xref: /openbmc/linux/fs/f2fs/data.c (revision 69fad28c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27 
28 #define NUM_PREALLOC_POST_READ_CTXS	128
29 
30 static struct kmem_cache *bio_post_read_ctx_cache;
31 static mempool_t *bio_post_read_ctx_pool;
32 
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 	struct address_space *mapping = page->mapping;
36 	struct inode *inode;
37 	struct f2fs_sb_info *sbi;
38 
39 	if (!mapping)
40 		return false;
41 
42 	inode = mapping->host;
43 	sbi = F2FS_I_SB(inode);
44 
45 	if (inode->i_ino == F2FS_META_INO(sbi) ||
46 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47 			S_ISDIR(inode->i_mode) ||
48 			(S_ISREG(inode->i_mode) &&
49 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
50 			is_cold_data(page))
51 		return true;
52 	return false;
53 }
54 
55 static enum count_type __read_io_type(struct page *page)
56 {
57 	struct address_space *mapping = page->mapping;
58 
59 	if (mapping) {
60 		struct inode *inode = mapping->host;
61 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
62 
63 		if (inode->i_ino == F2FS_META_INO(sbi))
64 			return F2FS_RD_META;
65 
66 		if (inode->i_ino == F2FS_NODE_INO(sbi))
67 			return F2FS_RD_NODE;
68 	}
69 	return F2FS_RD_DATA;
70 }
71 
72 /* postprocessing steps for read bios */
73 enum bio_post_read_step {
74 	STEP_INITIAL = 0,
75 	STEP_DECRYPT,
76 };
77 
78 struct bio_post_read_ctx {
79 	struct bio *bio;
80 	struct work_struct work;
81 	unsigned int cur_step;
82 	unsigned int enabled_steps;
83 };
84 
85 static void __read_end_io(struct bio *bio)
86 {
87 	struct page *page;
88 	struct bio_vec *bv;
89 	int i;
90 
91 	bio_for_each_segment_all(bv, bio, i) {
92 		page = bv->bv_page;
93 
94 		/* PG_error was set if any post_read step failed */
95 		if (bio->bi_status || PageError(page)) {
96 			ClearPageUptodate(page);
97 			/* will re-read again later */
98 			ClearPageError(page);
99 		} else {
100 			SetPageUptodate(page);
101 		}
102 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
103 		unlock_page(page);
104 	}
105 	if (bio->bi_private)
106 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
107 	bio_put(bio);
108 }
109 
110 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
111 
112 static void decrypt_work(struct work_struct *work)
113 {
114 	struct bio_post_read_ctx *ctx =
115 		container_of(work, struct bio_post_read_ctx, work);
116 
117 	fscrypt_decrypt_bio(ctx->bio);
118 
119 	bio_post_read_processing(ctx);
120 }
121 
122 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
123 {
124 	switch (++ctx->cur_step) {
125 	case STEP_DECRYPT:
126 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
127 			INIT_WORK(&ctx->work, decrypt_work);
128 			fscrypt_enqueue_decrypt_work(&ctx->work);
129 			return;
130 		}
131 		ctx->cur_step++;
132 		/* fall-through */
133 	default:
134 		__read_end_io(ctx->bio);
135 	}
136 }
137 
138 static bool f2fs_bio_post_read_required(struct bio *bio)
139 {
140 	return bio->bi_private && !bio->bi_status;
141 }
142 
143 static void f2fs_read_end_io(struct bio *bio)
144 {
145 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
146 						FAULT_READ_IO)) {
147 		f2fs_show_injection_info(FAULT_READ_IO);
148 		bio->bi_status = BLK_STS_IOERR;
149 	}
150 
151 	if (f2fs_bio_post_read_required(bio)) {
152 		struct bio_post_read_ctx *ctx = bio->bi_private;
153 
154 		ctx->cur_step = STEP_INITIAL;
155 		bio_post_read_processing(ctx);
156 		return;
157 	}
158 
159 	__read_end_io(bio);
160 }
161 
162 static void f2fs_write_end_io(struct bio *bio)
163 {
164 	struct f2fs_sb_info *sbi = bio->bi_private;
165 	struct bio_vec *bvec;
166 	int i;
167 
168 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
169 		f2fs_show_injection_info(FAULT_WRITE_IO);
170 		bio->bi_status = BLK_STS_IOERR;
171 	}
172 
173 	bio_for_each_segment_all(bvec, bio, i) {
174 		struct page *page = bvec->bv_page;
175 		enum count_type type = WB_DATA_TYPE(page);
176 
177 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
178 			set_page_private(page, (unsigned long)NULL);
179 			ClearPagePrivate(page);
180 			unlock_page(page);
181 			mempool_free(page, sbi->write_io_dummy);
182 
183 			if (unlikely(bio->bi_status))
184 				f2fs_stop_checkpoint(sbi, true);
185 			continue;
186 		}
187 
188 		fscrypt_pullback_bio_page(&page, true);
189 
190 		if (unlikely(bio->bi_status)) {
191 			mapping_set_error(page->mapping, -EIO);
192 			if (type == F2FS_WB_CP_DATA)
193 				f2fs_stop_checkpoint(sbi, true);
194 		}
195 
196 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
197 					page->index != nid_of_node(page));
198 
199 		dec_page_count(sbi, type);
200 		if (f2fs_in_warm_node_list(sbi, page))
201 			f2fs_del_fsync_node_entry(sbi, page);
202 		clear_cold_data(page);
203 		end_page_writeback(page);
204 	}
205 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
206 				wq_has_sleeper(&sbi->cp_wait))
207 		wake_up(&sbi->cp_wait);
208 
209 	bio_put(bio);
210 }
211 
212 /*
213  * Return true, if pre_bio's bdev is same as its target device.
214  */
215 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
216 				block_t blk_addr, struct bio *bio)
217 {
218 	struct block_device *bdev = sbi->sb->s_bdev;
219 	int i;
220 
221 	for (i = 0; i < sbi->s_ndevs; i++) {
222 		if (FDEV(i).start_blk <= blk_addr &&
223 					FDEV(i).end_blk >= blk_addr) {
224 			blk_addr -= FDEV(i).start_blk;
225 			bdev = FDEV(i).bdev;
226 			break;
227 		}
228 	}
229 	if (bio) {
230 		bio_set_dev(bio, bdev);
231 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
232 	}
233 	return bdev;
234 }
235 
236 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
237 {
238 	int i;
239 
240 	for (i = 0; i < sbi->s_ndevs; i++)
241 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
242 			return i;
243 	return 0;
244 }
245 
246 static bool __same_bdev(struct f2fs_sb_info *sbi,
247 				block_t blk_addr, struct bio *bio)
248 {
249 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
250 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
251 }
252 
253 /*
254  * Low-level block read/write IO operations.
255  */
256 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
257 				struct writeback_control *wbc,
258 				int npages, bool is_read,
259 				enum page_type type, enum temp_type temp)
260 {
261 	struct bio *bio;
262 
263 	bio = f2fs_bio_alloc(sbi, npages, true);
264 
265 	f2fs_target_device(sbi, blk_addr, bio);
266 	if (is_read) {
267 		bio->bi_end_io = f2fs_read_end_io;
268 		bio->bi_private = NULL;
269 	} else {
270 		bio->bi_end_io = f2fs_write_end_io;
271 		bio->bi_private = sbi;
272 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
273 	}
274 	if (wbc)
275 		wbc_init_bio(wbc, bio);
276 
277 	return bio;
278 }
279 
280 static inline void __submit_bio(struct f2fs_sb_info *sbi,
281 				struct bio *bio, enum page_type type)
282 {
283 	if (!is_read_io(bio_op(bio))) {
284 		unsigned int start;
285 
286 		if (type != DATA && type != NODE)
287 			goto submit_io;
288 
289 		if (test_opt(sbi, LFS) && current->plug)
290 			blk_finish_plug(current->plug);
291 
292 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
293 		start %= F2FS_IO_SIZE(sbi);
294 
295 		if (start == 0)
296 			goto submit_io;
297 
298 		/* fill dummy pages */
299 		for (; start < F2FS_IO_SIZE(sbi); start++) {
300 			struct page *page =
301 				mempool_alloc(sbi->write_io_dummy,
302 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
303 			f2fs_bug_on(sbi, !page);
304 
305 			SetPagePrivate(page);
306 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
307 			lock_page(page);
308 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
309 				f2fs_bug_on(sbi, 1);
310 		}
311 		/*
312 		 * In the NODE case, we lose next block address chain. So, we
313 		 * need to do checkpoint in f2fs_sync_file.
314 		 */
315 		if (type == NODE)
316 			set_sbi_flag(sbi, SBI_NEED_CP);
317 	}
318 submit_io:
319 	if (is_read_io(bio_op(bio)))
320 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
321 	else
322 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
323 	submit_bio(bio);
324 }
325 
326 static void __submit_merged_bio(struct f2fs_bio_info *io)
327 {
328 	struct f2fs_io_info *fio = &io->fio;
329 
330 	if (!io->bio)
331 		return;
332 
333 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
334 
335 	if (is_read_io(fio->op))
336 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
337 	else
338 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
339 
340 	__submit_bio(io->sbi, io->bio, fio->type);
341 	io->bio = NULL;
342 }
343 
344 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
345 						struct page *page, nid_t ino)
346 {
347 	struct bio_vec *bvec;
348 	struct page *target;
349 	int i;
350 
351 	if (!io->bio)
352 		return false;
353 
354 	if (!inode && !page && !ino)
355 		return true;
356 
357 	bio_for_each_segment_all(bvec, io->bio, i) {
358 
359 		if (bvec->bv_page->mapping)
360 			target = bvec->bv_page;
361 		else
362 			target = fscrypt_control_page(bvec->bv_page);
363 
364 		if (inode && inode == target->mapping->host)
365 			return true;
366 		if (page && page == target)
367 			return true;
368 		if (ino && ino == ino_of_node(target))
369 			return true;
370 	}
371 
372 	return false;
373 }
374 
375 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
376 				enum page_type type, enum temp_type temp)
377 {
378 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
379 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
380 
381 	down_write(&io->io_rwsem);
382 
383 	/* change META to META_FLUSH in the checkpoint procedure */
384 	if (type >= META_FLUSH) {
385 		io->fio.type = META_FLUSH;
386 		io->fio.op = REQ_OP_WRITE;
387 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
388 		if (!test_opt(sbi, NOBARRIER))
389 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
390 	}
391 	__submit_merged_bio(io);
392 	up_write(&io->io_rwsem);
393 }
394 
395 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
396 				struct inode *inode, struct page *page,
397 				nid_t ino, enum page_type type, bool force)
398 {
399 	enum temp_type temp;
400 	bool ret = true;
401 
402 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
403 		if (!force)	{
404 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
405 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
406 
407 			down_read(&io->io_rwsem);
408 			ret = __has_merged_page(io, inode, page, ino);
409 			up_read(&io->io_rwsem);
410 		}
411 		if (ret)
412 			__f2fs_submit_merged_write(sbi, type, temp);
413 
414 		/* TODO: use HOT temp only for meta pages now. */
415 		if (type >= META)
416 			break;
417 	}
418 }
419 
420 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
421 {
422 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
423 }
424 
425 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
426 				struct inode *inode, struct page *page,
427 				nid_t ino, enum page_type type)
428 {
429 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
430 }
431 
432 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
433 {
434 	f2fs_submit_merged_write(sbi, DATA);
435 	f2fs_submit_merged_write(sbi, NODE);
436 	f2fs_submit_merged_write(sbi, META);
437 }
438 
439 /*
440  * Fill the locked page with data located in the block address.
441  * A caller needs to unlock the page on failure.
442  */
443 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
444 {
445 	struct bio *bio;
446 	struct page *page = fio->encrypted_page ?
447 			fio->encrypted_page : fio->page;
448 
449 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
450 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
451 		return -EFAULT;
452 
453 	trace_f2fs_submit_page_bio(page, fio);
454 	f2fs_trace_ios(fio, 0);
455 
456 	/* Allocate a new bio */
457 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
458 				1, is_read_io(fio->op), fio->type, fio->temp);
459 
460 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
461 		bio_put(bio);
462 		return -EFAULT;
463 	}
464 
465 	if (fio->io_wbc && !is_read_io(fio->op))
466 		wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
467 
468 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
469 
470 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
471 			__read_io_type(page): WB_DATA_TYPE(fio->page));
472 
473 	__submit_bio(fio->sbi, bio, fio->type);
474 	return 0;
475 }
476 
477 void f2fs_submit_page_write(struct f2fs_io_info *fio)
478 {
479 	struct f2fs_sb_info *sbi = fio->sbi;
480 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
481 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
482 	struct page *bio_page;
483 
484 	f2fs_bug_on(sbi, is_read_io(fio->op));
485 
486 	down_write(&io->io_rwsem);
487 next:
488 	if (fio->in_list) {
489 		spin_lock(&io->io_lock);
490 		if (list_empty(&io->io_list)) {
491 			spin_unlock(&io->io_lock);
492 			goto out;
493 		}
494 		fio = list_first_entry(&io->io_list,
495 						struct f2fs_io_info, list);
496 		list_del(&fio->list);
497 		spin_unlock(&io->io_lock);
498 	}
499 
500 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
501 		verify_block_addr(fio, fio->old_blkaddr);
502 	verify_block_addr(fio, fio->new_blkaddr);
503 
504 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
505 
506 	/* set submitted = true as a return value */
507 	fio->submitted = true;
508 
509 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
510 
511 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
512 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
513 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
514 		__submit_merged_bio(io);
515 alloc_new:
516 	if (io->bio == NULL) {
517 		if ((fio->type == DATA || fio->type == NODE) &&
518 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
519 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
520 			fio->retry = true;
521 			goto skip;
522 		}
523 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
524 						BIO_MAX_PAGES, false,
525 						fio->type, fio->temp);
526 		io->fio = *fio;
527 	}
528 
529 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
530 		__submit_merged_bio(io);
531 		goto alloc_new;
532 	}
533 
534 	if (fio->io_wbc)
535 		wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
536 
537 	io->last_block_in_bio = fio->new_blkaddr;
538 	f2fs_trace_ios(fio, 0);
539 
540 	trace_f2fs_submit_page_write(fio->page, fio);
541 skip:
542 	if (fio->in_list)
543 		goto next;
544 out:
545 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
546 				f2fs_is_checkpoint_ready(sbi))
547 		__submit_merged_bio(io);
548 	up_write(&io->io_rwsem);
549 }
550 
551 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
552 					unsigned nr_pages, unsigned op_flag)
553 {
554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
555 	struct bio *bio;
556 	struct bio_post_read_ctx *ctx;
557 	unsigned int post_read_steps = 0;
558 
559 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
560 		return ERR_PTR(-EFAULT);
561 
562 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
563 	if (!bio)
564 		return ERR_PTR(-ENOMEM);
565 	f2fs_target_device(sbi, blkaddr, bio);
566 	bio->bi_end_io = f2fs_read_end_io;
567 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
568 
569 	if (f2fs_encrypted_file(inode))
570 		post_read_steps |= 1 << STEP_DECRYPT;
571 	if (post_read_steps) {
572 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
573 		if (!ctx) {
574 			bio_put(bio);
575 			return ERR_PTR(-ENOMEM);
576 		}
577 		ctx->bio = bio;
578 		ctx->enabled_steps = post_read_steps;
579 		bio->bi_private = ctx;
580 	}
581 
582 	return bio;
583 }
584 
585 /* This can handle encryption stuffs */
586 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
587 							block_t blkaddr)
588 {
589 	struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
590 
591 	if (IS_ERR(bio))
592 		return PTR_ERR(bio);
593 
594 	/* wait for GCed page writeback via META_MAPPING */
595 	f2fs_wait_on_block_writeback(inode, blkaddr);
596 
597 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
598 		bio_put(bio);
599 		return -EFAULT;
600 	}
601 	ClearPageError(page);
602 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
603 	__submit_bio(F2FS_I_SB(inode), bio, DATA);
604 	return 0;
605 }
606 
607 static void __set_data_blkaddr(struct dnode_of_data *dn)
608 {
609 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
610 	__le32 *addr_array;
611 	int base = 0;
612 
613 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
614 		base = get_extra_isize(dn->inode);
615 
616 	/* Get physical address of data block */
617 	addr_array = blkaddr_in_node(rn);
618 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
619 }
620 
621 /*
622  * Lock ordering for the change of data block address:
623  * ->data_page
624  *  ->node_page
625  *    update block addresses in the node page
626  */
627 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
628 {
629 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
630 	__set_data_blkaddr(dn);
631 	if (set_page_dirty(dn->node_page))
632 		dn->node_changed = true;
633 }
634 
635 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
636 {
637 	dn->data_blkaddr = blkaddr;
638 	f2fs_set_data_blkaddr(dn);
639 	f2fs_update_extent_cache(dn);
640 }
641 
642 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
643 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
644 {
645 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
646 	int err;
647 
648 	if (!count)
649 		return 0;
650 
651 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
652 		return -EPERM;
653 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
654 		return err;
655 
656 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
657 						dn->ofs_in_node, count);
658 
659 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
660 
661 	for (; count > 0; dn->ofs_in_node++) {
662 		block_t blkaddr = datablock_addr(dn->inode,
663 					dn->node_page, dn->ofs_in_node);
664 		if (blkaddr == NULL_ADDR) {
665 			dn->data_blkaddr = NEW_ADDR;
666 			__set_data_blkaddr(dn);
667 			count--;
668 		}
669 	}
670 
671 	if (set_page_dirty(dn->node_page))
672 		dn->node_changed = true;
673 	return 0;
674 }
675 
676 /* Should keep dn->ofs_in_node unchanged */
677 int f2fs_reserve_new_block(struct dnode_of_data *dn)
678 {
679 	unsigned int ofs_in_node = dn->ofs_in_node;
680 	int ret;
681 
682 	ret = f2fs_reserve_new_blocks(dn, 1);
683 	dn->ofs_in_node = ofs_in_node;
684 	return ret;
685 }
686 
687 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
688 {
689 	bool need_put = dn->inode_page ? false : true;
690 	int err;
691 
692 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
693 	if (err)
694 		return err;
695 
696 	if (dn->data_blkaddr == NULL_ADDR)
697 		err = f2fs_reserve_new_block(dn);
698 	if (err || need_put)
699 		f2fs_put_dnode(dn);
700 	return err;
701 }
702 
703 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
704 {
705 	struct extent_info ei  = {0,0,0};
706 	struct inode *inode = dn->inode;
707 
708 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
709 		dn->data_blkaddr = ei.blk + index - ei.fofs;
710 		return 0;
711 	}
712 
713 	return f2fs_reserve_block(dn, index);
714 }
715 
716 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
717 						int op_flags, bool for_write)
718 {
719 	struct address_space *mapping = inode->i_mapping;
720 	struct dnode_of_data dn;
721 	struct page *page;
722 	struct extent_info ei = {0,0,0};
723 	int err;
724 
725 	page = f2fs_grab_cache_page(mapping, index, for_write);
726 	if (!page)
727 		return ERR_PTR(-ENOMEM);
728 
729 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
730 		dn.data_blkaddr = ei.blk + index - ei.fofs;
731 		goto got_it;
732 	}
733 
734 	set_new_dnode(&dn, inode, NULL, NULL, 0);
735 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
736 	if (err)
737 		goto put_err;
738 	f2fs_put_dnode(&dn);
739 
740 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
741 		err = -ENOENT;
742 		goto put_err;
743 	}
744 got_it:
745 	if (PageUptodate(page)) {
746 		unlock_page(page);
747 		return page;
748 	}
749 
750 	/*
751 	 * A new dentry page is allocated but not able to be written, since its
752 	 * new inode page couldn't be allocated due to -ENOSPC.
753 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
754 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
755 	 * f2fs_init_inode_metadata.
756 	 */
757 	if (dn.data_blkaddr == NEW_ADDR) {
758 		zero_user_segment(page, 0, PAGE_SIZE);
759 		if (!PageUptodate(page))
760 			SetPageUptodate(page);
761 		unlock_page(page);
762 		return page;
763 	}
764 
765 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
766 	if (err)
767 		goto put_err;
768 	return page;
769 
770 put_err:
771 	f2fs_put_page(page, 1);
772 	return ERR_PTR(err);
773 }
774 
775 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
776 {
777 	struct address_space *mapping = inode->i_mapping;
778 	struct page *page;
779 
780 	page = find_get_page(mapping, index);
781 	if (page && PageUptodate(page))
782 		return page;
783 	f2fs_put_page(page, 0);
784 
785 	page = f2fs_get_read_data_page(inode, index, 0, false);
786 	if (IS_ERR(page))
787 		return page;
788 
789 	if (PageUptodate(page))
790 		return page;
791 
792 	wait_on_page_locked(page);
793 	if (unlikely(!PageUptodate(page))) {
794 		f2fs_put_page(page, 0);
795 		return ERR_PTR(-EIO);
796 	}
797 	return page;
798 }
799 
800 /*
801  * If it tries to access a hole, return an error.
802  * Because, the callers, functions in dir.c and GC, should be able to know
803  * whether this page exists or not.
804  */
805 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
806 							bool for_write)
807 {
808 	struct address_space *mapping = inode->i_mapping;
809 	struct page *page;
810 repeat:
811 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
812 	if (IS_ERR(page))
813 		return page;
814 
815 	/* wait for read completion */
816 	lock_page(page);
817 	if (unlikely(page->mapping != mapping)) {
818 		f2fs_put_page(page, 1);
819 		goto repeat;
820 	}
821 	if (unlikely(!PageUptodate(page))) {
822 		f2fs_put_page(page, 1);
823 		return ERR_PTR(-EIO);
824 	}
825 	return page;
826 }
827 
828 /*
829  * Caller ensures that this data page is never allocated.
830  * A new zero-filled data page is allocated in the page cache.
831  *
832  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
833  * f2fs_unlock_op().
834  * Note that, ipage is set only by make_empty_dir, and if any error occur,
835  * ipage should be released by this function.
836  */
837 struct page *f2fs_get_new_data_page(struct inode *inode,
838 		struct page *ipage, pgoff_t index, bool new_i_size)
839 {
840 	struct address_space *mapping = inode->i_mapping;
841 	struct page *page;
842 	struct dnode_of_data dn;
843 	int err;
844 
845 	page = f2fs_grab_cache_page(mapping, index, true);
846 	if (!page) {
847 		/*
848 		 * before exiting, we should make sure ipage will be released
849 		 * if any error occur.
850 		 */
851 		f2fs_put_page(ipage, 1);
852 		return ERR_PTR(-ENOMEM);
853 	}
854 
855 	set_new_dnode(&dn, inode, ipage, NULL, 0);
856 	err = f2fs_reserve_block(&dn, index);
857 	if (err) {
858 		f2fs_put_page(page, 1);
859 		return ERR_PTR(err);
860 	}
861 	if (!ipage)
862 		f2fs_put_dnode(&dn);
863 
864 	if (PageUptodate(page))
865 		goto got_it;
866 
867 	if (dn.data_blkaddr == NEW_ADDR) {
868 		zero_user_segment(page, 0, PAGE_SIZE);
869 		if (!PageUptodate(page))
870 			SetPageUptodate(page);
871 	} else {
872 		f2fs_put_page(page, 1);
873 
874 		/* if ipage exists, blkaddr should be NEW_ADDR */
875 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
876 		page = f2fs_get_lock_data_page(inode, index, true);
877 		if (IS_ERR(page))
878 			return page;
879 	}
880 got_it:
881 	if (new_i_size && i_size_read(inode) <
882 				((loff_t)(index + 1) << PAGE_SHIFT))
883 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
884 	return page;
885 }
886 
887 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
888 {
889 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
890 	struct f2fs_summary sum;
891 	struct node_info ni;
892 	block_t old_blkaddr;
893 	blkcnt_t count = 1;
894 	int err;
895 
896 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
897 		return -EPERM;
898 
899 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
900 	if (err)
901 		return err;
902 
903 	dn->data_blkaddr = datablock_addr(dn->inode,
904 				dn->node_page, dn->ofs_in_node);
905 	if (dn->data_blkaddr != NULL_ADDR)
906 		goto alloc;
907 
908 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
909 		return err;
910 
911 alloc:
912 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
913 	old_blkaddr = dn->data_blkaddr;
914 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
915 					&sum, seg_type, NULL, false);
916 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
917 		invalidate_mapping_pages(META_MAPPING(sbi),
918 					old_blkaddr, old_blkaddr);
919 	f2fs_set_data_blkaddr(dn);
920 
921 	/*
922 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
923 	 * data from unwritten block via dio_read.
924 	 */
925 	return 0;
926 }
927 
928 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
929 {
930 	struct inode *inode = file_inode(iocb->ki_filp);
931 	struct f2fs_map_blocks map;
932 	int flag;
933 	int err = 0;
934 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
935 
936 	/* convert inline data for Direct I/O*/
937 	if (direct_io) {
938 		err = f2fs_convert_inline_inode(inode);
939 		if (err)
940 			return err;
941 	}
942 
943 	if (direct_io && allow_outplace_dio(inode, iocb, from))
944 		return 0;
945 
946 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
947 		return 0;
948 
949 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
950 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
951 	if (map.m_len > map.m_lblk)
952 		map.m_len -= map.m_lblk;
953 	else
954 		map.m_len = 0;
955 
956 	map.m_next_pgofs = NULL;
957 	map.m_next_extent = NULL;
958 	map.m_seg_type = NO_CHECK_TYPE;
959 	map.m_may_create = true;
960 
961 	if (direct_io) {
962 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
963 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
964 					F2FS_GET_BLOCK_PRE_AIO :
965 					F2FS_GET_BLOCK_PRE_DIO;
966 		goto map_blocks;
967 	}
968 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
969 		err = f2fs_convert_inline_inode(inode);
970 		if (err)
971 			return err;
972 	}
973 	if (f2fs_has_inline_data(inode))
974 		return err;
975 
976 	flag = F2FS_GET_BLOCK_PRE_AIO;
977 
978 map_blocks:
979 	err = f2fs_map_blocks(inode, &map, 1, flag);
980 	if (map.m_len > 0 && err == -ENOSPC) {
981 		if (!direct_io)
982 			set_inode_flag(inode, FI_NO_PREALLOC);
983 		err = 0;
984 	}
985 	return err;
986 }
987 
988 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
989 {
990 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
991 		if (lock)
992 			down_read(&sbi->node_change);
993 		else
994 			up_read(&sbi->node_change);
995 	} else {
996 		if (lock)
997 			f2fs_lock_op(sbi);
998 		else
999 			f2fs_unlock_op(sbi);
1000 	}
1001 }
1002 
1003 /*
1004  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1005  * f2fs_map_blocks structure.
1006  * If original data blocks are allocated, then give them to blockdev.
1007  * Otherwise,
1008  *     a. preallocate requested block addresses
1009  *     b. do not use extent cache for better performance
1010  *     c. give the block addresses to blockdev
1011  */
1012 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1013 						int create, int flag)
1014 {
1015 	unsigned int maxblocks = map->m_len;
1016 	struct dnode_of_data dn;
1017 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1018 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1019 	pgoff_t pgofs, end_offset, end;
1020 	int err = 0, ofs = 1;
1021 	unsigned int ofs_in_node, last_ofs_in_node;
1022 	blkcnt_t prealloc;
1023 	struct extent_info ei = {0,0,0};
1024 	block_t blkaddr;
1025 	unsigned int start_pgofs;
1026 
1027 	if (!maxblocks)
1028 		return 0;
1029 
1030 	map->m_len = 0;
1031 	map->m_flags = 0;
1032 
1033 	/* it only supports block size == page size */
1034 	pgofs =	(pgoff_t)map->m_lblk;
1035 	end = pgofs + maxblocks;
1036 
1037 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1038 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1039 							map->m_may_create)
1040 			goto next_dnode;
1041 
1042 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1043 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1044 		map->m_flags = F2FS_MAP_MAPPED;
1045 		if (map->m_next_extent)
1046 			*map->m_next_extent = pgofs + map->m_len;
1047 
1048 		/* for hardware encryption, but to avoid potential issue in future */
1049 		if (flag == F2FS_GET_BLOCK_DIO)
1050 			f2fs_wait_on_block_writeback_range(inode,
1051 						map->m_pblk, map->m_len);
1052 		goto out;
1053 	}
1054 
1055 next_dnode:
1056 	if (map->m_may_create)
1057 		__do_map_lock(sbi, flag, true);
1058 
1059 	/* When reading holes, we need its node page */
1060 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1061 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1062 	if (err) {
1063 		if (flag == F2FS_GET_BLOCK_BMAP)
1064 			map->m_pblk = 0;
1065 		if (err == -ENOENT) {
1066 			err = 0;
1067 			if (map->m_next_pgofs)
1068 				*map->m_next_pgofs =
1069 					f2fs_get_next_page_offset(&dn, pgofs);
1070 			if (map->m_next_extent)
1071 				*map->m_next_extent =
1072 					f2fs_get_next_page_offset(&dn, pgofs);
1073 		}
1074 		goto unlock_out;
1075 	}
1076 
1077 	start_pgofs = pgofs;
1078 	prealloc = 0;
1079 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1080 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1081 
1082 next_block:
1083 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1084 
1085 	if (__is_valid_data_blkaddr(blkaddr) &&
1086 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1087 		err = -EFAULT;
1088 		goto sync_out;
1089 	}
1090 
1091 	if (is_valid_data_blkaddr(sbi, blkaddr)) {
1092 		/* use out-place-update for driect IO under LFS mode */
1093 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1094 							map->m_may_create) {
1095 			err = __allocate_data_block(&dn, map->m_seg_type);
1096 			if (!err) {
1097 				blkaddr = dn.data_blkaddr;
1098 				set_inode_flag(inode, FI_APPEND_WRITE);
1099 			}
1100 		}
1101 	} else {
1102 		if (create) {
1103 			if (unlikely(f2fs_cp_error(sbi))) {
1104 				err = -EIO;
1105 				goto sync_out;
1106 			}
1107 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1108 				if (blkaddr == NULL_ADDR) {
1109 					prealloc++;
1110 					last_ofs_in_node = dn.ofs_in_node;
1111 				}
1112 			} else {
1113 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1114 					flag != F2FS_GET_BLOCK_DIO);
1115 				err = __allocate_data_block(&dn,
1116 							map->m_seg_type);
1117 				if (!err)
1118 					set_inode_flag(inode, FI_APPEND_WRITE);
1119 			}
1120 			if (err)
1121 				goto sync_out;
1122 			map->m_flags |= F2FS_MAP_NEW;
1123 			blkaddr = dn.data_blkaddr;
1124 		} else {
1125 			if (flag == F2FS_GET_BLOCK_BMAP) {
1126 				map->m_pblk = 0;
1127 				goto sync_out;
1128 			}
1129 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1130 				goto sync_out;
1131 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1132 						blkaddr == NULL_ADDR) {
1133 				if (map->m_next_pgofs)
1134 					*map->m_next_pgofs = pgofs + 1;
1135 				goto sync_out;
1136 			}
1137 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1138 				/* for defragment case */
1139 				if (map->m_next_pgofs)
1140 					*map->m_next_pgofs = pgofs + 1;
1141 				goto sync_out;
1142 			}
1143 		}
1144 	}
1145 
1146 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1147 		goto skip;
1148 
1149 	if (map->m_len == 0) {
1150 		/* preallocated unwritten block should be mapped for fiemap. */
1151 		if (blkaddr == NEW_ADDR)
1152 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1153 		map->m_flags |= F2FS_MAP_MAPPED;
1154 
1155 		map->m_pblk = blkaddr;
1156 		map->m_len = 1;
1157 	} else if ((map->m_pblk != NEW_ADDR &&
1158 			blkaddr == (map->m_pblk + ofs)) ||
1159 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1160 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1161 		ofs++;
1162 		map->m_len++;
1163 	} else {
1164 		goto sync_out;
1165 	}
1166 
1167 skip:
1168 	dn.ofs_in_node++;
1169 	pgofs++;
1170 
1171 	/* preallocate blocks in batch for one dnode page */
1172 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1173 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1174 
1175 		dn.ofs_in_node = ofs_in_node;
1176 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1177 		if (err)
1178 			goto sync_out;
1179 
1180 		map->m_len += dn.ofs_in_node - ofs_in_node;
1181 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1182 			err = -ENOSPC;
1183 			goto sync_out;
1184 		}
1185 		dn.ofs_in_node = end_offset;
1186 	}
1187 
1188 	if (pgofs >= end)
1189 		goto sync_out;
1190 	else if (dn.ofs_in_node < end_offset)
1191 		goto next_block;
1192 
1193 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1194 		if (map->m_flags & F2FS_MAP_MAPPED) {
1195 			unsigned int ofs = start_pgofs - map->m_lblk;
1196 
1197 			f2fs_update_extent_cache_range(&dn,
1198 				start_pgofs, map->m_pblk + ofs,
1199 				map->m_len - ofs);
1200 		}
1201 	}
1202 
1203 	f2fs_put_dnode(&dn);
1204 
1205 	if (map->m_may_create) {
1206 		__do_map_lock(sbi, flag, false);
1207 		f2fs_balance_fs(sbi, dn.node_changed);
1208 	}
1209 	goto next_dnode;
1210 
1211 sync_out:
1212 
1213 	/* for hardware encryption, but to avoid potential issue in future */
1214 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1215 		f2fs_wait_on_block_writeback_range(inode,
1216 						map->m_pblk, map->m_len);
1217 
1218 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1219 		if (map->m_flags & F2FS_MAP_MAPPED) {
1220 			unsigned int ofs = start_pgofs - map->m_lblk;
1221 
1222 			f2fs_update_extent_cache_range(&dn,
1223 				start_pgofs, map->m_pblk + ofs,
1224 				map->m_len - ofs);
1225 		}
1226 		if (map->m_next_extent)
1227 			*map->m_next_extent = pgofs + 1;
1228 	}
1229 	f2fs_put_dnode(&dn);
1230 unlock_out:
1231 	if (map->m_may_create) {
1232 		__do_map_lock(sbi, flag, false);
1233 		f2fs_balance_fs(sbi, dn.node_changed);
1234 	}
1235 out:
1236 	trace_f2fs_map_blocks(inode, map, err);
1237 	return err;
1238 }
1239 
1240 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1241 {
1242 	struct f2fs_map_blocks map;
1243 	block_t last_lblk;
1244 	int err;
1245 
1246 	if (pos + len > i_size_read(inode))
1247 		return false;
1248 
1249 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1250 	map.m_next_pgofs = NULL;
1251 	map.m_next_extent = NULL;
1252 	map.m_seg_type = NO_CHECK_TYPE;
1253 	map.m_may_create = false;
1254 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1255 
1256 	while (map.m_lblk < last_lblk) {
1257 		map.m_len = last_lblk - map.m_lblk;
1258 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1259 		if (err || map.m_len == 0)
1260 			return false;
1261 		map.m_lblk += map.m_len;
1262 	}
1263 	return true;
1264 }
1265 
1266 static int __get_data_block(struct inode *inode, sector_t iblock,
1267 			struct buffer_head *bh, int create, int flag,
1268 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1269 {
1270 	struct f2fs_map_blocks map;
1271 	int err;
1272 
1273 	map.m_lblk = iblock;
1274 	map.m_len = bh->b_size >> inode->i_blkbits;
1275 	map.m_next_pgofs = next_pgofs;
1276 	map.m_next_extent = NULL;
1277 	map.m_seg_type = seg_type;
1278 	map.m_may_create = may_write;
1279 
1280 	err = f2fs_map_blocks(inode, &map, create, flag);
1281 	if (!err) {
1282 		map_bh(bh, inode->i_sb, map.m_pblk);
1283 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1284 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1285 	}
1286 	return err;
1287 }
1288 
1289 static int get_data_block(struct inode *inode, sector_t iblock,
1290 			struct buffer_head *bh_result, int create, int flag,
1291 			pgoff_t *next_pgofs)
1292 {
1293 	return __get_data_block(inode, iblock, bh_result, create,
1294 							flag, next_pgofs,
1295 							NO_CHECK_TYPE, create);
1296 }
1297 
1298 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1299 			struct buffer_head *bh_result, int create)
1300 {
1301 	return __get_data_block(inode, iblock, bh_result, create,
1302 				F2FS_GET_BLOCK_DIO, NULL,
1303 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1304 				true);
1305 }
1306 
1307 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1308 			struct buffer_head *bh_result, int create)
1309 {
1310 	return __get_data_block(inode, iblock, bh_result, create,
1311 				F2FS_GET_BLOCK_DIO, NULL,
1312 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1313 				false);
1314 }
1315 
1316 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1317 			struct buffer_head *bh_result, int create)
1318 {
1319 	/* Block number less than F2FS MAX BLOCKS */
1320 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1321 		return -EFBIG;
1322 
1323 	return __get_data_block(inode, iblock, bh_result, create,
1324 						F2FS_GET_BLOCK_BMAP, NULL,
1325 						NO_CHECK_TYPE, create);
1326 }
1327 
1328 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1329 {
1330 	return (offset >> inode->i_blkbits);
1331 }
1332 
1333 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1334 {
1335 	return (blk << inode->i_blkbits);
1336 }
1337 
1338 static int f2fs_xattr_fiemap(struct inode *inode,
1339 				struct fiemap_extent_info *fieinfo)
1340 {
1341 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1342 	struct page *page;
1343 	struct node_info ni;
1344 	__u64 phys = 0, len;
1345 	__u32 flags;
1346 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1347 	int err = 0;
1348 
1349 	if (f2fs_has_inline_xattr(inode)) {
1350 		int offset;
1351 
1352 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1353 						inode->i_ino, false);
1354 		if (!page)
1355 			return -ENOMEM;
1356 
1357 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1358 		if (err) {
1359 			f2fs_put_page(page, 1);
1360 			return err;
1361 		}
1362 
1363 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1364 		offset = offsetof(struct f2fs_inode, i_addr) +
1365 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1366 					get_inline_xattr_addrs(inode));
1367 
1368 		phys += offset;
1369 		len = inline_xattr_size(inode);
1370 
1371 		f2fs_put_page(page, 1);
1372 
1373 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1374 
1375 		if (!xnid)
1376 			flags |= FIEMAP_EXTENT_LAST;
1377 
1378 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1379 		if (err || err == 1)
1380 			return err;
1381 	}
1382 
1383 	if (xnid) {
1384 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1385 		if (!page)
1386 			return -ENOMEM;
1387 
1388 		err = f2fs_get_node_info(sbi, xnid, &ni);
1389 		if (err) {
1390 			f2fs_put_page(page, 1);
1391 			return err;
1392 		}
1393 
1394 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1395 		len = inode->i_sb->s_blocksize;
1396 
1397 		f2fs_put_page(page, 1);
1398 
1399 		flags = FIEMAP_EXTENT_LAST;
1400 	}
1401 
1402 	if (phys)
1403 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1404 
1405 	return (err < 0 ? err : 0);
1406 }
1407 
1408 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1409 		u64 start, u64 len)
1410 {
1411 	struct buffer_head map_bh;
1412 	sector_t start_blk, last_blk;
1413 	pgoff_t next_pgofs;
1414 	u64 logical = 0, phys = 0, size = 0;
1415 	u32 flags = 0;
1416 	int ret = 0;
1417 
1418 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1419 		ret = f2fs_precache_extents(inode);
1420 		if (ret)
1421 			return ret;
1422 	}
1423 
1424 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1425 	if (ret)
1426 		return ret;
1427 
1428 	inode_lock(inode);
1429 
1430 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1431 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1432 		goto out;
1433 	}
1434 
1435 	if (f2fs_has_inline_data(inode)) {
1436 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1437 		if (ret != -EAGAIN)
1438 			goto out;
1439 	}
1440 
1441 	if (logical_to_blk(inode, len) == 0)
1442 		len = blk_to_logical(inode, 1);
1443 
1444 	start_blk = logical_to_blk(inode, start);
1445 	last_blk = logical_to_blk(inode, start + len - 1);
1446 
1447 next:
1448 	memset(&map_bh, 0, sizeof(struct buffer_head));
1449 	map_bh.b_size = len;
1450 
1451 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1452 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1453 	if (ret)
1454 		goto out;
1455 
1456 	/* HOLE */
1457 	if (!buffer_mapped(&map_bh)) {
1458 		start_blk = next_pgofs;
1459 
1460 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1461 					F2FS_I_SB(inode)->max_file_blocks))
1462 			goto prep_next;
1463 
1464 		flags |= FIEMAP_EXTENT_LAST;
1465 	}
1466 
1467 	if (size) {
1468 		if (f2fs_encrypted_inode(inode))
1469 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1470 
1471 		ret = fiemap_fill_next_extent(fieinfo, logical,
1472 				phys, size, flags);
1473 	}
1474 
1475 	if (start_blk > last_blk || ret)
1476 		goto out;
1477 
1478 	logical = blk_to_logical(inode, start_blk);
1479 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1480 	size = map_bh.b_size;
1481 	flags = 0;
1482 	if (buffer_unwritten(&map_bh))
1483 		flags = FIEMAP_EXTENT_UNWRITTEN;
1484 
1485 	start_blk += logical_to_blk(inode, size);
1486 
1487 prep_next:
1488 	cond_resched();
1489 	if (fatal_signal_pending(current))
1490 		ret = -EINTR;
1491 	else
1492 		goto next;
1493 out:
1494 	if (ret == 1)
1495 		ret = 0;
1496 
1497 	inode_unlock(inode);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1503  * Major change was from block_size == page_size in f2fs by default.
1504  *
1505  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1506  * this function ever deviates from doing just read-ahead, it should either
1507  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1508  * from read-ahead.
1509  */
1510 static int f2fs_mpage_readpages(struct address_space *mapping,
1511 			struct list_head *pages, struct page *page,
1512 			unsigned nr_pages, bool is_readahead)
1513 {
1514 	struct bio *bio = NULL;
1515 	sector_t last_block_in_bio = 0;
1516 	struct inode *inode = mapping->host;
1517 	const unsigned blkbits = inode->i_blkbits;
1518 	const unsigned blocksize = 1 << blkbits;
1519 	sector_t block_in_file;
1520 	sector_t last_block;
1521 	sector_t last_block_in_file;
1522 	sector_t block_nr;
1523 	struct f2fs_map_blocks map;
1524 
1525 	map.m_pblk = 0;
1526 	map.m_lblk = 0;
1527 	map.m_len = 0;
1528 	map.m_flags = 0;
1529 	map.m_next_pgofs = NULL;
1530 	map.m_next_extent = NULL;
1531 	map.m_seg_type = NO_CHECK_TYPE;
1532 	map.m_may_create = false;
1533 
1534 	for (; nr_pages; nr_pages--) {
1535 		if (pages) {
1536 			page = list_last_entry(pages, struct page, lru);
1537 
1538 			prefetchw(&page->flags);
1539 			list_del(&page->lru);
1540 			if (add_to_page_cache_lru(page, mapping,
1541 						  page->index,
1542 						  readahead_gfp_mask(mapping)))
1543 				goto next_page;
1544 		}
1545 
1546 		block_in_file = (sector_t)page->index;
1547 		last_block = block_in_file + nr_pages;
1548 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1549 								blkbits;
1550 		if (last_block > last_block_in_file)
1551 			last_block = last_block_in_file;
1552 
1553 		/*
1554 		 * Map blocks using the previous result first.
1555 		 */
1556 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1557 				block_in_file > map.m_lblk &&
1558 				block_in_file < (map.m_lblk + map.m_len))
1559 			goto got_it;
1560 
1561 		/*
1562 		 * Then do more f2fs_map_blocks() calls until we are
1563 		 * done with this page.
1564 		 */
1565 		map.m_flags = 0;
1566 
1567 		if (block_in_file < last_block) {
1568 			map.m_lblk = block_in_file;
1569 			map.m_len = last_block - block_in_file;
1570 
1571 			if (f2fs_map_blocks(inode, &map, 0,
1572 						F2FS_GET_BLOCK_DEFAULT))
1573 				goto set_error_page;
1574 		}
1575 got_it:
1576 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1577 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1578 			SetPageMappedToDisk(page);
1579 
1580 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1581 				SetPageUptodate(page);
1582 				goto confused;
1583 			}
1584 
1585 			if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1586 								DATA_GENERIC))
1587 				goto set_error_page;
1588 		} else {
1589 			zero_user_segment(page, 0, PAGE_SIZE);
1590 			if (!PageUptodate(page))
1591 				SetPageUptodate(page);
1592 			unlock_page(page);
1593 			goto next_page;
1594 		}
1595 
1596 		/*
1597 		 * This page will go to BIO.  Do we need to send this
1598 		 * BIO off first?
1599 		 */
1600 		if (bio && (last_block_in_bio != block_nr - 1 ||
1601 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1602 submit_and_realloc:
1603 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1604 			bio = NULL;
1605 		}
1606 		if (bio == NULL) {
1607 			bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1608 					is_readahead ? REQ_RAHEAD : 0);
1609 			if (IS_ERR(bio)) {
1610 				bio = NULL;
1611 				goto set_error_page;
1612 			}
1613 		}
1614 
1615 		/*
1616 		 * If the page is under writeback, we need to wait for
1617 		 * its completion to see the correct decrypted data.
1618 		 */
1619 		f2fs_wait_on_block_writeback(inode, block_nr);
1620 
1621 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1622 			goto submit_and_realloc;
1623 
1624 		inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1625 		ClearPageError(page);
1626 		last_block_in_bio = block_nr;
1627 		goto next_page;
1628 set_error_page:
1629 		SetPageError(page);
1630 		zero_user_segment(page, 0, PAGE_SIZE);
1631 		unlock_page(page);
1632 		goto next_page;
1633 confused:
1634 		if (bio) {
1635 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1636 			bio = NULL;
1637 		}
1638 		unlock_page(page);
1639 next_page:
1640 		if (pages)
1641 			put_page(page);
1642 	}
1643 	BUG_ON(pages && !list_empty(pages));
1644 	if (bio)
1645 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1646 	return 0;
1647 }
1648 
1649 static int f2fs_read_data_page(struct file *file, struct page *page)
1650 {
1651 	struct inode *inode = page->mapping->host;
1652 	int ret = -EAGAIN;
1653 
1654 	trace_f2fs_readpage(page, DATA);
1655 
1656 	/* If the file has inline data, try to read it directly */
1657 	if (f2fs_has_inline_data(inode))
1658 		ret = f2fs_read_inline_data(inode, page);
1659 	if (ret == -EAGAIN)
1660 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1661 	return ret;
1662 }
1663 
1664 static int f2fs_read_data_pages(struct file *file,
1665 			struct address_space *mapping,
1666 			struct list_head *pages, unsigned nr_pages)
1667 {
1668 	struct inode *inode = mapping->host;
1669 	struct page *page = list_last_entry(pages, struct page, lru);
1670 
1671 	trace_f2fs_readpages(inode, page, nr_pages);
1672 
1673 	/* If the file has inline data, skip readpages */
1674 	if (f2fs_has_inline_data(inode))
1675 		return 0;
1676 
1677 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1678 }
1679 
1680 static int encrypt_one_page(struct f2fs_io_info *fio)
1681 {
1682 	struct inode *inode = fio->page->mapping->host;
1683 	struct page *mpage;
1684 	gfp_t gfp_flags = GFP_NOFS;
1685 
1686 	if (!f2fs_encrypted_file(inode))
1687 		return 0;
1688 
1689 	/* wait for GCed page writeback via META_MAPPING */
1690 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1691 
1692 retry_encrypt:
1693 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1694 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1695 	if (IS_ERR(fio->encrypted_page)) {
1696 		/* flush pending IOs and wait for a while in the ENOMEM case */
1697 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1698 			f2fs_flush_merged_writes(fio->sbi);
1699 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1700 			gfp_flags |= __GFP_NOFAIL;
1701 			goto retry_encrypt;
1702 		}
1703 		return PTR_ERR(fio->encrypted_page);
1704 	}
1705 
1706 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1707 	if (mpage) {
1708 		if (PageUptodate(mpage))
1709 			memcpy(page_address(mpage),
1710 				page_address(fio->encrypted_page), PAGE_SIZE);
1711 		f2fs_put_page(mpage, 1);
1712 	}
1713 	return 0;
1714 }
1715 
1716 static inline bool check_inplace_update_policy(struct inode *inode,
1717 				struct f2fs_io_info *fio)
1718 {
1719 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1720 	unsigned int policy = SM_I(sbi)->ipu_policy;
1721 
1722 	if (policy & (0x1 << F2FS_IPU_FORCE))
1723 		return true;
1724 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1725 		return true;
1726 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1727 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1728 		return true;
1729 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1730 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1731 		return true;
1732 
1733 	/*
1734 	 * IPU for rewrite async pages
1735 	 */
1736 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1737 			fio && fio->op == REQ_OP_WRITE &&
1738 			!(fio->op_flags & REQ_SYNC) &&
1739 			!f2fs_encrypted_inode(inode))
1740 		return true;
1741 
1742 	/* this is only set during fdatasync */
1743 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1744 			is_inode_flag_set(inode, FI_NEED_IPU))
1745 		return true;
1746 
1747 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1748 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1749 		return true;
1750 
1751 	return false;
1752 }
1753 
1754 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1755 {
1756 	if (f2fs_is_pinned_file(inode))
1757 		return true;
1758 
1759 	/* if this is cold file, we should overwrite to avoid fragmentation */
1760 	if (file_is_cold(inode))
1761 		return true;
1762 
1763 	return check_inplace_update_policy(inode, fio);
1764 }
1765 
1766 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1767 {
1768 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769 
1770 	if (test_opt(sbi, LFS))
1771 		return true;
1772 	if (S_ISDIR(inode->i_mode))
1773 		return true;
1774 	if (IS_NOQUOTA(inode))
1775 		return true;
1776 	if (f2fs_is_atomic_file(inode))
1777 		return true;
1778 	if (fio) {
1779 		if (is_cold_data(fio->page))
1780 			return true;
1781 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1782 			return true;
1783 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1784 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1785 			return true;
1786 	}
1787 	return false;
1788 }
1789 
1790 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1791 {
1792 	struct inode *inode = fio->page->mapping->host;
1793 
1794 	if (f2fs_should_update_outplace(inode, fio))
1795 		return false;
1796 
1797 	return f2fs_should_update_inplace(inode, fio);
1798 }
1799 
1800 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1801 {
1802 	struct page *page = fio->page;
1803 	struct inode *inode = page->mapping->host;
1804 	struct dnode_of_data dn;
1805 	struct extent_info ei = {0,0,0};
1806 	struct node_info ni;
1807 	bool ipu_force = false;
1808 	int err = 0;
1809 
1810 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1811 	if (need_inplace_update(fio) &&
1812 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1813 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1814 
1815 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1816 							DATA_GENERIC))
1817 			return -EFAULT;
1818 
1819 		ipu_force = true;
1820 		fio->need_lock = LOCK_DONE;
1821 		goto got_it;
1822 	}
1823 
1824 	/* Deadlock due to between page->lock and f2fs_lock_op */
1825 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1826 		return -EAGAIN;
1827 
1828 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1829 	if (err)
1830 		goto out;
1831 
1832 	fio->old_blkaddr = dn.data_blkaddr;
1833 
1834 	/* This page is already truncated */
1835 	if (fio->old_blkaddr == NULL_ADDR) {
1836 		ClearPageUptodate(page);
1837 		clear_cold_data(page);
1838 		goto out_writepage;
1839 	}
1840 got_it:
1841 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1842 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1843 							DATA_GENERIC)) {
1844 		err = -EFAULT;
1845 		goto out_writepage;
1846 	}
1847 	/*
1848 	 * If current allocation needs SSR,
1849 	 * it had better in-place writes for updated data.
1850 	 */
1851 	if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1852 					need_inplace_update(fio))) {
1853 		err = encrypt_one_page(fio);
1854 		if (err)
1855 			goto out_writepage;
1856 
1857 		set_page_writeback(page);
1858 		ClearPageError(page);
1859 		f2fs_put_dnode(&dn);
1860 		if (fio->need_lock == LOCK_REQ)
1861 			f2fs_unlock_op(fio->sbi);
1862 		err = f2fs_inplace_write_data(fio);
1863 		if (err && PageWriteback(page))
1864 			end_page_writeback(page);
1865 		trace_f2fs_do_write_data_page(fio->page, IPU);
1866 		set_inode_flag(inode, FI_UPDATE_WRITE);
1867 		return err;
1868 	}
1869 
1870 	if (fio->need_lock == LOCK_RETRY) {
1871 		if (!f2fs_trylock_op(fio->sbi)) {
1872 			err = -EAGAIN;
1873 			goto out_writepage;
1874 		}
1875 		fio->need_lock = LOCK_REQ;
1876 	}
1877 
1878 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1879 	if (err)
1880 		goto out_writepage;
1881 
1882 	fio->version = ni.version;
1883 
1884 	err = encrypt_one_page(fio);
1885 	if (err)
1886 		goto out_writepage;
1887 
1888 	set_page_writeback(page);
1889 	ClearPageError(page);
1890 
1891 	/* LFS mode write path */
1892 	f2fs_outplace_write_data(&dn, fio);
1893 	trace_f2fs_do_write_data_page(page, OPU);
1894 	set_inode_flag(inode, FI_APPEND_WRITE);
1895 	if (page->index == 0)
1896 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1897 out_writepage:
1898 	f2fs_put_dnode(&dn);
1899 out:
1900 	if (fio->need_lock == LOCK_REQ)
1901 		f2fs_unlock_op(fio->sbi);
1902 	return err;
1903 }
1904 
1905 static int __write_data_page(struct page *page, bool *submitted,
1906 				struct writeback_control *wbc,
1907 				enum iostat_type io_type)
1908 {
1909 	struct inode *inode = page->mapping->host;
1910 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1911 	loff_t i_size = i_size_read(inode);
1912 	const pgoff_t end_index = ((unsigned long long) i_size)
1913 							>> PAGE_SHIFT;
1914 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1915 	unsigned offset = 0;
1916 	bool need_balance_fs = false;
1917 	int err = 0;
1918 	struct f2fs_io_info fio = {
1919 		.sbi = sbi,
1920 		.ino = inode->i_ino,
1921 		.type = DATA,
1922 		.op = REQ_OP_WRITE,
1923 		.op_flags = wbc_to_write_flags(wbc),
1924 		.old_blkaddr = NULL_ADDR,
1925 		.page = page,
1926 		.encrypted_page = NULL,
1927 		.submitted = false,
1928 		.need_lock = LOCK_RETRY,
1929 		.io_type = io_type,
1930 		.io_wbc = wbc,
1931 	};
1932 
1933 	trace_f2fs_writepage(page, DATA);
1934 
1935 	/* we should bypass data pages to proceed the kworkder jobs */
1936 	if (unlikely(f2fs_cp_error(sbi))) {
1937 		mapping_set_error(page->mapping, -EIO);
1938 		/*
1939 		 * don't drop any dirty dentry pages for keeping lastest
1940 		 * directory structure.
1941 		 */
1942 		if (S_ISDIR(inode->i_mode))
1943 			goto redirty_out;
1944 		goto out;
1945 	}
1946 
1947 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1948 		goto redirty_out;
1949 
1950 	if (page->index < end_index)
1951 		goto write;
1952 
1953 	/*
1954 	 * If the offset is out-of-range of file size,
1955 	 * this page does not have to be written to disk.
1956 	 */
1957 	offset = i_size & (PAGE_SIZE - 1);
1958 	if ((page->index >= end_index + 1) || !offset)
1959 		goto out;
1960 
1961 	zero_user_segment(page, offset, PAGE_SIZE);
1962 write:
1963 	if (f2fs_is_drop_cache(inode))
1964 		goto out;
1965 	/* we should not write 0'th page having journal header */
1966 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1967 			(!wbc->for_reclaim &&
1968 			f2fs_available_free_memory(sbi, BASE_CHECK))))
1969 		goto redirty_out;
1970 
1971 	/* Dentry blocks are controlled by checkpoint */
1972 	if (S_ISDIR(inode->i_mode)) {
1973 		fio.need_lock = LOCK_DONE;
1974 		err = f2fs_do_write_data_page(&fio);
1975 		goto done;
1976 	}
1977 
1978 	if (!wbc->for_reclaim)
1979 		need_balance_fs = true;
1980 	else if (has_not_enough_free_secs(sbi, 0, 0))
1981 		goto redirty_out;
1982 	else
1983 		set_inode_flag(inode, FI_HOT_DATA);
1984 
1985 	err = -EAGAIN;
1986 	if (f2fs_has_inline_data(inode)) {
1987 		err = f2fs_write_inline_data(inode, page);
1988 		if (!err)
1989 			goto out;
1990 	}
1991 
1992 	if (err == -EAGAIN) {
1993 		err = f2fs_do_write_data_page(&fio);
1994 		if (err == -EAGAIN) {
1995 			fio.need_lock = LOCK_REQ;
1996 			err = f2fs_do_write_data_page(&fio);
1997 		}
1998 	}
1999 
2000 	if (err) {
2001 		file_set_keep_isize(inode);
2002 	} else {
2003 		down_write(&F2FS_I(inode)->i_sem);
2004 		if (F2FS_I(inode)->last_disk_size < psize)
2005 			F2FS_I(inode)->last_disk_size = psize;
2006 		up_write(&F2FS_I(inode)->i_sem);
2007 	}
2008 
2009 done:
2010 	if (err && err != -ENOENT)
2011 		goto redirty_out;
2012 
2013 out:
2014 	inode_dec_dirty_pages(inode);
2015 	if (err) {
2016 		ClearPageUptodate(page);
2017 		clear_cold_data(page);
2018 	}
2019 
2020 	if (wbc->for_reclaim) {
2021 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2022 		clear_inode_flag(inode, FI_HOT_DATA);
2023 		f2fs_remove_dirty_inode(inode);
2024 		submitted = NULL;
2025 	}
2026 
2027 	unlock_page(page);
2028 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode))
2029 		f2fs_balance_fs(sbi, need_balance_fs);
2030 
2031 	if (unlikely(f2fs_cp_error(sbi))) {
2032 		f2fs_submit_merged_write(sbi, DATA);
2033 		submitted = NULL;
2034 	}
2035 
2036 	if (submitted)
2037 		*submitted = fio.submitted;
2038 
2039 	return 0;
2040 
2041 redirty_out:
2042 	redirty_page_for_writepage(wbc, page);
2043 	/*
2044 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2045 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2046 	 * file_write_and_wait_range() will see EIO error, which is critical
2047 	 * to return value of fsync() followed by atomic_write failure to user.
2048 	 */
2049 	if (!err || wbc->for_reclaim)
2050 		return AOP_WRITEPAGE_ACTIVATE;
2051 	unlock_page(page);
2052 	return err;
2053 }
2054 
2055 static int f2fs_write_data_page(struct page *page,
2056 					struct writeback_control *wbc)
2057 {
2058 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2059 }
2060 
2061 /*
2062  * This function was copied from write_cche_pages from mm/page-writeback.c.
2063  * The major change is making write step of cold data page separately from
2064  * warm/hot data page.
2065  */
2066 static int f2fs_write_cache_pages(struct address_space *mapping,
2067 					struct writeback_control *wbc,
2068 					enum iostat_type io_type)
2069 {
2070 	int ret = 0;
2071 	int done = 0;
2072 	struct pagevec pvec;
2073 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2074 	int nr_pages;
2075 	pgoff_t uninitialized_var(writeback_index);
2076 	pgoff_t index;
2077 	pgoff_t end;		/* Inclusive */
2078 	pgoff_t done_index;
2079 	int cycled;
2080 	int range_whole = 0;
2081 	xa_mark_t tag;
2082 	int nwritten = 0;
2083 
2084 	pagevec_init(&pvec);
2085 
2086 	if (get_dirty_pages(mapping->host) <=
2087 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2088 		set_inode_flag(mapping->host, FI_HOT_DATA);
2089 	else
2090 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2091 
2092 	if (wbc->range_cyclic) {
2093 		writeback_index = mapping->writeback_index; /* prev offset */
2094 		index = writeback_index;
2095 		if (index == 0)
2096 			cycled = 1;
2097 		else
2098 			cycled = 0;
2099 		end = -1;
2100 	} else {
2101 		index = wbc->range_start >> PAGE_SHIFT;
2102 		end = wbc->range_end >> PAGE_SHIFT;
2103 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2104 			range_whole = 1;
2105 		cycled = 1; /* ignore range_cyclic tests */
2106 	}
2107 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2108 		tag = PAGECACHE_TAG_TOWRITE;
2109 	else
2110 		tag = PAGECACHE_TAG_DIRTY;
2111 retry:
2112 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2113 		tag_pages_for_writeback(mapping, index, end);
2114 	done_index = index;
2115 	while (!done && (index <= end)) {
2116 		int i;
2117 
2118 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2119 				tag);
2120 		if (nr_pages == 0)
2121 			break;
2122 
2123 		for (i = 0; i < nr_pages; i++) {
2124 			struct page *page = pvec.pages[i];
2125 			bool submitted = false;
2126 
2127 			/* give a priority to WB_SYNC threads */
2128 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2129 					wbc->sync_mode == WB_SYNC_NONE) {
2130 				done = 1;
2131 				break;
2132 			}
2133 
2134 			done_index = page->index;
2135 retry_write:
2136 			lock_page(page);
2137 
2138 			if (unlikely(page->mapping != mapping)) {
2139 continue_unlock:
2140 				unlock_page(page);
2141 				continue;
2142 			}
2143 
2144 			if (!PageDirty(page)) {
2145 				/* someone wrote it for us */
2146 				goto continue_unlock;
2147 			}
2148 
2149 			if (PageWriteback(page)) {
2150 				if (wbc->sync_mode != WB_SYNC_NONE)
2151 					f2fs_wait_on_page_writeback(page,
2152 							DATA, true, true);
2153 				else
2154 					goto continue_unlock;
2155 			}
2156 
2157 			if (!clear_page_dirty_for_io(page))
2158 				goto continue_unlock;
2159 
2160 			ret = __write_data_page(page, &submitted, wbc, io_type);
2161 			if (unlikely(ret)) {
2162 				/*
2163 				 * keep nr_to_write, since vfs uses this to
2164 				 * get # of written pages.
2165 				 */
2166 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2167 					unlock_page(page);
2168 					ret = 0;
2169 					continue;
2170 				} else if (ret == -EAGAIN) {
2171 					ret = 0;
2172 					if (wbc->sync_mode == WB_SYNC_ALL) {
2173 						cond_resched();
2174 						congestion_wait(BLK_RW_ASYNC,
2175 									HZ/50);
2176 						goto retry_write;
2177 					}
2178 					continue;
2179 				}
2180 				done_index = page->index + 1;
2181 				done = 1;
2182 				break;
2183 			} else if (submitted) {
2184 				nwritten++;
2185 			}
2186 
2187 			if (--wbc->nr_to_write <= 0 &&
2188 					wbc->sync_mode == WB_SYNC_NONE) {
2189 				done = 1;
2190 				break;
2191 			}
2192 		}
2193 		pagevec_release(&pvec);
2194 		cond_resched();
2195 	}
2196 
2197 	if (!cycled && !done) {
2198 		cycled = 1;
2199 		index = 0;
2200 		end = writeback_index - 1;
2201 		goto retry;
2202 	}
2203 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2204 		mapping->writeback_index = done_index;
2205 
2206 	if (nwritten)
2207 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2208 								NULL, 0, DATA);
2209 
2210 	return ret;
2211 }
2212 
2213 static inline bool __should_serialize_io(struct inode *inode,
2214 					struct writeback_control *wbc)
2215 {
2216 	if (!S_ISREG(inode->i_mode))
2217 		return false;
2218 	if (IS_NOQUOTA(inode))
2219 		return false;
2220 	if (wbc->sync_mode != WB_SYNC_ALL)
2221 		return true;
2222 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2223 		return true;
2224 	return false;
2225 }
2226 
2227 static int __f2fs_write_data_pages(struct address_space *mapping,
2228 						struct writeback_control *wbc,
2229 						enum iostat_type io_type)
2230 {
2231 	struct inode *inode = mapping->host;
2232 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2233 	struct blk_plug plug;
2234 	int ret;
2235 	bool locked = false;
2236 
2237 	/* deal with chardevs and other special file */
2238 	if (!mapping->a_ops->writepage)
2239 		return 0;
2240 
2241 	/* skip writing if there is no dirty page in this inode */
2242 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2243 		return 0;
2244 
2245 	/* during POR, we don't need to trigger writepage at all. */
2246 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2247 		goto skip_write;
2248 
2249 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2250 			wbc->sync_mode == WB_SYNC_NONE &&
2251 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2252 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2253 		goto skip_write;
2254 
2255 	/* skip writing during file defragment */
2256 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2257 		goto skip_write;
2258 
2259 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2260 
2261 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2262 	if (wbc->sync_mode == WB_SYNC_ALL)
2263 		atomic_inc(&sbi->wb_sync_req[DATA]);
2264 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2265 		goto skip_write;
2266 
2267 	if (__should_serialize_io(inode, wbc)) {
2268 		mutex_lock(&sbi->writepages);
2269 		locked = true;
2270 	}
2271 
2272 	blk_start_plug(&plug);
2273 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2274 	blk_finish_plug(&plug);
2275 
2276 	if (locked)
2277 		mutex_unlock(&sbi->writepages);
2278 
2279 	if (wbc->sync_mode == WB_SYNC_ALL)
2280 		atomic_dec(&sbi->wb_sync_req[DATA]);
2281 	/*
2282 	 * if some pages were truncated, we cannot guarantee its mapping->host
2283 	 * to detect pending bios.
2284 	 */
2285 
2286 	f2fs_remove_dirty_inode(inode);
2287 	return ret;
2288 
2289 skip_write:
2290 	wbc->pages_skipped += get_dirty_pages(inode);
2291 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2292 	return 0;
2293 }
2294 
2295 static int f2fs_write_data_pages(struct address_space *mapping,
2296 			    struct writeback_control *wbc)
2297 {
2298 	struct inode *inode = mapping->host;
2299 
2300 	return __f2fs_write_data_pages(mapping, wbc,
2301 			F2FS_I(inode)->cp_task == current ?
2302 			FS_CP_DATA_IO : FS_DATA_IO);
2303 }
2304 
2305 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2306 {
2307 	struct inode *inode = mapping->host;
2308 	loff_t i_size = i_size_read(inode);
2309 
2310 	if (to > i_size) {
2311 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2312 		down_write(&F2FS_I(inode)->i_mmap_sem);
2313 
2314 		truncate_pagecache(inode, i_size);
2315 		f2fs_truncate_blocks(inode, i_size, true, true);
2316 
2317 		up_write(&F2FS_I(inode)->i_mmap_sem);
2318 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2319 	}
2320 }
2321 
2322 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2323 			struct page *page, loff_t pos, unsigned len,
2324 			block_t *blk_addr, bool *node_changed)
2325 {
2326 	struct inode *inode = page->mapping->host;
2327 	pgoff_t index = page->index;
2328 	struct dnode_of_data dn;
2329 	struct page *ipage;
2330 	bool locked = false;
2331 	struct extent_info ei = {0,0,0};
2332 	int err = 0;
2333 	int flag;
2334 
2335 	/*
2336 	 * we already allocated all the blocks, so we don't need to get
2337 	 * the block addresses when there is no need to fill the page.
2338 	 */
2339 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2340 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2341 		return 0;
2342 
2343 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2344 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2345 		flag = F2FS_GET_BLOCK_DEFAULT;
2346 	else
2347 		flag = F2FS_GET_BLOCK_PRE_AIO;
2348 
2349 	if (f2fs_has_inline_data(inode) ||
2350 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2351 		__do_map_lock(sbi, flag, true);
2352 		locked = true;
2353 	}
2354 restart:
2355 	/* check inline_data */
2356 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2357 	if (IS_ERR(ipage)) {
2358 		err = PTR_ERR(ipage);
2359 		goto unlock_out;
2360 	}
2361 
2362 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2363 
2364 	if (f2fs_has_inline_data(inode)) {
2365 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2366 			f2fs_do_read_inline_data(page, ipage);
2367 			set_inode_flag(inode, FI_DATA_EXIST);
2368 			if (inode->i_nlink)
2369 				set_inline_node(ipage);
2370 		} else {
2371 			err = f2fs_convert_inline_page(&dn, page);
2372 			if (err)
2373 				goto out;
2374 			if (dn.data_blkaddr == NULL_ADDR)
2375 				err = f2fs_get_block(&dn, index);
2376 		}
2377 	} else if (locked) {
2378 		err = f2fs_get_block(&dn, index);
2379 	} else {
2380 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2381 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2382 		} else {
2383 			/* hole case */
2384 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2385 			if (err || dn.data_blkaddr == NULL_ADDR) {
2386 				f2fs_put_dnode(&dn);
2387 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2388 								true);
2389 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2390 				locked = true;
2391 				goto restart;
2392 			}
2393 		}
2394 	}
2395 
2396 	/* convert_inline_page can make node_changed */
2397 	*blk_addr = dn.data_blkaddr;
2398 	*node_changed = dn.node_changed;
2399 out:
2400 	f2fs_put_dnode(&dn);
2401 unlock_out:
2402 	if (locked)
2403 		__do_map_lock(sbi, flag, false);
2404 	return err;
2405 }
2406 
2407 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2408 		loff_t pos, unsigned len, unsigned flags,
2409 		struct page **pagep, void **fsdata)
2410 {
2411 	struct inode *inode = mapping->host;
2412 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2413 	struct page *page = NULL;
2414 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2415 	bool need_balance = false, drop_atomic = false;
2416 	block_t blkaddr = NULL_ADDR;
2417 	int err = 0;
2418 
2419 	trace_f2fs_write_begin(inode, pos, len, flags);
2420 
2421 	err = f2fs_is_checkpoint_ready(sbi);
2422 	if (err)
2423 		goto fail;
2424 
2425 	if ((f2fs_is_atomic_file(inode) &&
2426 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2427 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2428 		err = -ENOMEM;
2429 		drop_atomic = true;
2430 		goto fail;
2431 	}
2432 
2433 	/*
2434 	 * We should check this at this moment to avoid deadlock on inode page
2435 	 * and #0 page. The locking rule for inline_data conversion should be:
2436 	 * lock_page(page #0) -> lock_page(inode_page)
2437 	 */
2438 	if (index != 0) {
2439 		err = f2fs_convert_inline_inode(inode);
2440 		if (err)
2441 			goto fail;
2442 	}
2443 repeat:
2444 	/*
2445 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2446 	 * wait_for_stable_page. Will wait that below with our IO control.
2447 	 */
2448 	page = f2fs_pagecache_get_page(mapping, index,
2449 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2450 	if (!page) {
2451 		err = -ENOMEM;
2452 		goto fail;
2453 	}
2454 
2455 	*pagep = page;
2456 
2457 	err = prepare_write_begin(sbi, page, pos, len,
2458 					&blkaddr, &need_balance);
2459 	if (err)
2460 		goto fail;
2461 
2462 	if (need_balance && !IS_NOQUOTA(inode) &&
2463 			has_not_enough_free_secs(sbi, 0, 0)) {
2464 		unlock_page(page);
2465 		f2fs_balance_fs(sbi, true);
2466 		lock_page(page);
2467 		if (page->mapping != mapping) {
2468 			/* The page got truncated from under us */
2469 			f2fs_put_page(page, 1);
2470 			goto repeat;
2471 		}
2472 	}
2473 
2474 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2475 
2476 	if (len == PAGE_SIZE || PageUptodate(page))
2477 		return 0;
2478 
2479 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2480 		zero_user_segment(page, len, PAGE_SIZE);
2481 		return 0;
2482 	}
2483 
2484 	if (blkaddr == NEW_ADDR) {
2485 		zero_user_segment(page, 0, PAGE_SIZE);
2486 		SetPageUptodate(page);
2487 	} else {
2488 		err = f2fs_submit_page_read(inode, page, blkaddr);
2489 		if (err)
2490 			goto fail;
2491 
2492 		lock_page(page);
2493 		if (unlikely(page->mapping != mapping)) {
2494 			f2fs_put_page(page, 1);
2495 			goto repeat;
2496 		}
2497 		if (unlikely(!PageUptodate(page))) {
2498 			err = -EIO;
2499 			goto fail;
2500 		}
2501 	}
2502 	return 0;
2503 
2504 fail:
2505 	f2fs_put_page(page, 1);
2506 	f2fs_write_failed(mapping, pos + len);
2507 	if (drop_atomic)
2508 		f2fs_drop_inmem_pages_all(sbi, false);
2509 	return err;
2510 }
2511 
2512 static int f2fs_write_end(struct file *file,
2513 			struct address_space *mapping,
2514 			loff_t pos, unsigned len, unsigned copied,
2515 			struct page *page, void *fsdata)
2516 {
2517 	struct inode *inode = page->mapping->host;
2518 
2519 	trace_f2fs_write_end(inode, pos, len, copied);
2520 
2521 	/*
2522 	 * This should be come from len == PAGE_SIZE, and we expect copied
2523 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2524 	 * let generic_perform_write() try to copy data again through copied=0.
2525 	 */
2526 	if (!PageUptodate(page)) {
2527 		if (unlikely(copied != len))
2528 			copied = 0;
2529 		else
2530 			SetPageUptodate(page);
2531 	}
2532 	if (!copied)
2533 		goto unlock_out;
2534 
2535 	set_page_dirty(page);
2536 
2537 	if (pos + copied > i_size_read(inode))
2538 		f2fs_i_size_write(inode, pos + copied);
2539 unlock_out:
2540 	f2fs_put_page(page, 1);
2541 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2542 	return copied;
2543 }
2544 
2545 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2546 			   loff_t offset)
2547 {
2548 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2549 	unsigned blkbits = i_blkbits;
2550 	unsigned blocksize_mask = (1 << blkbits) - 1;
2551 	unsigned long align = offset | iov_iter_alignment(iter);
2552 	struct block_device *bdev = inode->i_sb->s_bdev;
2553 
2554 	if (align & blocksize_mask) {
2555 		if (bdev)
2556 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2557 		blocksize_mask = (1 << blkbits) - 1;
2558 		if (align & blocksize_mask)
2559 			return -EINVAL;
2560 		return 1;
2561 	}
2562 	return 0;
2563 }
2564 
2565 static void f2fs_dio_end_io(struct bio *bio)
2566 {
2567 	struct f2fs_private_dio *dio = bio->bi_private;
2568 
2569 	dec_page_count(F2FS_I_SB(dio->inode),
2570 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2571 
2572 	bio->bi_private = dio->orig_private;
2573 	bio->bi_end_io = dio->orig_end_io;
2574 
2575 	kvfree(dio);
2576 
2577 	bio_endio(bio);
2578 }
2579 
2580 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2581 							loff_t file_offset)
2582 {
2583 	struct f2fs_private_dio *dio;
2584 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2585 	int err;
2586 
2587 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2588 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2589 	if (!dio) {
2590 		err = -ENOMEM;
2591 		goto out;
2592 	}
2593 
2594 	dio->inode = inode;
2595 	dio->orig_end_io = bio->bi_end_io;
2596 	dio->orig_private = bio->bi_private;
2597 	dio->write = write;
2598 
2599 	bio->bi_end_io = f2fs_dio_end_io;
2600 	bio->bi_private = dio;
2601 
2602 	inc_page_count(F2FS_I_SB(inode),
2603 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2604 
2605 	submit_bio(bio);
2606 	return;
2607 out:
2608 	bio->bi_status = BLK_STS_IOERR;
2609 	bio_endio(bio);
2610 }
2611 
2612 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2613 {
2614 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2615 	struct inode *inode = mapping->host;
2616 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2617 	struct f2fs_inode_info *fi = F2FS_I(inode);
2618 	size_t count = iov_iter_count(iter);
2619 	loff_t offset = iocb->ki_pos;
2620 	int rw = iov_iter_rw(iter);
2621 	int err;
2622 	enum rw_hint hint = iocb->ki_hint;
2623 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2624 	bool do_opu;
2625 
2626 	err = check_direct_IO(inode, iter, offset);
2627 	if (err)
2628 		return err < 0 ? err : 0;
2629 
2630 	if (f2fs_force_buffered_io(inode, iocb, iter))
2631 		return 0;
2632 
2633 	do_opu = allow_outplace_dio(inode, iocb, iter);
2634 
2635 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2636 
2637 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2638 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2639 
2640 	if (iocb->ki_flags & IOCB_NOWAIT) {
2641 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2642 			iocb->ki_hint = hint;
2643 			err = -EAGAIN;
2644 			goto out;
2645 		}
2646 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2647 			up_read(&fi->i_gc_rwsem[rw]);
2648 			iocb->ki_hint = hint;
2649 			err = -EAGAIN;
2650 			goto out;
2651 		}
2652 	} else {
2653 		down_read(&fi->i_gc_rwsem[rw]);
2654 		if (do_opu)
2655 			down_read(&fi->i_gc_rwsem[READ]);
2656 	}
2657 
2658 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2659 			iter, rw == WRITE ? get_data_block_dio_write :
2660 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2661 			DIO_LOCKING | DIO_SKIP_HOLES);
2662 
2663 	if (do_opu)
2664 		up_read(&fi->i_gc_rwsem[READ]);
2665 
2666 	up_read(&fi->i_gc_rwsem[rw]);
2667 
2668 	if (rw == WRITE) {
2669 		if (whint_mode == WHINT_MODE_OFF)
2670 			iocb->ki_hint = hint;
2671 		if (err > 0) {
2672 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2673 									err);
2674 			if (!do_opu)
2675 				set_inode_flag(inode, FI_UPDATE_WRITE);
2676 		} else if (err < 0) {
2677 			f2fs_write_failed(mapping, offset + count);
2678 		}
2679 	}
2680 
2681 out:
2682 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2683 
2684 	return err;
2685 }
2686 
2687 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2688 							unsigned int length)
2689 {
2690 	struct inode *inode = page->mapping->host;
2691 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692 
2693 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2694 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2695 		return;
2696 
2697 	if (PageDirty(page)) {
2698 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2699 			dec_page_count(sbi, F2FS_DIRTY_META);
2700 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2701 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2702 		} else {
2703 			inode_dec_dirty_pages(inode);
2704 			f2fs_remove_dirty_inode(inode);
2705 		}
2706 	}
2707 
2708 	clear_cold_data(page);
2709 
2710 	/* This is atomic written page, keep Private */
2711 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2712 		return f2fs_drop_inmem_page(inode, page);
2713 
2714 	set_page_private(page, 0);
2715 	ClearPagePrivate(page);
2716 }
2717 
2718 int f2fs_release_page(struct page *page, gfp_t wait)
2719 {
2720 	/* If this is dirty page, keep PagePrivate */
2721 	if (PageDirty(page))
2722 		return 0;
2723 
2724 	/* This is atomic written page, keep Private */
2725 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2726 		return 0;
2727 
2728 	clear_cold_data(page);
2729 	set_page_private(page, 0);
2730 	ClearPagePrivate(page);
2731 	return 1;
2732 }
2733 
2734 static int f2fs_set_data_page_dirty(struct page *page)
2735 {
2736 	struct address_space *mapping = page->mapping;
2737 	struct inode *inode = mapping->host;
2738 
2739 	trace_f2fs_set_page_dirty(page, DATA);
2740 
2741 	if (!PageUptodate(page))
2742 		SetPageUptodate(page);
2743 
2744 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2745 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2746 			f2fs_register_inmem_page(inode, page);
2747 			return 1;
2748 		}
2749 		/*
2750 		 * Previously, this page has been registered, we just
2751 		 * return here.
2752 		 */
2753 		return 0;
2754 	}
2755 
2756 	if (!PageDirty(page)) {
2757 		__set_page_dirty_nobuffers(page);
2758 		f2fs_update_dirty_page(inode, page);
2759 		return 1;
2760 	}
2761 	return 0;
2762 }
2763 
2764 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2765 {
2766 	struct inode *inode = mapping->host;
2767 
2768 	if (f2fs_has_inline_data(inode))
2769 		return 0;
2770 
2771 	/* make sure allocating whole blocks */
2772 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2773 		filemap_write_and_wait(mapping);
2774 
2775 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2776 }
2777 
2778 #ifdef CONFIG_MIGRATION
2779 #include <linux/migrate.h>
2780 
2781 int f2fs_migrate_page(struct address_space *mapping,
2782 		struct page *newpage, struct page *page, enum migrate_mode mode)
2783 {
2784 	int rc, extra_count;
2785 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2786 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2787 
2788 	BUG_ON(PageWriteback(page));
2789 
2790 	/* migrating an atomic written page is safe with the inmem_lock hold */
2791 	if (atomic_written) {
2792 		if (mode != MIGRATE_SYNC)
2793 			return -EBUSY;
2794 		if (!mutex_trylock(&fi->inmem_lock))
2795 			return -EAGAIN;
2796 	}
2797 
2798 	/*
2799 	 * A reference is expected if PagePrivate set when move mapping,
2800 	 * however F2FS breaks this for maintaining dirty page counts when
2801 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2802 	 */
2803 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2804 	rc = migrate_page_move_mapping(mapping, newpage,
2805 				page, mode, extra_count);
2806 	if (rc != MIGRATEPAGE_SUCCESS) {
2807 		if (atomic_written)
2808 			mutex_unlock(&fi->inmem_lock);
2809 		return rc;
2810 	}
2811 
2812 	if (atomic_written) {
2813 		struct inmem_pages *cur;
2814 		list_for_each_entry(cur, &fi->inmem_pages, list)
2815 			if (cur->page == page) {
2816 				cur->page = newpage;
2817 				break;
2818 			}
2819 		mutex_unlock(&fi->inmem_lock);
2820 		put_page(page);
2821 		get_page(newpage);
2822 	}
2823 
2824 	if (PagePrivate(page))
2825 		SetPagePrivate(newpage);
2826 	set_page_private(newpage, page_private(page));
2827 
2828 	if (mode != MIGRATE_SYNC_NO_COPY)
2829 		migrate_page_copy(newpage, page);
2830 	else
2831 		migrate_page_states(newpage, page);
2832 
2833 	return MIGRATEPAGE_SUCCESS;
2834 }
2835 #endif
2836 
2837 const struct address_space_operations f2fs_dblock_aops = {
2838 	.readpage	= f2fs_read_data_page,
2839 	.readpages	= f2fs_read_data_pages,
2840 	.writepage	= f2fs_write_data_page,
2841 	.writepages	= f2fs_write_data_pages,
2842 	.write_begin	= f2fs_write_begin,
2843 	.write_end	= f2fs_write_end,
2844 	.set_page_dirty	= f2fs_set_data_page_dirty,
2845 	.invalidatepage	= f2fs_invalidate_page,
2846 	.releasepage	= f2fs_release_page,
2847 	.direct_IO	= f2fs_direct_IO,
2848 	.bmap		= f2fs_bmap,
2849 #ifdef CONFIG_MIGRATION
2850 	.migratepage    = f2fs_migrate_page,
2851 #endif
2852 };
2853 
2854 void f2fs_clear_page_cache_dirty_tag(struct page *page)
2855 {
2856 	struct address_space *mapping = page_mapping(page);
2857 	unsigned long flags;
2858 
2859 	xa_lock_irqsave(&mapping->i_pages, flags);
2860 	__xa_clear_mark(&mapping->i_pages, page_index(page),
2861 						PAGECACHE_TAG_DIRTY);
2862 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2863 }
2864 
2865 int __init f2fs_init_post_read_processing(void)
2866 {
2867 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2868 	if (!bio_post_read_ctx_cache)
2869 		goto fail;
2870 	bio_post_read_ctx_pool =
2871 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2872 					 bio_post_read_ctx_cache);
2873 	if (!bio_post_read_ctx_pool)
2874 		goto fail_free_cache;
2875 	return 0;
2876 
2877 fail_free_cache:
2878 	kmem_cache_destroy(bio_post_read_ctx_cache);
2879 fail:
2880 	return -ENOMEM;
2881 }
2882 
2883 void __exit f2fs_destroy_post_read_processing(void)
2884 {
2885 	mempool_destroy(bio_post_read_ctx_pool);
2886 	kmem_cache_destroy(bio_post_read_ctx_cache);
2887 }
2888