1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static void f2fs_read_end_io(struct bio *bio) 33 { 34 struct bio_vec *bvec; 35 int i; 36 37 if (f2fs_bio_encrypted(bio)) { 38 if (bio->bi_error) { 39 fscrypt_release_ctx(bio->bi_private); 40 } else { 41 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 42 return; 43 } 44 } 45 46 bio_for_each_segment_all(bvec, bio, i) { 47 struct page *page = bvec->bv_page; 48 49 if (!bio->bi_error) { 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 } else { 53 ClearPageUptodate(page); 54 SetPageError(page); 55 } 56 unlock_page(page); 57 } 58 bio_put(bio); 59 } 60 61 static void f2fs_write_end_io(struct bio *bio) 62 { 63 struct f2fs_sb_info *sbi = bio->bi_private; 64 struct bio_vec *bvec; 65 int i; 66 67 bio_for_each_segment_all(bvec, bio, i) { 68 struct page *page = bvec->bv_page; 69 70 fscrypt_pullback_bio_page(&page, true); 71 72 if (unlikely(bio->bi_error)) { 73 set_bit(AS_EIO, &page->mapping->flags); 74 f2fs_stop_checkpoint(sbi, true); 75 } 76 end_page_writeback(page); 77 } 78 if (atomic_dec_and_test(&sbi->nr_wb_bios) && 79 wq_has_sleeper(&sbi->cp_wait)) 80 wake_up(&sbi->cp_wait); 81 82 bio_put(bio); 83 } 84 85 /* 86 * Low-level block read/write IO operations. 87 */ 88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 89 int npages, bool is_read) 90 { 91 struct bio *bio; 92 93 bio = f2fs_bio_alloc(npages); 94 95 bio->bi_bdev = sbi->sb->s_bdev; 96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 98 bio->bi_private = is_read ? NULL : sbi; 99 100 return bio; 101 } 102 103 static inline void __submit_bio(struct f2fs_sb_info *sbi, 104 struct bio *bio, enum page_type type) 105 { 106 if (!is_read_io(bio_op(bio))) { 107 atomic_inc(&sbi->nr_wb_bios); 108 if (f2fs_sb_mounted_hmsmr(sbi->sb) && 109 current->plug && (type == DATA || type == NODE)) 110 blk_finish_plug(current->plug); 111 } 112 submit_bio(bio); 113 } 114 115 static void __submit_merged_bio(struct f2fs_bio_info *io) 116 { 117 struct f2fs_io_info *fio = &io->fio; 118 119 if (!io->bio) 120 return; 121 122 if (is_read_io(fio->op)) 123 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); 124 else 125 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); 126 127 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 128 129 __submit_bio(io->sbi, io->bio, fio->type); 130 io->bio = NULL; 131 } 132 133 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 134 struct page *page, nid_t ino) 135 { 136 struct bio_vec *bvec; 137 struct page *target; 138 int i; 139 140 if (!io->bio) 141 return false; 142 143 if (!inode && !page && !ino) 144 return true; 145 146 bio_for_each_segment_all(bvec, io->bio, i) { 147 148 if (bvec->bv_page->mapping) 149 target = bvec->bv_page; 150 else 151 target = fscrypt_control_page(bvec->bv_page); 152 153 if (inode && inode == target->mapping->host) 154 return true; 155 if (page && page == target) 156 return true; 157 if (ino && ino == ino_of_node(target)) 158 return true; 159 } 160 161 return false; 162 } 163 164 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 165 struct page *page, nid_t ino, 166 enum page_type type) 167 { 168 enum page_type btype = PAGE_TYPE_OF_BIO(type); 169 struct f2fs_bio_info *io = &sbi->write_io[btype]; 170 bool ret; 171 172 down_read(&io->io_rwsem); 173 ret = __has_merged_page(io, inode, page, ino); 174 up_read(&io->io_rwsem); 175 return ret; 176 } 177 178 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 179 struct inode *inode, struct page *page, 180 nid_t ino, enum page_type type, int rw) 181 { 182 enum page_type btype = PAGE_TYPE_OF_BIO(type); 183 struct f2fs_bio_info *io; 184 185 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 186 187 down_write(&io->io_rwsem); 188 189 if (!__has_merged_page(io, inode, page, ino)) 190 goto out; 191 192 /* change META to META_FLUSH in the checkpoint procedure */ 193 if (type >= META_FLUSH) { 194 io->fio.type = META_FLUSH; 195 io->fio.op = REQ_OP_WRITE; 196 if (test_opt(sbi, NOBARRIER)) 197 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO; 198 else 199 io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META | 200 REQ_PRIO; 201 } 202 __submit_merged_bio(io); 203 out: 204 up_write(&io->io_rwsem); 205 } 206 207 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 208 int rw) 209 { 210 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw); 211 } 212 213 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 214 struct inode *inode, struct page *page, 215 nid_t ino, enum page_type type, int rw) 216 { 217 if (has_merged_page(sbi, inode, page, ino, type)) 218 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw); 219 } 220 221 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 222 { 223 f2fs_submit_merged_bio(sbi, DATA, WRITE); 224 f2fs_submit_merged_bio(sbi, NODE, WRITE); 225 f2fs_submit_merged_bio(sbi, META, WRITE); 226 } 227 228 /* 229 * Fill the locked page with data located in the block address. 230 * Return unlocked page. 231 */ 232 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 233 { 234 struct bio *bio; 235 struct page *page = fio->encrypted_page ? 236 fio->encrypted_page : fio->page; 237 238 trace_f2fs_submit_page_bio(page, fio); 239 f2fs_trace_ios(fio, 0); 240 241 /* Allocate a new bio */ 242 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 243 244 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 245 bio_put(bio); 246 return -EFAULT; 247 } 248 bio->bi_rw = fio->op_flags; 249 bio_set_op_attrs(bio, fio->op, fio->op_flags); 250 251 __submit_bio(fio->sbi, bio, fio->type); 252 return 0; 253 } 254 255 void f2fs_submit_page_mbio(struct f2fs_io_info *fio) 256 { 257 struct f2fs_sb_info *sbi = fio->sbi; 258 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 259 struct f2fs_bio_info *io; 260 bool is_read = is_read_io(fio->op); 261 struct page *bio_page; 262 263 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 264 265 if (fio->old_blkaddr != NEW_ADDR) 266 verify_block_addr(sbi, fio->old_blkaddr); 267 verify_block_addr(sbi, fio->new_blkaddr); 268 269 down_write(&io->io_rwsem); 270 271 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 272 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags))) 273 __submit_merged_bio(io); 274 alloc_new: 275 if (io->bio == NULL) { 276 int bio_blocks = MAX_BIO_BLOCKS(sbi); 277 278 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 279 bio_blocks, is_read); 280 io->fio = *fio; 281 } 282 283 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 284 285 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 286 PAGE_SIZE) { 287 __submit_merged_bio(io); 288 goto alloc_new; 289 } 290 291 io->last_block_in_bio = fio->new_blkaddr; 292 f2fs_trace_ios(fio, 0); 293 294 up_write(&io->io_rwsem); 295 trace_f2fs_submit_page_mbio(fio->page, fio); 296 } 297 298 static void __set_data_blkaddr(struct dnode_of_data *dn) 299 { 300 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 301 __le32 *addr_array; 302 303 /* Get physical address of data block */ 304 addr_array = blkaddr_in_node(rn); 305 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 306 } 307 308 /* 309 * Lock ordering for the change of data block address: 310 * ->data_page 311 * ->node_page 312 * update block addresses in the node page 313 */ 314 void set_data_blkaddr(struct dnode_of_data *dn) 315 { 316 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 317 __set_data_blkaddr(dn); 318 if (set_page_dirty(dn->node_page)) 319 dn->node_changed = true; 320 } 321 322 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 323 { 324 dn->data_blkaddr = blkaddr; 325 set_data_blkaddr(dn); 326 f2fs_update_extent_cache(dn); 327 } 328 329 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 330 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 331 { 332 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 333 334 if (!count) 335 return 0; 336 337 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 338 return -EPERM; 339 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 340 return -ENOSPC; 341 342 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 343 dn->ofs_in_node, count); 344 345 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 346 347 for (; count > 0; dn->ofs_in_node++) { 348 block_t blkaddr = 349 datablock_addr(dn->node_page, dn->ofs_in_node); 350 if (blkaddr == NULL_ADDR) { 351 dn->data_blkaddr = NEW_ADDR; 352 __set_data_blkaddr(dn); 353 count--; 354 } 355 } 356 357 if (set_page_dirty(dn->node_page)) 358 dn->node_changed = true; 359 return 0; 360 } 361 362 /* Should keep dn->ofs_in_node unchanged */ 363 int reserve_new_block(struct dnode_of_data *dn) 364 { 365 unsigned int ofs_in_node = dn->ofs_in_node; 366 int ret; 367 368 ret = reserve_new_blocks(dn, 1); 369 dn->ofs_in_node = ofs_in_node; 370 return ret; 371 } 372 373 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 374 { 375 bool need_put = dn->inode_page ? false : true; 376 int err; 377 378 err = get_dnode_of_data(dn, index, ALLOC_NODE); 379 if (err) 380 return err; 381 382 if (dn->data_blkaddr == NULL_ADDR) 383 err = reserve_new_block(dn); 384 if (err || need_put) 385 f2fs_put_dnode(dn); 386 return err; 387 } 388 389 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 390 { 391 struct extent_info ei; 392 struct inode *inode = dn->inode; 393 394 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 395 dn->data_blkaddr = ei.blk + index - ei.fofs; 396 return 0; 397 } 398 399 return f2fs_reserve_block(dn, index); 400 } 401 402 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 403 int op_flags, bool for_write) 404 { 405 struct address_space *mapping = inode->i_mapping; 406 struct dnode_of_data dn; 407 struct page *page; 408 struct extent_info ei; 409 int err; 410 struct f2fs_io_info fio = { 411 .sbi = F2FS_I_SB(inode), 412 .type = DATA, 413 .op = REQ_OP_READ, 414 .op_flags = op_flags, 415 .encrypted_page = NULL, 416 }; 417 418 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 419 return read_mapping_page(mapping, index, NULL); 420 421 page = f2fs_grab_cache_page(mapping, index, for_write); 422 if (!page) 423 return ERR_PTR(-ENOMEM); 424 425 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 426 dn.data_blkaddr = ei.blk + index - ei.fofs; 427 goto got_it; 428 } 429 430 set_new_dnode(&dn, inode, NULL, NULL, 0); 431 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 432 if (err) 433 goto put_err; 434 f2fs_put_dnode(&dn); 435 436 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 437 err = -ENOENT; 438 goto put_err; 439 } 440 got_it: 441 if (PageUptodate(page)) { 442 unlock_page(page); 443 return page; 444 } 445 446 /* 447 * A new dentry page is allocated but not able to be written, since its 448 * new inode page couldn't be allocated due to -ENOSPC. 449 * In such the case, its blkaddr can be remained as NEW_ADDR. 450 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 451 */ 452 if (dn.data_blkaddr == NEW_ADDR) { 453 zero_user_segment(page, 0, PAGE_SIZE); 454 if (!PageUptodate(page)) 455 SetPageUptodate(page); 456 unlock_page(page); 457 return page; 458 } 459 460 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 461 fio.page = page; 462 err = f2fs_submit_page_bio(&fio); 463 if (err) 464 goto put_err; 465 return page; 466 467 put_err: 468 f2fs_put_page(page, 1); 469 return ERR_PTR(err); 470 } 471 472 struct page *find_data_page(struct inode *inode, pgoff_t index) 473 { 474 struct address_space *mapping = inode->i_mapping; 475 struct page *page; 476 477 page = find_get_page(mapping, index); 478 if (page && PageUptodate(page)) 479 return page; 480 f2fs_put_page(page, 0); 481 482 page = get_read_data_page(inode, index, READ_SYNC, false); 483 if (IS_ERR(page)) 484 return page; 485 486 if (PageUptodate(page)) 487 return page; 488 489 wait_on_page_locked(page); 490 if (unlikely(!PageUptodate(page))) { 491 f2fs_put_page(page, 0); 492 return ERR_PTR(-EIO); 493 } 494 return page; 495 } 496 497 /* 498 * If it tries to access a hole, return an error. 499 * Because, the callers, functions in dir.c and GC, should be able to know 500 * whether this page exists or not. 501 */ 502 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 503 bool for_write) 504 { 505 struct address_space *mapping = inode->i_mapping; 506 struct page *page; 507 repeat: 508 page = get_read_data_page(inode, index, READ_SYNC, for_write); 509 if (IS_ERR(page)) 510 return page; 511 512 /* wait for read completion */ 513 lock_page(page); 514 if (unlikely(page->mapping != mapping)) { 515 f2fs_put_page(page, 1); 516 goto repeat; 517 } 518 if (unlikely(!PageUptodate(page))) { 519 f2fs_put_page(page, 1); 520 return ERR_PTR(-EIO); 521 } 522 return page; 523 } 524 525 /* 526 * Caller ensures that this data page is never allocated. 527 * A new zero-filled data page is allocated in the page cache. 528 * 529 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 530 * f2fs_unlock_op(). 531 * Note that, ipage is set only by make_empty_dir, and if any error occur, 532 * ipage should be released by this function. 533 */ 534 struct page *get_new_data_page(struct inode *inode, 535 struct page *ipage, pgoff_t index, bool new_i_size) 536 { 537 struct address_space *mapping = inode->i_mapping; 538 struct page *page; 539 struct dnode_of_data dn; 540 int err; 541 542 page = f2fs_grab_cache_page(mapping, index, true); 543 if (!page) { 544 /* 545 * before exiting, we should make sure ipage will be released 546 * if any error occur. 547 */ 548 f2fs_put_page(ipage, 1); 549 return ERR_PTR(-ENOMEM); 550 } 551 552 set_new_dnode(&dn, inode, ipage, NULL, 0); 553 err = f2fs_reserve_block(&dn, index); 554 if (err) { 555 f2fs_put_page(page, 1); 556 return ERR_PTR(err); 557 } 558 if (!ipage) 559 f2fs_put_dnode(&dn); 560 561 if (PageUptodate(page)) 562 goto got_it; 563 564 if (dn.data_blkaddr == NEW_ADDR) { 565 zero_user_segment(page, 0, PAGE_SIZE); 566 if (!PageUptodate(page)) 567 SetPageUptodate(page); 568 } else { 569 f2fs_put_page(page, 1); 570 571 /* if ipage exists, blkaddr should be NEW_ADDR */ 572 f2fs_bug_on(F2FS_I_SB(inode), ipage); 573 page = get_lock_data_page(inode, index, true); 574 if (IS_ERR(page)) 575 return page; 576 } 577 got_it: 578 if (new_i_size && i_size_read(inode) < 579 ((loff_t)(index + 1) << PAGE_SHIFT)) 580 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 581 return page; 582 } 583 584 static int __allocate_data_block(struct dnode_of_data *dn) 585 { 586 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 587 struct f2fs_summary sum; 588 struct node_info ni; 589 int seg = CURSEG_WARM_DATA; 590 pgoff_t fofs; 591 blkcnt_t count = 1; 592 593 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 594 return -EPERM; 595 596 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 597 if (dn->data_blkaddr == NEW_ADDR) 598 goto alloc; 599 600 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 601 return -ENOSPC; 602 603 alloc: 604 get_node_info(sbi, dn->nid, &ni); 605 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 606 607 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) 608 seg = CURSEG_DIRECT_IO; 609 610 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 611 &sum, seg); 612 set_data_blkaddr(dn); 613 614 /* update i_size */ 615 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 616 dn->ofs_in_node; 617 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 618 f2fs_i_size_write(dn->inode, 619 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 620 return 0; 621 } 622 623 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 624 { 625 struct inode *inode = file_inode(iocb->ki_filp); 626 struct f2fs_map_blocks map; 627 ssize_t ret = 0; 628 629 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 630 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from)); 631 map.m_next_pgofs = NULL; 632 633 if (f2fs_encrypted_inode(inode)) 634 return 0; 635 636 if (iocb->ki_flags & IOCB_DIRECT) { 637 ret = f2fs_convert_inline_inode(inode); 638 if (ret) 639 return ret; 640 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 641 } 642 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 643 ret = f2fs_convert_inline_inode(inode); 644 if (ret) 645 return ret; 646 } 647 if (!f2fs_has_inline_data(inode)) 648 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 649 return ret; 650 } 651 652 /* 653 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 654 * f2fs_map_blocks structure. 655 * If original data blocks are allocated, then give them to blockdev. 656 * Otherwise, 657 * a. preallocate requested block addresses 658 * b. do not use extent cache for better performance 659 * c. give the block addresses to blockdev 660 */ 661 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 662 int create, int flag) 663 { 664 unsigned int maxblocks = map->m_len; 665 struct dnode_of_data dn; 666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 667 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 668 pgoff_t pgofs, end_offset, end; 669 int err = 0, ofs = 1; 670 unsigned int ofs_in_node, last_ofs_in_node; 671 blkcnt_t prealloc; 672 struct extent_info ei; 673 bool allocated = false; 674 block_t blkaddr; 675 676 map->m_len = 0; 677 map->m_flags = 0; 678 679 /* it only supports block size == page size */ 680 pgofs = (pgoff_t)map->m_lblk; 681 end = pgofs + maxblocks; 682 683 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 684 map->m_pblk = ei.blk + pgofs - ei.fofs; 685 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 686 map->m_flags = F2FS_MAP_MAPPED; 687 goto out; 688 } 689 690 next_dnode: 691 if (create) 692 f2fs_lock_op(sbi); 693 694 /* When reading holes, we need its node page */ 695 set_new_dnode(&dn, inode, NULL, NULL, 0); 696 err = get_dnode_of_data(&dn, pgofs, mode); 697 if (err) { 698 if (flag == F2FS_GET_BLOCK_BMAP) 699 map->m_pblk = 0; 700 if (err == -ENOENT) { 701 err = 0; 702 if (map->m_next_pgofs) 703 *map->m_next_pgofs = 704 get_next_page_offset(&dn, pgofs); 705 } 706 goto unlock_out; 707 } 708 709 prealloc = 0; 710 ofs_in_node = dn.ofs_in_node; 711 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 712 713 next_block: 714 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 715 716 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 717 if (create) { 718 if (unlikely(f2fs_cp_error(sbi))) { 719 err = -EIO; 720 goto sync_out; 721 } 722 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 723 if (blkaddr == NULL_ADDR) { 724 prealloc++; 725 last_ofs_in_node = dn.ofs_in_node; 726 } 727 } else { 728 err = __allocate_data_block(&dn); 729 if (!err) { 730 set_inode_flag(inode, FI_APPEND_WRITE); 731 allocated = true; 732 } 733 } 734 if (err) 735 goto sync_out; 736 map->m_flags = F2FS_MAP_NEW; 737 blkaddr = dn.data_blkaddr; 738 } else { 739 if (flag == F2FS_GET_BLOCK_BMAP) { 740 map->m_pblk = 0; 741 goto sync_out; 742 } 743 if (flag == F2FS_GET_BLOCK_FIEMAP && 744 blkaddr == NULL_ADDR) { 745 if (map->m_next_pgofs) 746 *map->m_next_pgofs = pgofs + 1; 747 } 748 if (flag != F2FS_GET_BLOCK_FIEMAP || 749 blkaddr != NEW_ADDR) 750 goto sync_out; 751 } 752 } 753 754 if (flag == F2FS_GET_BLOCK_PRE_AIO) 755 goto skip; 756 757 if (map->m_len == 0) { 758 /* preallocated unwritten block should be mapped for fiemap. */ 759 if (blkaddr == NEW_ADDR) 760 map->m_flags |= F2FS_MAP_UNWRITTEN; 761 map->m_flags |= F2FS_MAP_MAPPED; 762 763 map->m_pblk = blkaddr; 764 map->m_len = 1; 765 } else if ((map->m_pblk != NEW_ADDR && 766 blkaddr == (map->m_pblk + ofs)) || 767 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 768 flag == F2FS_GET_BLOCK_PRE_DIO) { 769 ofs++; 770 map->m_len++; 771 } else { 772 goto sync_out; 773 } 774 775 skip: 776 dn.ofs_in_node++; 777 pgofs++; 778 779 /* preallocate blocks in batch for one dnode page */ 780 if (flag == F2FS_GET_BLOCK_PRE_AIO && 781 (pgofs == end || dn.ofs_in_node == end_offset)) { 782 783 dn.ofs_in_node = ofs_in_node; 784 err = reserve_new_blocks(&dn, prealloc); 785 if (err) 786 goto sync_out; 787 788 map->m_len += dn.ofs_in_node - ofs_in_node; 789 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 790 err = -ENOSPC; 791 goto sync_out; 792 } 793 dn.ofs_in_node = end_offset; 794 } 795 796 if (pgofs >= end) 797 goto sync_out; 798 else if (dn.ofs_in_node < end_offset) 799 goto next_block; 800 801 f2fs_put_dnode(&dn); 802 803 if (create) { 804 f2fs_unlock_op(sbi); 805 f2fs_balance_fs(sbi, allocated); 806 } 807 allocated = false; 808 goto next_dnode; 809 810 sync_out: 811 f2fs_put_dnode(&dn); 812 unlock_out: 813 if (create) { 814 f2fs_unlock_op(sbi); 815 f2fs_balance_fs(sbi, allocated); 816 } 817 out: 818 trace_f2fs_map_blocks(inode, map, err); 819 return err; 820 } 821 822 static int __get_data_block(struct inode *inode, sector_t iblock, 823 struct buffer_head *bh, int create, int flag, 824 pgoff_t *next_pgofs) 825 { 826 struct f2fs_map_blocks map; 827 int ret; 828 829 map.m_lblk = iblock; 830 map.m_len = bh->b_size >> inode->i_blkbits; 831 map.m_next_pgofs = next_pgofs; 832 833 ret = f2fs_map_blocks(inode, &map, create, flag); 834 if (!ret) { 835 map_bh(bh, inode->i_sb, map.m_pblk); 836 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 837 bh->b_size = map.m_len << inode->i_blkbits; 838 } 839 return ret; 840 } 841 842 static int get_data_block(struct inode *inode, sector_t iblock, 843 struct buffer_head *bh_result, int create, int flag, 844 pgoff_t *next_pgofs) 845 { 846 return __get_data_block(inode, iblock, bh_result, create, 847 flag, next_pgofs); 848 } 849 850 static int get_data_block_dio(struct inode *inode, sector_t iblock, 851 struct buffer_head *bh_result, int create) 852 { 853 return __get_data_block(inode, iblock, bh_result, create, 854 F2FS_GET_BLOCK_DIO, NULL); 855 } 856 857 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 858 struct buffer_head *bh_result, int create) 859 { 860 /* Block number less than F2FS MAX BLOCKS */ 861 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 862 return -EFBIG; 863 864 return __get_data_block(inode, iblock, bh_result, create, 865 F2FS_GET_BLOCK_BMAP, NULL); 866 } 867 868 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 869 { 870 return (offset >> inode->i_blkbits); 871 } 872 873 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 874 { 875 return (blk << inode->i_blkbits); 876 } 877 878 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 879 u64 start, u64 len) 880 { 881 struct buffer_head map_bh; 882 sector_t start_blk, last_blk; 883 pgoff_t next_pgofs; 884 loff_t isize; 885 u64 logical = 0, phys = 0, size = 0; 886 u32 flags = 0; 887 int ret = 0; 888 889 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 890 if (ret) 891 return ret; 892 893 if (f2fs_has_inline_data(inode)) { 894 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 895 if (ret != -EAGAIN) 896 return ret; 897 } 898 899 inode_lock(inode); 900 901 isize = i_size_read(inode); 902 if (start >= isize) 903 goto out; 904 905 if (start + len > isize) 906 len = isize - start; 907 908 if (logical_to_blk(inode, len) == 0) 909 len = blk_to_logical(inode, 1); 910 911 start_blk = logical_to_blk(inode, start); 912 last_blk = logical_to_blk(inode, start + len - 1); 913 914 next: 915 memset(&map_bh, 0, sizeof(struct buffer_head)); 916 map_bh.b_size = len; 917 918 ret = get_data_block(inode, start_blk, &map_bh, 0, 919 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 920 if (ret) 921 goto out; 922 923 /* HOLE */ 924 if (!buffer_mapped(&map_bh)) { 925 start_blk = next_pgofs; 926 /* Go through holes util pass the EOF */ 927 if (blk_to_logical(inode, start_blk) < isize) 928 goto prep_next; 929 /* Found a hole beyond isize means no more extents. 930 * Note that the premise is that filesystems don't 931 * punch holes beyond isize and keep size unchanged. 932 */ 933 flags |= FIEMAP_EXTENT_LAST; 934 } 935 936 if (size) { 937 if (f2fs_encrypted_inode(inode)) 938 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 939 940 ret = fiemap_fill_next_extent(fieinfo, logical, 941 phys, size, flags); 942 } 943 944 if (start_blk > last_blk || ret) 945 goto out; 946 947 logical = blk_to_logical(inode, start_blk); 948 phys = blk_to_logical(inode, map_bh.b_blocknr); 949 size = map_bh.b_size; 950 flags = 0; 951 if (buffer_unwritten(&map_bh)) 952 flags = FIEMAP_EXTENT_UNWRITTEN; 953 954 start_blk += logical_to_blk(inode, size); 955 956 prep_next: 957 cond_resched(); 958 if (fatal_signal_pending(current)) 959 ret = -EINTR; 960 else 961 goto next; 962 out: 963 if (ret == 1) 964 ret = 0; 965 966 inode_unlock(inode); 967 return ret; 968 } 969 970 struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 971 unsigned nr_pages) 972 { 973 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 974 struct fscrypt_ctx *ctx = NULL; 975 struct block_device *bdev = sbi->sb->s_bdev; 976 struct bio *bio; 977 978 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 979 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 980 if (IS_ERR(ctx)) 981 return ERR_CAST(ctx); 982 983 /* wait the page to be moved by cleaning */ 984 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 985 } 986 987 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 988 if (!bio) { 989 if (ctx) 990 fscrypt_release_ctx(ctx); 991 return ERR_PTR(-ENOMEM); 992 } 993 bio->bi_bdev = bdev; 994 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr); 995 bio->bi_end_io = f2fs_read_end_io; 996 bio->bi_private = ctx; 997 998 return bio; 999 } 1000 1001 /* 1002 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1003 * Major change was from block_size == page_size in f2fs by default. 1004 */ 1005 static int f2fs_mpage_readpages(struct address_space *mapping, 1006 struct list_head *pages, struct page *page, 1007 unsigned nr_pages) 1008 { 1009 struct bio *bio = NULL; 1010 unsigned page_idx; 1011 sector_t last_block_in_bio = 0; 1012 struct inode *inode = mapping->host; 1013 const unsigned blkbits = inode->i_blkbits; 1014 const unsigned blocksize = 1 << blkbits; 1015 sector_t block_in_file; 1016 sector_t last_block; 1017 sector_t last_block_in_file; 1018 sector_t block_nr; 1019 struct f2fs_map_blocks map; 1020 1021 map.m_pblk = 0; 1022 map.m_lblk = 0; 1023 map.m_len = 0; 1024 map.m_flags = 0; 1025 map.m_next_pgofs = NULL; 1026 1027 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1028 1029 prefetchw(&page->flags); 1030 if (pages) { 1031 page = list_entry(pages->prev, struct page, lru); 1032 list_del(&page->lru); 1033 if (add_to_page_cache_lru(page, mapping, 1034 page->index, 1035 readahead_gfp_mask(mapping))) 1036 goto next_page; 1037 } 1038 1039 block_in_file = (sector_t)page->index; 1040 last_block = block_in_file + nr_pages; 1041 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1042 blkbits; 1043 if (last_block > last_block_in_file) 1044 last_block = last_block_in_file; 1045 1046 /* 1047 * Map blocks using the previous result first. 1048 */ 1049 if ((map.m_flags & F2FS_MAP_MAPPED) && 1050 block_in_file > map.m_lblk && 1051 block_in_file < (map.m_lblk + map.m_len)) 1052 goto got_it; 1053 1054 /* 1055 * Then do more f2fs_map_blocks() calls until we are 1056 * done with this page. 1057 */ 1058 map.m_flags = 0; 1059 1060 if (block_in_file < last_block) { 1061 map.m_lblk = block_in_file; 1062 map.m_len = last_block - block_in_file; 1063 1064 if (f2fs_map_blocks(inode, &map, 0, 1065 F2FS_GET_BLOCK_READ)) 1066 goto set_error_page; 1067 } 1068 got_it: 1069 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1070 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1071 SetPageMappedToDisk(page); 1072 1073 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1074 SetPageUptodate(page); 1075 goto confused; 1076 } 1077 } else { 1078 zero_user_segment(page, 0, PAGE_SIZE); 1079 if (!PageUptodate(page)) 1080 SetPageUptodate(page); 1081 unlock_page(page); 1082 goto next_page; 1083 } 1084 1085 /* 1086 * This page will go to BIO. Do we need to send this 1087 * BIO off first? 1088 */ 1089 if (bio && (last_block_in_bio != block_nr - 1)) { 1090 submit_and_realloc: 1091 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1092 bio = NULL; 1093 } 1094 if (bio == NULL) { 1095 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1096 if (IS_ERR(bio)) { 1097 bio = NULL; 1098 goto set_error_page; 1099 } 1100 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1101 } 1102 1103 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1104 goto submit_and_realloc; 1105 1106 last_block_in_bio = block_nr; 1107 goto next_page; 1108 set_error_page: 1109 SetPageError(page); 1110 zero_user_segment(page, 0, PAGE_SIZE); 1111 unlock_page(page); 1112 goto next_page; 1113 confused: 1114 if (bio) { 1115 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1116 bio = NULL; 1117 } 1118 unlock_page(page); 1119 next_page: 1120 if (pages) 1121 put_page(page); 1122 } 1123 BUG_ON(pages && !list_empty(pages)); 1124 if (bio) 1125 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1126 return 0; 1127 } 1128 1129 static int f2fs_read_data_page(struct file *file, struct page *page) 1130 { 1131 struct inode *inode = page->mapping->host; 1132 int ret = -EAGAIN; 1133 1134 trace_f2fs_readpage(page, DATA); 1135 1136 /* If the file has inline data, try to read it directly */ 1137 if (f2fs_has_inline_data(inode)) 1138 ret = f2fs_read_inline_data(inode, page); 1139 if (ret == -EAGAIN) 1140 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1141 return ret; 1142 } 1143 1144 static int f2fs_read_data_pages(struct file *file, 1145 struct address_space *mapping, 1146 struct list_head *pages, unsigned nr_pages) 1147 { 1148 struct inode *inode = file->f_mapping->host; 1149 struct page *page = list_entry(pages->prev, struct page, lru); 1150 1151 trace_f2fs_readpages(inode, page, nr_pages); 1152 1153 /* If the file has inline data, skip readpages */ 1154 if (f2fs_has_inline_data(inode)) 1155 return 0; 1156 1157 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1158 } 1159 1160 int do_write_data_page(struct f2fs_io_info *fio) 1161 { 1162 struct page *page = fio->page; 1163 struct inode *inode = page->mapping->host; 1164 struct dnode_of_data dn; 1165 int err = 0; 1166 1167 set_new_dnode(&dn, inode, NULL, NULL, 0); 1168 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1169 if (err) 1170 return err; 1171 1172 fio->old_blkaddr = dn.data_blkaddr; 1173 1174 /* This page is already truncated */ 1175 if (fio->old_blkaddr == NULL_ADDR) { 1176 ClearPageUptodate(page); 1177 goto out_writepage; 1178 } 1179 1180 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1181 gfp_t gfp_flags = GFP_NOFS; 1182 1183 /* wait for GCed encrypted page writeback */ 1184 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1185 fio->old_blkaddr); 1186 retry_encrypt: 1187 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1188 gfp_flags); 1189 if (IS_ERR(fio->encrypted_page)) { 1190 err = PTR_ERR(fio->encrypted_page); 1191 if (err == -ENOMEM) { 1192 /* flush pending ios and wait for a while */ 1193 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1194 congestion_wait(BLK_RW_ASYNC, HZ/50); 1195 gfp_flags |= __GFP_NOFAIL; 1196 err = 0; 1197 goto retry_encrypt; 1198 } 1199 goto out_writepage; 1200 } 1201 } 1202 1203 set_page_writeback(page); 1204 1205 /* 1206 * If current allocation needs SSR, 1207 * it had better in-place writes for updated data. 1208 */ 1209 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1210 !is_cold_data(page) && 1211 !IS_ATOMIC_WRITTEN_PAGE(page) && 1212 need_inplace_update(inode))) { 1213 rewrite_data_page(fio); 1214 set_inode_flag(inode, FI_UPDATE_WRITE); 1215 trace_f2fs_do_write_data_page(page, IPU); 1216 } else { 1217 write_data_page(&dn, fio); 1218 trace_f2fs_do_write_data_page(page, OPU); 1219 set_inode_flag(inode, FI_APPEND_WRITE); 1220 if (page->index == 0) 1221 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1222 } 1223 out_writepage: 1224 f2fs_put_dnode(&dn); 1225 return err; 1226 } 1227 1228 static int f2fs_write_data_page(struct page *page, 1229 struct writeback_control *wbc) 1230 { 1231 struct inode *inode = page->mapping->host; 1232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1233 loff_t i_size = i_size_read(inode); 1234 const pgoff_t end_index = ((unsigned long long) i_size) 1235 >> PAGE_SHIFT; 1236 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1237 unsigned offset = 0; 1238 bool need_balance_fs = false; 1239 int err = 0; 1240 struct f2fs_io_info fio = { 1241 .sbi = sbi, 1242 .type = DATA, 1243 .op = REQ_OP_WRITE, 1244 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0, 1245 .page = page, 1246 .encrypted_page = NULL, 1247 }; 1248 1249 trace_f2fs_writepage(page, DATA); 1250 1251 if (page->index < end_index) 1252 goto write; 1253 1254 /* 1255 * If the offset is out-of-range of file size, 1256 * this page does not have to be written to disk. 1257 */ 1258 offset = i_size & (PAGE_SIZE - 1); 1259 if ((page->index >= end_index + 1) || !offset) 1260 goto out; 1261 1262 zero_user_segment(page, offset, PAGE_SIZE); 1263 write: 1264 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1265 goto redirty_out; 1266 if (f2fs_is_drop_cache(inode)) 1267 goto out; 1268 /* we should not write 0'th page having journal header */ 1269 if (f2fs_is_volatile_file(inode) && (!page->index || 1270 (!wbc->for_reclaim && 1271 available_free_memory(sbi, BASE_CHECK)))) 1272 goto redirty_out; 1273 1274 /* we should bypass data pages to proceed the kworkder jobs */ 1275 if (unlikely(f2fs_cp_error(sbi))) { 1276 mapping_set_error(page->mapping, -EIO); 1277 goto out; 1278 } 1279 1280 /* Dentry blocks are controlled by checkpoint */ 1281 if (S_ISDIR(inode->i_mode)) { 1282 err = do_write_data_page(&fio); 1283 goto done; 1284 } 1285 1286 if (!wbc->for_reclaim) 1287 need_balance_fs = true; 1288 else if (has_not_enough_free_secs(sbi, 0)) 1289 goto redirty_out; 1290 1291 err = -EAGAIN; 1292 f2fs_lock_op(sbi); 1293 if (f2fs_has_inline_data(inode)) 1294 err = f2fs_write_inline_data(inode, page); 1295 if (err == -EAGAIN) 1296 err = do_write_data_page(&fio); 1297 if (F2FS_I(inode)->last_disk_size < psize) 1298 F2FS_I(inode)->last_disk_size = psize; 1299 f2fs_unlock_op(sbi); 1300 done: 1301 if (err && err != -ENOENT) 1302 goto redirty_out; 1303 1304 clear_cold_data(page); 1305 out: 1306 inode_dec_dirty_pages(inode); 1307 if (err) 1308 ClearPageUptodate(page); 1309 1310 if (wbc->for_reclaim) { 1311 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE); 1312 remove_dirty_inode(inode); 1313 } 1314 1315 unlock_page(page); 1316 f2fs_balance_fs(sbi, need_balance_fs); 1317 1318 if (unlikely(f2fs_cp_error(sbi))) 1319 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1320 1321 return 0; 1322 1323 redirty_out: 1324 redirty_page_for_writepage(wbc, page); 1325 unlock_page(page); 1326 return err; 1327 } 1328 1329 /* 1330 * This function was copied from write_cche_pages from mm/page-writeback.c. 1331 * The major change is making write step of cold data page separately from 1332 * warm/hot data page. 1333 */ 1334 static int f2fs_write_cache_pages(struct address_space *mapping, 1335 struct writeback_control *wbc) 1336 { 1337 int ret = 0; 1338 int done = 0; 1339 struct pagevec pvec; 1340 int nr_pages; 1341 pgoff_t uninitialized_var(writeback_index); 1342 pgoff_t index; 1343 pgoff_t end; /* Inclusive */ 1344 pgoff_t done_index; 1345 int cycled; 1346 int range_whole = 0; 1347 int tag; 1348 1349 pagevec_init(&pvec, 0); 1350 1351 if (wbc->range_cyclic) { 1352 writeback_index = mapping->writeback_index; /* prev offset */ 1353 index = writeback_index; 1354 if (index == 0) 1355 cycled = 1; 1356 else 1357 cycled = 0; 1358 end = -1; 1359 } else { 1360 index = wbc->range_start >> PAGE_SHIFT; 1361 end = wbc->range_end >> PAGE_SHIFT; 1362 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1363 range_whole = 1; 1364 cycled = 1; /* ignore range_cyclic tests */ 1365 } 1366 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1367 tag = PAGECACHE_TAG_TOWRITE; 1368 else 1369 tag = PAGECACHE_TAG_DIRTY; 1370 retry: 1371 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1372 tag_pages_for_writeback(mapping, index, end); 1373 done_index = index; 1374 while (!done && (index <= end)) { 1375 int i; 1376 1377 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1378 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1379 if (nr_pages == 0) 1380 break; 1381 1382 for (i = 0; i < nr_pages; i++) { 1383 struct page *page = pvec.pages[i]; 1384 1385 if (page->index > end) { 1386 done = 1; 1387 break; 1388 } 1389 1390 done_index = page->index; 1391 1392 lock_page(page); 1393 1394 if (unlikely(page->mapping != mapping)) { 1395 continue_unlock: 1396 unlock_page(page); 1397 continue; 1398 } 1399 1400 if (!PageDirty(page)) { 1401 /* someone wrote it for us */ 1402 goto continue_unlock; 1403 } 1404 1405 if (PageWriteback(page)) { 1406 if (wbc->sync_mode != WB_SYNC_NONE) 1407 f2fs_wait_on_page_writeback(page, 1408 DATA, true); 1409 else 1410 goto continue_unlock; 1411 } 1412 1413 BUG_ON(PageWriteback(page)); 1414 if (!clear_page_dirty_for_io(page)) 1415 goto continue_unlock; 1416 1417 ret = mapping->a_ops->writepage(page, wbc); 1418 if (unlikely(ret)) { 1419 done_index = page->index + 1; 1420 done = 1; 1421 break; 1422 } 1423 1424 if (--wbc->nr_to_write <= 0 && 1425 wbc->sync_mode == WB_SYNC_NONE) { 1426 done = 1; 1427 break; 1428 } 1429 } 1430 pagevec_release(&pvec); 1431 cond_resched(); 1432 } 1433 1434 if (!cycled && !done) { 1435 cycled = 1; 1436 index = 0; 1437 end = writeback_index - 1; 1438 goto retry; 1439 } 1440 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1441 mapping->writeback_index = done_index; 1442 1443 return ret; 1444 } 1445 1446 static int f2fs_write_data_pages(struct address_space *mapping, 1447 struct writeback_control *wbc) 1448 { 1449 struct inode *inode = mapping->host; 1450 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1451 struct blk_plug plug; 1452 int ret; 1453 1454 /* deal with chardevs and other special file */ 1455 if (!mapping->a_ops->writepage) 1456 return 0; 1457 1458 /* skip writing if there is no dirty page in this inode */ 1459 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1460 return 0; 1461 1462 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1463 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1464 available_free_memory(sbi, DIRTY_DENTS)) 1465 goto skip_write; 1466 1467 /* skip writing during file defragment */ 1468 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1469 goto skip_write; 1470 1471 /* during POR, we don't need to trigger writepage at all. */ 1472 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1473 goto skip_write; 1474 1475 trace_f2fs_writepages(mapping->host, wbc, DATA); 1476 1477 blk_start_plug(&plug); 1478 ret = f2fs_write_cache_pages(mapping, wbc); 1479 blk_finish_plug(&plug); 1480 /* 1481 * if some pages were truncated, we cannot guarantee its mapping->host 1482 * to detect pending bios. 1483 */ 1484 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1485 1486 remove_dirty_inode(inode); 1487 return ret; 1488 1489 skip_write: 1490 wbc->pages_skipped += get_dirty_pages(inode); 1491 trace_f2fs_writepages(mapping->host, wbc, DATA); 1492 return 0; 1493 } 1494 1495 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1496 { 1497 struct inode *inode = mapping->host; 1498 loff_t i_size = i_size_read(inode); 1499 1500 if (to > i_size) { 1501 truncate_pagecache(inode, i_size); 1502 truncate_blocks(inode, i_size, true); 1503 } 1504 } 1505 1506 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1507 struct page *page, loff_t pos, unsigned len, 1508 block_t *blk_addr, bool *node_changed) 1509 { 1510 struct inode *inode = page->mapping->host; 1511 pgoff_t index = page->index; 1512 struct dnode_of_data dn; 1513 struct page *ipage; 1514 bool locked = false; 1515 struct extent_info ei; 1516 int err = 0; 1517 1518 /* 1519 * we already allocated all the blocks, so we don't need to get 1520 * the block addresses when there is no need to fill the page. 1521 */ 1522 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) && 1523 len == PAGE_SIZE) 1524 return 0; 1525 1526 if (f2fs_has_inline_data(inode) || 1527 (pos & PAGE_MASK) >= i_size_read(inode)) { 1528 f2fs_lock_op(sbi); 1529 locked = true; 1530 } 1531 restart: 1532 /* check inline_data */ 1533 ipage = get_node_page(sbi, inode->i_ino); 1534 if (IS_ERR(ipage)) { 1535 err = PTR_ERR(ipage); 1536 goto unlock_out; 1537 } 1538 1539 set_new_dnode(&dn, inode, ipage, ipage, 0); 1540 1541 if (f2fs_has_inline_data(inode)) { 1542 if (pos + len <= MAX_INLINE_DATA) { 1543 read_inline_data(page, ipage); 1544 set_inode_flag(inode, FI_DATA_EXIST); 1545 if (inode->i_nlink) 1546 set_inline_node(ipage); 1547 } else { 1548 err = f2fs_convert_inline_page(&dn, page); 1549 if (err) 1550 goto out; 1551 if (dn.data_blkaddr == NULL_ADDR) 1552 err = f2fs_get_block(&dn, index); 1553 } 1554 } else if (locked) { 1555 err = f2fs_get_block(&dn, index); 1556 } else { 1557 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1558 dn.data_blkaddr = ei.blk + index - ei.fofs; 1559 } else { 1560 /* hole case */ 1561 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1562 if (err || dn.data_blkaddr == NULL_ADDR) { 1563 f2fs_put_dnode(&dn); 1564 f2fs_lock_op(sbi); 1565 locked = true; 1566 goto restart; 1567 } 1568 } 1569 } 1570 1571 /* convert_inline_page can make node_changed */ 1572 *blk_addr = dn.data_blkaddr; 1573 *node_changed = dn.node_changed; 1574 out: 1575 f2fs_put_dnode(&dn); 1576 unlock_out: 1577 if (locked) 1578 f2fs_unlock_op(sbi); 1579 return err; 1580 } 1581 1582 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1583 loff_t pos, unsigned len, unsigned flags, 1584 struct page **pagep, void **fsdata) 1585 { 1586 struct inode *inode = mapping->host; 1587 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1588 struct page *page = NULL; 1589 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1590 bool need_balance = false; 1591 block_t blkaddr = NULL_ADDR; 1592 int err = 0; 1593 1594 trace_f2fs_write_begin(inode, pos, len, flags); 1595 1596 /* 1597 * We should check this at this moment to avoid deadlock on inode page 1598 * and #0 page. The locking rule for inline_data conversion should be: 1599 * lock_page(page #0) -> lock_page(inode_page) 1600 */ 1601 if (index != 0) { 1602 err = f2fs_convert_inline_inode(inode); 1603 if (err) 1604 goto fail; 1605 } 1606 repeat: 1607 page = grab_cache_page_write_begin(mapping, index, flags); 1608 if (!page) { 1609 err = -ENOMEM; 1610 goto fail; 1611 } 1612 1613 *pagep = page; 1614 1615 err = prepare_write_begin(sbi, page, pos, len, 1616 &blkaddr, &need_balance); 1617 if (err) 1618 goto fail; 1619 1620 if (need_balance && has_not_enough_free_secs(sbi, 0)) { 1621 unlock_page(page); 1622 f2fs_balance_fs(sbi, true); 1623 lock_page(page); 1624 if (page->mapping != mapping) { 1625 /* The page got truncated from under us */ 1626 f2fs_put_page(page, 1); 1627 goto repeat; 1628 } 1629 } 1630 1631 f2fs_wait_on_page_writeback(page, DATA, false); 1632 1633 /* wait for GCed encrypted page writeback */ 1634 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1635 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1636 1637 if (len == PAGE_SIZE) 1638 goto out_update; 1639 if (PageUptodate(page)) 1640 goto out_clear; 1641 1642 if ((pos & PAGE_MASK) >= i_size_read(inode)) { 1643 unsigned start = pos & (PAGE_SIZE - 1); 1644 unsigned end = start + len; 1645 1646 /* Reading beyond i_size is simple: memset to zero */ 1647 zero_user_segments(page, 0, start, end, PAGE_SIZE); 1648 goto out_update; 1649 } 1650 1651 if (blkaddr == NEW_ADDR) { 1652 zero_user_segment(page, 0, PAGE_SIZE); 1653 } else { 1654 struct bio *bio; 1655 1656 bio = f2fs_grab_bio(inode, blkaddr, 1); 1657 if (IS_ERR(bio)) { 1658 err = PTR_ERR(bio); 1659 goto fail; 1660 } 1661 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC); 1662 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1663 bio_put(bio); 1664 err = -EFAULT; 1665 goto fail; 1666 } 1667 1668 __submit_bio(sbi, bio, DATA); 1669 1670 lock_page(page); 1671 if (unlikely(page->mapping != mapping)) { 1672 f2fs_put_page(page, 1); 1673 goto repeat; 1674 } 1675 if (unlikely(!PageUptodate(page))) { 1676 err = -EIO; 1677 goto fail; 1678 } 1679 } 1680 out_update: 1681 if (!PageUptodate(page)) 1682 SetPageUptodate(page); 1683 out_clear: 1684 clear_cold_data(page); 1685 return 0; 1686 1687 fail: 1688 f2fs_put_page(page, 1); 1689 f2fs_write_failed(mapping, pos + len); 1690 return err; 1691 } 1692 1693 static int f2fs_write_end(struct file *file, 1694 struct address_space *mapping, 1695 loff_t pos, unsigned len, unsigned copied, 1696 struct page *page, void *fsdata) 1697 { 1698 struct inode *inode = page->mapping->host; 1699 1700 trace_f2fs_write_end(inode, pos, len, copied); 1701 1702 set_page_dirty(page); 1703 f2fs_put_page(page, 1); 1704 1705 if (pos + copied > i_size_read(inode)) 1706 f2fs_i_size_write(inode, pos + copied); 1707 1708 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1709 return copied; 1710 } 1711 1712 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1713 loff_t offset) 1714 { 1715 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1716 1717 if (offset & blocksize_mask) 1718 return -EINVAL; 1719 1720 if (iov_iter_alignment(iter) & blocksize_mask) 1721 return -EINVAL; 1722 1723 return 0; 1724 } 1725 1726 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1727 { 1728 struct address_space *mapping = iocb->ki_filp->f_mapping; 1729 struct inode *inode = mapping->host; 1730 size_t count = iov_iter_count(iter); 1731 loff_t offset = iocb->ki_pos; 1732 int rw = iov_iter_rw(iter); 1733 int err; 1734 1735 err = check_direct_IO(inode, iter, offset); 1736 if (err) 1737 return err; 1738 1739 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1740 return 0; 1741 if (test_opt(F2FS_I_SB(inode), LFS)) 1742 return 0; 1743 1744 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1745 1746 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1747 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1748 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1749 1750 if (rw == WRITE) { 1751 if (err > 0) 1752 set_inode_flag(inode, FI_UPDATE_WRITE); 1753 else if (err < 0) 1754 f2fs_write_failed(mapping, offset + count); 1755 } 1756 1757 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1758 1759 return err; 1760 } 1761 1762 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1763 unsigned int length) 1764 { 1765 struct inode *inode = page->mapping->host; 1766 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1767 1768 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1769 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1770 return; 1771 1772 if (PageDirty(page)) { 1773 if (inode->i_ino == F2FS_META_INO(sbi)) 1774 dec_page_count(sbi, F2FS_DIRTY_META); 1775 else if (inode->i_ino == F2FS_NODE_INO(sbi)) 1776 dec_page_count(sbi, F2FS_DIRTY_NODES); 1777 else 1778 inode_dec_dirty_pages(inode); 1779 } 1780 1781 /* This is atomic written page, keep Private */ 1782 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1783 return; 1784 1785 set_page_private(page, 0); 1786 ClearPagePrivate(page); 1787 } 1788 1789 int f2fs_release_page(struct page *page, gfp_t wait) 1790 { 1791 /* If this is dirty page, keep PagePrivate */ 1792 if (PageDirty(page)) 1793 return 0; 1794 1795 /* This is atomic written page, keep Private */ 1796 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1797 return 0; 1798 1799 set_page_private(page, 0); 1800 ClearPagePrivate(page); 1801 return 1; 1802 } 1803 1804 /* 1805 * This was copied from __set_page_dirty_buffers which gives higher performance 1806 * in very high speed storages. (e.g., pmem) 1807 */ 1808 void f2fs_set_page_dirty_nobuffers(struct page *page) 1809 { 1810 struct address_space *mapping = page->mapping; 1811 unsigned long flags; 1812 1813 if (unlikely(!mapping)) 1814 return; 1815 1816 spin_lock(&mapping->private_lock); 1817 lock_page_memcg(page); 1818 SetPageDirty(page); 1819 spin_unlock(&mapping->private_lock); 1820 1821 spin_lock_irqsave(&mapping->tree_lock, flags); 1822 WARN_ON_ONCE(!PageUptodate(page)); 1823 account_page_dirtied(page, mapping); 1824 radix_tree_tag_set(&mapping->page_tree, 1825 page_index(page), PAGECACHE_TAG_DIRTY); 1826 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1827 unlock_page_memcg(page); 1828 1829 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1830 return; 1831 } 1832 1833 static int f2fs_set_data_page_dirty(struct page *page) 1834 { 1835 struct address_space *mapping = page->mapping; 1836 struct inode *inode = mapping->host; 1837 1838 trace_f2fs_set_page_dirty(page, DATA); 1839 1840 if (!PageUptodate(page)) 1841 SetPageUptodate(page); 1842 1843 if (f2fs_is_atomic_file(inode)) { 1844 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 1845 register_inmem_page(inode, page); 1846 return 1; 1847 } 1848 /* 1849 * Previously, this page has been registered, we just 1850 * return here. 1851 */ 1852 return 0; 1853 } 1854 1855 if (!PageDirty(page)) { 1856 f2fs_set_page_dirty_nobuffers(page); 1857 update_dirty_page(inode, page); 1858 return 1; 1859 } 1860 return 0; 1861 } 1862 1863 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 1864 { 1865 struct inode *inode = mapping->host; 1866 1867 if (f2fs_has_inline_data(inode)) 1868 return 0; 1869 1870 /* make sure allocating whole blocks */ 1871 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1872 filemap_write_and_wait(mapping); 1873 1874 return generic_block_bmap(mapping, block, get_data_block_bmap); 1875 } 1876 1877 const struct address_space_operations f2fs_dblock_aops = { 1878 .readpage = f2fs_read_data_page, 1879 .readpages = f2fs_read_data_pages, 1880 .writepage = f2fs_write_data_page, 1881 .writepages = f2fs_write_data_pages, 1882 .write_begin = f2fs_write_begin, 1883 .write_end = f2fs_write_end, 1884 .set_page_dirty = f2fs_set_data_page_dirty, 1885 .invalidatepage = f2fs_invalidate_page, 1886 .releasepage = f2fs_release_page, 1887 .direct_IO = f2fs_direct_IO, 1888 .bmap = f2fs_bmap, 1889 }; 1890