1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 #include <linux/sched/signal.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 is_cold_data(page)) 49 return true; 50 return false; 51 } 52 53 static void f2fs_read_end_io(struct bio *bio) 54 { 55 struct bio_vec *bvec; 56 int i; 57 58 #ifdef CONFIG_F2FS_FAULT_INJECTION 59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) { 60 f2fs_show_injection_info(FAULT_IO); 61 bio->bi_status = BLK_STS_IOERR; 62 } 63 #endif 64 65 if (f2fs_bio_encrypted(bio)) { 66 if (bio->bi_status) { 67 fscrypt_release_ctx(bio->bi_private); 68 } else { 69 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 70 return; 71 } 72 } 73 74 bio_for_each_segment_all(bvec, bio, i) { 75 struct page *page = bvec->bv_page; 76 77 if (!bio->bi_status) { 78 if (!PageUptodate(page)) 79 SetPageUptodate(page); 80 } else { 81 ClearPageUptodate(page); 82 SetPageError(page); 83 } 84 unlock_page(page); 85 } 86 bio_put(bio); 87 } 88 89 static void f2fs_write_end_io(struct bio *bio) 90 { 91 struct f2fs_sb_info *sbi = bio->bi_private; 92 struct bio_vec *bvec; 93 int i; 94 95 bio_for_each_segment_all(bvec, bio, i) { 96 struct page *page = bvec->bv_page; 97 enum count_type type = WB_DATA_TYPE(page); 98 99 if (IS_DUMMY_WRITTEN_PAGE(page)) { 100 set_page_private(page, (unsigned long)NULL); 101 ClearPagePrivate(page); 102 unlock_page(page); 103 mempool_free(page, sbi->write_io_dummy); 104 105 if (unlikely(bio->bi_status)) 106 f2fs_stop_checkpoint(sbi, true); 107 continue; 108 } 109 110 fscrypt_pullback_bio_page(&page, true); 111 112 if (unlikely(bio->bi_status)) { 113 mapping_set_error(page->mapping, -EIO); 114 f2fs_stop_checkpoint(sbi, true); 115 } 116 dec_page_count(sbi, type); 117 clear_cold_data(page); 118 end_page_writeback(page); 119 } 120 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 121 wq_has_sleeper(&sbi->cp_wait)) 122 wake_up(&sbi->cp_wait); 123 124 bio_put(bio); 125 } 126 127 /* 128 * Return true, if pre_bio's bdev is same as its target device. 129 */ 130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 131 block_t blk_addr, struct bio *bio) 132 { 133 struct block_device *bdev = sbi->sb->s_bdev; 134 int i; 135 136 for (i = 0; i < sbi->s_ndevs; i++) { 137 if (FDEV(i).start_blk <= blk_addr && 138 FDEV(i).end_blk >= blk_addr) { 139 blk_addr -= FDEV(i).start_blk; 140 bdev = FDEV(i).bdev; 141 break; 142 } 143 } 144 if (bio) { 145 bio_set_dev(bio, bdev); 146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 147 } 148 return bdev; 149 } 150 151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 152 { 153 int i; 154 155 for (i = 0; i < sbi->s_ndevs; i++) 156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 157 return i; 158 return 0; 159 } 160 161 static bool __same_bdev(struct f2fs_sb_info *sbi, 162 block_t blk_addr, struct bio *bio) 163 { 164 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 165 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 166 } 167 168 /* 169 * Low-level block read/write IO operations. 170 */ 171 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 172 int npages, bool is_read) 173 { 174 struct bio *bio; 175 176 bio = f2fs_bio_alloc(npages); 177 178 f2fs_target_device(sbi, blk_addr, bio); 179 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 180 bio->bi_private = is_read ? NULL : sbi; 181 182 return bio; 183 } 184 185 static inline void __submit_bio(struct f2fs_sb_info *sbi, 186 struct bio *bio, enum page_type type) 187 { 188 if (!is_read_io(bio_op(bio))) { 189 unsigned int start; 190 191 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 192 current->plug && (type == DATA || type == NODE)) 193 blk_finish_plug(current->plug); 194 195 if (type != DATA && type != NODE) 196 goto submit_io; 197 198 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 199 start %= F2FS_IO_SIZE(sbi); 200 201 if (start == 0) 202 goto submit_io; 203 204 /* fill dummy pages */ 205 for (; start < F2FS_IO_SIZE(sbi); start++) { 206 struct page *page = 207 mempool_alloc(sbi->write_io_dummy, 208 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 209 f2fs_bug_on(sbi, !page); 210 211 SetPagePrivate(page); 212 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 213 lock_page(page); 214 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 215 f2fs_bug_on(sbi, 1); 216 } 217 /* 218 * In the NODE case, we lose next block address chain. So, we 219 * need to do checkpoint in f2fs_sync_file. 220 */ 221 if (type == NODE) 222 set_sbi_flag(sbi, SBI_NEED_CP); 223 } 224 submit_io: 225 if (is_read_io(bio_op(bio))) 226 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 227 else 228 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 229 submit_bio(bio); 230 } 231 232 static void __submit_merged_bio(struct f2fs_bio_info *io) 233 { 234 struct f2fs_io_info *fio = &io->fio; 235 236 if (!io->bio) 237 return; 238 239 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 240 241 if (is_read_io(fio->op)) 242 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 243 else 244 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 245 246 __submit_bio(io->sbi, io->bio, fio->type); 247 io->bio = NULL; 248 } 249 250 static bool __has_merged_page(struct f2fs_bio_info *io, 251 struct inode *inode, nid_t ino, pgoff_t idx) 252 { 253 struct bio_vec *bvec; 254 struct page *target; 255 int i; 256 257 if (!io->bio) 258 return false; 259 260 if (!inode && !ino) 261 return true; 262 263 bio_for_each_segment_all(bvec, io->bio, i) { 264 265 if (bvec->bv_page->mapping) 266 target = bvec->bv_page; 267 else 268 target = fscrypt_control_page(bvec->bv_page); 269 270 if (idx != target->index) 271 continue; 272 273 if (inode && inode == target->mapping->host) 274 return true; 275 if (ino && ino == ino_of_node(target)) 276 return true; 277 } 278 279 return false; 280 } 281 282 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 283 nid_t ino, pgoff_t idx, enum page_type type) 284 { 285 enum page_type btype = PAGE_TYPE_OF_BIO(type); 286 enum temp_type temp; 287 struct f2fs_bio_info *io; 288 bool ret = false; 289 290 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 291 io = sbi->write_io[btype] + temp; 292 293 down_read(&io->io_rwsem); 294 ret = __has_merged_page(io, inode, ino, idx); 295 up_read(&io->io_rwsem); 296 297 /* TODO: use HOT temp only for meta pages now. */ 298 if (ret || btype == META) 299 break; 300 } 301 return ret; 302 } 303 304 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 305 enum page_type type, enum temp_type temp) 306 { 307 enum page_type btype = PAGE_TYPE_OF_BIO(type); 308 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 309 310 down_write(&io->io_rwsem); 311 312 /* change META to META_FLUSH in the checkpoint procedure */ 313 if (type >= META_FLUSH) { 314 io->fio.type = META_FLUSH; 315 io->fio.op = REQ_OP_WRITE; 316 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 317 if (!test_opt(sbi, NOBARRIER)) 318 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 319 } 320 __submit_merged_bio(io); 321 up_write(&io->io_rwsem); 322 } 323 324 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 325 struct inode *inode, nid_t ino, pgoff_t idx, 326 enum page_type type, bool force) 327 { 328 enum temp_type temp; 329 330 if (!force && !has_merged_page(sbi, inode, ino, idx, type)) 331 return; 332 333 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 334 335 __f2fs_submit_merged_write(sbi, type, temp); 336 337 /* TODO: use HOT temp only for meta pages now. */ 338 if (type >= META) 339 break; 340 } 341 } 342 343 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 344 { 345 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 346 } 347 348 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 349 struct inode *inode, nid_t ino, pgoff_t idx, 350 enum page_type type) 351 { 352 __submit_merged_write_cond(sbi, inode, ino, idx, type, false); 353 } 354 355 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 356 { 357 f2fs_submit_merged_write(sbi, DATA); 358 f2fs_submit_merged_write(sbi, NODE); 359 f2fs_submit_merged_write(sbi, META); 360 } 361 362 /* 363 * Fill the locked page with data located in the block address. 364 * A caller needs to unlock the page on failure. 365 */ 366 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 367 { 368 struct bio *bio; 369 struct page *page = fio->encrypted_page ? 370 fio->encrypted_page : fio->page; 371 372 trace_f2fs_submit_page_bio(page, fio); 373 f2fs_trace_ios(fio, 0); 374 375 /* Allocate a new bio */ 376 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 377 378 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 379 bio_put(bio); 380 return -EFAULT; 381 } 382 bio_set_op_attrs(bio, fio->op, fio->op_flags); 383 384 __submit_bio(fio->sbi, bio, fio->type); 385 386 if (!is_read_io(fio->op)) 387 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page)); 388 return 0; 389 } 390 391 int f2fs_submit_page_write(struct f2fs_io_info *fio) 392 { 393 struct f2fs_sb_info *sbi = fio->sbi; 394 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 395 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 396 struct page *bio_page; 397 int err = 0; 398 399 f2fs_bug_on(sbi, is_read_io(fio->op)); 400 401 down_write(&io->io_rwsem); 402 next: 403 if (fio->in_list) { 404 spin_lock(&io->io_lock); 405 if (list_empty(&io->io_list)) { 406 spin_unlock(&io->io_lock); 407 goto out_fail; 408 } 409 fio = list_first_entry(&io->io_list, 410 struct f2fs_io_info, list); 411 list_del(&fio->list); 412 spin_unlock(&io->io_lock); 413 } 414 415 if (fio->old_blkaddr != NEW_ADDR) 416 verify_block_addr(sbi, fio->old_blkaddr); 417 verify_block_addr(sbi, fio->new_blkaddr); 418 419 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 420 421 /* set submitted = 1 as a return value */ 422 fio->submitted = 1; 423 424 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 425 426 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 427 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 428 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 429 __submit_merged_bio(io); 430 alloc_new: 431 if (io->bio == NULL) { 432 if ((fio->type == DATA || fio->type == NODE) && 433 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 434 err = -EAGAIN; 435 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 436 goto out_fail; 437 } 438 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 439 BIO_MAX_PAGES, false); 440 io->fio = *fio; 441 } 442 443 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 444 __submit_merged_bio(io); 445 goto alloc_new; 446 } 447 448 io->last_block_in_bio = fio->new_blkaddr; 449 f2fs_trace_ios(fio, 0); 450 451 trace_f2fs_submit_page_write(fio->page, fio); 452 453 if (fio->in_list) 454 goto next; 455 out_fail: 456 up_write(&io->io_rwsem); 457 return err; 458 } 459 460 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 461 unsigned nr_pages) 462 { 463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 464 struct fscrypt_ctx *ctx = NULL; 465 struct bio *bio; 466 467 if (f2fs_encrypted_file(inode)) { 468 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 469 if (IS_ERR(ctx)) 470 return ERR_CAST(ctx); 471 472 /* wait the page to be moved by cleaning */ 473 f2fs_wait_on_block_writeback(sbi, blkaddr); 474 } 475 476 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 477 if (!bio) { 478 if (ctx) 479 fscrypt_release_ctx(ctx); 480 return ERR_PTR(-ENOMEM); 481 } 482 f2fs_target_device(sbi, blkaddr, bio); 483 bio->bi_end_io = f2fs_read_end_io; 484 bio->bi_private = ctx; 485 bio_set_op_attrs(bio, REQ_OP_READ, 0); 486 487 return bio; 488 } 489 490 /* This can handle encryption stuffs */ 491 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 492 block_t blkaddr) 493 { 494 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1); 495 496 if (IS_ERR(bio)) 497 return PTR_ERR(bio); 498 499 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 500 bio_put(bio); 501 return -EFAULT; 502 } 503 __submit_bio(F2FS_I_SB(inode), bio, DATA); 504 return 0; 505 } 506 507 static void __set_data_blkaddr(struct dnode_of_data *dn) 508 { 509 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 510 __le32 *addr_array; 511 int base = 0; 512 513 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 514 base = get_extra_isize(dn->inode); 515 516 /* Get physical address of data block */ 517 addr_array = blkaddr_in_node(rn); 518 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 519 } 520 521 /* 522 * Lock ordering for the change of data block address: 523 * ->data_page 524 * ->node_page 525 * update block addresses in the node page 526 */ 527 void set_data_blkaddr(struct dnode_of_data *dn) 528 { 529 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 530 __set_data_blkaddr(dn); 531 if (set_page_dirty(dn->node_page)) 532 dn->node_changed = true; 533 } 534 535 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 536 { 537 dn->data_blkaddr = blkaddr; 538 set_data_blkaddr(dn); 539 f2fs_update_extent_cache(dn); 540 } 541 542 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 543 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 544 { 545 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 546 int err; 547 548 if (!count) 549 return 0; 550 551 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 552 return -EPERM; 553 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 554 return err; 555 556 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 557 dn->ofs_in_node, count); 558 559 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 560 561 for (; count > 0; dn->ofs_in_node++) { 562 block_t blkaddr = datablock_addr(dn->inode, 563 dn->node_page, dn->ofs_in_node); 564 if (blkaddr == NULL_ADDR) { 565 dn->data_blkaddr = NEW_ADDR; 566 __set_data_blkaddr(dn); 567 count--; 568 } 569 } 570 571 if (set_page_dirty(dn->node_page)) 572 dn->node_changed = true; 573 return 0; 574 } 575 576 /* Should keep dn->ofs_in_node unchanged */ 577 int reserve_new_block(struct dnode_of_data *dn) 578 { 579 unsigned int ofs_in_node = dn->ofs_in_node; 580 int ret; 581 582 ret = reserve_new_blocks(dn, 1); 583 dn->ofs_in_node = ofs_in_node; 584 return ret; 585 } 586 587 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 588 { 589 bool need_put = dn->inode_page ? false : true; 590 int err; 591 592 err = get_dnode_of_data(dn, index, ALLOC_NODE); 593 if (err) 594 return err; 595 596 if (dn->data_blkaddr == NULL_ADDR) 597 err = reserve_new_block(dn); 598 if (err || need_put) 599 f2fs_put_dnode(dn); 600 return err; 601 } 602 603 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 604 { 605 struct extent_info ei = {0,0,0}; 606 struct inode *inode = dn->inode; 607 608 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 609 dn->data_blkaddr = ei.blk + index - ei.fofs; 610 return 0; 611 } 612 613 return f2fs_reserve_block(dn, index); 614 } 615 616 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 617 int op_flags, bool for_write) 618 { 619 struct address_space *mapping = inode->i_mapping; 620 struct dnode_of_data dn; 621 struct page *page; 622 struct extent_info ei = {0,0,0}; 623 int err; 624 625 page = f2fs_grab_cache_page(mapping, index, for_write); 626 if (!page) 627 return ERR_PTR(-ENOMEM); 628 629 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 630 dn.data_blkaddr = ei.blk + index - ei.fofs; 631 goto got_it; 632 } 633 634 set_new_dnode(&dn, inode, NULL, NULL, 0); 635 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 636 if (err) 637 goto put_err; 638 f2fs_put_dnode(&dn); 639 640 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 641 err = -ENOENT; 642 goto put_err; 643 } 644 got_it: 645 if (PageUptodate(page)) { 646 unlock_page(page); 647 return page; 648 } 649 650 /* 651 * A new dentry page is allocated but not able to be written, since its 652 * new inode page couldn't be allocated due to -ENOSPC. 653 * In such the case, its blkaddr can be remained as NEW_ADDR. 654 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 655 */ 656 if (dn.data_blkaddr == NEW_ADDR) { 657 zero_user_segment(page, 0, PAGE_SIZE); 658 if (!PageUptodate(page)) 659 SetPageUptodate(page); 660 unlock_page(page); 661 return page; 662 } 663 664 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 665 if (err) 666 goto put_err; 667 return page; 668 669 put_err: 670 f2fs_put_page(page, 1); 671 return ERR_PTR(err); 672 } 673 674 struct page *find_data_page(struct inode *inode, pgoff_t index) 675 { 676 struct address_space *mapping = inode->i_mapping; 677 struct page *page; 678 679 page = find_get_page(mapping, index); 680 if (page && PageUptodate(page)) 681 return page; 682 f2fs_put_page(page, 0); 683 684 page = get_read_data_page(inode, index, 0, false); 685 if (IS_ERR(page)) 686 return page; 687 688 if (PageUptodate(page)) 689 return page; 690 691 wait_on_page_locked(page); 692 if (unlikely(!PageUptodate(page))) { 693 f2fs_put_page(page, 0); 694 return ERR_PTR(-EIO); 695 } 696 return page; 697 } 698 699 /* 700 * If it tries to access a hole, return an error. 701 * Because, the callers, functions in dir.c and GC, should be able to know 702 * whether this page exists or not. 703 */ 704 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 705 bool for_write) 706 { 707 struct address_space *mapping = inode->i_mapping; 708 struct page *page; 709 repeat: 710 page = get_read_data_page(inode, index, 0, for_write); 711 if (IS_ERR(page)) 712 return page; 713 714 /* wait for read completion */ 715 lock_page(page); 716 if (unlikely(page->mapping != mapping)) { 717 f2fs_put_page(page, 1); 718 goto repeat; 719 } 720 if (unlikely(!PageUptodate(page))) { 721 f2fs_put_page(page, 1); 722 return ERR_PTR(-EIO); 723 } 724 return page; 725 } 726 727 /* 728 * Caller ensures that this data page is never allocated. 729 * A new zero-filled data page is allocated in the page cache. 730 * 731 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 732 * f2fs_unlock_op(). 733 * Note that, ipage is set only by make_empty_dir, and if any error occur, 734 * ipage should be released by this function. 735 */ 736 struct page *get_new_data_page(struct inode *inode, 737 struct page *ipage, pgoff_t index, bool new_i_size) 738 { 739 struct address_space *mapping = inode->i_mapping; 740 struct page *page; 741 struct dnode_of_data dn; 742 int err; 743 744 page = f2fs_grab_cache_page(mapping, index, true); 745 if (!page) { 746 /* 747 * before exiting, we should make sure ipage will be released 748 * if any error occur. 749 */ 750 f2fs_put_page(ipage, 1); 751 return ERR_PTR(-ENOMEM); 752 } 753 754 set_new_dnode(&dn, inode, ipage, NULL, 0); 755 err = f2fs_reserve_block(&dn, index); 756 if (err) { 757 f2fs_put_page(page, 1); 758 return ERR_PTR(err); 759 } 760 if (!ipage) 761 f2fs_put_dnode(&dn); 762 763 if (PageUptodate(page)) 764 goto got_it; 765 766 if (dn.data_blkaddr == NEW_ADDR) { 767 zero_user_segment(page, 0, PAGE_SIZE); 768 if (!PageUptodate(page)) 769 SetPageUptodate(page); 770 } else { 771 f2fs_put_page(page, 1); 772 773 /* if ipage exists, blkaddr should be NEW_ADDR */ 774 f2fs_bug_on(F2FS_I_SB(inode), ipage); 775 page = get_lock_data_page(inode, index, true); 776 if (IS_ERR(page)) 777 return page; 778 } 779 got_it: 780 if (new_i_size && i_size_read(inode) < 781 ((loff_t)(index + 1) << PAGE_SHIFT)) 782 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 783 return page; 784 } 785 786 static int __allocate_data_block(struct dnode_of_data *dn) 787 { 788 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 789 struct f2fs_summary sum; 790 struct node_info ni; 791 pgoff_t fofs; 792 blkcnt_t count = 1; 793 int err; 794 795 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 796 return -EPERM; 797 798 dn->data_blkaddr = datablock_addr(dn->inode, 799 dn->node_page, dn->ofs_in_node); 800 if (dn->data_blkaddr == NEW_ADDR) 801 goto alloc; 802 803 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 804 return err; 805 806 alloc: 807 get_node_info(sbi, dn->nid, &ni); 808 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 809 810 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 811 &sum, CURSEG_WARM_DATA, NULL, false); 812 set_data_blkaddr(dn); 813 814 /* update i_size */ 815 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 816 dn->ofs_in_node; 817 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 818 f2fs_i_size_write(dn->inode, 819 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 820 return 0; 821 } 822 823 static inline bool __force_buffered_io(struct inode *inode, int rw) 824 { 825 return (f2fs_encrypted_file(inode) || 826 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 827 F2FS_I_SB(inode)->s_ndevs); 828 } 829 830 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 831 { 832 struct inode *inode = file_inode(iocb->ki_filp); 833 struct f2fs_map_blocks map; 834 int err = 0; 835 836 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 837 return 0; 838 839 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 840 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 841 if (map.m_len > map.m_lblk) 842 map.m_len -= map.m_lblk; 843 else 844 map.m_len = 0; 845 846 map.m_next_pgofs = NULL; 847 848 if (iocb->ki_flags & IOCB_DIRECT) { 849 err = f2fs_convert_inline_inode(inode); 850 if (err) 851 return err; 852 return f2fs_map_blocks(inode, &map, 1, 853 __force_buffered_io(inode, WRITE) ? 854 F2FS_GET_BLOCK_PRE_AIO : 855 F2FS_GET_BLOCK_PRE_DIO); 856 } 857 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 858 err = f2fs_convert_inline_inode(inode); 859 if (err) 860 return err; 861 } 862 if (!f2fs_has_inline_data(inode)) 863 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 864 return err; 865 } 866 867 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 868 { 869 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 870 if (lock) 871 down_read(&sbi->node_change); 872 else 873 up_read(&sbi->node_change); 874 } else { 875 if (lock) 876 f2fs_lock_op(sbi); 877 else 878 f2fs_unlock_op(sbi); 879 } 880 } 881 882 /* 883 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 884 * f2fs_map_blocks structure. 885 * If original data blocks are allocated, then give them to blockdev. 886 * Otherwise, 887 * a. preallocate requested block addresses 888 * b. do not use extent cache for better performance 889 * c. give the block addresses to blockdev 890 */ 891 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 892 int create, int flag) 893 { 894 unsigned int maxblocks = map->m_len; 895 struct dnode_of_data dn; 896 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 897 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 898 pgoff_t pgofs, end_offset, end; 899 int err = 0, ofs = 1; 900 unsigned int ofs_in_node, last_ofs_in_node; 901 blkcnt_t prealloc; 902 struct extent_info ei = {0,0,0}; 903 block_t blkaddr; 904 905 if (!maxblocks) 906 return 0; 907 908 map->m_len = 0; 909 map->m_flags = 0; 910 911 /* it only supports block size == page size */ 912 pgofs = (pgoff_t)map->m_lblk; 913 end = pgofs + maxblocks; 914 915 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 916 map->m_pblk = ei.blk + pgofs - ei.fofs; 917 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 918 map->m_flags = F2FS_MAP_MAPPED; 919 goto out; 920 } 921 922 next_dnode: 923 if (create) 924 __do_map_lock(sbi, flag, true); 925 926 /* When reading holes, we need its node page */ 927 set_new_dnode(&dn, inode, NULL, NULL, 0); 928 err = get_dnode_of_data(&dn, pgofs, mode); 929 if (err) { 930 if (flag == F2FS_GET_BLOCK_BMAP) 931 map->m_pblk = 0; 932 if (err == -ENOENT) { 933 err = 0; 934 if (map->m_next_pgofs) 935 *map->m_next_pgofs = 936 get_next_page_offset(&dn, pgofs); 937 } 938 goto unlock_out; 939 } 940 941 prealloc = 0; 942 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 943 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 944 945 next_block: 946 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 947 948 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 949 if (create) { 950 if (unlikely(f2fs_cp_error(sbi))) { 951 err = -EIO; 952 goto sync_out; 953 } 954 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 955 if (blkaddr == NULL_ADDR) { 956 prealloc++; 957 last_ofs_in_node = dn.ofs_in_node; 958 } 959 } else { 960 err = __allocate_data_block(&dn); 961 if (!err) 962 set_inode_flag(inode, FI_APPEND_WRITE); 963 } 964 if (err) 965 goto sync_out; 966 map->m_flags |= F2FS_MAP_NEW; 967 blkaddr = dn.data_blkaddr; 968 } else { 969 if (flag == F2FS_GET_BLOCK_BMAP) { 970 map->m_pblk = 0; 971 goto sync_out; 972 } 973 if (flag == F2FS_GET_BLOCK_FIEMAP && 974 blkaddr == NULL_ADDR) { 975 if (map->m_next_pgofs) 976 *map->m_next_pgofs = pgofs + 1; 977 } 978 if (flag != F2FS_GET_BLOCK_FIEMAP || 979 blkaddr != NEW_ADDR) 980 goto sync_out; 981 } 982 } 983 984 if (flag == F2FS_GET_BLOCK_PRE_AIO) 985 goto skip; 986 987 if (map->m_len == 0) { 988 /* preallocated unwritten block should be mapped for fiemap. */ 989 if (blkaddr == NEW_ADDR) 990 map->m_flags |= F2FS_MAP_UNWRITTEN; 991 map->m_flags |= F2FS_MAP_MAPPED; 992 993 map->m_pblk = blkaddr; 994 map->m_len = 1; 995 } else if ((map->m_pblk != NEW_ADDR && 996 blkaddr == (map->m_pblk + ofs)) || 997 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 998 flag == F2FS_GET_BLOCK_PRE_DIO) { 999 ofs++; 1000 map->m_len++; 1001 } else { 1002 goto sync_out; 1003 } 1004 1005 skip: 1006 dn.ofs_in_node++; 1007 pgofs++; 1008 1009 /* preallocate blocks in batch for one dnode page */ 1010 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1011 (pgofs == end || dn.ofs_in_node == end_offset)) { 1012 1013 dn.ofs_in_node = ofs_in_node; 1014 err = reserve_new_blocks(&dn, prealloc); 1015 if (err) 1016 goto sync_out; 1017 1018 map->m_len += dn.ofs_in_node - ofs_in_node; 1019 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1020 err = -ENOSPC; 1021 goto sync_out; 1022 } 1023 dn.ofs_in_node = end_offset; 1024 } 1025 1026 if (pgofs >= end) 1027 goto sync_out; 1028 else if (dn.ofs_in_node < end_offset) 1029 goto next_block; 1030 1031 f2fs_put_dnode(&dn); 1032 1033 if (create) { 1034 __do_map_lock(sbi, flag, false); 1035 f2fs_balance_fs(sbi, dn.node_changed); 1036 } 1037 goto next_dnode; 1038 1039 sync_out: 1040 f2fs_put_dnode(&dn); 1041 unlock_out: 1042 if (create) { 1043 __do_map_lock(sbi, flag, false); 1044 f2fs_balance_fs(sbi, dn.node_changed); 1045 } 1046 out: 1047 trace_f2fs_map_blocks(inode, map, err); 1048 return err; 1049 } 1050 1051 static int __get_data_block(struct inode *inode, sector_t iblock, 1052 struct buffer_head *bh, int create, int flag, 1053 pgoff_t *next_pgofs) 1054 { 1055 struct f2fs_map_blocks map; 1056 int err; 1057 1058 map.m_lblk = iblock; 1059 map.m_len = bh->b_size >> inode->i_blkbits; 1060 map.m_next_pgofs = next_pgofs; 1061 1062 err = f2fs_map_blocks(inode, &map, create, flag); 1063 if (!err) { 1064 map_bh(bh, inode->i_sb, map.m_pblk); 1065 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1066 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1067 } 1068 return err; 1069 } 1070 1071 static int get_data_block(struct inode *inode, sector_t iblock, 1072 struct buffer_head *bh_result, int create, int flag, 1073 pgoff_t *next_pgofs) 1074 { 1075 return __get_data_block(inode, iblock, bh_result, create, 1076 flag, next_pgofs); 1077 } 1078 1079 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1080 struct buffer_head *bh_result, int create) 1081 { 1082 return __get_data_block(inode, iblock, bh_result, create, 1083 F2FS_GET_BLOCK_DEFAULT, NULL); 1084 } 1085 1086 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1087 struct buffer_head *bh_result, int create) 1088 { 1089 /* Block number less than F2FS MAX BLOCKS */ 1090 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1091 return -EFBIG; 1092 1093 return __get_data_block(inode, iblock, bh_result, create, 1094 F2FS_GET_BLOCK_BMAP, NULL); 1095 } 1096 1097 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1098 { 1099 return (offset >> inode->i_blkbits); 1100 } 1101 1102 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1103 { 1104 return (blk << inode->i_blkbits); 1105 } 1106 1107 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1108 u64 start, u64 len) 1109 { 1110 struct buffer_head map_bh; 1111 sector_t start_blk, last_blk; 1112 pgoff_t next_pgofs; 1113 u64 logical = 0, phys = 0, size = 0; 1114 u32 flags = 0; 1115 int ret = 0; 1116 1117 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 1118 if (ret) 1119 return ret; 1120 1121 if (f2fs_has_inline_data(inode)) { 1122 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1123 if (ret != -EAGAIN) 1124 return ret; 1125 } 1126 1127 inode_lock(inode); 1128 1129 if (logical_to_blk(inode, len) == 0) 1130 len = blk_to_logical(inode, 1); 1131 1132 start_blk = logical_to_blk(inode, start); 1133 last_blk = logical_to_blk(inode, start + len - 1); 1134 1135 next: 1136 memset(&map_bh, 0, sizeof(struct buffer_head)); 1137 map_bh.b_size = len; 1138 1139 ret = get_data_block(inode, start_blk, &map_bh, 0, 1140 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1141 if (ret) 1142 goto out; 1143 1144 /* HOLE */ 1145 if (!buffer_mapped(&map_bh)) { 1146 start_blk = next_pgofs; 1147 1148 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1149 F2FS_I_SB(inode)->max_file_blocks)) 1150 goto prep_next; 1151 1152 flags |= FIEMAP_EXTENT_LAST; 1153 } 1154 1155 if (size) { 1156 if (f2fs_encrypted_inode(inode)) 1157 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1158 1159 ret = fiemap_fill_next_extent(fieinfo, logical, 1160 phys, size, flags); 1161 } 1162 1163 if (start_blk > last_blk || ret) 1164 goto out; 1165 1166 logical = blk_to_logical(inode, start_blk); 1167 phys = blk_to_logical(inode, map_bh.b_blocknr); 1168 size = map_bh.b_size; 1169 flags = 0; 1170 if (buffer_unwritten(&map_bh)) 1171 flags = FIEMAP_EXTENT_UNWRITTEN; 1172 1173 start_blk += logical_to_blk(inode, size); 1174 1175 prep_next: 1176 cond_resched(); 1177 if (fatal_signal_pending(current)) 1178 ret = -EINTR; 1179 else 1180 goto next; 1181 out: 1182 if (ret == 1) 1183 ret = 0; 1184 1185 inode_unlock(inode); 1186 return ret; 1187 } 1188 1189 /* 1190 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1191 * Major change was from block_size == page_size in f2fs by default. 1192 */ 1193 static int f2fs_mpage_readpages(struct address_space *mapping, 1194 struct list_head *pages, struct page *page, 1195 unsigned nr_pages) 1196 { 1197 struct bio *bio = NULL; 1198 unsigned page_idx; 1199 sector_t last_block_in_bio = 0; 1200 struct inode *inode = mapping->host; 1201 const unsigned blkbits = inode->i_blkbits; 1202 const unsigned blocksize = 1 << blkbits; 1203 sector_t block_in_file; 1204 sector_t last_block; 1205 sector_t last_block_in_file; 1206 sector_t block_nr; 1207 struct f2fs_map_blocks map; 1208 1209 map.m_pblk = 0; 1210 map.m_lblk = 0; 1211 map.m_len = 0; 1212 map.m_flags = 0; 1213 map.m_next_pgofs = NULL; 1214 1215 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1216 1217 if (pages) { 1218 page = list_last_entry(pages, struct page, lru); 1219 1220 prefetchw(&page->flags); 1221 list_del(&page->lru); 1222 if (add_to_page_cache_lru(page, mapping, 1223 page->index, 1224 readahead_gfp_mask(mapping))) 1225 goto next_page; 1226 } 1227 1228 block_in_file = (sector_t)page->index; 1229 last_block = block_in_file + nr_pages; 1230 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1231 blkbits; 1232 if (last_block > last_block_in_file) 1233 last_block = last_block_in_file; 1234 1235 /* 1236 * Map blocks using the previous result first. 1237 */ 1238 if ((map.m_flags & F2FS_MAP_MAPPED) && 1239 block_in_file > map.m_lblk && 1240 block_in_file < (map.m_lblk + map.m_len)) 1241 goto got_it; 1242 1243 /* 1244 * Then do more f2fs_map_blocks() calls until we are 1245 * done with this page. 1246 */ 1247 map.m_flags = 0; 1248 1249 if (block_in_file < last_block) { 1250 map.m_lblk = block_in_file; 1251 map.m_len = last_block - block_in_file; 1252 1253 if (f2fs_map_blocks(inode, &map, 0, 1254 F2FS_GET_BLOCK_DEFAULT)) 1255 goto set_error_page; 1256 } 1257 got_it: 1258 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1259 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1260 SetPageMappedToDisk(page); 1261 1262 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1263 SetPageUptodate(page); 1264 goto confused; 1265 } 1266 } else { 1267 zero_user_segment(page, 0, PAGE_SIZE); 1268 if (!PageUptodate(page)) 1269 SetPageUptodate(page); 1270 unlock_page(page); 1271 goto next_page; 1272 } 1273 1274 /* 1275 * This page will go to BIO. Do we need to send this 1276 * BIO off first? 1277 */ 1278 if (bio && (last_block_in_bio != block_nr - 1 || 1279 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1280 submit_and_realloc: 1281 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1282 bio = NULL; 1283 } 1284 if (bio == NULL) { 1285 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages); 1286 if (IS_ERR(bio)) { 1287 bio = NULL; 1288 goto set_error_page; 1289 } 1290 } 1291 1292 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1293 goto submit_and_realloc; 1294 1295 last_block_in_bio = block_nr; 1296 goto next_page; 1297 set_error_page: 1298 SetPageError(page); 1299 zero_user_segment(page, 0, PAGE_SIZE); 1300 unlock_page(page); 1301 goto next_page; 1302 confused: 1303 if (bio) { 1304 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1305 bio = NULL; 1306 } 1307 unlock_page(page); 1308 next_page: 1309 if (pages) 1310 put_page(page); 1311 } 1312 BUG_ON(pages && !list_empty(pages)); 1313 if (bio) 1314 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1315 return 0; 1316 } 1317 1318 static int f2fs_read_data_page(struct file *file, struct page *page) 1319 { 1320 struct inode *inode = page->mapping->host; 1321 int ret = -EAGAIN; 1322 1323 trace_f2fs_readpage(page, DATA); 1324 1325 /* If the file has inline data, try to read it directly */ 1326 if (f2fs_has_inline_data(inode)) 1327 ret = f2fs_read_inline_data(inode, page); 1328 if (ret == -EAGAIN) 1329 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1330 return ret; 1331 } 1332 1333 static int f2fs_read_data_pages(struct file *file, 1334 struct address_space *mapping, 1335 struct list_head *pages, unsigned nr_pages) 1336 { 1337 struct inode *inode = file->f_mapping->host; 1338 struct page *page = list_last_entry(pages, struct page, lru); 1339 1340 trace_f2fs_readpages(inode, page, nr_pages); 1341 1342 /* If the file has inline data, skip readpages */ 1343 if (f2fs_has_inline_data(inode)) 1344 return 0; 1345 1346 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1347 } 1348 1349 static int encrypt_one_page(struct f2fs_io_info *fio) 1350 { 1351 struct inode *inode = fio->page->mapping->host; 1352 gfp_t gfp_flags = GFP_NOFS; 1353 1354 if (!f2fs_encrypted_file(inode)) 1355 return 0; 1356 1357 /* wait for GCed encrypted page writeback */ 1358 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr); 1359 1360 retry_encrypt: 1361 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1362 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1363 if (!IS_ERR(fio->encrypted_page)) 1364 return 0; 1365 1366 /* flush pending IOs and wait for a while in the ENOMEM case */ 1367 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1368 f2fs_flush_merged_writes(fio->sbi); 1369 congestion_wait(BLK_RW_ASYNC, HZ/50); 1370 gfp_flags |= __GFP_NOFAIL; 1371 goto retry_encrypt; 1372 } 1373 return PTR_ERR(fio->encrypted_page); 1374 } 1375 1376 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1377 { 1378 struct inode *inode = fio->page->mapping->host; 1379 1380 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 1381 return false; 1382 if (is_cold_data(fio->page)) 1383 return false; 1384 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1385 return false; 1386 1387 return need_inplace_update_policy(inode, fio); 1388 } 1389 1390 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio) 1391 { 1392 if (fio->old_blkaddr == NEW_ADDR) 1393 return false; 1394 if (fio->old_blkaddr == NULL_ADDR) 1395 return false; 1396 return true; 1397 } 1398 1399 int do_write_data_page(struct f2fs_io_info *fio) 1400 { 1401 struct page *page = fio->page; 1402 struct inode *inode = page->mapping->host; 1403 struct dnode_of_data dn; 1404 struct extent_info ei = {0,0,0}; 1405 bool ipu_force = false; 1406 int err = 0; 1407 1408 set_new_dnode(&dn, inode, NULL, NULL, 0); 1409 if (need_inplace_update(fio) && 1410 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1411 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1412 1413 if (valid_ipu_blkaddr(fio)) { 1414 ipu_force = true; 1415 fio->need_lock = LOCK_DONE; 1416 goto got_it; 1417 } 1418 } 1419 1420 /* Deadlock due to between page->lock and f2fs_lock_op */ 1421 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1422 return -EAGAIN; 1423 1424 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1425 if (err) 1426 goto out; 1427 1428 fio->old_blkaddr = dn.data_blkaddr; 1429 1430 /* This page is already truncated */ 1431 if (fio->old_blkaddr == NULL_ADDR) { 1432 ClearPageUptodate(page); 1433 goto out_writepage; 1434 } 1435 got_it: 1436 /* 1437 * If current allocation needs SSR, 1438 * it had better in-place writes for updated data. 1439 */ 1440 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) { 1441 err = encrypt_one_page(fio); 1442 if (err) 1443 goto out_writepage; 1444 1445 set_page_writeback(page); 1446 f2fs_put_dnode(&dn); 1447 if (fio->need_lock == LOCK_REQ) 1448 f2fs_unlock_op(fio->sbi); 1449 err = rewrite_data_page(fio); 1450 trace_f2fs_do_write_data_page(fio->page, IPU); 1451 set_inode_flag(inode, FI_UPDATE_WRITE); 1452 return err; 1453 } 1454 1455 if (fio->need_lock == LOCK_RETRY) { 1456 if (!f2fs_trylock_op(fio->sbi)) { 1457 err = -EAGAIN; 1458 goto out_writepage; 1459 } 1460 fio->need_lock = LOCK_REQ; 1461 } 1462 1463 err = encrypt_one_page(fio); 1464 if (err) 1465 goto out_writepage; 1466 1467 set_page_writeback(page); 1468 1469 /* LFS mode write path */ 1470 write_data_page(&dn, fio); 1471 trace_f2fs_do_write_data_page(page, OPU); 1472 set_inode_flag(inode, FI_APPEND_WRITE); 1473 if (page->index == 0) 1474 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1475 out_writepage: 1476 f2fs_put_dnode(&dn); 1477 out: 1478 if (fio->need_lock == LOCK_REQ) 1479 f2fs_unlock_op(fio->sbi); 1480 return err; 1481 } 1482 1483 static int __write_data_page(struct page *page, bool *submitted, 1484 struct writeback_control *wbc, 1485 enum iostat_type io_type) 1486 { 1487 struct inode *inode = page->mapping->host; 1488 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1489 loff_t i_size = i_size_read(inode); 1490 const pgoff_t end_index = ((unsigned long long) i_size) 1491 >> PAGE_SHIFT; 1492 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1493 unsigned offset = 0; 1494 bool need_balance_fs = false; 1495 int err = 0; 1496 struct f2fs_io_info fio = { 1497 .sbi = sbi, 1498 .type = DATA, 1499 .op = REQ_OP_WRITE, 1500 .op_flags = wbc_to_write_flags(wbc), 1501 .old_blkaddr = NULL_ADDR, 1502 .page = page, 1503 .encrypted_page = NULL, 1504 .submitted = false, 1505 .need_lock = LOCK_RETRY, 1506 .io_type = io_type, 1507 }; 1508 1509 trace_f2fs_writepage(page, DATA); 1510 1511 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1512 goto redirty_out; 1513 1514 if (page->index < end_index) 1515 goto write; 1516 1517 /* 1518 * If the offset is out-of-range of file size, 1519 * this page does not have to be written to disk. 1520 */ 1521 offset = i_size & (PAGE_SIZE - 1); 1522 if ((page->index >= end_index + 1) || !offset) 1523 goto out; 1524 1525 zero_user_segment(page, offset, PAGE_SIZE); 1526 write: 1527 if (f2fs_is_drop_cache(inode)) 1528 goto out; 1529 /* we should not write 0'th page having journal header */ 1530 if (f2fs_is_volatile_file(inode) && (!page->index || 1531 (!wbc->for_reclaim && 1532 available_free_memory(sbi, BASE_CHECK)))) 1533 goto redirty_out; 1534 1535 /* we should bypass data pages to proceed the kworkder jobs */ 1536 if (unlikely(f2fs_cp_error(sbi))) { 1537 mapping_set_error(page->mapping, -EIO); 1538 goto out; 1539 } 1540 1541 /* Dentry blocks are controlled by checkpoint */ 1542 if (S_ISDIR(inode->i_mode)) { 1543 fio.need_lock = LOCK_DONE; 1544 err = do_write_data_page(&fio); 1545 goto done; 1546 } 1547 1548 if (!wbc->for_reclaim) 1549 need_balance_fs = true; 1550 else if (has_not_enough_free_secs(sbi, 0, 0)) 1551 goto redirty_out; 1552 else 1553 set_inode_flag(inode, FI_HOT_DATA); 1554 1555 err = -EAGAIN; 1556 if (f2fs_has_inline_data(inode)) { 1557 err = f2fs_write_inline_data(inode, page); 1558 if (!err) 1559 goto out; 1560 } 1561 1562 if (err == -EAGAIN) { 1563 err = do_write_data_page(&fio); 1564 if (err == -EAGAIN) { 1565 fio.need_lock = LOCK_REQ; 1566 err = do_write_data_page(&fio); 1567 } 1568 } 1569 if (F2FS_I(inode)->last_disk_size < psize) 1570 F2FS_I(inode)->last_disk_size = psize; 1571 1572 done: 1573 if (err && err != -ENOENT) 1574 goto redirty_out; 1575 1576 out: 1577 inode_dec_dirty_pages(inode); 1578 if (err) 1579 ClearPageUptodate(page); 1580 1581 if (wbc->for_reclaim) { 1582 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA); 1583 clear_inode_flag(inode, FI_HOT_DATA); 1584 remove_dirty_inode(inode); 1585 submitted = NULL; 1586 } 1587 1588 unlock_page(page); 1589 if (!S_ISDIR(inode->i_mode)) 1590 f2fs_balance_fs(sbi, need_balance_fs); 1591 1592 if (unlikely(f2fs_cp_error(sbi))) { 1593 f2fs_submit_merged_write(sbi, DATA); 1594 submitted = NULL; 1595 } 1596 1597 if (submitted) 1598 *submitted = fio.submitted; 1599 1600 return 0; 1601 1602 redirty_out: 1603 redirty_page_for_writepage(wbc, page); 1604 if (!err) 1605 return AOP_WRITEPAGE_ACTIVATE; 1606 unlock_page(page); 1607 return err; 1608 } 1609 1610 static int f2fs_write_data_page(struct page *page, 1611 struct writeback_control *wbc) 1612 { 1613 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 1614 } 1615 1616 /* 1617 * This function was copied from write_cche_pages from mm/page-writeback.c. 1618 * The major change is making write step of cold data page separately from 1619 * warm/hot data page. 1620 */ 1621 static int f2fs_write_cache_pages(struct address_space *mapping, 1622 struct writeback_control *wbc, 1623 enum iostat_type io_type) 1624 { 1625 int ret = 0; 1626 int done = 0; 1627 struct pagevec pvec; 1628 int nr_pages; 1629 pgoff_t uninitialized_var(writeback_index); 1630 pgoff_t index; 1631 pgoff_t end; /* Inclusive */ 1632 pgoff_t done_index; 1633 pgoff_t last_idx = ULONG_MAX; 1634 int cycled; 1635 int range_whole = 0; 1636 int tag; 1637 1638 pagevec_init(&pvec, 0); 1639 1640 if (get_dirty_pages(mapping->host) <= 1641 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 1642 set_inode_flag(mapping->host, FI_HOT_DATA); 1643 else 1644 clear_inode_flag(mapping->host, FI_HOT_DATA); 1645 1646 if (wbc->range_cyclic) { 1647 writeback_index = mapping->writeback_index; /* prev offset */ 1648 index = writeback_index; 1649 if (index == 0) 1650 cycled = 1; 1651 else 1652 cycled = 0; 1653 end = -1; 1654 } else { 1655 index = wbc->range_start >> PAGE_SHIFT; 1656 end = wbc->range_end >> PAGE_SHIFT; 1657 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1658 range_whole = 1; 1659 cycled = 1; /* ignore range_cyclic tests */ 1660 } 1661 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1662 tag = PAGECACHE_TAG_TOWRITE; 1663 else 1664 tag = PAGECACHE_TAG_DIRTY; 1665 retry: 1666 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1667 tag_pages_for_writeback(mapping, index, end); 1668 done_index = index; 1669 while (!done && (index <= end)) { 1670 int i; 1671 1672 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1673 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1674 if (nr_pages == 0) 1675 break; 1676 1677 for (i = 0; i < nr_pages; i++) { 1678 struct page *page = pvec.pages[i]; 1679 bool submitted = false; 1680 1681 if (page->index > end) { 1682 done = 1; 1683 break; 1684 } 1685 1686 done_index = page->index; 1687 retry_write: 1688 lock_page(page); 1689 1690 if (unlikely(page->mapping != mapping)) { 1691 continue_unlock: 1692 unlock_page(page); 1693 continue; 1694 } 1695 1696 if (!PageDirty(page)) { 1697 /* someone wrote it for us */ 1698 goto continue_unlock; 1699 } 1700 1701 if (PageWriteback(page)) { 1702 if (wbc->sync_mode != WB_SYNC_NONE) 1703 f2fs_wait_on_page_writeback(page, 1704 DATA, true); 1705 else 1706 goto continue_unlock; 1707 } 1708 1709 BUG_ON(PageWriteback(page)); 1710 if (!clear_page_dirty_for_io(page)) 1711 goto continue_unlock; 1712 1713 ret = __write_data_page(page, &submitted, wbc, io_type); 1714 if (unlikely(ret)) { 1715 /* 1716 * keep nr_to_write, since vfs uses this to 1717 * get # of written pages. 1718 */ 1719 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1720 unlock_page(page); 1721 ret = 0; 1722 continue; 1723 } else if (ret == -EAGAIN) { 1724 ret = 0; 1725 if (wbc->sync_mode == WB_SYNC_ALL) { 1726 cond_resched(); 1727 congestion_wait(BLK_RW_ASYNC, 1728 HZ/50); 1729 goto retry_write; 1730 } 1731 continue; 1732 } 1733 done_index = page->index + 1; 1734 done = 1; 1735 break; 1736 } else if (submitted) { 1737 last_idx = page->index; 1738 } 1739 1740 /* give a priority to WB_SYNC threads */ 1741 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) || 1742 --wbc->nr_to_write <= 0) && 1743 wbc->sync_mode == WB_SYNC_NONE) { 1744 done = 1; 1745 break; 1746 } 1747 } 1748 pagevec_release(&pvec); 1749 cond_resched(); 1750 } 1751 1752 if (!cycled && !done) { 1753 cycled = 1; 1754 index = 0; 1755 end = writeback_index - 1; 1756 goto retry; 1757 } 1758 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1759 mapping->writeback_index = done_index; 1760 1761 if (last_idx != ULONG_MAX) 1762 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 1763 0, last_idx, DATA); 1764 1765 return ret; 1766 } 1767 1768 int __f2fs_write_data_pages(struct address_space *mapping, 1769 struct writeback_control *wbc, 1770 enum iostat_type io_type) 1771 { 1772 struct inode *inode = mapping->host; 1773 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1774 struct blk_plug plug; 1775 int ret; 1776 1777 /* deal with chardevs and other special file */ 1778 if (!mapping->a_ops->writepage) 1779 return 0; 1780 1781 /* skip writing if there is no dirty page in this inode */ 1782 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1783 return 0; 1784 1785 /* during POR, we don't need to trigger writepage at all. */ 1786 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1787 goto skip_write; 1788 1789 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1790 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1791 available_free_memory(sbi, DIRTY_DENTS)) 1792 goto skip_write; 1793 1794 /* skip writing during file defragment */ 1795 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1796 goto skip_write; 1797 1798 trace_f2fs_writepages(mapping->host, wbc, DATA); 1799 1800 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 1801 if (wbc->sync_mode == WB_SYNC_ALL) 1802 atomic_inc(&sbi->wb_sync_req); 1803 else if (atomic_read(&sbi->wb_sync_req)) 1804 goto skip_write; 1805 1806 blk_start_plug(&plug); 1807 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 1808 blk_finish_plug(&plug); 1809 1810 if (wbc->sync_mode == WB_SYNC_ALL) 1811 atomic_dec(&sbi->wb_sync_req); 1812 /* 1813 * if some pages were truncated, we cannot guarantee its mapping->host 1814 * to detect pending bios. 1815 */ 1816 1817 remove_dirty_inode(inode); 1818 return ret; 1819 1820 skip_write: 1821 wbc->pages_skipped += get_dirty_pages(inode); 1822 trace_f2fs_writepages(mapping->host, wbc, DATA); 1823 return 0; 1824 } 1825 1826 static int f2fs_write_data_pages(struct address_space *mapping, 1827 struct writeback_control *wbc) 1828 { 1829 struct inode *inode = mapping->host; 1830 1831 return __f2fs_write_data_pages(mapping, wbc, 1832 F2FS_I(inode)->cp_task == current ? 1833 FS_CP_DATA_IO : FS_DATA_IO); 1834 } 1835 1836 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1837 { 1838 struct inode *inode = mapping->host; 1839 loff_t i_size = i_size_read(inode); 1840 1841 if (to > i_size) { 1842 down_write(&F2FS_I(inode)->i_mmap_sem); 1843 truncate_pagecache(inode, i_size); 1844 truncate_blocks(inode, i_size, true); 1845 up_write(&F2FS_I(inode)->i_mmap_sem); 1846 } 1847 } 1848 1849 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1850 struct page *page, loff_t pos, unsigned len, 1851 block_t *blk_addr, bool *node_changed) 1852 { 1853 struct inode *inode = page->mapping->host; 1854 pgoff_t index = page->index; 1855 struct dnode_of_data dn; 1856 struct page *ipage; 1857 bool locked = false; 1858 struct extent_info ei = {0,0,0}; 1859 int err = 0; 1860 1861 /* 1862 * we already allocated all the blocks, so we don't need to get 1863 * the block addresses when there is no need to fill the page. 1864 */ 1865 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 1866 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 1867 return 0; 1868 1869 if (f2fs_has_inline_data(inode) || 1870 (pos & PAGE_MASK) >= i_size_read(inode)) { 1871 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 1872 locked = true; 1873 } 1874 restart: 1875 /* check inline_data */ 1876 ipage = get_node_page(sbi, inode->i_ino); 1877 if (IS_ERR(ipage)) { 1878 err = PTR_ERR(ipage); 1879 goto unlock_out; 1880 } 1881 1882 set_new_dnode(&dn, inode, ipage, ipage, 0); 1883 1884 if (f2fs_has_inline_data(inode)) { 1885 if (pos + len <= MAX_INLINE_DATA(inode)) { 1886 read_inline_data(page, ipage); 1887 set_inode_flag(inode, FI_DATA_EXIST); 1888 if (inode->i_nlink) 1889 set_inline_node(ipage); 1890 } else { 1891 err = f2fs_convert_inline_page(&dn, page); 1892 if (err) 1893 goto out; 1894 if (dn.data_blkaddr == NULL_ADDR) 1895 err = f2fs_get_block(&dn, index); 1896 } 1897 } else if (locked) { 1898 err = f2fs_get_block(&dn, index); 1899 } else { 1900 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1901 dn.data_blkaddr = ei.blk + index - ei.fofs; 1902 } else { 1903 /* hole case */ 1904 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1905 if (err || dn.data_blkaddr == NULL_ADDR) { 1906 f2fs_put_dnode(&dn); 1907 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 1908 true); 1909 locked = true; 1910 goto restart; 1911 } 1912 } 1913 } 1914 1915 /* convert_inline_page can make node_changed */ 1916 *blk_addr = dn.data_blkaddr; 1917 *node_changed = dn.node_changed; 1918 out: 1919 f2fs_put_dnode(&dn); 1920 unlock_out: 1921 if (locked) 1922 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 1923 return err; 1924 } 1925 1926 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1927 loff_t pos, unsigned len, unsigned flags, 1928 struct page **pagep, void **fsdata) 1929 { 1930 struct inode *inode = mapping->host; 1931 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1932 struct page *page = NULL; 1933 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1934 bool need_balance = false; 1935 block_t blkaddr = NULL_ADDR; 1936 int err = 0; 1937 1938 trace_f2fs_write_begin(inode, pos, len, flags); 1939 1940 /* 1941 * We should check this at this moment to avoid deadlock on inode page 1942 * and #0 page. The locking rule for inline_data conversion should be: 1943 * lock_page(page #0) -> lock_page(inode_page) 1944 */ 1945 if (index != 0) { 1946 err = f2fs_convert_inline_inode(inode); 1947 if (err) 1948 goto fail; 1949 } 1950 repeat: 1951 /* 1952 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 1953 * wait_for_stable_page. Will wait that below with our IO control. 1954 */ 1955 page = pagecache_get_page(mapping, index, 1956 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 1957 if (!page) { 1958 err = -ENOMEM; 1959 goto fail; 1960 } 1961 1962 *pagep = page; 1963 1964 err = prepare_write_begin(sbi, page, pos, len, 1965 &blkaddr, &need_balance); 1966 if (err) 1967 goto fail; 1968 1969 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1970 unlock_page(page); 1971 f2fs_balance_fs(sbi, true); 1972 lock_page(page); 1973 if (page->mapping != mapping) { 1974 /* The page got truncated from under us */ 1975 f2fs_put_page(page, 1); 1976 goto repeat; 1977 } 1978 } 1979 1980 f2fs_wait_on_page_writeback(page, DATA, false); 1981 1982 /* wait for GCed encrypted page writeback */ 1983 if (f2fs_encrypted_file(inode)) 1984 f2fs_wait_on_block_writeback(sbi, blkaddr); 1985 1986 if (len == PAGE_SIZE || PageUptodate(page)) 1987 return 0; 1988 1989 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 1990 zero_user_segment(page, len, PAGE_SIZE); 1991 return 0; 1992 } 1993 1994 if (blkaddr == NEW_ADDR) { 1995 zero_user_segment(page, 0, PAGE_SIZE); 1996 SetPageUptodate(page); 1997 } else { 1998 err = f2fs_submit_page_read(inode, page, blkaddr); 1999 if (err) 2000 goto fail; 2001 2002 lock_page(page); 2003 if (unlikely(page->mapping != mapping)) { 2004 f2fs_put_page(page, 1); 2005 goto repeat; 2006 } 2007 if (unlikely(!PageUptodate(page))) { 2008 err = -EIO; 2009 goto fail; 2010 } 2011 } 2012 return 0; 2013 2014 fail: 2015 f2fs_put_page(page, 1); 2016 f2fs_write_failed(mapping, pos + len); 2017 return err; 2018 } 2019 2020 static int f2fs_write_end(struct file *file, 2021 struct address_space *mapping, 2022 loff_t pos, unsigned len, unsigned copied, 2023 struct page *page, void *fsdata) 2024 { 2025 struct inode *inode = page->mapping->host; 2026 2027 trace_f2fs_write_end(inode, pos, len, copied); 2028 2029 /* 2030 * This should be come from len == PAGE_SIZE, and we expect copied 2031 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2032 * let generic_perform_write() try to copy data again through copied=0. 2033 */ 2034 if (!PageUptodate(page)) { 2035 if (unlikely(copied != len)) 2036 copied = 0; 2037 else 2038 SetPageUptodate(page); 2039 } 2040 if (!copied) 2041 goto unlock_out; 2042 2043 set_page_dirty(page); 2044 2045 if (pos + copied > i_size_read(inode)) 2046 f2fs_i_size_write(inode, pos + copied); 2047 unlock_out: 2048 f2fs_put_page(page, 1); 2049 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2050 return copied; 2051 } 2052 2053 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2054 loff_t offset) 2055 { 2056 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 2057 2058 if (offset & blocksize_mask) 2059 return -EINVAL; 2060 2061 if (iov_iter_alignment(iter) & blocksize_mask) 2062 return -EINVAL; 2063 2064 return 0; 2065 } 2066 2067 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2068 { 2069 struct address_space *mapping = iocb->ki_filp->f_mapping; 2070 struct inode *inode = mapping->host; 2071 size_t count = iov_iter_count(iter); 2072 loff_t offset = iocb->ki_pos; 2073 int rw = iov_iter_rw(iter); 2074 int err; 2075 2076 err = check_direct_IO(inode, iter, offset); 2077 if (err) 2078 return err; 2079 2080 if (__force_buffered_io(inode, rw)) 2081 return 0; 2082 2083 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2084 2085 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 2086 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 2087 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 2088 2089 if (rw == WRITE) { 2090 if (err > 0) { 2091 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2092 err); 2093 set_inode_flag(inode, FI_UPDATE_WRITE); 2094 } else if (err < 0) { 2095 f2fs_write_failed(mapping, offset + count); 2096 } 2097 } 2098 2099 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2100 2101 return err; 2102 } 2103 2104 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2105 unsigned int length) 2106 { 2107 struct inode *inode = page->mapping->host; 2108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2109 2110 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2111 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2112 return; 2113 2114 if (PageDirty(page)) { 2115 if (inode->i_ino == F2FS_META_INO(sbi)) { 2116 dec_page_count(sbi, F2FS_DIRTY_META); 2117 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2118 dec_page_count(sbi, F2FS_DIRTY_NODES); 2119 } else { 2120 inode_dec_dirty_pages(inode); 2121 remove_dirty_inode(inode); 2122 } 2123 } 2124 2125 /* This is atomic written page, keep Private */ 2126 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2127 return drop_inmem_page(inode, page); 2128 2129 set_page_private(page, 0); 2130 ClearPagePrivate(page); 2131 } 2132 2133 int f2fs_release_page(struct page *page, gfp_t wait) 2134 { 2135 /* If this is dirty page, keep PagePrivate */ 2136 if (PageDirty(page)) 2137 return 0; 2138 2139 /* This is atomic written page, keep Private */ 2140 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2141 return 0; 2142 2143 set_page_private(page, 0); 2144 ClearPagePrivate(page); 2145 return 1; 2146 } 2147 2148 /* 2149 * This was copied from __set_page_dirty_buffers which gives higher performance 2150 * in very high speed storages. (e.g., pmem) 2151 */ 2152 void f2fs_set_page_dirty_nobuffers(struct page *page) 2153 { 2154 struct address_space *mapping = page->mapping; 2155 unsigned long flags; 2156 2157 if (unlikely(!mapping)) 2158 return; 2159 2160 spin_lock(&mapping->private_lock); 2161 lock_page_memcg(page); 2162 SetPageDirty(page); 2163 spin_unlock(&mapping->private_lock); 2164 2165 spin_lock_irqsave(&mapping->tree_lock, flags); 2166 WARN_ON_ONCE(!PageUptodate(page)); 2167 account_page_dirtied(page, mapping); 2168 radix_tree_tag_set(&mapping->page_tree, 2169 page_index(page), PAGECACHE_TAG_DIRTY); 2170 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2171 unlock_page_memcg(page); 2172 2173 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2174 return; 2175 } 2176 2177 static int f2fs_set_data_page_dirty(struct page *page) 2178 { 2179 struct address_space *mapping = page->mapping; 2180 struct inode *inode = mapping->host; 2181 2182 trace_f2fs_set_page_dirty(page, DATA); 2183 2184 if (!PageUptodate(page)) 2185 SetPageUptodate(page); 2186 2187 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2188 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2189 register_inmem_page(inode, page); 2190 return 1; 2191 } 2192 /* 2193 * Previously, this page has been registered, we just 2194 * return here. 2195 */ 2196 return 0; 2197 } 2198 2199 if (!PageDirty(page)) { 2200 f2fs_set_page_dirty_nobuffers(page); 2201 update_dirty_page(inode, page); 2202 return 1; 2203 } 2204 return 0; 2205 } 2206 2207 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2208 { 2209 struct inode *inode = mapping->host; 2210 2211 if (f2fs_has_inline_data(inode)) 2212 return 0; 2213 2214 /* make sure allocating whole blocks */ 2215 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2216 filemap_write_and_wait(mapping); 2217 2218 return generic_block_bmap(mapping, block, get_data_block_bmap); 2219 } 2220 2221 #ifdef CONFIG_MIGRATION 2222 #include <linux/migrate.h> 2223 2224 int f2fs_migrate_page(struct address_space *mapping, 2225 struct page *newpage, struct page *page, enum migrate_mode mode) 2226 { 2227 int rc, extra_count; 2228 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2229 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2230 2231 BUG_ON(PageWriteback(page)); 2232 2233 /* migrating an atomic written page is safe with the inmem_lock hold */ 2234 if (atomic_written) { 2235 if (mode != MIGRATE_SYNC) 2236 return -EBUSY; 2237 if (!mutex_trylock(&fi->inmem_lock)) 2238 return -EAGAIN; 2239 } 2240 2241 /* 2242 * A reference is expected if PagePrivate set when move mapping, 2243 * however F2FS breaks this for maintaining dirty page counts when 2244 * truncating pages. So here adjusting the 'extra_count' make it work. 2245 */ 2246 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2247 rc = migrate_page_move_mapping(mapping, newpage, 2248 page, NULL, mode, extra_count); 2249 if (rc != MIGRATEPAGE_SUCCESS) { 2250 if (atomic_written) 2251 mutex_unlock(&fi->inmem_lock); 2252 return rc; 2253 } 2254 2255 if (atomic_written) { 2256 struct inmem_pages *cur; 2257 list_for_each_entry(cur, &fi->inmem_pages, list) 2258 if (cur->page == page) { 2259 cur->page = newpage; 2260 break; 2261 } 2262 mutex_unlock(&fi->inmem_lock); 2263 put_page(page); 2264 get_page(newpage); 2265 } 2266 2267 if (PagePrivate(page)) 2268 SetPagePrivate(newpage); 2269 set_page_private(newpage, page_private(page)); 2270 2271 if (mode != MIGRATE_SYNC_NO_COPY) 2272 migrate_page_copy(newpage, page); 2273 else 2274 migrate_page_states(newpage, page); 2275 2276 return MIGRATEPAGE_SUCCESS; 2277 } 2278 #endif 2279 2280 const struct address_space_operations f2fs_dblock_aops = { 2281 .readpage = f2fs_read_data_page, 2282 .readpages = f2fs_read_data_pages, 2283 .writepage = f2fs_write_data_page, 2284 .writepages = f2fs_write_data_pages, 2285 .write_begin = f2fs_write_begin, 2286 .write_end = f2fs_write_end, 2287 .set_page_dirty = f2fs_set_data_page_dirty, 2288 .invalidatepage = f2fs_invalidate_page, 2289 .releasepage = f2fs_release_page, 2290 .direct_IO = f2fs_direct_IO, 2291 .bmap = f2fs_bmap, 2292 #ifdef CONFIG_MIGRATION 2293 .migratepage = f2fs_migrate_page, 2294 #endif 2295 }; 2296