xref: /openbmc/linux/fs/f2fs/data.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
39 int __init f2fs_init_bioset(void)
40 {
41 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS))
43 		return -ENOMEM;
44 	return 0;
45 }
46 
47 void f2fs_destroy_bioset(void)
48 {
49 	bioset_exit(&f2fs_bioset);
50 }
51 
52 static bool __is_cp_guaranteed(struct page *page)
53 {
54 	struct address_space *mapping = page->mapping;
55 	struct inode *inode;
56 	struct f2fs_sb_info *sbi;
57 
58 	if (!mapping)
59 		return false;
60 
61 	if (f2fs_is_compressed_page(page))
62 		return false;
63 
64 	inode = mapping->host;
65 	sbi = F2FS_I_SB(inode);
66 
67 	if (inode->i_ino == F2FS_META_INO(sbi) ||
68 			inode->i_ino == F2FS_NODE_INO(sbi) ||
69 			S_ISDIR(inode->i_mode) ||
70 			(S_ISREG(inode->i_mode) &&
71 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
72 			is_cold_data(page))
73 		return true;
74 	return false;
75 }
76 
77 static enum count_type __read_io_type(struct page *page)
78 {
79 	struct address_space *mapping = page_file_mapping(page);
80 
81 	if (mapping) {
82 		struct inode *inode = mapping->host;
83 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84 
85 		if (inode->i_ino == F2FS_META_INO(sbi))
86 			return F2FS_RD_META;
87 
88 		if (inode->i_ino == F2FS_NODE_INO(sbi))
89 			return F2FS_RD_NODE;
90 	}
91 	return F2FS_RD_DATA;
92 }
93 
94 /* postprocessing steps for read bios */
95 enum bio_post_read_step {
96 #ifdef CONFIG_FS_ENCRYPTION
97 	STEP_DECRYPT	= 1 << 0,
98 #else
99 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
100 #endif
101 #ifdef CONFIG_F2FS_FS_COMPRESSION
102 	STEP_DECOMPRESS	= 1 << 1,
103 #else
104 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
105 #endif
106 #ifdef CONFIG_FS_VERITY
107 	STEP_VERITY	= 1 << 2,
108 #else
109 	STEP_VERITY	= 0,	/* compile out the verity-related code */
110 #endif
111 };
112 
113 struct bio_post_read_ctx {
114 	struct bio *bio;
115 	struct f2fs_sb_info *sbi;
116 	struct work_struct work;
117 	unsigned int enabled_steps;
118 };
119 
120 static void f2fs_finish_read_bio(struct bio *bio)
121 {
122 	struct bio_vec *bv;
123 	struct bvec_iter_all iter_all;
124 
125 	/*
126 	 * Update and unlock the bio's pagecache pages, and put the
127 	 * decompression context for any compressed pages.
128 	 */
129 	bio_for_each_segment_all(bv, bio, iter_all) {
130 		struct page *page = bv->bv_page;
131 
132 		if (f2fs_is_compressed_page(page)) {
133 			if (bio->bi_status)
134 				f2fs_end_read_compressed_page(page, true);
135 			f2fs_put_page_dic(page);
136 			continue;
137 		}
138 
139 		/* PG_error was set if decryption or verity failed. */
140 		if (bio->bi_status || PageError(page)) {
141 			ClearPageUptodate(page);
142 			/* will re-read again later */
143 			ClearPageError(page);
144 		} else {
145 			SetPageUptodate(page);
146 		}
147 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
148 		unlock_page(page);
149 	}
150 
151 	if (bio->bi_private)
152 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
153 	bio_put(bio);
154 }
155 
156 static void f2fs_verify_bio(struct work_struct *work)
157 {
158 	struct bio_post_read_ctx *ctx =
159 		container_of(work, struct bio_post_read_ctx, work);
160 	struct bio *bio = ctx->bio;
161 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
162 
163 	/*
164 	 * fsverity_verify_bio() may call readpages() again, and while verity
165 	 * will be disabled for this, decryption and/or decompression may still
166 	 * be needed, resulting in another bio_post_read_ctx being allocated.
167 	 * So to prevent deadlocks we need to release the current ctx to the
168 	 * mempool first.  This assumes that verity is the last post-read step.
169 	 */
170 	mempool_free(ctx, bio_post_read_ctx_pool);
171 	bio->bi_private = NULL;
172 
173 	/*
174 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
175 	 * as those were handled separately by f2fs_end_read_compressed_page().
176 	 */
177 	if (may_have_compressed_pages) {
178 		struct bio_vec *bv;
179 		struct bvec_iter_all iter_all;
180 
181 		bio_for_each_segment_all(bv, bio, iter_all) {
182 			struct page *page = bv->bv_page;
183 
184 			if (!f2fs_is_compressed_page(page) &&
185 			    !PageError(page) && !fsverity_verify_page(page))
186 				SetPageError(page);
187 		}
188 	} else {
189 		fsverity_verify_bio(bio);
190 	}
191 
192 	f2fs_finish_read_bio(bio);
193 }
194 
195 /*
196  * If the bio's data needs to be verified with fs-verity, then enqueue the
197  * verity work for the bio.  Otherwise finish the bio now.
198  *
199  * Note that to avoid deadlocks, the verity work can't be done on the
200  * decryption/decompression workqueue.  This is because verifying the data pages
201  * can involve reading verity metadata pages from the file, and these verity
202  * metadata pages may be encrypted and/or compressed.
203  */
204 static void f2fs_verify_and_finish_bio(struct bio *bio)
205 {
206 	struct bio_post_read_ctx *ctx = bio->bi_private;
207 
208 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
209 		INIT_WORK(&ctx->work, f2fs_verify_bio);
210 		fsverity_enqueue_verify_work(&ctx->work);
211 	} else {
212 		f2fs_finish_read_bio(bio);
213 	}
214 }
215 
216 /*
217  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
218  * remaining page was read by @ctx->bio.
219  *
220  * Note that a bio may span clusters (even a mix of compressed and uncompressed
221  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
222  * that the bio includes at least one compressed page.  The actual decompression
223  * is done on a per-cluster basis, not a per-bio basis.
224  */
225 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
226 {
227 	struct bio_vec *bv;
228 	struct bvec_iter_all iter_all;
229 	bool all_compressed = true;
230 
231 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
232 		struct page *page = bv->bv_page;
233 
234 		/* PG_error was set if decryption failed. */
235 		if (f2fs_is_compressed_page(page))
236 			f2fs_end_read_compressed_page(page, PageError(page));
237 		else
238 			all_compressed = false;
239 	}
240 
241 	/*
242 	 * Optimization: if all the bio's pages are compressed, then scheduling
243 	 * the per-bio verity work is unnecessary, as verity will be fully
244 	 * handled at the compression cluster level.
245 	 */
246 	if (all_compressed)
247 		ctx->enabled_steps &= ~STEP_VERITY;
248 }
249 
250 static void f2fs_post_read_work(struct work_struct *work)
251 {
252 	struct bio_post_read_ctx *ctx =
253 		container_of(work, struct bio_post_read_ctx, work);
254 
255 	if (ctx->enabled_steps & STEP_DECRYPT)
256 		fscrypt_decrypt_bio(ctx->bio);
257 
258 	if (ctx->enabled_steps & STEP_DECOMPRESS)
259 		f2fs_handle_step_decompress(ctx);
260 
261 	f2fs_verify_and_finish_bio(ctx->bio);
262 }
263 
264 static void f2fs_read_end_io(struct bio *bio)
265 {
266 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
267 	struct bio_post_read_ctx *ctx = bio->bi_private;
268 
269 	if (time_to_inject(sbi, FAULT_READ_IO)) {
270 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
271 		bio->bi_status = BLK_STS_IOERR;
272 	}
273 
274 	if (bio->bi_status) {
275 		f2fs_finish_read_bio(bio);
276 		return;
277 	}
278 
279 	if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
280 		INIT_WORK(&ctx->work, f2fs_post_read_work);
281 		queue_work(ctx->sbi->post_read_wq, &ctx->work);
282 	} else {
283 		f2fs_verify_and_finish_bio(bio);
284 	}
285 }
286 
287 static void f2fs_write_end_io(struct bio *bio)
288 {
289 	struct f2fs_sb_info *sbi = bio->bi_private;
290 	struct bio_vec *bvec;
291 	struct bvec_iter_all iter_all;
292 
293 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
294 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
295 		bio->bi_status = BLK_STS_IOERR;
296 	}
297 
298 	bio_for_each_segment_all(bvec, bio, iter_all) {
299 		struct page *page = bvec->bv_page;
300 		enum count_type type = WB_DATA_TYPE(page);
301 
302 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
303 			set_page_private(page, (unsigned long)NULL);
304 			ClearPagePrivate(page);
305 			unlock_page(page);
306 			mempool_free(page, sbi->write_io_dummy);
307 
308 			if (unlikely(bio->bi_status))
309 				f2fs_stop_checkpoint(sbi, true);
310 			continue;
311 		}
312 
313 		fscrypt_finalize_bounce_page(&page);
314 
315 #ifdef CONFIG_F2FS_FS_COMPRESSION
316 		if (f2fs_is_compressed_page(page)) {
317 			f2fs_compress_write_end_io(bio, page);
318 			continue;
319 		}
320 #endif
321 
322 		if (unlikely(bio->bi_status)) {
323 			mapping_set_error(page->mapping, -EIO);
324 			if (type == F2FS_WB_CP_DATA)
325 				f2fs_stop_checkpoint(sbi, true);
326 		}
327 
328 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
329 					page->index != nid_of_node(page));
330 
331 		dec_page_count(sbi, type);
332 		if (f2fs_in_warm_node_list(sbi, page))
333 			f2fs_del_fsync_node_entry(sbi, page);
334 		clear_cold_data(page);
335 		end_page_writeback(page);
336 	}
337 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
338 				wq_has_sleeper(&sbi->cp_wait))
339 		wake_up(&sbi->cp_wait);
340 
341 	bio_put(bio);
342 }
343 
344 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
345 				block_t blk_addr, struct bio *bio)
346 {
347 	struct block_device *bdev = sbi->sb->s_bdev;
348 	int i;
349 
350 	if (f2fs_is_multi_device(sbi)) {
351 		for (i = 0; i < sbi->s_ndevs; i++) {
352 			if (FDEV(i).start_blk <= blk_addr &&
353 			    FDEV(i).end_blk >= blk_addr) {
354 				blk_addr -= FDEV(i).start_blk;
355 				bdev = FDEV(i).bdev;
356 				break;
357 			}
358 		}
359 	}
360 	if (bio) {
361 		bio_set_dev(bio, bdev);
362 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
363 	}
364 	return bdev;
365 }
366 
367 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
368 {
369 	int i;
370 
371 	if (!f2fs_is_multi_device(sbi))
372 		return 0;
373 
374 	for (i = 0; i < sbi->s_ndevs; i++)
375 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
376 			return i;
377 	return 0;
378 }
379 
380 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
381 {
382 	struct f2fs_sb_info *sbi = fio->sbi;
383 	struct bio *bio;
384 
385 	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
386 
387 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
388 	if (is_read_io(fio->op)) {
389 		bio->bi_end_io = f2fs_read_end_io;
390 		bio->bi_private = NULL;
391 	} else {
392 		bio->bi_end_io = f2fs_write_end_io;
393 		bio->bi_private = sbi;
394 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
395 						fio->type, fio->temp);
396 	}
397 	if (fio->io_wbc)
398 		wbc_init_bio(fio->io_wbc, bio);
399 
400 	return bio;
401 }
402 
403 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
404 				  pgoff_t first_idx,
405 				  const struct f2fs_io_info *fio,
406 				  gfp_t gfp_mask)
407 {
408 	/*
409 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
410 	 * read/write raw data without encryption.
411 	 */
412 	if (!fio || !fio->encrypted_page)
413 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
414 }
415 
416 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
417 				     pgoff_t next_idx,
418 				     const struct f2fs_io_info *fio)
419 {
420 	/*
421 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
422 	 * read/write raw data without encryption.
423 	 */
424 	if (fio && fio->encrypted_page)
425 		return !bio_has_crypt_ctx(bio);
426 
427 	return fscrypt_mergeable_bio(bio, inode, next_idx);
428 }
429 
430 static inline void __submit_bio(struct f2fs_sb_info *sbi,
431 				struct bio *bio, enum page_type type)
432 {
433 	if (!is_read_io(bio_op(bio))) {
434 		unsigned int start;
435 
436 		if (type != DATA && type != NODE)
437 			goto submit_io;
438 
439 		if (f2fs_lfs_mode(sbi) && current->plug)
440 			blk_finish_plug(current->plug);
441 
442 		if (!F2FS_IO_ALIGNED(sbi))
443 			goto submit_io;
444 
445 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
446 		start %= F2FS_IO_SIZE(sbi);
447 
448 		if (start == 0)
449 			goto submit_io;
450 
451 		/* fill dummy pages */
452 		for (; start < F2FS_IO_SIZE(sbi); start++) {
453 			struct page *page =
454 				mempool_alloc(sbi->write_io_dummy,
455 					      GFP_NOIO | __GFP_NOFAIL);
456 			f2fs_bug_on(sbi, !page);
457 
458 			zero_user_segment(page, 0, PAGE_SIZE);
459 			SetPagePrivate(page);
460 			set_page_private(page, DUMMY_WRITTEN_PAGE);
461 			lock_page(page);
462 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
463 				f2fs_bug_on(sbi, 1);
464 		}
465 		/*
466 		 * In the NODE case, we lose next block address chain. So, we
467 		 * need to do checkpoint in f2fs_sync_file.
468 		 */
469 		if (type == NODE)
470 			set_sbi_flag(sbi, SBI_NEED_CP);
471 	}
472 submit_io:
473 	if (is_read_io(bio_op(bio)))
474 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
475 	else
476 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
477 	submit_bio(bio);
478 }
479 
480 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
481 				struct bio *bio, enum page_type type)
482 {
483 	__submit_bio(sbi, bio, type);
484 }
485 
486 static void __attach_io_flag(struct f2fs_io_info *fio)
487 {
488 	struct f2fs_sb_info *sbi = fio->sbi;
489 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
490 	unsigned int io_flag, fua_flag, meta_flag;
491 
492 	if (fio->type == DATA)
493 		io_flag = sbi->data_io_flag;
494 	else if (fio->type == NODE)
495 		io_flag = sbi->node_io_flag;
496 	else
497 		return;
498 
499 	fua_flag = io_flag & temp_mask;
500 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
501 
502 	/*
503 	 * data/node io flag bits per temp:
504 	 *      REQ_META     |      REQ_FUA      |
505 	 *    5 |    4 |   3 |    2 |    1 |   0 |
506 	 * Cold | Warm | Hot | Cold | Warm | Hot |
507 	 */
508 	if ((1 << fio->temp) & meta_flag)
509 		fio->op_flags |= REQ_META;
510 	if ((1 << fio->temp) & fua_flag)
511 		fio->op_flags |= REQ_FUA;
512 }
513 
514 static void __submit_merged_bio(struct f2fs_bio_info *io)
515 {
516 	struct f2fs_io_info *fio = &io->fio;
517 
518 	if (!io->bio)
519 		return;
520 
521 	__attach_io_flag(fio);
522 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
523 
524 	if (is_read_io(fio->op))
525 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
526 	else
527 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
528 
529 	__submit_bio(io->sbi, io->bio, fio->type);
530 	io->bio = NULL;
531 }
532 
533 static bool __has_merged_page(struct bio *bio, struct inode *inode,
534 						struct page *page, nid_t ino)
535 {
536 	struct bio_vec *bvec;
537 	struct bvec_iter_all iter_all;
538 
539 	if (!bio)
540 		return false;
541 
542 	if (!inode && !page && !ino)
543 		return true;
544 
545 	bio_for_each_segment_all(bvec, bio, iter_all) {
546 		struct page *target = bvec->bv_page;
547 
548 		if (fscrypt_is_bounce_page(target)) {
549 			target = fscrypt_pagecache_page(target);
550 			if (IS_ERR(target))
551 				continue;
552 		}
553 		if (f2fs_is_compressed_page(target)) {
554 			target = f2fs_compress_control_page(target);
555 			if (IS_ERR(target))
556 				continue;
557 		}
558 
559 		if (inode && inode == target->mapping->host)
560 			return true;
561 		if (page && page == target)
562 			return true;
563 		if (ino && ino == ino_of_node(target))
564 			return true;
565 	}
566 
567 	return false;
568 }
569 
570 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
571 				enum page_type type, enum temp_type temp)
572 {
573 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
574 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
575 
576 	down_write(&io->io_rwsem);
577 
578 	/* change META to META_FLUSH in the checkpoint procedure */
579 	if (type >= META_FLUSH) {
580 		io->fio.type = META_FLUSH;
581 		io->fio.op = REQ_OP_WRITE;
582 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
583 		if (!test_opt(sbi, NOBARRIER))
584 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
585 	}
586 	__submit_merged_bio(io);
587 	up_write(&io->io_rwsem);
588 }
589 
590 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
591 				struct inode *inode, struct page *page,
592 				nid_t ino, enum page_type type, bool force)
593 {
594 	enum temp_type temp;
595 	bool ret = true;
596 
597 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
598 		if (!force)	{
599 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
600 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
601 
602 			down_read(&io->io_rwsem);
603 			ret = __has_merged_page(io->bio, inode, page, ino);
604 			up_read(&io->io_rwsem);
605 		}
606 		if (ret)
607 			__f2fs_submit_merged_write(sbi, type, temp);
608 
609 		/* TODO: use HOT temp only for meta pages now. */
610 		if (type >= META)
611 			break;
612 	}
613 }
614 
615 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
616 {
617 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
618 }
619 
620 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
621 				struct inode *inode, struct page *page,
622 				nid_t ino, enum page_type type)
623 {
624 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
625 }
626 
627 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
628 {
629 	f2fs_submit_merged_write(sbi, DATA);
630 	f2fs_submit_merged_write(sbi, NODE);
631 	f2fs_submit_merged_write(sbi, META);
632 }
633 
634 /*
635  * Fill the locked page with data located in the block address.
636  * A caller needs to unlock the page on failure.
637  */
638 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
639 {
640 	struct bio *bio;
641 	struct page *page = fio->encrypted_page ?
642 			fio->encrypted_page : fio->page;
643 
644 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
645 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
646 			META_GENERIC : DATA_GENERIC_ENHANCE)))
647 		return -EFSCORRUPTED;
648 
649 	trace_f2fs_submit_page_bio(page, fio);
650 
651 	/* Allocate a new bio */
652 	bio = __bio_alloc(fio, 1);
653 
654 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
655 			       fio->page->index, fio, GFP_NOIO);
656 
657 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
658 		bio_put(bio);
659 		return -EFAULT;
660 	}
661 
662 	if (fio->io_wbc && !is_read_io(fio->op))
663 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
664 
665 	__attach_io_flag(fio);
666 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
667 
668 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
669 			__read_io_type(page): WB_DATA_TYPE(fio->page));
670 
671 	__submit_bio(fio->sbi, bio, fio->type);
672 	return 0;
673 }
674 
675 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
676 				block_t last_blkaddr, block_t cur_blkaddr)
677 {
678 	if (unlikely(sbi->max_io_bytes &&
679 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
680 		return false;
681 	if (last_blkaddr + 1 != cur_blkaddr)
682 		return false;
683 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
684 }
685 
686 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
687 						struct f2fs_io_info *fio)
688 {
689 	if (io->fio.op != fio->op)
690 		return false;
691 	return io->fio.op_flags == fio->op_flags;
692 }
693 
694 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
695 					struct f2fs_bio_info *io,
696 					struct f2fs_io_info *fio,
697 					block_t last_blkaddr,
698 					block_t cur_blkaddr)
699 {
700 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
701 		unsigned int filled_blocks =
702 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
703 		unsigned int io_size = F2FS_IO_SIZE(sbi);
704 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
705 
706 		/* IOs in bio is aligned and left space of vectors is not enough */
707 		if (!(filled_blocks % io_size) && left_vecs < io_size)
708 			return false;
709 	}
710 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
711 		return false;
712 	return io_type_is_mergeable(io, fio);
713 }
714 
715 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
716 				struct page *page, enum temp_type temp)
717 {
718 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
719 	struct bio_entry *be;
720 
721 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
722 	be->bio = bio;
723 	bio_get(bio);
724 
725 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
726 		f2fs_bug_on(sbi, 1);
727 
728 	down_write(&io->bio_list_lock);
729 	list_add_tail(&be->list, &io->bio_list);
730 	up_write(&io->bio_list_lock);
731 }
732 
733 static void del_bio_entry(struct bio_entry *be)
734 {
735 	list_del(&be->list);
736 	kmem_cache_free(bio_entry_slab, be);
737 }
738 
739 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
740 							struct page *page)
741 {
742 	struct f2fs_sb_info *sbi = fio->sbi;
743 	enum temp_type temp;
744 	bool found = false;
745 	int ret = -EAGAIN;
746 
747 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
748 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
749 		struct list_head *head = &io->bio_list;
750 		struct bio_entry *be;
751 
752 		down_write(&io->bio_list_lock);
753 		list_for_each_entry(be, head, list) {
754 			if (be->bio != *bio)
755 				continue;
756 
757 			found = true;
758 
759 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
760 							    *fio->last_block,
761 							    fio->new_blkaddr));
762 			if (f2fs_crypt_mergeable_bio(*bio,
763 					fio->page->mapping->host,
764 					fio->page->index, fio) &&
765 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
766 					PAGE_SIZE) {
767 				ret = 0;
768 				break;
769 			}
770 
771 			/* page can't be merged into bio; submit the bio */
772 			del_bio_entry(be);
773 			__submit_bio(sbi, *bio, DATA);
774 			break;
775 		}
776 		up_write(&io->bio_list_lock);
777 	}
778 
779 	if (ret) {
780 		bio_put(*bio);
781 		*bio = NULL;
782 	}
783 
784 	return ret;
785 }
786 
787 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
788 					struct bio **bio, struct page *page)
789 {
790 	enum temp_type temp;
791 	bool found = false;
792 	struct bio *target = bio ? *bio : NULL;
793 
794 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
795 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
796 		struct list_head *head = &io->bio_list;
797 		struct bio_entry *be;
798 
799 		if (list_empty(head))
800 			continue;
801 
802 		down_read(&io->bio_list_lock);
803 		list_for_each_entry(be, head, list) {
804 			if (target)
805 				found = (target == be->bio);
806 			else
807 				found = __has_merged_page(be->bio, NULL,
808 								page, 0);
809 			if (found)
810 				break;
811 		}
812 		up_read(&io->bio_list_lock);
813 
814 		if (!found)
815 			continue;
816 
817 		found = false;
818 
819 		down_write(&io->bio_list_lock);
820 		list_for_each_entry(be, head, list) {
821 			if (target)
822 				found = (target == be->bio);
823 			else
824 				found = __has_merged_page(be->bio, NULL,
825 								page, 0);
826 			if (found) {
827 				target = be->bio;
828 				del_bio_entry(be);
829 				break;
830 			}
831 		}
832 		up_write(&io->bio_list_lock);
833 	}
834 
835 	if (found)
836 		__submit_bio(sbi, target, DATA);
837 	if (bio && *bio) {
838 		bio_put(*bio);
839 		*bio = NULL;
840 	}
841 }
842 
843 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
844 {
845 	struct bio *bio = *fio->bio;
846 	struct page *page = fio->encrypted_page ?
847 			fio->encrypted_page : fio->page;
848 
849 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
850 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
851 		return -EFSCORRUPTED;
852 
853 	trace_f2fs_submit_page_bio(page, fio);
854 
855 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
856 						fio->new_blkaddr))
857 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
858 alloc_new:
859 	if (!bio) {
860 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
861 		__attach_io_flag(fio);
862 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
863 				       fio->page->index, fio, GFP_NOIO);
864 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
865 
866 		add_bio_entry(fio->sbi, bio, page, fio->temp);
867 	} else {
868 		if (add_ipu_page(fio, &bio, page))
869 			goto alloc_new;
870 	}
871 
872 	if (fio->io_wbc)
873 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
874 
875 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
876 
877 	*fio->last_block = fio->new_blkaddr;
878 	*fio->bio = bio;
879 
880 	return 0;
881 }
882 
883 void f2fs_submit_page_write(struct f2fs_io_info *fio)
884 {
885 	struct f2fs_sb_info *sbi = fio->sbi;
886 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
887 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
888 	struct page *bio_page;
889 
890 	f2fs_bug_on(sbi, is_read_io(fio->op));
891 
892 	down_write(&io->io_rwsem);
893 next:
894 	if (fio->in_list) {
895 		spin_lock(&io->io_lock);
896 		if (list_empty(&io->io_list)) {
897 			spin_unlock(&io->io_lock);
898 			goto out;
899 		}
900 		fio = list_first_entry(&io->io_list,
901 						struct f2fs_io_info, list);
902 		list_del(&fio->list);
903 		spin_unlock(&io->io_lock);
904 	}
905 
906 	verify_fio_blkaddr(fio);
907 
908 	if (fio->encrypted_page)
909 		bio_page = fio->encrypted_page;
910 	else if (fio->compressed_page)
911 		bio_page = fio->compressed_page;
912 	else
913 		bio_page = fio->page;
914 
915 	/* set submitted = true as a return value */
916 	fio->submitted = true;
917 
918 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
919 
920 	if (io->bio &&
921 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
922 			      fio->new_blkaddr) ||
923 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
924 				       bio_page->index, fio)))
925 		__submit_merged_bio(io);
926 alloc_new:
927 	if (io->bio == NULL) {
928 		if (F2FS_IO_ALIGNED(sbi) &&
929 				(fio->type == DATA || fio->type == NODE) &&
930 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
931 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
932 			fio->retry = true;
933 			goto skip;
934 		}
935 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
936 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
937 				       bio_page->index, fio, GFP_NOIO);
938 		io->fio = *fio;
939 	}
940 
941 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
942 		__submit_merged_bio(io);
943 		goto alloc_new;
944 	}
945 
946 	if (fio->io_wbc)
947 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
948 
949 	io->last_block_in_bio = fio->new_blkaddr;
950 
951 	trace_f2fs_submit_page_write(fio->page, fio);
952 skip:
953 	if (fio->in_list)
954 		goto next;
955 out:
956 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
957 				!f2fs_is_checkpoint_ready(sbi))
958 		__submit_merged_bio(io);
959 	up_write(&io->io_rwsem);
960 }
961 
962 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
963 				      unsigned nr_pages, unsigned op_flag,
964 				      pgoff_t first_idx, bool for_write)
965 {
966 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
967 	struct bio *bio;
968 	struct bio_post_read_ctx *ctx;
969 	unsigned int post_read_steps = 0;
970 
971 	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
972 			       bio_max_segs(nr_pages), &f2fs_bioset);
973 	if (!bio)
974 		return ERR_PTR(-ENOMEM);
975 
976 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
977 
978 	f2fs_target_device(sbi, blkaddr, bio);
979 	bio->bi_end_io = f2fs_read_end_io;
980 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
981 
982 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
983 		post_read_steps |= STEP_DECRYPT;
984 
985 	if (f2fs_need_verity(inode, first_idx))
986 		post_read_steps |= STEP_VERITY;
987 
988 	/*
989 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
990 	 * contain both compressed and uncompressed clusters.  We'll allocate a
991 	 * bio_post_read_ctx if the file is compressed, but the caller is
992 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
993 	 */
994 
995 	if (post_read_steps || f2fs_compressed_file(inode)) {
996 		/* Due to the mempool, this never fails. */
997 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
998 		ctx->bio = bio;
999 		ctx->sbi = sbi;
1000 		ctx->enabled_steps = post_read_steps;
1001 		bio->bi_private = ctx;
1002 	}
1003 
1004 	return bio;
1005 }
1006 
1007 /* This can handle encryption stuffs */
1008 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1009 				 block_t blkaddr, int op_flags, bool for_write)
1010 {
1011 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1012 	struct bio *bio;
1013 
1014 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1015 					page->index, for_write);
1016 	if (IS_ERR(bio))
1017 		return PTR_ERR(bio);
1018 
1019 	/* wait for GCed page writeback via META_MAPPING */
1020 	f2fs_wait_on_block_writeback(inode, blkaddr);
1021 
1022 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1023 		bio_put(bio);
1024 		return -EFAULT;
1025 	}
1026 	ClearPageError(page);
1027 	inc_page_count(sbi, F2FS_RD_DATA);
1028 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1029 	__submit_bio(sbi, bio, DATA);
1030 	return 0;
1031 }
1032 
1033 static void __set_data_blkaddr(struct dnode_of_data *dn)
1034 {
1035 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1036 	__le32 *addr_array;
1037 	int base = 0;
1038 
1039 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1040 		base = get_extra_isize(dn->inode);
1041 
1042 	/* Get physical address of data block */
1043 	addr_array = blkaddr_in_node(rn);
1044 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1045 }
1046 
1047 /*
1048  * Lock ordering for the change of data block address:
1049  * ->data_page
1050  *  ->node_page
1051  *    update block addresses in the node page
1052  */
1053 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1054 {
1055 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1056 	__set_data_blkaddr(dn);
1057 	if (set_page_dirty(dn->node_page))
1058 		dn->node_changed = true;
1059 }
1060 
1061 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1062 {
1063 	dn->data_blkaddr = blkaddr;
1064 	f2fs_set_data_blkaddr(dn);
1065 	f2fs_update_extent_cache(dn);
1066 }
1067 
1068 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1069 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1070 {
1071 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1072 	int err;
1073 
1074 	if (!count)
1075 		return 0;
1076 
1077 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078 		return -EPERM;
1079 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1080 		return err;
1081 
1082 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1083 						dn->ofs_in_node, count);
1084 
1085 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1086 
1087 	for (; count > 0; dn->ofs_in_node++) {
1088 		block_t blkaddr = f2fs_data_blkaddr(dn);
1089 		if (blkaddr == NULL_ADDR) {
1090 			dn->data_blkaddr = NEW_ADDR;
1091 			__set_data_blkaddr(dn);
1092 			count--;
1093 		}
1094 	}
1095 
1096 	if (set_page_dirty(dn->node_page))
1097 		dn->node_changed = true;
1098 	return 0;
1099 }
1100 
1101 /* Should keep dn->ofs_in_node unchanged */
1102 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1103 {
1104 	unsigned int ofs_in_node = dn->ofs_in_node;
1105 	int ret;
1106 
1107 	ret = f2fs_reserve_new_blocks(dn, 1);
1108 	dn->ofs_in_node = ofs_in_node;
1109 	return ret;
1110 }
1111 
1112 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1113 {
1114 	bool need_put = dn->inode_page ? false : true;
1115 	int err;
1116 
1117 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1118 	if (err)
1119 		return err;
1120 
1121 	if (dn->data_blkaddr == NULL_ADDR)
1122 		err = f2fs_reserve_new_block(dn);
1123 	if (err || need_put)
1124 		f2fs_put_dnode(dn);
1125 	return err;
1126 }
1127 
1128 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1129 {
1130 	struct extent_info ei = {0, 0, 0};
1131 	struct inode *inode = dn->inode;
1132 
1133 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1134 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1135 		return 0;
1136 	}
1137 
1138 	return f2fs_reserve_block(dn, index);
1139 }
1140 
1141 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1142 						int op_flags, bool for_write)
1143 {
1144 	struct address_space *mapping = inode->i_mapping;
1145 	struct dnode_of_data dn;
1146 	struct page *page;
1147 	struct extent_info ei = {0,0,0};
1148 	int err;
1149 
1150 	page = f2fs_grab_cache_page(mapping, index, for_write);
1151 	if (!page)
1152 		return ERR_PTR(-ENOMEM);
1153 
1154 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1155 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1156 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1157 						DATA_GENERIC_ENHANCE_READ)) {
1158 			err = -EFSCORRUPTED;
1159 			goto put_err;
1160 		}
1161 		goto got_it;
1162 	}
1163 
1164 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1165 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1166 	if (err)
1167 		goto put_err;
1168 	f2fs_put_dnode(&dn);
1169 
1170 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1171 		err = -ENOENT;
1172 		goto put_err;
1173 	}
1174 	if (dn.data_blkaddr != NEW_ADDR &&
1175 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1176 						dn.data_blkaddr,
1177 						DATA_GENERIC_ENHANCE)) {
1178 		err = -EFSCORRUPTED;
1179 		goto put_err;
1180 	}
1181 got_it:
1182 	if (PageUptodate(page)) {
1183 		unlock_page(page);
1184 		return page;
1185 	}
1186 
1187 	/*
1188 	 * A new dentry page is allocated but not able to be written, since its
1189 	 * new inode page couldn't be allocated due to -ENOSPC.
1190 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1191 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1192 	 * f2fs_init_inode_metadata.
1193 	 */
1194 	if (dn.data_blkaddr == NEW_ADDR) {
1195 		zero_user_segment(page, 0, PAGE_SIZE);
1196 		if (!PageUptodate(page))
1197 			SetPageUptodate(page);
1198 		unlock_page(page);
1199 		return page;
1200 	}
1201 
1202 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1203 						op_flags, for_write);
1204 	if (err)
1205 		goto put_err;
1206 	return page;
1207 
1208 put_err:
1209 	f2fs_put_page(page, 1);
1210 	return ERR_PTR(err);
1211 }
1212 
1213 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1214 {
1215 	struct address_space *mapping = inode->i_mapping;
1216 	struct page *page;
1217 
1218 	page = find_get_page(mapping, index);
1219 	if (page && PageUptodate(page))
1220 		return page;
1221 	f2fs_put_page(page, 0);
1222 
1223 	page = f2fs_get_read_data_page(inode, index, 0, false);
1224 	if (IS_ERR(page))
1225 		return page;
1226 
1227 	if (PageUptodate(page))
1228 		return page;
1229 
1230 	wait_on_page_locked(page);
1231 	if (unlikely(!PageUptodate(page))) {
1232 		f2fs_put_page(page, 0);
1233 		return ERR_PTR(-EIO);
1234 	}
1235 	return page;
1236 }
1237 
1238 /*
1239  * If it tries to access a hole, return an error.
1240  * Because, the callers, functions in dir.c and GC, should be able to know
1241  * whether this page exists or not.
1242  */
1243 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1244 							bool for_write)
1245 {
1246 	struct address_space *mapping = inode->i_mapping;
1247 	struct page *page;
1248 repeat:
1249 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1250 	if (IS_ERR(page))
1251 		return page;
1252 
1253 	/* wait for read completion */
1254 	lock_page(page);
1255 	if (unlikely(page->mapping != mapping)) {
1256 		f2fs_put_page(page, 1);
1257 		goto repeat;
1258 	}
1259 	if (unlikely(!PageUptodate(page))) {
1260 		f2fs_put_page(page, 1);
1261 		return ERR_PTR(-EIO);
1262 	}
1263 	return page;
1264 }
1265 
1266 /*
1267  * Caller ensures that this data page is never allocated.
1268  * A new zero-filled data page is allocated in the page cache.
1269  *
1270  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1271  * f2fs_unlock_op().
1272  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1273  * ipage should be released by this function.
1274  */
1275 struct page *f2fs_get_new_data_page(struct inode *inode,
1276 		struct page *ipage, pgoff_t index, bool new_i_size)
1277 {
1278 	struct address_space *mapping = inode->i_mapping;
1279 	struct page *page;
1280 	struct dnode_of_data dn;
1281 	int err;
1282 
1283 	page = f2fs_grab_cache_page(mapping, index, true);
1284 	if (!page) {
1285 		/*
1286 		 * before exiting, we should make sure ipage will be released
1287 		 * if any error occur.
1288 		 */
1289 		f2fs_put_page(ipage, 1);
1290 		return ERR_PTR(-ENOMEM);
1291 	}
1292 
1293 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1294 	err = f2fs_reserve_block(&dn, index);
1295 	if (err) {
1296 		f2fs_put_page(page, 1);
1297 		return ERR_PTR(err);
1298 	}
1299 	if (!ipage)
1300 		f2fs_put_dnode(&dn);
1301 
1302 	if (PageUptodate(page))
1303 		goto got_it;
1304 
1305 	if (dn.data_blkaddr == NEW_ADDR) {
1306 		zero_user_segment(page, 0, PAGE_SIZE);
1307 		if (!PageUptodate(page))
1308 			SetPageUptodate(page);
1309 	} else {
1310 		f2fs_put_page(page, 1);
1311 
1312 		/* if ipage exists, blkaddr should be NEW_ADDR */
1313 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1314 		page = f2fs_get_lock_data_page(inode, index, true);
1315 		if (IS_ERR(page))
1316 			return page;
1317 	}
1318 got_it:
1319 	if (new_i_size && i_size_read(inode) <
1320 				((loff_t)(index + 1) << PAGE_SHIFT))
1321 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1322 	return page;
1323 }
1324 
1325 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1326 {
1327 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1328 	struct f2fs_summary sum;
1329 	struct node_info ni;
1330 	block_t old_blkaddr;
1331 	blkcnt_t count = 1;
1332 	int err;
1333 
1334 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1335 		return -EPERM;
1336 
1337 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1338 	if (err)
1339 		return err;
1340 
1341 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1342 	if (dn->data_blkaddr != NULL_ADDR)
1343 		goto alloc;
1344 
1345 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1346 		return err;
1347 
1348 alloc:
1349 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1350 	old_blkaddr = dn->data_blkaddr;
1351 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1352 				&sum, seg_type, NULL);
1353 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1354 		invalidate_mapping_pages(META_MAPPING(sbi),
1355 					old_blkaddr, old_blkaddr);
1356 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1357 
1358 	/*
1359 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1360 	 * data from unwritten block via dio_read.
1361 	 */
1362 	return 0;
1363 }
1364 
1365 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1366 {
1367 	struct inode *inode = file_inode(iocb->ki_filp);
1368 	struct f2fs_map_blocks map;
1369 	int flag;
1370 	int err = 0;
1371 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1372 
1373 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1374 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1375 	if (map.m_len > map.m_lblk)
1376 		map.m_len -= map.m_lblk;
1377 	else
1378 		map.m_len = 0;
1379 
1380 	map.m_next_pgofs = NULL;
1381 	map.m_next_extent = NULL;
1382 	map.m_seg_type = NO_CHECK_TYPE;
1383 	map.m_may_create = true;
1384 
1385 	if (direct_io) {
1386 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1387 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1388 					F2FS_GET_BLOCK_PRE_AIO :
1389 					F2FS_GET_BLOCK_PRE_DIO;
1390 		goto map_blocks;
1391 	}
1392 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1393 		err = f2fs_convert_inline_inode(inode);
1394 		if (err)
1395 			return err;
1396 	}
1397 	if (f2fs_has_inline_data(inode))
1398 		return err;
1399 
1400 	flag = F2FS_GET_BLOCK_PRE_AIO;
1401 
1402 map_blocks:
1403 	err = f2fs_map_blocks(inode, &map, 1, flag);
1404 	if (map.m_len > 0 && err == -ENOSPC) {
1405 		if (!direct_io)
1406 			set_inode_flag(inode, FI_NO_PREALLOC);
1407 		err = 0;
1408 	}
1409 	return err;
1410 }
1411 
1412 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1413 {
1414 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1415 		if (lock)
1416 			down_read(&sbi->node_change);
1417 		else
1418 			up_read(&sbi->node_change);
1419 	} else {
1420 		if (lock)
1421 			f2fs_lock_op(sbi);
1422 		else
1423 			f2fs_unlock_op(sbi);
1424 	}
1425 }
1426 
1427 /*
1428  * f2fs_map_blocks() tries to find or build mapping relationship which
1429  * maps continuous logical blocks to physical blocks, and return such
1430  * info via f2fs_map_blocks structure.
1431  */
1432 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1433 						int create, int flag)
1434 {
1435 	unsigned int maxblocks = map->m_len;
1436 	struct dnode_of_data dn;
1437 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1438 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1439 	pgoff_t pgofs, end_offset, end;
1440 	int err = 0, ofs = 1;
1441 	unsigned int ofs_in_node, last_ofs_in_node;
1442 	blkcnt_t prealloc;
1443 	struct extent_info ei = {0,0,0};
1444 	block_t blkaddr;
1445 	unsigned int start_pgofs;
1446 
1447 	if (!maxblocks)
1448 		return 0;
1449 
1450 	map->m_len = 0;
1451 	map->m_flags = 0;
1452 
1453 	/* it only supports block size == page size */
1454 	pgofs =	(pgoff_t)map->m_lblk;
1455 	end = pgofs + maxblocks;
1456 
1457 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1458 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1459 							map->m_may_create)
1460 			goto next_dnode;
1461 
1462 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1463 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1464 		map->m_flags = F2FS_MAP_MAPPED;
1465 		if (map->m_next_extent)
1466 			*map->m_next_extent = pgofs + map->m_len;
1467 
1468 		/* for hardware encryption, but to avoid potential issue in future */
1469 		if (flag == F2FS_GET_BLOCK_DIO)
1470 			f2fs_wait_on_block_writeback_range(inode,
1471 						map->m_pblk, map->m_len);
1472 		goto out;
1473 	}
1474 
1475 next_dnode:
1476 	if (map->m_may_create)
1477 		f2fs_do_map_lock(sbi, flag, true);
1478 
1479 	/* When reading holes, we need its node page */
1480 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1481 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1482 	if (err) {
1483 		if (flag == F2FS_GET_BLOCK_BMAP)
1484 			map->m_pblk = 0;
1485 		if (err == -ENOENT) {
1486 			err = 0;
1487 			if (map->m_next_pgofs)
1488 				*map->m_next_pgofs =
1489 					f2fs_get_next_page_offset(&dn, pgofs);
1490 			if (map->m_next_extent)
1491 				*map->m_next_extent =
1492 					f2fs_get_next_page_offset(&dn, pgofs);
1493 		}
1494 		goto unlock_out;
1495 	}
1496 
1497 	start_pgofs = pgofs;
1498 	prealloc = 0;
1499 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1500 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1501 
1502 next_block:
1503 	blkaddr = f2fs_data_blkaddr(&dn);
1504 
1505 	if (__is_valid_data_blkaddr(blkaddr) &&
1506 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1507 		err = -EFSCORRUPTED;
1508 		goto sync_out;
1509 	}
1510 
1511 	if (__is_valid_data_blkaddr(blkaddr)) {
1512 		/* use out-place-update for driect IO under LFS mode */
1513 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1514 							map->m_may_create) {
1515 			err = __allocate_data_block(&dn, map->m_seg_type);
1516 			if (err)
1517 				goto sync_out;
1518 			blkaddr = dn.data_blkaddr;
1519 			set_inode_flag(inode, FI_APPEND_WRITE);
1520 		}
1521 	} else {
1522 		if (create) {
1523 			if (unlikely(f2fs_cp_error(sbi))) {
1524 				err = -EIO;
1525 				goto sync_out;
1526 			}
1527 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1528 				if (blkaddr == NULL_ADDR) {
1529 					prealloc++;
1530 					last_ofs_in_node = dn.ofs_in_node;
1531 				}
1532 			} else {
1533 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1534 					flag != F2FS_GET_BLOCK_DIO);
1535 				err = __allocate_data_block(&dn,
1536 							map->m_seg_type);
1537 				if (!err)
1538 					set_inode_flag(inode, FI_APPEND_WRITE);
1539 			}
1540 			if (err)
1541 				goto sync_out;
1542 			map->m_flags |= F2FS_MAP_NEW;
1543 			blkaddr = dn.data_blkaddr;
1544 		} else {
1545 			if (flag == F2FS_GET_BLOCK_BMAP) {
1546 				map->m_pblk = 0;
1547 				goto sync_out;
1548 			}
1549 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1550 				goto sync_out;
1551 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1552 						blkaddr == NULL_ADDR) {
1553 				if (map->m_next_pgofs)
1554 					*map->m_next_pgofs = pgofs + 1;
1555 				goto sync_out;
1556 			}
1557 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1558 				/* for defragment case */
1559 				if (map->m_next_pgofs)
1560 					*map->m_next_pgofs = pgofs + 1;
1561 				goto sync_out;
1562 			}
1563 		}
1564 	}
1565 
1566 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1567 		goto skip;
1568 
1569 	if (map->m_len == 0) {
1570 		/* preallocated unwritten block should be mapped for fiemap. */
1571 		if (blkaddr == NEW_ADDR)
1572 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1573 		map->m_flags |= F2FS_MAP_MAPPED;
1574 
1575 		map->m_pblk = blkaddr;
1576 		map->m_len = 1;
1577 	} else if ((map->m_pblk != NEW_ADDR &&
1578 			blkaddr == (map->m_pblk + ofs)) ||
1579 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1580 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1581 		ofs++;
1582 		map->m_len++;
1583 	} else {
1584 		goto sync_out;
1585 	}
1586 
1587 skip:
1588 	dn.ofs_in_node++;
1589 	pgofs++;
1590 
1591 	/* preallocate blocks in batch for one dnode page */
1592 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1593 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1594 
1595 		dn.ofs_in_node = ofs_in_node;
1596 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1597 		if (err)
1598 			goto sync_out;
1599 
1600 		map->m_len += dn.ofs_in_node - ofs_in_node;
1601 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1602 			err = -ENOSPC;
1603 			goto sync_out;
1604 		}
1605 		dn.ofs_in_node = end_offset;
1606 	}
1607 
1608 	if (pgofs >= end)
1609 		goto sync_out;
1610 	else if (dn.ofs_in_node < end_offset)
1611 		goto next_block;
1612 
1613 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1614 		if (map->m_flags & F2FS_MAP_MAPPED) {
1615 			unsigned int ofs = start_pgofs - map->m_lblk;
1616 
1617 			f2fs_update_extent_cache_range(&dn,
1618 				start_pgofs, map->m_pblk + ofs,
1619 				map->m_len - ofs);
1620 		}
1621 	}
1622 
1623 	f2fs_put_dnode(&dn);
1624 
1625 	if (map->m_may_create) {
1626 		f2fs_do_map_lock(sbi, flag, false);
1627 		f2fs_balance_fs(sbi, dn.node_changed);
1628 	}
1629 	goto next_dnode;
1630 
1631 sync_out:
1632 
1633 	/* for hardware encryption, but to avoid potential issue in future */
1634 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1635 		f2fs_wait_on_block_writeback_range(inode,
1636 						map->m_pblk, map->m_len);
1637 
1638 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1639 		if (map->m_flags & F2FS_MAP_MAPPED) {
1640 			unsigned int ofs = start_pgofs - map->m_lblk;
1641 
1642 			f2fs_update_extent_cache_range(&dn,
1643 				start_pgofs, map->m_pblk + ofs,
1644 				map->m_len - ofs);
1645 		}
1646 		if (map->m_next_extent)
1647 			*map->m_next_extent = pgofs + 1;
1648 	}
1649 	f2fs_put_dnode(&dn);
1650 unlock_out:
1651 	if (map->m_may_create) {
1652 		f2fs_do_map_lock(sbi, flag, false);
1653 		f2fs_balance_fs(sbi, dn.node_changed);
1654 	}
1655 out:
1656 	trace_f2fs_map_blocks(inode, map, err);
1657 	return err;
1658 }
1659 
1660 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1661 {
1662 	struct f2fs_map_blocks map;
1663 	block_t last_lblk;
1664 	int err;
1665 
1666 	if (pos + len > i_size_read(inode))
1667 		return false;
1668 
1669 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1670 	map.m_next_pgofs = NULL;
1671 	map.m_next_extent = NULL;
1672 	map.m_seg_type = NO_CHECK_TYPE;
1673 	map.m_may_create = false;
1674 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1675 
1676 	while (map.m_lblk < last_lblk) {
1677 		map.m_len = last_lblk - map.m_lblk;
1678 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1679 		if (err || map.m_len == 0)
1680 			return false;
1681 		map.m_lblk += map.m_len;
1682 	}
1683 	return true;
1684 }
1685 
1686 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1687 {
1688 	return (bytes >> inode->i_blkbits);
1689 }
1690 
1691 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1692 {
1693 	return (blks << inode->i_blkbits);
1694 }
1695 
1696 static int __get_data_block(struct inode *inode, sector_t iblock,
1697 			struct buffer_head *bh, int create, int flag,
1698 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1699 {
1700 	struct f2fs_map_blocks map;
1701 	int err;
1702 
1703 	map.m_lblk = iblock;
1704 	map.m_len = bytes_to_blks(inode, bh->b_size);
1705 	map.m_next_pgofs = next_pgofs;
1706 	map.m_next_extent = NULL;
1707 	map.m_seg_type = seg_type;
1708 	map.m_may_create = may_write;
1709 
1710 	err = f2fs_map_blocks(inode, &map, create, flag);
1711 	if (!err) {
1712 		map_bh(bh, inode->i_sb, map.m_pblk);
1713 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1714 		bh->b_size = blks_to_bytes(inode, map.m_len);
1715 	}
1716 	return err;
1717 }
1718 
1719 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1720 			struct buffer_head *bh_result, int create)
1721 {
1722 	return __get_data_block(inode, iblock, bh_result, create,
1723 				F2FS_GET_BLOCK_DIO, NULL,
1724 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1725 				IS_SWAPFILE(inode) ? false : true);
1726 }
1727 
1728 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1729 			struct buffer_head *bh_result, int create)
1730 {
1731 	return __get_data_block(inode, iblock, bh_result, create,
1732 				F2FS_GET_BLOCK_DIO, NULL,
1733 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1734 				false);
1735 }
1736 
1737 static int f2fs_xattr_fiemap(struct inode *inode,
1738 				struct fiemap_extent_info *fieinfo)
1739 {
1740 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1741 	struct page *page;
1742 	struct node_info ni;
1743 	__u64 phys = 0, len;
1744 	__u32 flags;
1745 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1746 	int err = 0;
1747 
1748 	if (f2fs_has_inline_xattr(inode)) {
1749 		int offset;
1750 
1751 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1752 						inode->i_ino, false);
1753 		if (!page)
1754 			return -ENOMEM;
1755 
1756 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1757 		if (err) {
1758 			f2fs_put_page(page, 1);
1759 			return err;
1760 		}
1761 
1762 		phys = blks_to_bytes(inode, ni.blk_addr);
1763 		offset = offsetof(struct f2fs_inode, i_addr) +
1764 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1765 					get_inline_xattr_addrs(inode));
1766 
1767 		phys += offset;
1768 		len = inline_xattr_size(inode);
1769 
1770 		f2fs_put_page(page, 1);
1771 
1772 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1773 
1774 		if (!xnid)
1775 			flags |= FIEMAP_EXTENT_LAST;
1776 
1777 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1778 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1779 		if (err || err == 1)
1780 			return err;
1781 	}
1782 
1783 	if (xnid) {
1784 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1785 		if (!page)
1786 			return -ENOMEM;
1787 
1788 		err = f2fs_get_node_info(sbi, xnid, &ni);
1789 		if (err) {
1790 			f2fs_put_page(page, 1);
1791 			return err;
1792 		}
1793 
1794 		phys = blks_to_bytes(inode, ni.blk_addr);
1795 		len = inode->i_sb->s_blocksize;
1796 
1797 		f2fs_put_page(page, 1);
1798 
1799 		flags = FIEMAP_EXTENT_LAST;
1800 	}
1801 
1802 	if (phys) {
1803 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1804 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1805 	}
1806 
1807 	return (err < 0 ? err : 0);
1808 }
1809 
1810 static loff_t max_inode_blocks(struct inode *inode)
1811 {
1812 	loff_t result = ADDRS_PER_INODE(inode);
1813 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1814 
1815 	/* two direct node blocks */
1816 	result += (leaf_count * 2);
1817 
1818 	/* two indirect node blocks */
1819 	leaf_count *= NIDS_PER_BLOCK;
1820 	result += (leaf_count * 2);
1821 
1822 	/* one double indirect node block */
1823 	leaf_count *= NIDS_PER_BLOCK;
1824 	result += leaf_count;
1825 
1826 	return result;
1827 }
1828 
1829 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1830 		u64 start, u64 len)
1831 {
1832 	struct f2fs_map_blocks map;
1833 	sector_t start_blk, last_blk;
1834 	pgoff_t next_pgofs;
1835 	u64 logical = 0, phys = 0, size = 0;
1836 	u32 flags = 0;
1837 	int ret = 0;
1838 	bool compr_cluster = false;
1839 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1840 
1841 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1842 		ret = f2fs_precache_extents(inode);
1843 		if (ret)
1844 			return ret;
1845 	}
1846 
1847 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1848 	if (ret)
1849 		return ret;
1850 
1851 	inode_lock(inode);
1852 
1853 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1854 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1855 		goto out;
1856 	}
1857 
1858 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1859 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1860 		if (ret != -EAGAIN)
1861 			goto out;
1862 	}
1863 
1864 	if (bytes_to_blks(inode, len) == 0)
1865 		len = blks_to_bytes(inode, 1);
1866 
1867 	start_blk = bytes_to_blks(inode, start);
1868 	last_blk = bytes_to_blks(inode, start + len - 1);
1869 
1870 next:
1871 	memset(&map, 0, sizeof(map));
1872 	map.m_lblk = start_blk;
1873 	map.m_len = bytes_to_blks(inode, len);
1874 	map.m_next_pgofs = &next_pgofs;
1875 	map.m_seg_type = NO_CHECK_TYPE;
1876 
1877 	if (compr_cluster)
1878 		map.m_len = cluster_size - 1;
1879 
1880 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1881 	if (ret)
1882 		goto out;
1883 
1884 	/* HOLE */
1885 	if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1886 		start_blk = next_pgofs;
1887 
1888 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1889 						max_inode_blocks(inode)))
1890 			goto prep_next;
1891 
1892 		flags |= FIEMAP_EXTENT_LAST;
1893 	}
1894 
1895 	if (size) {
1896 		flags |= FIEMAP_EXTENT_MERGED;
1897 		if (IS_ENCRYPTED(inode))
1898 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1899 
1900 		ret = fiemap_fill_next_extent(fieinfo, logical,
1901 				phys, size, flags);
1902 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1903 		if (ret)
1904 			goto out;
1905 		size = 0;
1906 	}
1907 
1908 	if (start_blk > last_blk)
1909 		goto out;
1910 
1911 	if (compr_cluster) {
1912 		compr_cluster = false;
1913 
1914 
1915 		logical = blks_to_bytes(inode, start_blk - 1);
1916 		phys = blks_to_bytes(inode, map.m_pblk);
1917 		size = blks_to_bytes(inode, cluster_size);
1918 
1919 		flags |= FIEMAP_EXTENT_ENCODED;
1920 
1921 		start_blk += cluster_size - 1;
1922 
1923 		if (start_blk > last_blk)
1924 			goto out;
1925 
1926 		goto prep_next;
1927 	}
1928 
1929 	if (map.m_pblk == COMPRESS_ADDR) {
1930 		compr_cluster = true;
1931 		start_blk++;
1932 		goto prep_next;
1933 	}
1934 
1935 	logical = blks_to_bytes(inode, start_blk);
1936 	phys = blks_to_bytes(inode, map.m_pblk);
1937 	size = blks_to_bytes(inode, map.m_len);
1938 	flags = 0;
1939 	if (map.m_flags & F2FS_MAP_UNWRITTEN)
1940 		flags = FIEMAP_EXTENT_UNWRITTEN;
1941 
1942 	start_blk += bytes_to_blks(inode, size);
1943 
1944 prep_next:
1945 	cond_resched();
1946 	if (fatal_signal_pending(current))
1947 		ret = -EINTR;
1948 	else
1949 		goto next;
1950 out:
1951 	if (ret == 1)
1952 		ret = 0;
1953 
1954 	inode_unlock(inode);
1955 	return ret;
1956 }
1957 
1958 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1959 {
1960 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1961 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1962 		return inode->i_sb->s_maxbytes;
1963 
1964 	return i_size_read(inode);
1965 }
1966 
1967 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1968 					unsigned nr_pages,
1969 					struct f2fs_map_blocks *map,
1970 					struct bio **bio_ret,
1971 					sector_t *last_block_in_bio,
1972 					bool is_readahead)
1973 {
1974 	struct bio *bio = *bio_ret;
1975 	const unsigned blocksize = blks_to_bytes(inode, 1);
1976 	sector_t block_in_file;
1977 	sector_t last_block;
1978 	sector_t last_block_in_file;
1979 	sector_t block_nr;
1980 	int ret = 0;
1981 
1982 	block_in_file = (sector_t)page_index(page);
1983 	last_block = block_in_file + nr_pages;
1984 	last_block_in_file = bytes_to_blks(inode,
1985 			f2fs_readpage_limit(inode) + blocksize - 1);
1986 	if (last_block > last_block_in_file)
1987 		last_block = last_block_in_file;
1988 
1989 	/* just zeroing out page which is beyond EOF */
1990 	if (block_in_file >= last_block)
1991 		goto zero_out;
1992 	/*
1993 	 * Map blocks using the previous result first.
1994 	 */
1995 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1996 			block_in_file > map->m_lblk &&
1997 			block_in_file < (map->m_lblk + map->m_len))
1998 		goto got_it;
1999 
2000 	/*
2001 	 * Then do more f2fs_map_blocks() calls until we are
2002 	 * done with this page.
2003 	 */
2004 	map->m_lblk = block_in_file;
2005 	map->m_len = last_block - block_in_file;
2006 
2007 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2008 	if (ret)
2009 		goto out;
2010 got_it:
2011 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2012 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2013 		SetPageMappedToDisk(page);
2014 
2015 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2016 					!cleancache_get_page(page))) {
2017 			SetPageUptodate(page);
2018 			goto confused;
2019 		}
2020 
2021 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2022 						DATA_GENERIC_ENHANCE_READ)) {
2023 			ret = -EFSCORRUPTED;
2024 			goto out;
2025 		}
2026 	} else {
2027 zero_out:
2028 		zero_user_segment(page, 0, PAGE_SIZE);
2029 		if (f2fs_need_verity(inode, page->index) &&
2030 		    !fsverity_verify_page(page)) {
2031 			ret = -EIO;
2032 			goto out;
2033 		}
2034 		if (!PageUptodate(page))
2035 			SetPageUptodate(page);
2036 		unlock_page(page);
2037 		goto out;
2038 	}
2039 
2040 	/*
2041 	 * This page will go to BIO.  Do we need to send this
2042 	 * BIO off first?
2043 	 */
2044 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2045 				       *last_block_in_bio, block_nr) ||
2046 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2047 submit_and_realloc:
2048 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2049 		bio = NULL;
2050 	}
2051 	if (bio == NULL) {
2052 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2053 				is_readahead ? REQ_RAHEAD : 0, page->index,
2054 				false);
2055 		if (IS_ERR(bio)) {
2056 			ret = PTR_ERR(bio);
2057 			bio = NULL;
2058 			goto out;
2059 		}
2060 	}
2061 
2062 	/*
2063 	 * If the page is under writeback, we need to wait for
2064 	 * its completion to see the correct decrypted data.
2065 	 */
2066 	f2fs_wait_on_block_writeback(inode, block_nr);
2067 
2068 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2069 		goto submit_and_realloc;
2070 
2071 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2072 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2073 	ClearPageError(page);
2074 	*last_block_in_bio = block_nr;
2075 	goto out;
2076 confused:
2077 	if (bio) {
2078 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2079 		bio = NULL;
2080 	}
2081 	unlock_page(page);
2082 out:
2083 	*bio_ret = bio;
2084 	return ret;
2085 }
2086 
2087 #ifdef CONFIG_F2FS_FS_COMPRESSION
2088 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2089 				unsigned nr_pages, sector_t *last_block_in_bio,
2090 				bool is_readahead, bool for_write)
2091 {
2092 	struct dnode_of_data dn;
2093 	struct inode *inode = cc->inode;
2094 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2095 	struct bio *bio = *bio_ret;
2096 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2097 	sector_t last_block_in_file;
2098 	const unsigned blocksize = blks_to_bytes(inode, 1);
2099 	struct decompress_io_ctx *dic = NULL;
2100 	int i;
2101 	int ret = 0;
2102 
2103 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2104 
2105 	last_block_in_file = bytes_to_blks(inode,
2106 			f2fs_readpage_limit(inode) + blocksize - 1);
2107 
2108 	/* get rid of pages beyond EOF */
2109 	for (i = 0; i < cc->cluster_size; i++) {
2110 		struct page *page = cc->rpages[i];
2111 
2112 		if (!page)
2113 			continue;
2114 		if ((sector_t)page->index >= last_block_in_file) {
2115 			zero_user_segment(page, 0, PAGE_SIZE);
2116 			if (!PageUptodate(page))
2117 				SetPageUptodate(page);
2118 		} else if (!PageUptodate(page)) {
2119 			continue;
2120 		}
2121 		unlock_page(page);
2122 		cc->rpages[i] = NULL;
2123 		cc->nr_rpages--;
2124 	}
2125 
2126 	/* we are done since all pages are beyond EOF */
2127 	if (f2fs_cluster_is_empty(cc))
2128 		goto out;
2129 
2130 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2131 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2132 	if (ret)
2133 		goto out;
2134 
2135 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2136 
2137 	for (i = 1; i < cc->cluster_size; i++) {
2138 		block_t blkaddr;
2139 
2140 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2141 						dn.ofs_in_node + i);
2142 
2143 		if (!__is_valid_data_blkaddr(blkaddr))
2144 			break;
2145 
2146 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2147 			ret = -EFAULT;
2148 			goto out_put_dnode;
2149 		}
2150 		cc->nr_cpages++;
2151 	}
2152 
2153 	/* nothing to decompress */
2154 	if (cc->nr_cpages == 0) {
2155 		ret = 0;
2156 		goto out_put_dnode;
2157 	}
2158 
2159 	dic = f2fs_alloc_dic(cc);
2160 	if (IS_ERR(dic)) {
2161 		ret = PTR_ERR(dic);
2162 		goto out_put_dnode;
2163 	}
2164 
2165 	for (i = 0; i < dic->nr_cpages; i++) {
2166 		struct page *page = dic->cpages[i];
2167 		block_t blkaddr;
2168 		struct bio_post_read_ctx *ctx;
2169 
2170 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2171 						dn.ofs_in_node + i + 1);
2172 
2173 		if (bio && (!page_is_mergeable(sbi, bio,
2174 					*last_block_in_bio, blkaddr) ||
2175 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2176 submit_and_realloc:
2177 			__submit_bio(sbi, bio, DATA);
2178 			bio = NULL;
2179 		}
2180 
2181 		if (!bio) {
2182 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2183 					is_readahead ? REQ_RAHEAD : 0,
2184 					page->index, for_write);
2185 			if (IS_ERR(bio)) {
2186 				ret = PTR_ERR(bio);
2187 				f2fs_decompress_end_io(dic, ret);
2188 				f2fs_put_dnode(&dn);
2189 				*bio_ret = NULL;
2190 				return ret;
2191 			}
2192 		}
2193 
2194 		f2fs_wait_on_block_writeback(inode, blkaddr);
2195 
2196 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2197 			goto submit_and_realloc;
2198 
2199 		ctx = bio->bi_private;
2200 		ctx->enabled_steps |= STEP_DECOMPRESS;
2201 		refcount_inc(&dic->refcnt);
2202 
2203 		inc_page_count(sbi, F2FS_RD_DATA);
2204 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2205 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2206 		ClearPageError(page);
2207 		*last_block_in_bio = blkaddr;
2208 	}
2209 
2210 	f2fs_put_dnode(&dn);
2211 
2212 	*bio_ret = bio;
2213 	return 0;
2214 
2215 out_put_dnode:
2216 	f2fs_put_dnode(&dn);
2217 out:
2218 	for (i = 0; i < cc->cluster_size; i++) {
2219 		if (cc->rpages[i]) {
2220 			ClearPageUptodate(cc->rpages[i]);
2221 			ClearPageError(cc->rpages[i]);
2222 			unlock_page(cc->rpages[i]);
2223 		}
2224 	}
2225 	*bio_ret = bio;
2226 	return ret;
2227 }
2228 #endif
2229 
2230 /*
2231  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2232  * Major change was from block_size == page_size in f2fs by default.
2233  */
2234 static int f2fs_mpage_readpages(struct inode *inode,
2235 		struct readahead_control *rac, struct page *page)
2236 {
2237 	struct bio *bio = NULL;
2238 	sector_t last_block_in_bio = 0;
2239 	struct f2fs_map_blocks map;
2240 #ifdef CONFIG_F2FS_FS_COMPRESSION
2241 	struct compress_ctx cc = {
2242 		.inode = inode,
2243 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2244 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2245 		.cluster_idx = NULL_CLUSTER,
2246 		.rpages = NULL,
2247 		.cpages = NULL,
2248 		.nr_rpages = 0,
2249 		.nr_cpages = 0,
2250 	};
2251 #endif
2252 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2253 	unsigned max_nr_pages = nr_pages;
2254 	int ret = 0;
2255 
2256 	map.m_pblk = 0;
2257 	map.m_lblk = 0;
2258 	map.m_len = 0;
2259 	map.m_flags = 0;
2260 	map.m_next_pgofs = NULL;
2261 	map.m_next_extent = NULL;
2262 	map.m_seg_type = NO_CHECK_TYPE;
2263 	map.m_may_create = false;
2264 
2265 	for (; nr_pages; nr_pages--) {
2266 		if (rac) {
2267 			page = readahead_page(rac);
2268 			prefetchw(&page->flags);
2269 		}
2270 
2271 #ifdef CONFIG_F2FS_FS_COMPRESSION
2272 		if (f2fs_compressed_file(inode)) {
2273 			/* there are remained comressed pages, submit them */
2274 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2275 				ret = f2fs_read_multi_pages(&cc, &bio,
2276 							max_nr_pages,
2277 							&last_block_in_bio,
2278 							rac != NULL, false);
2279 				f2fs_destroy_compress_ctx(&cc);
2280 				if (ret)
2281 					goto set_error_page;
2282 			}
2283 			ret = f2fs_is_compressed_cluster(inode, page->index);
2284 			if (ret < 0)
2285 				goto set_error_page;
2286 			else if (!ret)
2287 				goto read_single_page;
2288 
2289 			ret = f2fs_init_compress_ctx(&cc);
2290 			if (ret)
2291 				goto set_error_page;
2292 
2293 			f2fs_compress_ctx_add_page(&cc, page);
2294 
2295 			goto next_page;
2296 		}
2297 read_single_page:
2298 #endif
2299 
2300 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2301 					&bio, &last_block_in_bio, rac);
2302 		if (ret) {
2303 #ifdef CONFIG_F2FS_FS_COMPRESSION
2304 set_error_page:
2305 #endif
2306 			SetPageError(page);
2307 			zero_user_segment(page, 0, PAGE_SIZE);
2308 			unlock_page(page);
2309 		}
2310 #ifdef CONFIG_F2FS_FS_COMPRESSION
2311 next_page:
2312 #endif
2313 		if (rac)
2314 			put_page(page);
2315 
2316 #ifdef CONFIG_F2FS_FS_COMPRESSION
2317 		if (f2fs_compressed_file(inode)) {
2318 			/* last page */
2319 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2320 				ret = f2fs_read_multi_pages(&cc, &bio,
2321 							max_nr_pages,
2322 							&last_block_in_bio,
2323 							rac != NULL, false);
2324 				f2fs_destroy_compress_ctx(&cc);
2325 			}
2326 		}
2327 #endif
2328 	}
2329 	if (bio)
2330 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2331 	return ret;
2332 }
2333 
2334 static int f2fs_read_data_page(struct file *file, struct page *page)
2335 {
2336 	struct inode *inode = page_file_mapping(page)->host;
2337 	int ret = -EAGAIN;
2338 
2339 	trace_f2fs_readpage(page, DATA);
2340 
2341 	if (!f2fs_is_compress_backend_ready(inode)) {
2342 		unlock_page(page);
2343 		return -EOPNOTSUPP;
2344 	}
2345 
2346 	/* If the file has inline data, try to read it directly */
2347 	if (f2fs_has_inline_data(inode))
2348 		ret = f2fs_read_inline_data(inode, page);
2349 	if (ret == -EAGAIN)
2350 		ret = f2fs_mpage_readpages(inode, NULL, page);
2351 	return ret;
2352 }
2353 
2354 static void f2fs_readahead(struct readahead_control *rac)
2355 {
2356 	struct inode *inode = rac->mapping->host;
2357 
2358 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2359 
2360 	if (!f2fs_is_compress_backend_ready(inode))
2361 		return;
2362 
2363 	/* If the file has inline data, skip readpages */
2364 	if (f2fs_has_inline_data(inode))
2365 		return;
2366 
2367 	f2fs_mpage_readpages(inode, rac, NULL);
2368 }
2369 
2370 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2371 {
2372 	struct inode *inode = fio->page->mapping->host;
2373 	struct page *mpage, *page;
2374 	gfp_t gfp_flags = GFP_NOFS;
2375 
2376 	if (!f2fs_encrypted_file(inode))
2377 		return 0;
2378 
2379 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2380 
2381 	/* wait for GCed page writeback via META_MAPPING */
2382 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2383 
2384 	if (fscrypt_inode_uses_inline_crypto(inode))
2385 		return 0;
2386 
2387 retry_encrypt:
2388 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2389 					PAGE_SIZE, 0, gfp_flags);
2390 	if (IS_ERR(fio->encrypted_page)) {
2391 		/* flush pending IOs and wait for a while in the ENOMEM case */
2392 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2393 			f2fs_flush_merged_writes(fio->sbi);
2394 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2395 			gfp_flags |= __GFP_NOFAIL;
2396 			goto retry_encrypt;
2397 		}
2398 		return PTR_ERR(fio->encrypted_page);
2399 	}
2400 
2401 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2402 	if (mpage) {
2403 		if (PageUptodate(mpage))
2404 			memcpy(page_address(mpage),
2405 				page_address(fio->encrypted_page), PAGE_SIZE);
2406 		f2fs_put_page(mpage, 1);
2407 	}
2408 	return 0;
2409 }
2410 
2411 static inline bool check_inplace_update_policy(struct inode *inode,
2412 				struct f2fs_io_info *fio)
2413 {
2414 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2415 	unsigned int policy = SM_I(sbi)->ipu_policy;
2416 
2417 	if (policy & (0x1 << F2FS_IPU_FORCE))
2418 		return true;
2419 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2420 		return true;
2421 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2422 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2423 		return true;
2424 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2425 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2426 		return true;
2427 
2428 	/*
2429 	 * IPU for rewrite async pages
2430 	 */
2431 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2432 			fio && fio->op == REQ_OP_WRITE &&
2433 			!(fio->op_flags & REQ_SYNC) &&
2434 			!IS_ENCRYPTED(inode))
2435 		return true;
2436 
2437 	/* this is only set during fdatasync */
2438 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2439 			is_inode_flag_set(inode, FI_NEED_IPU))
2440 		return true;
2441 
2442 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2443 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2444 		return true;
2445 
2446 	return false;
2447 }
2448 
2449 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2450 {
2451 	if (f2fs_is_pinned_file(inode))
2452 		return true;
2453 
2454 	/* if this is cold file, we should overwrite to avoid fragmentation */
2455 	if (file_is_cold(inode))
2456 		return true;
2457 
2458 	return check_inplace_update_policy(inode, fio);
2459 }
2460 
2461 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2462 {
2463 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2464 
2465 	if (f2fs_lfs_mode(sbi))
2466 		return true;
2467 	if (S_ISDIR(inode->i_mode))
2468 		return true;
2469 	if (IS_NOQUOTA(inode))
2470 		return true;
2471 	if (f2fs_is_atomic_file(inode))
2472 		return true;
2473 	if (fio) {
2474 		if (is_cold_data(fio->page))
2475 			return true;
2476 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2477 			return true;
2478 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2479 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2480 			return true;
2481 	}
2482 	return false;
2483 }
2484 
2485 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2486 {
2487 	struct inode *inode = fio->page->mapping->host;
2488 
2489 	if (f2fs_should_update_outplace(inode, fio))
2490 		return false;
2491 
2492 	return f2fs_should_update_inplace(inode, fio);
2493 }
2494 
2495 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2496 {
2497 	struct page *page = fio->page;
2498 	struct inode *inode = page->mapping->host;
2499 	struct dnode_of_data dn;
2500 	struct extent_info ei = {0,0,0};
2501 	struct node_info ni;
2502 	bool ipu_force = false;
2503 	int err = 0;
2504 
2505 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2506 	if (need_inplace_update(fio) &&
2507 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2508 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2509 
2510 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2511 						DATA_GENERIC_ENHANCE))
2512 			return -EFSCORRUPTED;
2513 
2514 		ipu_force = true;
2515 		fio->need_lock = LOCK_DONE;
2516 		goto got_it;
2517 	}
2518 
2519 	/* Deadlock due to between page->lock and f2fs_lock_op */
2520 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2521 		return -EAGAIN;
2522 
2523 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2524 	if (err)
2525 		goto out;
2526 
2527 	fio->old_blkaddr = dn.data_blkaddr;
2528 
2529 	/* This page is already truncated */
2530 	if (fio->old_blkaddr == NULL_ADDR) {
2531 		ClearPageUptodate(page);
2532 		clear_cold_data(page);
2533 		goto out_writepage;
2534 	}
2535 got_it:
2536 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2537 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2538 						DATA_GENERIC_ENHANCE)) {
2539 		err = -EFSCORRUPTED;
2540 		goto out_writepage;
2541 	}
2542 	/*
2543 	 * If current allocation needs SSR,
2544 	 * it had better in-place writes for updated data.
2545 	 */
2546 	if (ipu_force ||
2547 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2548 					need_inplace_update(fio))) {
2549 		err = f2fs_encrypt_one_page(fio);
2550 		if (err)
2551 			goto out_writepage;
2552 
2553 		set_page_writeback(page);
2554 		ClearPageError(page);
2555 		f2fs_put_dnode(&dn);
2556 		if (fio->need_lock == LOCK_REQ)
2557 			f2fs_unlock_op(fio->sbi);
2558 		err = f2fs_inplace_write_data(fio);
2559 		if (err) {
2560 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2561 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2562 			if (PageWriteback(page))
2563 				end_page_writeback(page);
2564 		} else {
2565 			set_inode_flag(inode, FI_UPDATE_WRITE);
2566 		}
2567 		trace_f2fs_do_write_data_page(fio->page, IPU);
2568 		return err;
2569 	}
2570 
2571 	if (fio->need_lock == LOCK_RETRY) {
2572 		if (!f2fs_trylock_op(fio->sbi)) {
2573 			err = -EAGAIN;
2574 			goto out_writepage;
2575 		}
2576 		fio->need_lock = LOCK_REQ;
2577 	}
2578 
2579 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2580 	if (err)
2581 		goto out_writepage;
2582 
2583 	fio->version = ni.version;
2584 
2585 	err = f2fs_encrypt_one_page(fio);
2586 	if (err)
2587 		goto out_writepage;
2588 
2589 	set_page_writeback(page);
2590 	ClearPageError(page);
2591 
2592 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2593 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2594 
2595 	/* LFS mode write path */
2596 	f2fs_outplace_write_data(&dn, fio);
2597 	trace_f2fs_do_write_data_page(page, OPU);
2598 	set_inode_flag(inode, FI_APPEND_WRITE);
2599 	if (page->index == 0)
2600 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2601 out_writepage:
2602 	f2fs_put_dnode(&dn);
2603 out:
2604 	if (fio->need_lock == LOCK_REQ)
2605 		f2fs_unlock_op(fio->sbi);
2606 	return err;
2607 }
2608 
2609 int f2fs_write_single_data_page(struct page *page, int *submitted,
2610 				struct bio **bio,
2611 				sector_t *last_block,
2612 				struct writeback_control *wbc,
2613 				enum iostat_type io_type,
2614 				int compr_blocks,
2615 				bool allow_balance)
2616 {
2617 	struct inode *inode = page->mapping->host;
2618 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2619 	loff_t i_size = i_size_read(inode);
2620 	const pgoff_t end_index = ((unsigned long long)i_size)
2621 							>> PAGE_SHIFT;
2622 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2623 	unsigned offset = 0;
2624 	bool need_balance_fs = false;
2625 	int err = 0;
2626 	struct f2fs_io_info fio = {
2627 		.sbi = sbi,
2628 		.ino = inode->i_ino,
2629 		.type = DATA,
2630 		.op = REQ_OP_WRITE,
2631 		.op_flags = wbc_to_write_flags(wbc),
2632 		.old_blkaddr = NULL_ADDR,
2633 		.page = page,
2634 		.encrypted_page = NULL,
2635 		.submitted = false,
2636 		.compr_blocks = compr_blocks,
2637 		.need_lock = LOCK_RETRY,
2638 		.io_type = io_type,
2639 		.io_wbc = wbc,
2640 		.bio = bio,
2641 		.last_block = last_block,
2642 	};
2643 
2644 	trace_f2fs_writepage(page, DATA);
2645 
2646 	/* we should bypass data pages to proceed the kworkder jobs */
2647 	if (unlikely(f2fs_cp_error(sbi))) {
2648 		mapping_set_error(page->mapping, -EIO);
2649 		/*
2650 		 * don't drop any dirty dentry pages for keeping lastest
2651 		 * directory structure.
2652 		 */
2653 		if (S_ISDIR(inode->i_mode))
2654 			goto redirty_out;
2655 		goto out;
2656 	}
2657 
2658 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2659 		goto redirty_out;
2660 
2661 	if (page->index < end_index ||
2662 			f2fs_verity_in_progress(inode) ||
2663 			compr_blocks)
2664 		goto write;
2665 
2666 	/*
2667 	 * If the offset is out-of-range of file size,
2668 	 * this page does not have to be written to disk.
2669 	 */
2670 	offset = i_size & (PAGE_SIZE - 1);
2671 	if ((page->index >= end_index + 1) || !offset)
2672 		goto out;
2673 
2674 	zero_user_segment(page, offset, PAGE_SIZE);
2675 write:
2676 	if (f2fs_is_drop_cache(inode))
2677 		goto out;
2678 	/* we should not write 0'th page having journal header */
2679 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2680 			(!wbc->for_reclaim &&
2681 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2682 		goto redirty_out;
2683 
2684 	/* Dentry/quota blocks are controlled by checkpoint */
2685 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2686 		/*
2687 		 * We need to wait for node_write to avoid block allocation during
2688 		 * checkpoint. This can only happen to quota writes which can cause
2689 		 * the below discard race condition.
2690 		 */
2691 		if (IS_NOQUOTA(inode))
2692 			down_read(&sbi->node_write);
2693 
2694 		fio.need_lock = LOCK_DONE;
2695 		err = f2fs_do_write_data_page(&fio);
2696 
2697 		if (IS_NOQUOTA(inode))
2698 			up_read(&sbi->node_write);
2699 
2700 		goto done;
2701 	}
2702 
2703 	if (!wbc->for_reclaim)
2704 		need_balance_fs = true;
2705 	else if (has_not_enough_free_secs(sbi, 0, 0))
2706 		goto redirty_out;
2707 	else
2708 		set_inode_flag(inode, FI_HOT_DATA);
2709 
2710 	err = -EAGAIN;
2711 	if (f2fs_has_inline_data(inode)) {
2712 		err = f2fs_write_inline_data(inode, page);
2713 		if (!err)
2714 			goto out;
2715 	}
2716 
2717 	if (err == -EAGAIN) {
2718 		err = f2fs_do_write_data_page(&fio);
2719 		if (err == -EAGAIN) {
2720 			fio.need_lock = LOCK_REQ;
2721 			err = f2fs_do_write_data_page(&fio);
2722 		}
2723 	}
2724 
2725 	if (err) {
2726 		file_set_keep_isize(inode);
2727 	} else {
2728 		spin_lock(&F2FS_I(inode)->i_size_lock);
2729 		if (F2FS_I(inode)->last_disk_size < psize)
2730 			F2FS_I(inode)->last_disk_size = psize;
2731 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2732 	}
2733 
2734 done:
2735 	if (err && err != -ENOENT)
2736 		goto redirty_out;
2737 
2738 out:
2739 	inode_dec_dirty_pages(inode);
2740 	if (err) {
2741 		ClearPageUptodate(page);
2742 		clear_cold_data(page);
2743 	}
2744 
2745 	if (wbc->for_reclaim) {
2746 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2747 		clear_inode_flag(inode, FI_HOT_DATA);
2748 		f2fs_remove_dirty_inode(inode);
2749 		submitted = NULL;
2750 	}
2751 	unlock_page(page);
2752 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2753 			!F2FS_I(inode)->cp_task && allow_balance)
2754 		f2fs_balance_fs(sbi, need_balance_fs);
2755 
2756 	if (unlikely(f2fs_cp_error(sbi))) {
2757 		f2fs_submit_merged_write(sbi, DATA);
2758 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2759 		submitted = NULL;
2760 	}
2761 
2762 	if (submitted)
2763 		*submitted = fio.submitted ? 1 : 0;
2764 
2765 	return 0;
2766 
2767 redirty_out:
2768 	redirty_page_for_writepage(wbc, page);
2769 	/*
2770 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2771 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2772 	 * file_write_and_wait_range() will see EIO error, which is critical
2773 	 * to return value of fsync() followed by atomic_write failure to user.
2774 	 */
2775 	if (!err || wbc->for_reclaim)
2776 		return AOP_WRITEPAGE_ACTIVATE;
2777 	unlock_page(page);
2778 	return err;
2779 }
2780 
2781 static int f2fs_write_data_page(struct page *page,
2782 					struct writeback_control *wbc)
2783 {
2784 #ifdef CONFIG_F2FS_FS_COMPRESSION
2785 	struct inode *inode = page->mapping->host;
2786 
2787 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2788 		goto out;
2789 
2790 	if (f2fs_compressed_file(inode)) {
2791 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2792 			redirty_page_for_writepage(wbc, page);
2793 			return AOP_WRITEPAGE_ACTIVATE;
2794 		}
2795 	}
2796 out:
2797 #endif
2798 
2799 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2800 						wbc, FS_DATA_IO, 0, true);
2801 }
2802 
2803 /*
2804  * This function was copied from write_cche_pages from mm/page-writeback.c.
2805  * The major change is making write step of cold data page separately from
2806  * warm/hot data page.
2807  */
2808 static int f2fs_write_cache_pages(struct address_space *mapping,
2809 					struct writeback_control *wbc,
2810 					enum iostat_type io_type)
2811 {
2812 	int ret = 0;
2813 	int done = 0, retry = 0;
2814 	struct pagevec pvec;
2815 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2816 	struct bio *bio = NULL;
2817 	sector_t last_block;
2818 #ifdef CONFIG_F2FS_FS_COMPRESSION
2819 	struct inode *inode = mapping->host;
2820 	struct compress_ctx cc = {
2821 		.inode = inode,
2822 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2823 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2824 		.cluster_idx = NULL_CLUSTER,
2825 		.rpages = NULL,
2826 		.nr_rpages = 0,
2827 		.cpages = NULL,
2828 		.rbuf = NULL,
2829 		.cbuf = NULL,
2830 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2831 		.private = NULL,
2832 	};
2833 #endif
2834 	int nr_pages;
2835 	pgoff_t index;
2836 	pgoff_t end;		/* Inclusive */
2837 	pgoff_t done_index;
2838 	int range_whole = 0;
2839 	xa_mark_t tag;
2840 	int nwritten = 0;
2841 	int submitted = 0;
2842 	int i;
2843 
2844 	pagevec_init(&pvec);
2845 
2846 	if (get_dirty_pages(mapping->host) <=
2847 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2848 		set_inode_flag(mapping->host, FI_HOT_DATA);
2849 	else
2850 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2851 
2852 	if (wbc->range_cyclic) {
2853 		index = mapping->writeback_index; /* prev offset */
2854 		end = -1;
2855 	} else {
2856 		index = wbc->range_start >> PAGE_SHIFT;
2857 		end = wbc->range_end >> PAGE_SHIFT;
2858 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2859 			range_whole = 1;
2860 	}
2861 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2862 		tag = PAGECACHE_TAG_TOWRITE;
2863 	else
2864 		tag = PAGECACHE_TAG_DIRTY;
2865 retry:
2866 	retry = 0;
2867 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2868 		tag_pages_for_writeback(mapping, index, end);
2869 	done_index = index;
2870 	while (!done && !retry && (index <= end)) {
2871 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2872 				tag);
2873 		if (nr_pages == 0)
2874 			break;
2875 
2876 		for (i = 0; i < nr_pages; i++) {
2877 			struct page *page = pvec.pages[i];
2878 			bool need_readd;
2879 readd:
2880 			need_readd = false;
2881 #ifdef CONFIG_F2FS_FS_COMPRESSION
2882 			if (f2fs_compressed_file(inode)) {
2883 				ret = f2fs_init_compress_ctx(&cc);
2884 				if (ret) {
2885 					done = 1;
2886 					break;
2887 				}
2888 
2889 				if (!f2fs_cluster_can_merge_page(&cc,
2890 								page->index)) {
2891 					ret = f2fs_write_multi_pages(&cc,
2892 						&submitted, wbc, io_type);
2893 					if (!ret)
2894 						need_readd = true;
2895 					goto result;
2896 				}
2897 
2898 				if (unlikely(f2fs_cp_error(sbi)))
2899 					goto lock_page;
2900 
2901 				if (f2fs_cluster_is_empty(&cc)) {
2902 					void *fsdata = NULL;
2903 					struct page *pagep;
2904 					int ret2;
2905 
2906 					ret2 = f2fs_prepare_compress_overwrite(
2907 							inode, &pagep,
2908 							page->index, &fsdata);
2909 					if (ret2 < 0) {
2910 						ret = ret2;
2911 						done = 1;
2912 						break;
2913 					} else if (ret2 &&
2914 						!f2fs_compress_write_end(inode,
2915 								fsdata, page->index,
2916 								1)) {
2917 						retry = 1;
2918 						break;
2919 					}
2920 				} else {
2921 					goto lock_page;
2922 				}
2923 			}
2924 #endif
2925 			/* give a priority to WB_SYNC threads */
2926 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2927 					wbc->sync_mode == WB_SYNC_NONE) {
2928 				done = 1;
2929 				break;
2930 			}
2931 #ifdef CONFIG_F2FS_FS_COMPRESSION
2932 lock_page:
2933 #endif
2934 			done_index = page->index;
2935 retry_write:
2936 			lock_page(page);
2937 
2938 			if (unlikely(page->mapping != mapping)) {
2939 continue_unlock:
2940 				unlock_page(page);
2941 				continue;
2942 			}
2943 
2944 			if (!PageDirty(page)) {
2945 				/* someone wrote it for us */
2946 				goto continue_unlock;
2947 			}
2948 
2949 			if (PageWriteback(page)) {
2950 				if (wbc->sync_mode != WB_SYNC_NONE)
2951 					f2fs_wait_on_page_writeback(page,
2952 							DATA, true, true);
2953 				else
2954 					goto continue_unlock;
2955 			}
2956 
2957 			if (!clear_page_dirty_for_io(page))
2958 				goto continue_unlock;
2959 
2960 #ifdef CONFIG_F2FS_FS_COMPRESSION
2961 			if (f2fs_compressed_file(inode)) {
2962 				get_page(page);
2963 				f2fs_compress_ctx_add_page(&cc, page);
2964 				continue;
2965 			}
2966 #endif
2967 			ret = f2fs_write_single_data_page(page, &submitted,
2968 					&bio, &last_block, wbc, io_type,
2969 					0, true);
2970 			if (ret == AOP_WRITEPAGE_ACTIVATE)
2971 				unlock_page(page);
2972 #ifdef CONFIG_F2FS_FS_COMPRESSION
2973 result:
2974 #endif
2975 			nwritten += submitted;
2976 			wbc->nr_to_write -= submitted;
2977 
2978 			if (unlikely(ret)) {
2979 				/*
2980 				 * keep nr_to_write, since vfs uses this to
2981 				 * get # of written pages.
2982 				 */
2983 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2984 					ret = 0;
2985 					goto next;
2986 				} else if (ret == -EAGAIN) {
2987 					ret = 0;
2988 					if (wbc->sync_mode == WB_SYNC_ALL) {
2989 						cond_resched();
2990 						congestion_wait(BLK_RW_ASYNC,
2991 							DEFAULT_IO_TIMEOUT);
2992 						goto retry_write;
2993 					}
2994 					goto next;
2995 				}
2996 				done_index = page->index + 1;
2997 				done = 1;
2998 				break;
2999 			}
3000 
3001 			if (wbc->nr_to_write <= 0 &&
3002 					wbc->sync_mode == WB_SYNC_NONE) {
3003 				done = 1;
3004 				break;
3005 			}
3006 next:
3007 			if (need_readd)
3008 				goto readd;
3009 		}
3010 		pagevec_release(&pvec);
3011 		cond_resched();
3012 	}
3013 #ifdef CONFIG_F2FS_FS_COMPRESSION
3014 	/* flush remained pages in compress cluster */
3015 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3016 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3017 		nwritten += submitted;
3018 		wbc->nr_to_write -= submitted;
3019 		if (ret) {
3020 			done = 1;
3021 			retry = 0;
3022 		}
3023 	}
3024 	if (f2fs_compressed_file(inode))
3025 		f2fs_destroy_compress_ctx(&cc);
3026 #endif
3027 	if (retry) {
3028 		index = 0;
3029 		end = -1;
3030 		goto retry;
3031 	}
3032 	if (wbc->range_cyclic && !done)
3033 		done_index = 0;
3034 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3035 		mapping->writeback_index = done_index;
3036 
3037 	if (nwritten)
3038 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3039 								NULL, 0, DATA);
3040 	/* submit cached bio of IPU write */
3041 	if (bio)
3042 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3043 
3044 	return ret;
3045 }
3046 
3047 static inline bool __should_serialize_io(struct inode *inode,
3048 					struct writeback_control *wbc)
3049 {
3050 	/* to avoid deadlock in path of data flush */
3051 	if (F2FS_I(inode)->cp_task)
3052 		return false;
3053 
3054 	if (!S_ISREG(inode->i_mode))
3055 		return false;
3056 	if (IS_NOQUOTA(inode))
3057 		return false;
3058 
3059 	if (f2fs_need_compress_data(inode))
3060 		return true;
3061 	if (wbc->sync_mode != WB_SYNC_ALL)
3062 		return true;
3063 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3064 		return true;
3065 	return false;
3066 }
3067 
3068 static int __f2fs_write_data_pages(struct address_space *mapping,
3069 						struct writeback_control *wbc,
3070 						enum iostat_type io_type)
3071 {
3072 	struct inode *inode = mapping->host;
3073 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3074 	struct blk_plug plug;
3075 	int ret;
3076 	bool locked = false;
3077 
3078 	/* deal with chardevs and other special file */
3079 	if (!mapping->a_ops->writepage)
3080 		return 0;
3081 
3082 	/* skip writing if there is no dirty page in this inode */
3083 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3084 		return 0;
3085 
3086 	/* during POR, we don't need to trigger writepage at all. */
3087 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3088 		goto skip_write;
3089 
3090 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3091 			wbc->sync_mode == WB_SYNC_NONE &&
3092 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3093 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3094 		goto skip_write;
3095 
3096 	/* skip writing during file defragment */
3097 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3098 		goto skip_write;
3099 
3100 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3101 
3102 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3103 	if (wbc->sync_mode == WB_SYNC_ALL)
3104 		atomic_inc(&sbi->wb_sync_req[DATA]);
3105 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
3106 		goto skip_write;
3107 
3108 	if (__should_serialize_io(inode, wbc)) {
3109 		mutex_lock(&sbi->writepages);
3110 		locked = true;
3111 	}
3112 
3113 	blk_start_plug(&plug);
3114 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3115 	blk_finish_plug(&plug);
3116 
3117 	if (locked)
3118 		mutex_unlock(&sbi->writepages);
3119 
3120 	if (wbc->sync_mode == WB_SYNC_ALL)
3121 		atomic_dec(&sbi->wb_sync_req[DATA]);
3122 	/*
3123 	 * if some pages were truncated, we cannot guarantee its mapping->host
3124 	 * to detect pending bios.
3125 	 */
3126 
3127 	f2fs_remove_dirty_inode(inode);
3128 	return ret;
3129 
3130 skip_write:
3131 	wbc->pages_skipped += get_dirty_pages(inode);
3132 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3133 	return 0;
3134 }
3135 
3136 static int f2fs_write_data_pages(struct address_space *mapping,
3137 			    struct writeback_control *wbc)
3138 {
3139 	struct inode *inode = mapping->host;
3140 
3141 	return __f2fs_write_data_pages(mapping, wbc,
3142 			F2FS_I(inode)->cp_task == current ?
3143 			FS_CP_DATA_IO : FS_DATA_IO);
3144 }
3145 
3146 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3147 {
3148 	struct inode *inode = mapping->host;
3149 	loff_t i_size = i_size_read(inode);
3150 
3151 	if (IS_NOQUOTA(inode))
3152 		return;
3153 
3154 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3155 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3156 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3157 		down_write(&F2FS_I(inode)->i_mmap_sem);
3158 
3159 		truncate_pagecache(inode, i_size);
3160 		f2fs_truncate_blocks(inode, i_size, true);
3161 
3162 		up_write(&F2FS_I(inode)->i_mmap_sem);
3163 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3164 	}
3165 }
3166 
3167 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3168 			struct page *page, loff_t pos, unsigned len,
3169 			block_t *blk_addr, bool *node_changed)
3170 {
3171 	struct inode *inode = page->mapping->host;
3172 	pgoff_t index = page->index;
3173 	struct dnode_of_data dn;
3174 	struct page *ipage;
3175 	bool locked = false;
3176 	struct extent_info ei = {0,0,0};
3177 	int err = 0;
3178 	int flag;
3179 
3180 	/*
3181 	 * we already allocated all the blocks, so we don't need to get
3182 	 * the block addresses when there is no need to fill the page.
3183 	 */
3184 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3185 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3186 	    !f2fs_verity_in_progress(inode))
3187 		return 0;
3188 
3189 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3190 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3191 		flag = F2FS_GET_BLOCK_DEFAULT;
3192 	else
3193 		flag = F2FS_GET_BLOCK_PRE_AIO;
3194 
3195 	if (f2fs_has_inline_data(inode) ||
3196 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3197 		f2fs_do_map_lock(sbi, flag, true);
3198 		locked = true;
3199 	}
3200 
3201 restart:
3202 	/* check inline_data */
3203 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3204 	if (IS_ERR(ipage)) {
3205 		err = PTR_ERR(ipage);
3206 		goto unlock_out;
3207 	}
3208 
3209 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3210 
3211 	if (f2fs_has_inline_data(inode)) {
3212 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3213 			f2fs_do_read_inline_data(page, ipage);
3214 			set_inode_flag(inode, FI_DATA_EXIST);
3215 			if (inode->i_nlink)
3216 				set_inline_node(ipage);
3217 		} else {
3218 			err = f2fs_convert_inline_page(&dn, page);
3219 			if (err)
3220 				goto out;
3221 			if (dn.data_blkaddr == NULL_ADDR)
3222 				err = f2fs_get_block(&dn, index);
3223 		}
3224 	} else if (locked) {
3225 		err = f2fs_get_block(&dn, index);
3226 	} else {
3227 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3228 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3229 		} else {
3230 			/* hole case */
3231 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3232 			if (err || dn.data_blkaddr == NULL_ADDR) {
3233 				f2fs_put_dnode(&dn);
3234 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3235 								true);
3236 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3237 				locked = true;
3238 				goto restart;
3239 			}
3240 		}
3241 	}
3242 
3243 	/* convert_inline_page can make node_changed */
3244 	*blk_addr = dn.data_blkaddr;
3245 	*node_changed = dn.node_changed;
3246 out:
3247 	f2fs_put_dnode(&dn);
3248 unlock_out:
3249 	if (locked)
3250 		f2fs_do_map_lock(sbi, flag, false);
3251 	return err;
3252 }
3253 
3254 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3255 		loff_t pos, unsigned len, unsigned flags,
3256 		struct page **pagep, void **fsdata)
3257 {
3258 	struct inode *inode = mapping->host;
3259 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3260 	struct page *page = NULL;
3261 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3262 	bool need_balance = false, drop_atomic = false;
3263 	block_t blkaddr = NULL_ADDR;
3264 	int err = 0;
3265 
3266 	trace_f2fs_write_begin(inode, pos, len, flags);
3267 
3268 	if (!f2fs_is_checkpoint_ready(sbi)) {
3269 		err = -ENOSPC;
3270 		goto fail;
3271 	}
3272 
3273 	if ((f2fs_is_atomic_file(inode) &&
3274 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3275 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3276 		err = -ENOMEM;
3277 		drop_atomic = true;
3278 		goto fail;
3279 	}
3280 
3281 	/*
3282 	 * We should check this at this moment to avoid deadlock on inode page
3283 	 * and #0 page. The locking rule for inline_data conversion should be:
3284 	 * lock_page(page #0) -> lock_page(inode_page)
3285 	 */
3286 	if (index != 0) {
3287 		err = f2fs_convert_inline_inode(inode);
3288 		if (err)
3289 			goto fail;
3290 	}
3291 
3292 #ifdef CONFIG_F2FS_FS_COMPRESSION
3293 	if (f2fs_compressed_file(inode)) {
3294 		int ret;
3295 
3296 		*fsdata = NULL;
3297 
3298 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3299 							index, fsdata);
3300 		if (ret < 0) {
3301 			err = ret;
3302 			goto fail;
3303 		} else if (ret) {
3304 			return 0;
3305 		}
3306 	}
3307 #endif
3308 
3309 repeat:
3310 	/*
3311 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3312 	 * wait_for_stable_page. Will wait that below with our IO control.
3313 	 */
3314 	page = f2fs_pagecache_get_page(mapping, index,
3315 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3316 	if (!page) {
3317 		err = -ENOMEM;
3318 		goto fail;
3319 	}
3320 
3321 	/* TODO: cluster can be compressed due to race with .writepage */
3322 
3323 	*pagep = page;
3324 
3325 	err = prepare_write_begin(sbi, page, pos, len,
3326 					&blkaddr, &need_balance);
3327 	if (err)
3328 		goto fail;
3329 
3330 	if (need_balance && !IS_NOQUOTA(inode) &&
3331 			has_not_enough_free_secs(sbi, 0, 0)) {
3332 		unlock_page(page);
3333 		f2fs_balance_fs(sbi, true);
3334 		lock_page(page);
3335 		if (page->mapping != mapping) {
3336 			/* The page got truncated from under us */
3337 			f2fs_put_page(page, 1);
3338 			goto repeat;
3339 		}
3340 	}
3341 
3342 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3343 
3344 	if (len == PAGE_SIZE || PageUptodate(page))
3345 		return 0;
3346 
3347 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3348 	    !f2fs_verity_in_progress(inode)) {
3349 		zero_user_segment(page, len, PAGE_SIZE);
3350 		return 0;
3351 	}
3352 
3353 	if (blkaddr == NEW_ADDR) {
3354 		zero_user_segment(page, 0, PAGE_SIZE);
3355 		SetPageUptodate(page);
3356 	} else {
3357 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3358 				DATA_GENERIC_ENHANCE_READ)) {
3359 			err = -EFSCORRUPTED;
3360 			goto fail;
3361 		}
3362 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3363 		if (err)
3364 			goto fail;
3365 
3366 		lock_page(page);
3367 		if (unlikely(page->mapping != mapping)) {
3368 			f2fs_put_page(page, 1);
3369 			goto repeat;
3370 		}
3371 		if (unlikely(!PageUptodate(page))) {
3372 			err = -EIO;
3373 			goto fail;
3374 		}
3375 	}
3376 	return 0;
3377 
3378 fail:
3379 	f2fs_put_page(page, 1);
3380 	f2fs_write_failed(mapping, pos + len);
3381 	if (drop_atomic)
3382 		f2fs_drop_inmem_pages_all(sbi, false);
3383 	return err;
3384 }
3385 
3386 static int f2fs_write_end(struct file *file,
3387 			struct address_space *mapping,
3388 			loff_t pos, unsigned len, unsigned copied,
3389 			struct page *page, void *fsdata)
3390 {
3391 	struct inode *inode = page->mapping->host;
3392 
3393 	trace_f2fs_write_end(inode, pos, len, copied);
3394 
3395 	/*
3396 	 * This should be come from len == PAGE_SIZE, and we expect copied
3397 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3398 	 * let generic_perform_write() try to copy data again through copied=0.
3399 	 */
3400 	if (!PageUptodate(page)) {
3401 		if (unlikely(copied != len))
3402 			copied = 0;
3403 		else
3404 			SetPageUptodate(page);
3405 	}
3406 
3407 #ifdef CONFIG_F2FS_FS_COMPRESSION
3408 	/* overwrite compressed file */
3409 	if (f2fs_compressed_file(inode) && fsdata) {
3410 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3411 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3412 
3413 		if (pos + copied > i_size_read(inode) &&
3414 				!f2fs_verity_in_progress(inode))
3415 			f2fs_i_size_write(inode, pos + copied);
3416 		return copied;
3417 	}
3418 #endif
3419 
3420 	if (!copied)
3421 		goto unlock_out;
3422 
3423 	set_page_dirty(page);
3424 
3425 	if (pos + copied > i_size_read(inode) &&
3426 	    !f2fs_verity_in_progress(inode))
3427 		f2fs_i_size_write(inode, pos + copied);
3428 unlock_out:
3429 	f2fs_put_page(page, 1);
3430 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3431 	return copied;
3432 }
3433 
3434 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3435 			   loff_t offset)
3436 {
3437 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3438 	unsigned blkbits = i_blkbits;
3439 	unsigned blocksize_mask = (1 << blkbits) - 1;
3440 	unsigned long align = offset | iov_iter_alignment(iter);
3441 	struct block_device *bdev = inode->i_sb->s_bdev;
3442 
3443 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3444 		return 1;
3445 
3446 	if (align & blocksize_mask) {
3447 		if (bdev)
3448 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3449 		blocksize_mask = (1 << blkbits) - 1;
3450 		if (align & blocksize_mask)
3451 			return -EINVAL;
3452 		return 1;
3453 	}
3454 	return 0;
3455 }
3456 
3457 static void f2fs_dio_end_io(struct bio *bio)
3458 {
3459 	struct f2fs_private_dio *dio = bio->bi_private;
3460 
3461 	dec_page_count(F2FS_I_SB(dio->inode),
3462 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3463 
3464 	bio->bi_private = dio->orig_private;
3465 	bio->bi_end_io = dio->orig_end_io;
3466 
3467 	kfree(dio);
3468 
3469 	bio_endio(bio);
3470 }
3471 
3472 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3473 							loff_t file_offset)
3474 {
3475 	struct f2fs_private_dio *dio;
3476 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3477 
3478 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3479 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3480 	if (!dio)
3481 		goto out;
3482 
3483 	dio->inode = inode;
3484 	dio->orig_end_io = bio->bi_end_io;
3485 	dio->orig_private = bio->bi_private;
3486 	dio->write = write;
3487 
3488 	bio->bi_end_io = f2fs_dio_end_io;
3489 	bio->bi_private = dio;
3490 
3491 	inc_page_count(F2FS_I_SB(inode),
3492 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3493 
3494 	submit_bio(bio);
3495 	return;
3496 out:
3497 	bio->bi_status = BLK_STS_IOERR;
3498 	bio_endio(bio);
3499 }
3500 
3501 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3502 {
3503 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3504 	struct inode *inode = mapping->host;
3505 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3506 	struct f2fs_inode_info *fi = F2FS_I(inode);
3507 	size_t count = iov_iter_count(iter);
3508 	loff_t offset = iocb->ki_pos;
3509 	int rw = iov_iter_rw(iter);
3510 	int err;
3511 	enum rw_hint hint = iocb->ki_hint;
3512 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3513 	bool do_opu;
3514 
3515 	err = check_direct_IO(inode, iter, offset);
3516 	if (err)
3517 		return err < 0 ? err : 0;
3518 
3519 	if (f2fs_force_buffered_io(inode, iocb, iter))
3520 		return 0;
3521 
3522 	do_opu = allow_outplace_dio(inode, iocb, iter);
3523 
3524 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3525 
3526 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3527 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3528 
3529 	if (iocb->ki_flags & IOCB_NOWAIT) {
3530 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3531 			iocb->ki_hint = hint;
3532 			err = -EAGAIN;
3533 			goto out;
3534 		}
3535 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3536 			up_read(&fi->i_gc_rwsem[rw]);
3537 			iocb->ki_hint = hint;
3538 			err = -EAGAIN;
3539 			goto out;
3540 		}
3541 	} else {
3542 		down_read(&fi->i_gc_rwsem[rw]);
3543 		if (do_opu)
3544 			down_read(&fi->i_gc_rwsem[READ]);
3545 	}
3546 
3547 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3548 			iter, rw == WRITE ? get_data_block_dio_write :
3549 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3550 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3551 			DIO_SKIP_HOLES);
3552 
3553 	if (do_opu)
3554 		up_read(&fi->i_gc_rwsem[READ]);
3555 
3556 	up_read(&fi->i_gc_rwsem[rw]);
3557 
3558 	if (rw == WRITE) {
3559 		if (whint_mode == WHINT_MODE_OFF)
3560 			iocb->ki_hint = hint;
3561 		if (err > 0) {
3562 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3563 									err);
3564 			if (!do_opu)
3565 				set_inode_flag(inode, FI_UPDATE_WRITE);
3566 		} else if (err == -EIOCBQUEUED) {
3567 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3568 						count - iov_iter_count(iter));
3569 		} else if (err < 0) {
3570 			f2fs_write_failed(mapping, offset + count);
3571 		}
3572 	} else {
3573 		if (err > 0)
3574 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3575 		else if (err == -EIOCBQUEUED)
3576 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3577 						count - iov_iter_count(iter));
3578 	}
3579 
3580 out:
3581 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3582 
3583 	return err;
3584 }
3585 
3586 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3587 							unsigned int length)
3588 {
3589 	struct inode *inode = page->mapping->host;
3590 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3591 
3592 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3593 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3594 		return;
3595 
3596 	if (PageDirty(page)) {
3597 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3598 			dec_page_count(sbi, F2FS_DIRTY_META);
3599 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3600 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3601 		} else {
3602 			inode_dec_dirty_pages(inode);
3603 			f2fs_remove_dirty_inode(inode);
3604 		}
3605 	}
3606 
3607 	clear_cold_data(page);
3608 
3609 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3610 		return f2fs_drop_inmem_page(inode, page);
3611 
3612 	f2fs_clear_page_private(page);
3613 }
3614 
3615 int f2fs_release_page(struct page *page, gfp_t wait)
3616 {
3617 	/* If this is dirty page, keep PagePrivate */
3618 	if (PageDirty(page))
3619 		return 0;
3620 
3621 	/* This is atomic written page, keep Private */
3622 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3623 		return 0;
3624 
3625 	clear_cold_data(page);
3626 	f2fs_clear_page_private(page);
3627 	return 1;
3628 }
3629 
3630 static int f2fs_set_data_page_dirty(struct page *page)
3631 {
3632 	struct inode *inode = page_file_mapping(page)->host;
3633 
3634 	trace_f2fs_set_page_dirty(page, DATA);
3635 
3636 	if (!PageUptodate(page))
3637 		SetPageUptodate(page);
3638 	if (PageSwapCache(page))
3639 		return __set_page_dirty_nobuffers(page);
3640 
3641 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3642 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3643 			f2fs_register_inmem_page(inode, page);
3644 			return 1;
3645 		}
3646 		/*
3647 		 * Previously, this page has been registered, we just
3648 		 * return here.
3649 		 */
3650 		return 0;
3651 	}
3652 
3653 	if (!PageDirty(page)) {
3654 		__set_page_dirty_nobuffers(page);
3655 		f2fs_update_dirty_page(inode, page);
3656 		return 1;
3657 	}
3658 	return 0;
3659 }
3660 
3661 
3662 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3663 {
3664 #ifdef CONFIG_F2FS_FS_COMPRESSION
3665 	struct dnode_of_data dn;
3666 	sector_t start_idx, blknr = 0;
3667 	int ret;
3668 
3669 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3670 
3671 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3672 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3673 	if (ret)
3674 		return 0;
3675 
3676 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3677 		dn.ofs_in_node += block - start_idx;
3678 		blknr = f2fs_data_blkaddr(&dn);
3679 		if (!__is_valid_data_blkaddr(blknr))
3680 			blknr = 0;
3681 	}
3682 
3683 	f2fs_put_dnode(&dn);
3684 	return blknr;
3685 #else
3686 	return 0;
3687 #endif
3688 }
3689 
3690 
3691 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3692 {
3693 	struct inode *inode = mapping->host;
3694 	sector_t blknr = 0;
3695 
3696 	if (f2fs_has_inline_data(inode))
3697 		goto out;
3698 
3699 	/* make sure allocating whole blocks */
3700 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3701 		filemap_write_and_wait(mapping);
3702 
3703 	/* Block number less than F2FS MAX BLOCKS */
3704 	if (unlikely(block >= max_file_blocks(inode)))
3705 		goto out;
3706 
3707 	if (f2fs_compressed_file(inode)) {
3708 		blknr = f2fs_bmap_compress(inode, block);
3709 	} else {
3710 		struct f2fs_map_blocks map;
3711 
3712 		memset(&map, 0, sizeof(map));
3713 		map.m_lblk = block;
3714 		map.m_len = 1;
3715 		map.m_next_pgofs = NULL;
3716 		map.m_seg_type = NO_CHECK_TYPE;
3717 
3718 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3719 			blknr = map.m_pblk;
3720 	}
3721 out:
3722 	trace_f2fs_bmap(inode, block, blknr);
3723 	return blknr;
3724 }
3725 
3726 #ifdef CONFIG_MIGRATION
3727 #include <linux/migrate.h>
3728 
3729 int f2fs_migrate_page(struct address_space *mapping,
3730 		struct page *newpage, struct page *page, enum migrate_mode mode)
3731 {
3732 	int rc, extra_count;
3733 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3734 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3735 
3736 	BUG_ON(PageWriteback(page));
3737 
3738 	/* migrating an atomic written page is safe with the inmem_lock hold */
3739 	if (atomic_written) {
3740 		if (mode != MIGRATE_SYNC)
3741 			return -EBUSY;
3742 		if (!mutex_trylock(&fi->inmem_lock))
3743 			return -EAGAIN;
3744 	}
3745 
3746 	/* one extra reference was held for atomic_write page */
3747 	extra_count = atomic_written ? 1 : 0;
3748 	rc = migrate_page_move_mapping(mapping, newpage,
3749 				page, extra_count);
3750 	if (rc != MIGRATEPAGE_SUCCESS) {
3751 		if (atomic_written)
3752 			mutex_unlock(&fi->inmem_lock);
3753 		return rc;
3754 	}
3755 
3756 	if (atomic_written) {
3757 		struct inmem_pages *cur;
3758 		list_for_each_entry(cur, &fi->inmem_pages, list)
3759 			if (cur->page == page) {
3760 				cur->page = newpage;
3761 				break;
3762 			}
3763 		mutex_unlock(&fi->inmem_lock);
3764 		put_page(page);
3765 		get_page(newpage);
3766 	}
3767 
3768 	if (PagePrivate(page)) {
3769 		f2fs_set_page_private(newpage, page_private(page));
3770 		f2fs_clear_page_private(page);
3771 	}
3772 
3773 	if (mode != MIGRATE_SYNC_NO_COPY)
3774 		migrate_page_copy(newpage, page);
3775 	else
3776 		migrate_page_states(newpage, page);
3777 
3778 	return MIGRATEPAGE_SUCCESS;
3779 }
3780 #endif
3781 
3782 #ifdef CONFIG_SWAP
3783 static int check_swap_activate_fast(struct swap_info_struct *sis,
3784 				struct file *swap_file, sector_t *span)
3785 {
3786 	struct address_space *mapping = swap_file->f_mapping;
3787 	struct inode *inode = mapping->host;
3788 	sector_t cur_lblock;
3789 	sector_t last_lblock;
3790 	sector_t pblock;
3791 	sector_t lowest_pblock = -1;
3792 	sector_t highest_pblock = 0;
3793 	int nr_extents = 0;
3794 	unsigned long nr_pblocks;
3795 	u64 len;
3796 	int ret;
3797 
3798 	/*
3799 	 * Map all the blocks into the extent list.  This code doesn't try
3800 	 * to be very smart.
3801 	 */
3802 	cur_lblock = 0;
3803 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3804 	len = i_size_read(inode);
3805 
3806 	while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3807 		struct f2fs_map_blocks map;
3808 		pgoff_t next_pgofs;
3809 
3810 		cond_resched();
3811 
3812 		memset(&map, 0, sizeof(map));
3813 		map.m_lblk = cur_lblock;
3814 		map.m_len = bytes_to_blks(inode, len) - cur_lblock;
3815 		map.m_next_pgofs = &next_pgofs;
3816 		map.m_seg_type = NO_CHECK_TYPE;
3817 
3818 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3819 		if (ret)
3820 			goto err_out;
3821 
3822 		/* hole */
3823 		if (!(map.m_flags & F2FS_MAP_FLAGS))
3824 			goto err_out;
3825 
3826 		pblock = map.m_pblk;
3827 		nr_pblocks = map.m_len;
3828 
3829 		if (cur_lblock + nr_pblocks >= sis->max)
3830 			nr_pblocks = sis->max - cur_lblock;
3831 
3832 		if (cur_lblock) {	/* exclude the header page */
3833 			if (pblock < lowest_pblock)
3834 				lowest_pblock = pblock;
3835 			if (pblock + nr_pblocks - 1 > highest_pblock)
3836 				highest_pblock = pblock + nr_pblocks - 1;
3837 		}
3838 
3839 		/*
3840 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3841 		 */
3842 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3843 		if (ret < 0)
3844 			goto out;
3845 		nr_extents += ret;
3846 		cur_lblock += nr_pblocks;
3847 	}
3848 	ret = nr_extents;
3849 	*span = 1 + highest_pblock - lowest_pblock;
3850 	if (cur_lblock == 0)
3851 		cur_lblock = 1;	/* force Empty message */
3852 	sis->max = cur_lblock;
3853 	sis->pages = cur_lblock - 1;
3854 	sis->highest_bit = cur_lblock - 1;
3855 out:
3856 	return ret;
3857 err_out:
3858 	pr_err("swapon: swapfile has holes\n");
3859 	return -EINVAL;
3860 }
3861 
3862 /* Copied from generic_swapfile_activate() to check any holes */
3863 static int check_swap_activate(struct swap_info_struct *sis,
3864 				struct file *swap_file, sector_t *span)
3865 {
3866 	struct address_space *mapping = swap_file->f_mapping;
3867 	struct inode *inode = mapping->host;
3868 	unsigned blocks_per_page;
3869 	unsigned long page_no;
3870 	sector_t probe_block;
3871 	sector_t last_block;
3872 	sector_t lowest_block = -1;
3873 	sector_t highest_block = 0;
3874 	int nr_extents = 0;
3875 	int ret;
3876 
3877 	if (PAGE_SIZE == F2FS_BLKSIZE)
3878 		return check_swap_activate_fast(sis, swap_file, span);
3879 
3880 	blocks_per_page = bytes_to_blks(inode, PAGE_SIZE);
3881 
3882 	/*
3883 	 * Map all the blocks into the extent list.  This code doesn't try
3884 	 * to be very smart.
3885 	 */
3886 	probe_block = 0;
3887 	page_no = 0;
3888 	last_block = bytes_to_blks(inode, i_size_read(inode));
3889 	while ((probe_block + blocks_per_page) <= last_block &&
3890 			page_no < sis->max) {
3891 		unsigned block_in_page;
3892 		sector_t first_block;
3893 		sector_t block = 0;
3894 		int	 err = 0;
3895 
3896 		cond_resched();
3897 
3898 		block = probe_block;
3899 		err = bmap(inode, &block);
3900 		if (err || !block)
3901 			goto bad_bmap;
3902 		first_block = block;
3903 
3904 		/*
3905 		 * It must be PAGE_SIZE aligned on-disk
3906 		 */
3907 		if (first_block & (blocks_per_page - 1)) {
3908 			probe_block++;
3909 			goto reprobe;
3910 		}
3911 
3912 		for (block_in_page = 1; block_in_page < blocks_per_page;
3913 					block_in_page++) {
3914 
3915 			block = probe_block + block_in_page;
3916 			err = bmap(inode, &block);
3917 
3918 			if (err || !block)
3919 				goto bad_bmap;
3920 
3921 			if (block != first_block + block_in_page) {
3922 				/* Discontiguity */
3923 				probe_block++;
3924 				goto reprobe;
3925 			}
3926 		}
3927 
3928 		first_block >>= (PAGE_SHIFT - inode->i_blkbits);
3929 		if (page_no) {	/* exclude the header page */
3930 			if (first_block < lowest_block)
3931 				lowest_block = first_block;
3932 			if (first_block > highest_block)
3933 				highest_block = first_block;
3934 		}
3935 
3936 		/*
3937 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3938 		 */
3939 		ret = add_swap_extent(sis, page_no, 1, first_block);
3940 		if (ret < 0)
3941 			goto out;
3942 		nr_extents += ret;
3943 		page_no++;
3944 		probe_block += blocks_per_page;
3945 reprobe:
3946 		continue;
3947 	}
3948 	ret = nr_extents;
3949 	*span = 1 + highest_block - lowest_block;
3950 	if (page_no == 0)
3951 		page_no = 1;	/* force Empty message */
3952 	sis->max = page_no;
3953 	sis->pages = page_no - 1;
3954 	sis->highest_bit = page_no - 1;
3955 out:
3956 	return ret;
3957 bad_bmap:
3958 	pr_err("swapon: swapfile has holes\n");
3959 	return -EINVAL;
3960 }
3961 
3962 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3963 				sector_t *span)
3964 {
3965 	struct inode *inode = file_inode(file);
3966 	int ret;
3967 
3968 	if (!S_ISREG(inode->i_mode))
3969 		return -EINVAL;
3970 
3971 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3972 		return -EROFS;
3973 
3974 	ret = f2fs_convert_inline_inode(inode);
3975 	if (ret)
3976 		return ret;
3977 
3978 	if (!f2fs_disable_compressed_file(inode))
3979 		return -EINVAL;
3980 
3981 	f2fs_precache_extents(inode);
3982 
3983 	ret = check_swap_activate(sis, file, span);
3984 	if (ret < 0)
3985 		return ret;
3986 
3987 	set_inode_flag(inode, FI_PIN_FILE);
3988 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3989 	return ret;
3990 }
3991 
3992 static void f2fs_swap_deactivate(struct file *file)
3993 {
3994 	struct inode *inode = file_inode(file);
3995 
3996 	clear_inode_flag(inode, FI_PIN_FILE);
3997 }
3998 #else
3999 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4000 				sector_t *span)
4001 {
4002 	return -EOPNOTSUPP;
4003 }
4004 
4005 static void f2fs_swap_deactivate(struct file *file)
4006 {
4007 }
4008 #endif
4009 
4010 const struct address_space_operations f2fs_dblock_aops = {
4011 	.readpage	= f2fs_read_data_page,
4012 	.readahead	= f2fs_readahead,
4013 	.writepage	= f2fs_write_data_page,
4014 	.writepages	= f2fs_write_data_pages,
4015 	.write_begin	= f2fs_write_begin,
4016 	.write_end	= f2fs_write_end,
4017 	.set_page_dirty	= f2fs_set_data_page_dirty,
4018 	.invalidatepage	= f2fs_invalidate_page,
4019 	.releasepage	= f2fs_release_page,
4020 	.direct_IO	= f2fs_direct_IO,
4021 	.bmap		= f2fs_bmap,
4022 	.swap_activate  = f2fs_swap_activate,
4023 	.swap_deactivate = f2fs_swap_deactivate,
4024 #ifdef CONFIG_MIGRATION
4025 	.migratepage    = f2fs_migrate_page,
4026 #endif
4027 };
4028 
4029 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4030 {
4031 	struct address_space *mapping = page_mapping(page);
4032 	unsigned long flags;
4033 
4034 	xa_lock_irqsave(&mapping->i_pages, flags);
4035 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4036 						PAGECACHE_TAG_DIRTY);
4037 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4038 }
4039 
4040 int __init f2fs_init_post_read_processing(void)
4041 {
4042 	bio_post_read_ctx_cache =
4043 		kmem_cache_create("f2fs_bio_post_read_ctx",
4044 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4045 	if (!bio_post_read_ctx_cache)
4046 		goto fail;
4047 	bio_post_read_ctx_pool =
4048 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4049 					 bio_post_read_ctx_cache);
4050 	if (!bio_post_read_ctx_pool)
4051 		goto fail_free_cache;
4052 	return 0;
4053 
4054 fail_free_cache:
4055 	kmem_cache_destroy(bio_post_read_ctx_cache);
4056 fail:
4057 	return -ENOMEM;
4058 }
4059 
4060 void f2fs_destroy_post_read_processing(void)
4061 {
4062 	mempool_destroy(bio_post_read_ctx_pool);
4063 	kmem_cache_destroy(bio_post_read_ctx_cache);
4064 }
4065 
4066 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4067 {
4068 	if (!f2fs_sb_has_encrypt(sbi) &&
4069 		!f2fs_sb_has_verity(sbi) &&
4070 		!f2fs_sb_has_compression(sbi))
4071 		return 0;
4072 
4073 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4074 						 WQ_UNBOUND | WQ_HIGHPRI,
4075 						 num_online_cpus());
4076 	if (!sbi->post_read_wq)
4077 		return -ENOMEM;
4078 	return 0;
4079 }
4080 
4081 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4082 {
4083 	if (sbi->post_read_wq)
4084 		destroy_workqueue(sbi->post_read_wq);
4085 }
4086 
4087 int __init f2fs_init_bio_entry_cache(void)
4088 {
4089 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4090 			sizeof(struct bio_entry));
4091 	if (!bio_entry_slab)
4092 		return -ENOMEM;
4093 	return 0;
4094 }
4095 
4096 void f2fs_destroy_bio_entry_cache(void)
4097 {
4098 	kmem_cache_destroy(bio_entry_slab);
4099 }
4100