &&
1111 				block_in_file < (map.m_lblk + map.m_len))
1112 			goto got_it;
1113 
1114 		/*
1115 		 * Then do more f2fs_map_blocks() calls until we are
1116 		 * done with this page.
1117 		 */
1118 		map.m_flags = 0;
1119 
1120 		if (block_in_file < last_block) {
1121 			map.m_lblk = block_in_file;
1122 			map.m_len = last_block - block_in_file;
1123 
1124 			if (f2fs_map_blocks(inode, &map, 0,
1125 						F2FS_GET_BLOCK_READ))
1126 				goto set_error_page;
1127 		}
1128 got_it:
1129 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1130 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1131 			SetPageMappedToDisk(page);
1132 
1133 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1134 				SetPageUptodate(page);
1135 				goto confused;
1136 			}
1137 		} else {
1138 			zero_user_segment(page, 0, PAGE_SIZE);
1139 			if (!PageUptodate(page))
1140 				SetPageUptodate(page);
1141 			unlock_page(page);
1142 			goto next_page;
1143 		}
1144 
1145 		/*
1146 		 * This page will go to BIO.  Do we need to send this
1147 		 * BIO off first?
1148 		 */
1149 		if (bio && (last_block_in_bio != block_nr - 1 ||
1150 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1151 submit_and_realloc:
1152 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1153 			bio = NULL;
1154 		}
1155 		if (bio == NULL) {
1156 			bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1157 			if (IS_ERR(bio)) {
1158 				bio = NULL;
1159 				goto set_error_page;
1160 			}
1161 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1162 		}
1163 
1164 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1165 			goto submit_and_realloc;
1166 
1167 		last_block_in_bio = block_nr;
1168 		goto next_page;
1169 set_error_page:
1170 		SetPageError(page);
1171 		zero_user_segment(page, 0, PAGE_SIZE);
1172 		unlock_page(page);
1173 		goto next_page;
1174 confused:
1175 		if (bio) {
1176 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1177 			bio = NULL;
1178 		}
1179 		unlock_page(page);
1180 next_page:
1181 		if (pages)
1182 			put_page(page);
1183 	}
1184 	BUG_ON(pages && !list_empty(pages));
1185 	if (bio)
1186 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1187 	return 0;
1188 }
1189 
1190 static int f2fs_read_data_page(struct file *file, struct page *page)
1191 {
1192 	struct inode *inode = page->mapping->host;
1193 	int ret = -EAGAIN;
1194 
1195 	trace_f2fs_readpage(page, DATA);
1196 
1197 	/* If the file has inline data, try to read it directly */
1198 	if (f2fs_has_inline_data(inode))
1199 		ret = f2fs_read_inline_data(inode, page);
1200 	if (ret == -EAGAIN)
1201 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1202 	return ret;
1203 }
1204 
1205 static int f2fs_read_data_pages(struct file *file,
1206 			struct address_space *mapping,
1207 			struct list_head *pages, unsigned nr_pages)
1208 {
1209 	struct inode *inode = file->f_mapping->host;
1210 	struct page *page = list_entry(pages->prev, struct page, lru);
1211 
1212 	trace_f2fs_readpages(inode, page, nr_pages);
1213 
1214 	/* If the file has inline data, skip readpages */
1215 	if (f2fs_has_inline_data(inode))
1216 		return 0;
1217 
1218 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1219 }
1220 
1221 int do_write_data_page(struct f2fs_io_info *fio)
1222 {
1223 	struct page *page = fio->page;
1224 	struct inode *inode = page->mapping->host;
1225 	struct dnode_of_data dn;
1226 	int err = 0;
1227 
1228 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1229 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1230 	if (err)
1231 		return err;
1232 
1233 	fio->old_blkaddr = dn.data_blkaddr;
1234 
1235 	/* This page is already truncated */
1236 	if (fio->old_blkaddr == NULL_ADDR) {
1237 		ClearPageUptodate(page);
1238 		goto out_writepage;
1239 	}
1240 
1241 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1242 		gfp_t gfp_flags = GFP_NOFS;
1243 
1244 		/* wait for GCed encrypted page writeback */
1245 		f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1246 							fio->old_blkaddr);
1247 retry_encrypt:
1248 		fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1249 							PAGE_SIZE, 0,
1250 							fio->page->index,
1251 							gfp_flags);
1252 		if (IS_ERR(fio->encrypted_page)) {
1253 			err = PTR_ERR(fio->encrypted_page);
1254 			if (err == -ENOMEM) {
1255 				/* flush pending ios and wait for a while */
1256 				f2fs_flush_merged_bios(F2FS_I_SB(inode));
1257 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1258 				gfp_flags |= __GFP_NOFAIL;
1259 				err = 0;
1260 				goto retry_encrypt;
1261 			}
1262 			goto out_writepage;
1263 		}
1264 	}
1265 
1266 	set_page_writeback(page);
1267 
1268 	/*
1269 	 * If current allocation needs SSR,
1270 	 * it had better in-place writes for updated data.
1271 	 */
1272 	if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1273 			!is_cold_data(page) &&
1274 			!IS_ATOMIC_WRITTEN_PAGE(page) &&
1275 			need_inplace_update(inode))) {
1276 		rewrite_data_page(fio);
1277 		set_inode_flag(inode, FI_UPDATE_WRITE);
1278 		trace_f2fs_do_write_data_page(page, IPU);
1279 	} else {
1280 		write_data_page(&dn, fio);
1281 		trace_f2fs_do_write_data_page(page, OPU);
1282 		set_inode_flag(inode, FI_APPEND_WRITE);
1283 		if (page->index == 0)
1284 			set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1285 	}
1286 out_writepage:
1287 	f2fs_put_dnode(&dn);
1288 	return err;
1289 }
1290 
1291 static int f2fs_write_data_page(struct page *page,
1292 					struct writeback_control *wbc)
1293 {
1294 	struct inode *inode = page->mapping->host;
1295 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296 	loff_t i_size = i_size_read(inode);
1297 	const pgoff_t end_index = ((unsigned long long) i_size)
1298 							>> PAGE_SHIFT;
1299 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1300 	unsigned offset = 0;
1301 	bool need_balance_fs = false;
1302 	int err = 0;
1303 	struct f2fs_io_info fio = {
1304 		.sbi = sbi,
1305 		.type = DATA,
1306 		.op = REQ_OP_WRITE,
1307 		.op_flags = wbc_to_write_flags(wbc),
1308 		.page = page,
1309 		.encrypted_page = NULL,
1310 	};
1311 
1312 	trace_f2fs_writepage(page, DATA);
1313 
1314 	if (page->index < end_index)
1315 		goto write;
1316 
1317 	/*
1318 	 * If the offset is out-of-range of file size,
1319 	 * this page does not have to be written to disk.
1320 	 */
1321 	offset = i_size & (PAGE_SIZE - 1);
1322 	if ((page->index >= end_index + 1) || !offset)
1323 		goto out;
1324 
1325 	zero_user_segment(page, offset, PAGE_SIZE);
1326 write:
1327 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1328 		goto redirty_out;
1329 	if (f2fs_is_drop_cache(inode))
1330 		goto out;
1331 	/* we should not write 0'th page having journal header */
1332 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1333 			(!wbc->for_reclaim &&
1334 			available_free_memory(sbi, BASE_CHECK))))
1335 		goto redirty_out;
1336 
1337 	/* we should bypass data pages to proceed the kworkder jobs */
1338 	if (unlikely(f2fs_cp_error(sbi))) {
1339 		mapping_set_error(page->mapping, -EIO);
1340 		goto out;
1341 	}
1342 
1343 	/* Dentry blocks are controlled by checkpoint */
1344 	if (S_ISDIR(inode->i_mode)) {
1345 		err = do_write_data_page(&fio);
1346 		goto done;
1347 	}
1348 
1349 	if (!wbc->for_reclaim)
1350 		need_balance_fs = true;
1351 	else if (has_not_enough_free_secs(sbi, 0, 0))
1352 		goto redirty_out;
1353 
1354 	err = -EAGAIN;
1355 	f2fs_lock_op(sbi);
1356 	if (f2fs_has_inline_data(inode))
1357 		err = f2fs_write_inline_data(inode, page);
1358 	if (err == -EAGAIN)
1359 		err = do_write_data_page(&fio);
1360 	if (F2FS_I(inode)->last_disk_size < psize)
1361 		F2FS_I(inode)->last_disk_size = psize;
1362 	f2fs_unlock_op(sbi);
1363 done:
1364 	if (err && err != -ENOENT)
1365 		goto redirty_out;
1366 
1367 out:
1368 	inode_dec_dirty_pages(inode);
1369 	if (err)
1370 		ClearPageUptodate(page);
1371 
1372 	if (wbc->for_reclaim) {
1373 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1374 		remove_dirty_inode(inode);
1375 	}
1376 
1377 	unlock_page(page);
1378 	f2fs_balance_fs(sbi, need_balance_fs);
1379 
1380 	if (unlikely(f2fs_cp_error(sbi)))
1381 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
1382 
1383 	return 0;
1384 
1385 redirty_out:
1386 	redirty_page_for_writepage(wbc, page);
1387 	if (!err)
1388 		return AOP_WRITEPAGE_ACTIVATE;
1389 	unlock_page(page);
1390 	return err;
1391 }
1392 
1393 /*
1394  * This function was copied from write_cche_pages from mm/page-writeback.c.
1395  * The major change is making write step of cold data page separately from
1396  * warm/hot data page.
1397  */
1398 static int f2fs_write_cache_pages(struct address_space *mapping,
1399 					struct writeback_control *wbc)
1400 {
1401 	int ret = 0;
1402 	int done = 0;
1403 	struct pagevec pvec;
1404 	int nr_pages;
1405 	pgoff_t uninitialized_var(writeback_index);
1406 	pgoff_t index;
1407 	pgoff_t end;		/* Inclusive */
1408 	pgoff_t done_index;
1409 	int cycled;
1410 	int range_whole = 0;
1411 	int tag;
1412 	int nwritten = 0;
1413 
1414 	pagevec_init(&pvec, 0);
1415 
1416 	if (wbc->range_cyclic) {
1417 		writeback_index = mapping->writeback_index; /* prev offset */
1418 		index = writeback_index;
1419 		if (index == 0)
1420 			cycled = 1;
1421 		else
1422 			cycled = 0;
1423 		end = -1;
1424 	} else {
1425 		index = wbc->range_start >> PAGE_SHIFT;
1426 		end = wbc->range_end >> PAGE_SHIFT;
1427 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1428 			range_whole = 1;
1429 		cycled = 1; /* ignore range_cyclic tests */
1430 	}
1431 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1432 		tag = PAGECACHE_TAG_TOWRITE;
1433 	else
1434 		tag = PAGECACHE_TAG_DIRTY;
1435 retry:
1436 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1437 		tag_pages_for_writeback(mapping, index, end);
1438 	done_index = index;
1439 	while (!done && (index <= end)) {
1440 		int i;
1441 
1442 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1443 			      min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1444 		if (nr_pages == 0)
1445 			break;
1446 
1447 		for (i = 0; i < nr_pages; i++) {
1448 			struct page *page = pvec.pages[i];
1449 
1450 			if (page->index > end) {
1451 				done = 1;
1452 				break;
1453 			}
1454 
1455 			done_index = page->index;
1456 
1457 			lock_page(page);
1458 
1459 			if (unlikely(page->mapping != mapping)) {
1460 continue_unlock:
1461 				unlock_page(page);
1462 				continue;
1463 			}
1464 
1465 			if (!PageDirty(page)) {
1466 				/* someone wrote it for us */
1467 				goto continue_unlock;
1468 			}
1469 
1470 			if (PageWriteback(page)) {
1471 				if (wbc->sync_mode != WB_SYNC_NONE)
1472 					f2fs_wait_on_page_writeback(page,
1473 								DATA, true);
1474 				else
1475 					goto continue_unlock;
1476 			}
1477 
1478 			BUG_ON(PageWriteback(page));
1479 			if (!clear_page_dirty_for_io(page))
1480 				goto continue_unlock;
1481 
1482 			ret = mapping->a_ops->writepage(page, wbc);
1483 			if (unlikely(ret)) {
1484 				/*
1485 				 * keep nr_to_write, since vfs uses this to
1486 				 * get # of written pages.
1487 				 */
1488 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1489 					unlock_page(page);
1490 					ret = 0;
1491 					continue;
1492 				}
1493 				done_index = page->index + 1;
1494 				done = 1;
1495 				break;
1496 			} else {
1497 				nwritten++;
1498 			}
1499 
1500 			if (--wbc->nr_to_write <= 0 &&
1501 			    wbc->sync_mode == WB_SYNC_NONE) {
1502 				done = 1;
1503 				break;
1504 			}
1505 		}
1506 		pagevec_release(&pvec);
1507 		cond_resched();
1508 	}
1509 
1510 	if (!cycled && !done) {
1511 		cycled = 1;
1512 		index = 0;
1513 		end = writeback_index - 1;
1514 		goto retry;
1515 	}
1516 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1517 		mapping->writeback_index = done_index;
1518 
1519 	if (nwritten)
1520 		f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1521 							NULL, 0, DATA, WRITE);
1522 
1523 	return ret;
1524 }
1525 
1526 static int f2fs_write_data_pages(struct address_space *mapping,
1527 			    struct writeback_control *wbc)
1528 {
1529 	struct inode *inode = mapping->host;
1530 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1531 	struct blk_plug plug;
1532 	int ret;
1533 
1534 	/* deal with chardevs and other special file */
1535 	if (!mapping->a_ops->writepage)
1536 		return 0;
1537 
1538 	/* skip writing if there is no dirty page in this inode */
1539 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1540 		return 0;
1541 
1542 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1543 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1544 			available_free_memory(sbi, DIRTY_DENTS))
1545 		goto skip_write;
1546 
1547 	/* skip writing during file defragment */
1548 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1549 		goto skip_write;
1550 
1551 	/* during POR, we don't need to trigger writepage at all. */
1552 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1553 		goto skip_write;
1554 
1555 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1556 
1557 	blk_start_plug(&plug);
1558 	ret = f2fs_write_cache_pages(mapping, wbc);
1559 	blk_finish_plug(&plug);
1560 	/*
1561 	 * if some pages were truncated, we cannot guarantee its mapping->host
1562 	 * to detect pending bios.
1563 	 */
1564 
1565 	remove_dirty_inode(inode);
1566 	return ret;
1567 
1568 skip_write:
1569 	wbc->pages_skipped += get_dirty_pages(inode);
1570 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1571 	return 0;
1572 }
1573 
1574 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1575 {
1576 	struct inode *inode = mapping->host;
1577 	loff_t i_size = i_size_read(inode);
1578 
1579 	if (to > i_size) {
1580 		truncate_pagecache(inode, i_size);
1581 		truncate_blocks(inode, i_size, true);
1582 	}
1583 }
1584 
1585 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1586 			struct page *page, loff_t pos, unsigned len,
1587 			block_t *blk_addr, bool *node_changed)
1588 {
1589 	struct inode *inode = page->mapping->host;
1590 	pgoff_t index = page->index;
1591 	struct dnode_of_data dn;
1592 	struct page *ipage;
1593 	bool locked = false;
1594 	struct extent_info ei;
1595 	int err = 0;
1596 
1597 	/*
1598 	 * we already allocated all the blocks, so we don't need to get
1599 	 * the block addresses when there is no need to fill the page.
1600 	 */
1601 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1602 		return 0;
1603 
1604 	if (f2fs_has_inline_data(inode) ||
1605 			(pos & PAGE_MASK) >= i_size_read(inode)) {
1606 		f2fs_lock_op(sbi);
1607 		locked = true;
1608 	}
1609 restart:
1610 	/* check inline_data */
1611 	ipage = get_node_page(sbi, inode->i_ino);
1612 	if (IS_ERR(ipage)) {
1613 		err = PTR_ERR(ipage);
1614 		goto unlock_out;
1615 	}
1616 
1617 	set_new_dnode(&dn, inode, ipage, ipage, 0);
1618 
1619 	if (f2fs_has_inline_data(inode)) {
1620 		if (pos + len <= MAX_INLINE_DATA) {
1621 			read_inline_data(page, ipage);
1622 			set_inode_flag(inode, FI_DATA_EXIST);
1623 			if (inode->i_nlink)
1624 				set_inline_node(ipage);
1625 		} else {
1626 			err = f2fs_convert_inline_page(&dn, page);
1627 			if (err)
1628 				goto out;
1629 			if (dn.data_blkaddr == NULL_ADDR)
1630 				err = f2fs_get_block(&dn, index);
1631 		}
1632 	} else if (locked) {
1633 		err = f2fs_get_block(&dn, index);
1634 	} else {
1635 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1636 			dn.data_blkaddr = ei.blk + index - ei.fofs;
1637 		} else {
1638 			/* hole case */
1639 			err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1640 			if (err || dn.data_blkaddr == NULL_ADDR) {
1641 				f2fs_put_dnode(&dn);
1642 				f2fs_lock_op(sbi);
1643 				locked = true;
1644 				goto restart;
1645 			}
1646 		}
1647 	}
1648 
1649 	/* convert_inline_page can make node_changed */
1650 	*blk_addr = dn.data_blkaddr;
1651 	*node_changed = dn.node_changed;
1652 out:
1653 	f2fs_put_dnode(&dn);
1654 unlock_out:
1655 	if (locked)
1656 		f2fs_unlock_op(sbi);
1657 	return err;
1658 }
1659 
1660 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1661 		loff_t pos, unsigned len, unsigned flags,
1662 		struct page **pagep, void **fsdata)
1663 {
1664 	struct inode *inode = mapping->host;
1665 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666 	struct page *page = NULL;
1667 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1668 	bool need_balance = false;
1669 	block_t blkaddr = NULL_ADDR;
1670 	int err = 0;
1671 
1672 	trace_f2fs_write_begin(inode, pos, len, flags);
1673 
1674 	/*
1675 	 * We should check this at this moment to avoid deadlock on inode page
1676 	 * and #0 page. The locking rule for inline_data conversion should be:
1677 	 * lock_page(page #0) -> lock_page(inode_page)
1678 	 */
1679 	if (index != 0) {
1680 		err = f2fs_convert_inline_inode(inode);
1681 		if (err)
1682 			goto fail;
1683 	}
1684 repeat:
1685 	page = grab_cache_page_write_begin(mapping, index, flags);
1686 	if (!page) {
1687 		err = -ENOMEM;
1688 		goto fail;
1689 	}
1690 
1691 	*pagep = page;
1692 
1693 	err = prepare_write_begin(sbi, page, pos, len,
1694 					&blkaddr, &need_balance);
1695 	if (err)
1696 		goto fail;
1697 
1698 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1699 		unlock_page(page);
1700 		f2fs_balance_fs(sbi, true);
1701 		lock_page(page);
1702 		if (page->mapping != mapping) {
1703 			/* The page got truncated from under us */
1704 			f2fs_put_page(page, 1);
1705 			goto repeat;
1706 		}
1707 	}
1708 
1709 	f2fs_wait_on_page_writeback(page, DATA, false);
1710 
1711 	/* wait for GCed encrypted page writeback */
1712 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1713 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1714 
1715 	if (len == PAGE_SIZE || PageUptodate(page))
1716 		return 0;
1717 
1718 	if (blkaddr == NEW_ADDR) {
1719 		zero_user_segment(page, 0, PAGE_SIZE);
1720 		SetPageUptodate(page);
1721 	} else {
1722 		struct bio *bio;
1723 
1724 		bio = f2fs_grab_bio(inode, blkaddr, 1);
1725 		if (IS_ERR(bio)) {
1726 			err = PTR_ERR(bio);
1727 			goto fail;
1728 		}
1729 		bio->bi_opf = REQ_OP_READ;
1730 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1731 			bio_put(bio);
1732 			err = -EFAULT;
1733 			goto fail;
1734 		}
1735 
1736 		__submit_bio(sbi, bio, DATA);
1737 
1738 		lock_page(page);
1739 		if (unlikely(page->mapping != mapping)) {
1740 			f2fs_put_page(page, 1);
1741 			goto repeat;
1742 		}
1743 		if (unlikely(!PageUptodate(page))) {
1744 			err = -EIO;
1745 			goto fail;
1746 		}
1747 	}
1748 	return 0;
1749 
1750 fail:
1751 	f2fs_put_page(page, 1);
1752 	f2fs_write_failed(mapping, pos + len);
1753 	return err;
1754 }
1755 
1756 static int f2fs_write_end(struct file *file,
1757 			struct address_space *mapping,
1758 			loff_t pos, unsigned len, unsigned copied,
1759 			struct page *page, void *fsdata)
1760 {
1761 	struct inode *inode = page->mapping->host;
1762 
1763 	trace_f2fs_write_end(inode, pos, len, copied);
1764 
1765 	/*
1766 	 * This should be come from len == PAGE_SIZE, and we expect copied
1767 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1768 	 * let generic_perform_write() try to copy data again through copied=0.
1769 	 */
1770 	if (!PageUptodate(page)) {
1771 		if (unlikely(copied != PAGE_SIZE))
1772 			copied = 0;
1773 		else
1774 			SetPageUptodate(page);
1775 	}
1776 	if (!copied)
1777 		goto unlock_out;
1778 
1779 	set_page_dirty(page);
1780 
1781 	if (pos + copied > i_size_read(inode))
1782 		f2fs_i_size_write(inode, pos + copied);
1783 unlock_out:
1784 	f2fs_put_page(page, 1);
1785 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1786 	return copied;
1787 }
1788 
1789 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1790 			   loff_t offset)
1791 {
1792 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1793 
1794 	if (offset & blocksize_mask)
1795 		return -EINVAL;
1796 
1797 	if (iov_iter_alignment(iter) & blocksize_mask)
1798 		return -EINVAL;
1799 
1800 	return 0;
1801 }
1802 
1803 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1804 {
1805 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1806 	struct inode *inode = mapping->host;
1807 	size_t count = iov_iter_count(iter);
1808 	loff_t offset = iocb->ki_pos;
1809 	int rw = iov_iter_rw(iter);
1810 	int err;
1811 
1812 	err = check_direct_IO(inode, iter, offset);
1813 	if (err)
1814 		return err;
1815 
1816 	if (__force_buffered_io(inode, rw))
1817 		return 0;
1818 
1819 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1820 
1821 	down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1822 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1823 	up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1824 
1825 	if (rw == WRITE) {
1826 		if (err > 0)
1827 			set_inode_flag(inode, FI_UPDATE_WRITE);
1828 		else if (err < 0)
1829 			f2fs_write_failed(mapping, offset + count);
1830 	}
1831 
1832 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1833 
1834 	return err;
1835 }
1836 
1837 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1838 							unsigned int length)
1839 {
1840 	struct inode *inode = page->mapping->host;
1841 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842 
1843 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1844 		(offset % PAGE_SIZE || length != PAGE_SIZE))
1845 		return;
1846 
1847 	if (PageDirty(page)) {
1848 		if (inode->i_ino == F2FS_META_INO(sbi)) {
1849 			dec_page_count(sbi, F2FS_DIRTY_META);
1850 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1851 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1852 		} else {
1853 			inode_dec_dirty_pages(inode);
1854 			remove_dirty_inode(inode);
1855 		}
1856 	}
1857 
1858 	/* This is atomic written page, keep Private */
1859 	if (IS_ATOMIC_WRITTEN_PAGE(page))
1860 		return;
1861 
1862 	set_page_private(page, 0);
1863 	ClearPagePrivate(page);
1864 }
1865 
1866 int f2fs_release_page(struct page *page, gfp_t wait)
1867 {
1868 	/* If this is dirty page, keep PagePrivate */
1869 	if (PageDirty(page))
1870 		return 0;
1871 
1872 	/* This is atomic written page, keep Private */
1873 	if (IS_ATOMIC_WRITTEN_PAGE(page))
1874 		return 0;
1875 
1876 	set_page_private(page, 0);
1877 	ClearPagePrivate(page);
1878 	return 1;
1879 }
1880 
1881 /*
1882  * This was copied from __set_page_dirty_buffers which gives higher performance
1883  * in very high speed storages. (e.g., pmem)
1884  */
1885 void f2fs_set_page_dirty_nobuffers(struct page *page)
1886 {
1887 	struct address_space *mapping = page->mapping;
1888 	unsigned long flags;
1889 
1890 	if (unlikely(!mapping))
1891 		return;
1892 
1893 	spin_lock(&mapping->private_lock);
1894 	lock_page_memcg(page);
1895 	SetPageDirty(page);
1896 	spin_unlock(&mapping->private_lock);
1897 
1898 	spin_lock_irqsave(&mapping->tree_lock, flags);
1899 	WARN_ON_ONCE(!PageUptodate(page));
1900 	account_page_dirtied(page, mapping);
1901 	radix_tree_tag_set(&mapping->page_tree,
1902 			page_index(page), PAGECACHE_TAG_DIRTY);
1903 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
1904 	unlock_page_memcg(page);
1905 
1906 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1907 	return;
1908 }
1909 
1910 static int f2fs_set_data_page_dirty(struct page *page)
1911 {
1912 	struct address_space *mapping = page->mapping;
1913 	struct inode *inode = mapping->host;
1914 
1915 	trace_f2fs_set_page_dirty(page, DATA);
1916 
1917 	if (!PageUptodate(page))
1918 		SetPageUptodate(page);
1919 
1920 	if (f2fs_is_atomic_file(inode)) {
1921 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1922 			register_inmem_page(inode, page);
1923 			return 1;
1924 		}
1925 		/*
1926 		 * Previously, this page has been registered, we just
1927 		 * return here.
1928 		 */
1929 		return 0;
1930 	}
1931 
1932 	if (!PageDirty(page)) {
1933 		f2fs_set_page_dirty_nobuffers(page);
1934 		update_dirty_page(inode, page);
1935 		return 1;
1936 	}
1937 	return 0;
1938 }
1939 
1940 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1941 {
1942 	struct inode *inode = mapping->host;
1943 
1944 	if (f2fs_has_inline_data(inode))
1945 		return 0;
1946 
1947 	/* make sure allocating whole blocks */
1948 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1949 		filemap_write_and_wait(mapping);
1950 
1951 	return generic_block_bmap(mapping, block, get_data_block_bmap);
1952 }
1953 
1954 #ifdef CONFIG_MIGRATION
1955 #include <linux/migrate.h>
1956 
1957 int f2fs_migrate_page(struct address_space *mapping,
1958 		struct page *newpage, struct page *page, enum migrate_mode mode)
1959 {
1960 	int rc, extra_count;
1961 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1962 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1963 
1964 	BUG_ON(PageWriteback(page));
1965 
1966 	/* migrating an atomic written page is safe with the inmem_lock hold */
1967 	if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1968 		return -EAGAIN;
1969 
1970 	/*
1971 	 * A reference is expected if PagePrivate set when move mapping,
1972 	 * however F2FS breaks this for maintaining dirty page counts when
1973 	 * truncating pages. So here adjusting the 'extra_count' make it work.
1974 	 */
1975 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1976 	rc = migrate_page_move_mapping(mapping, newpage,
1977 				page, NULL, mode, extra_count);
1978 	if (rc != MIGRATEPAGE_SUCCESS) {
1979 		if (atomic_written)
1980 			mutex_unlock(&fi->inmem_lock);
1981 		return rc;
1982 	}
1983 
1984 	if (atomic_written) {
1985 		struct inmem_pages *cur;
1986 		list_for_each_entry(cur, &fi->inmem_pages, list)
1987 			if (cur->page == page) {
1988 				cur->page = newpage;
1989 				break;
1990 			}
1991 		mutex_unlock(&fi->inmem_lock);
1992 		put_page(page);
1993 		get_page(newpage);
1994 	}
1995 
1996 	if (PagePrivate(page))
1997 		SetPagePrivate(newpage);
1998 	set_page_private(newpage, page_private(page));
1999 
2000 	migrate_page_copy(newpage, page);
2001 
2002 	return MIGRATEPAGE_SUCCESS;
2003 }
2004 #endif
2005 
2006 const struct address_space_operations f2fs_dblock_aops = {
2007 	.readpage	= f2fs_read_data_page,
2008 	.readpages	= f2fs_read_data_pages,
2009 	.writepage	= f2fs_write_data_page,
2010 	.writepages	= f2fs_write_data_pages,
2011 	.write_begin	= f2fs_write_begin,
2012 	.write_end	= f2fs_write_end,
2013 	.set_page_dirty	= f2fs_set_data_page_dirty,
2014 	.invalidatepage	= f2fs_invalidate_page,
2015 	.releasepage	= f2fs_release_page,
2016 	.direct_IO	= f2fs_direct_IO,
2017 	.bmap		= f2fs_bmap,
2018 #ifdef CONFIG_MIGRATION
2019 	.migratepage    = f2fs_migrate_page,
2020 #endif
2021 };
2022