xref: /openbmc/linux/fs/f2fs/data.c (revision 6189f1b0)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 static struct kmem_cache *extent_tree_slab;
30 static struct kmem_cache *extent_node_slab;
31 
32 static void f2fs_read_end_io(struct bio *bio, int err)
33 {
34 	struct bio_vec *bvec;
35 	int i;
36 
37 	if (f2fs_bio_encrypted(bio)) {
38 		if (err) {
39 			f2fs_release_crypto_ctx(bio->bi_private);
40 		} else {
41 			f2fs_end_io_crypto_work(bio->bi_private, bio);
42 			return;
43 		}
44 	}
45 
46 	bio_for_each_segment_all(bvec, bio, i) {
47 		struct page *page = bvec->bv_page;
48 
49 		if (!err) {
50 			SetPageUptodate(page);
51 		} else {
52 			ClearPageUptodate(page);
53 			SetPageError(page);
54 		}
55 		unlock_page(page);
56 	}
57 	bio_put(bio);
58 }
59 
60 static void f2fs_write_end_io(struct bio *bio, int err)
61 {
62 	struct f2fs_sb_info *sbi = bio->bi_private;
63 	struct bio_vec *bvec;
64 	int i;
65 
66 	bio_for_each_segment_all(bvec, bio, i) {
67 		struct page *page = bvec->bv_page;
68 
69 		f2fs_restore_and_release_control_page(&page);
70 
71 		if (unlikely(err)) {
72 			set_page_dirty(page);
73 			set_bit(AS_EIO, &page->mapping->flags);
74 			f2fs_stop_checkpoint(sbi);
75 		}
76 		end_page_writeback(page);
77 		dec_page_count(sbi, F2FS_WRITEBACK);
78 	}
79 
80 	if (!get_pages(sbi, F2FS_WRITEBACK) &&
81 			!list_empty(&sbi->cp_wait.task_list))
82 		wake_up(&sbi->cp_wait);
83 
84 	bio_put(bio);
85 }
86 
87 /*
88  * Low-level block read/write IO operations.
89  */
90 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
91 				int npages, bool is_read)
92 {
93 	struct bio *bio;
94 
95 	/* No failure on bio allocation */
96 	bio = bio_alloc(GFP_NOIO, npages);
97 
98 	bio->bi_bdev = sbi->sb->s_bdev;
99 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
100 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
101 	bio->bi_private = is_read ? NULL : sbi;
102 
103 	return bio;
104 }
105 
106 static void __submit_merged_bio(struct f2fs_bio_info *io)
107 {
108 	struct f2fs_io_info *fio = &io->fio;
109 
110 	if (!io->bio)
111 		return;
112 
113 	if (is_read_io(fio->rw))
114 		trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
115 	else
116 		trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
117 
118 	submit_bio(fio->rw, io->bio);
119 	io->bio = NULL;
120 }
121 
122 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
123 				enum page_type type, int rw)
124 {
125 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
126 	struct f2fs_bio_info *io;
127 
128 	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
129 
130 	down_write(&io->io_rwsem);
131 
132 	/* change META to META_FLUSH in the checkpoint procedure */
133 	if (type >= META_FLUSH) {
134 		io->fio.type = META_FLUSH;
135 		if (test_opt(sbi, NOBARRIER))
136 			io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
137 		else
138 			io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
139 	}
140 	__submit_merged_bio(io);
141 	up_write(&io->io_rwsem);
142 }
143 
144 /*
145  * Fill the locked page with data located in the block address.
146  * Return unlocked page.
147  */
148 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
149 {
150 	struct bio *bio;
151 	struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
152 
153 	trace_f2fs_submit_page_bio(page, fio);
154 	f2fs_trace_ios(fio, 0);
155 
156 	/* Allocate a new bio */
157 	bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
158 
159 	if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
160 		bio_put(bio);
161 		f2fs_put_page(page, 1);
162 		return -EFAULT;
163 	}
164 
165 	submit_bio(fio->rw, bio);
166 	return 0;
167 }
168 
169 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
170 {
171 	struct f2fs_sb_info *sbi = fio->sbi;
172 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
173 	struct f2fs_bio_info *io;
174 	bool is_read = is_read_io(fio->rw);
175 	struct page *bio_page;
176 
177 	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
178 
179 	verify_block_addr(sbi, fio->blk_addr);
180 
181 	down_write(&io->io_rwsem);
182 
183 	if (!is_read)
184 		inc_page_count(sbi, F2FS_WRITEBACK);
185 
186 	if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
187 						io->fio.rw != fio->rw))
188 		__submit_merged_bio(io);
189 alloc_new:
190 	if (io->bio == NULL) {
191 		int bio_blocks = MAX_BIO_BLOCKS(sbi);
192 
193 		io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
194 		io->fio = *fio;
195 	}
196 
197 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
198 
199 	if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
200 							PAGE_CACHE_SIZE) {
201 		__submit_merged_bio(io);
202 		goto alloc_new;
203 	}
204 
205 	io->last_block_in_bio = fio->blk_addr;
206 	f2fs_trace_ios(fio, 0);
207 
208 	up_write(&io->io_rwsem);
209 	trace_f2fs_submit_page_mbio(fio->page, fio);
210 }
211 
212 /*
213  * Lock ordering for the change of data block address:
214  * ->data_page
215  *  ->node_page
216  *    update block addresses in the node page
217  */
218 void set_data_blkaddr(struct dnode_of_data *dn)
219 {
220 	struct f2fs_node *rn;
221 	__le32 *addr_array;
222 	struct page *node_page = dn->node_page;
223 	unsigned int ofs_in_node = dn->ofs_in_node;
224 
225 	f2fs_wait_on_page_writeback(node_page, NODE);
226 
227 	rn = F2FS_NODE(node_page);
228 
229 	/* Get physical address of data block */
230 	addr_array = blkaddr_in_node(rn);
231 	addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
232 	set_page_dirty(node_page);
233 }
234 
235 int reserve_new_block(struct dnode_of_data *dn)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
238 
239 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
240 		return -EPERM;
241 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
242 		return -ENOSPC;
243 
244 	trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
245 
246 	dn->data_blkaddr = NEW_ADDR;
247 	set_data_blkaddr(dn);
248 	mark_inode_dirty(dn->inode);
249 	sync_inode_page(dn);
250 	return 0;
251 }
252 
253 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
254 {
255 	bool need_put = dn->inode_page ? false : true;
256 	int err;
257 
258 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
259 	if (err)
260 		return err;
261 
262 	if (dn->data_blkaddr == NULL_ADDR)
263 		err = reserve_new_block(dn);
264 	if (err || need_put)
265 		f2fs_put_dnode(dn);
266 	return err;
267 }
268 
269 static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 							struct extent_info *ei)
271 {
272 	struct f2fs_inode_info *fi = F2FS_I(inode);
273 	pgoff_t start_fofs, end_fofs;
274 	block_t start_blkaddr;
275 
276 	read_lock(&fi->ext_lock);
277 	if (fi->ext.len == 0) {
278 		read_unlock(&fi->ext_lock);
279 		return false;
280 	}
281 
282 	stat_inc_total_hit(inode->i_sb);
283 
284 	start_fofs = fi->ext.fofs;
285 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
286 	start_blkaddr = fi->ext.blk;
287 
288 	if (pgofs >= start_fofs && pgofs <= end_fofs) {
289 		*ei = fi->ext;
290 		stat_inc_read_hit(inode->i_sb);
291 		read_unlock(&fi->ext_lock);
292 		return true;
293 	}
294 	read_unlock(&fi->ext_lock);
295 	return false;
296 }
297 
298 static bool update_extent_info(struct inode *inode, pgoff_t fofs,
299 								block_t blkaddr)
300 {
301 	struct f2fs_inode_info *fi = F2FS_I(inode);
302 	pgoff_t start_fofs, end_fofs;
303 	block_t start_blkaddr, end_blkaddr;
304 	int need_update = true;
305 
306 	write_lock(&fi->ext_lock);
307 
308 	start_fofs = fi->ext.fofs;
309 	end_fofs = fi->ext.fofs + fi->ext.len - 1;
310 	start_blkaddr = fi->ext.blk;
311 	end_blkaddr = fi->ext.blk + fi->ext.len - 1;
312 
313 	/* Drop and initialize the matched extent */
314 	if (fi->ext.len == 1 && fofs == start_fofs)
315 		fi->ext.len = 0;
316 
317 	/* Initial extent */
318 	if (fi->ext.len == 0) {
319 		if (blkaddr != NULL_ADDR) {
320 			fi->ext.fofs = fofs;
321 			fi->ext.blk = blkaddr;
322 			fi->ext.len = 1;
323 		}
324 		goto end_update;
325 	}
326 
327 	/* Front merge */
328 	if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
329 		fi->ext.fofs--;
330 		fi->ext.blk--;
331 		fi->ext.len++;
332 		goto end_update;
333 	}
334 
335 	/* Back merge */
336 	if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
337 		fi->ext.len++;
338 		goto end_update;
339 	}
340 
341 	/* Split the existing extent */
342 	if (fi->ext.len > 1 &&
343 		fofs >= start_fofs && fofs <= end_fofs) {
344 		if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
345 			fi->ext.len = fofs - start_fofs;
346 		} else {
347 			fi->ext.fofs = fofs + 1;
348 			fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
349 			fi->ext.len -= fofs - start_fofs + 1;
350 		}
351 	} else {
352 		need_update = false;
353 	}
354 
355 	/* Finally, if the extent is very fragmented, let's drop the cache. */
356 	if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
357 		fi->ext.len = 0;
358 		set_inode_flag(fi, FI_NO_EXTENT);
359 		need_update = true;
360 	}
361 end_update:
362 	write_unlock(&fi->ext_lock);
363 	return need_update;
364 }
365 
366 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
367 				struct extent_tree *et, struct extent_info *ei,
368 				struct rb_node *parent, struct rb_node **p)
369 {
370 	struct extent_node *en;
371 
372 	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
373 	if (!en)
374 		return NULL;
375 
376 	en->ei = *ei;
377 	INIT_LIST_HEAD(&en->list);
378 
379 	rb_link_node(&en->rb_node, parent, p);
380 	rb_insert_color(&en->rb_node, &et->root);
381 	et->count++;
382 	atomic_inc(&sbi->total_ext_node);
383 	return en;
384 }
385 
386 static void __detach_extent_node(struct f2fs_sb_info *sbi,
387 				struct extent_tree *et, struct extent_node *en)
388 {
389 	rb_erase(&en->rb_node, &et->root);
390 	et->count--;
391 	atomic_dec(&sbi->total_ext_node);
392 
393 	if (et->cached_en == en)
394 		et->cached_en = NULL;
395 }
396 
397 static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
398 							nid_t ino)
399 {
400 	struct extent_tree *et;
401 
402 	down_read(&sbi->extent_tree_lock);
403 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
404 	if (!et) {
405 		up_read(&sbi->extent_tree_lock);
406 		return NULL;
407 	}
408 	atomic_inc(&et->refcount);
409 	up_read(&sbi->extent_tree_lock);
410 
411 	return et;
412 }
413 
414 static struct extent_tree *__grab_extent_tree(struct inode *inode)
415 {
416 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
417 	struct extent_tree *et;
418 	nid_t ino = inode->i_ino;
419 
420 	down_write(&sbi->extent_tree_lock);
421 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
422 	if (!et) {
423 		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
424 		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
425 		memset(et, 0, sizeof(struct extent_tree));
426 		et->ino = ino;
427 		et->root = RB_ROOT;
428 		et->cached_en = NULL;
429 		rwlock_init(&et->lock);
430 		atomic_set(&et->refcount, 0);
431 		et->count = 0;
432 		sbi->total_ext_tree++;
433 	}
434 	atomic_inc(&et->refcount);
435 	up_write(&sbi->extent_tree_lock);
436 
437 	return et;
438 }
439 
440 static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
441 							unsigned int fofs)
442 {
443 	struct rb_node *node = et->root.rb_node;
444 	struct extent_node *en;
445 
446 	if (et->cached_en) {
447 		struct extent_info *cei = &et->cached_en->ei;
448 
449 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
450 			return et->cached_en;
451 	}
452 
453 	while (node) {
454 		en = rb_entry(node, struct extent_node, rb_node);
455 
456 		if (fofs < en->ei.fofs) {
457 			node = node->rb_left;
458 		} else if (fofs >= en->ei.fofs + en->ei.len) {
459 			node = node->rb_right;
460 		} else {
461 			et->cached_en = en;
462 			return en;
463 		}
464 	}
465 	return NULL;
466 }
467 
468 static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
469 				struct extent_tree *et, struct extent_node *en)
470 {
471 	struct extent_node *prev;
472 	struct rb_node *node;
473 
474 	node = rb_prev(&en->rb_node);
475 	if (!node)
476 		return NULL;
477 
478 	prev = rb_entry(node, struct extent_node, rb_node);
479 	if (__is_back_mergeable(&en->ei, &prev->ei)) {
480 		en->ei.fofs = prev->ei.fofs;
481 		en->ei.blk = prev->ei.blk;
482 		en->ei.len += prev->ei.len;
483 		__detach_extent_node(sbi, et, prev);
484 		return prev;
485 	}
486 	return NULL;
487 }
488 
489 static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
490 				struct extent_tree *et, struct extent_node *en)
491 {
492 	struct extent_node *next;
493 	struct rb_node *node;
494 
495 	node = rb_next(&en->rb_node);
496 	if (!node)
497 		return NULL;
498 
499 	next = rb_entry(node, struct extent_node, rb_node);
500 	if (__is_front_mergeable(&en->ei, &next->ei)) {
501 		en->ei.len += next->ei.len;
502 		__detach_extent_node(sbi, et, next);
503 		return next;
504 	}
505 	return NULL;
506 }
507 
508 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
509 				struct extent_tree *et, struct extent_info *ei,
510 				struct extent_node **den)
511 {
512 	struct rb_node **p = &et->root.rb_node;
513 	struct rb_node *parent = NULL;
514 	struct extent_node *en;
515 
516 	while (*p) {
517 		parent = *p;
518 		en = rb_entry(parent, struct extent_node, rb_node);
519 
520 		if (ei->fofs < en->ei.fofs) {
521 			if (__is_front_mergeable(ei, &en->ei)) {
522 				f2fs_bug_on(sbi, !den);
523 				en->ei.fofs = ei->fofs;
524 				en->ei.blk = ei->blk;
525 				en->ei.len += ei->len;
526 				*den = __try_back_merge(sbi, et, en);
527 				return en;
528 			}
529 			p = &(*p)->rb_left;
530 		} else if (ei->fofs >= en->ei.fofs + en->ei.len) {
531 			if (__is_back_mergeable(ei, &en->ei)) {
532 				f2fs_bug_on(sbi, !den);
533 				en->ei.len += ei->len;
534 				*den = __try_front_merge(sbi, et, en);
535 				return en;
536 			}
537 			p = &(*p)->rb_right;
538 		} else {
539 			f2fs_bug_on(sbi, 1);
540 		}
541 	}
542 
543 	return __attach_extent_node(sbi, et, ei, parent, p);
544 }
545 
546 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
547 					struct extent_tree *et, bool free_all)
548 {
549 	struct rb_node *node, *next;
550 	struct extent_node *en;
551 	unsigned int count = et->count;
552 
553 	node = rb_first(&et->root);
554 	while (node) {
555 		next = rb_next(node);
556 		en = rb_entry(node, struct extent_node, rb_node);
557 
558 		if (free_all) {
559 			spin_lock(&sbi->extent_lock);
560 			if (!list_empty(&en->list))
561 				list_del_init(&en->list);
562 			spin_unlock(&sbi->extent_lock);
563 		}
564 
565 		if (free_all || list_empty(&en->list)) {
566 			__detach_extent_node(sbi, et, en);
567 			kmem_cache_free(extent_node_slab, en);
568 		}
569 		node = next;
570 	}
571 
572 	return count - et->count;
573 }
574 
575 static void f2fs_init_extent_tree(struct inode *inode,
576 						struct f2fs_extent *i_ext)
577 {
578 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
579 	struct extent_tree *et;
580 	struct extent_node *en;
581 	struct extent_info ei;
582 
583 	if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
584 		return;
585 
586 	et = __grab_extent_tree(inode);
587 
588 	write_lock(&et->lock);
589 	if (et->count)
590 		goto out;
591 
592 	set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
593 		le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
594 
595 	en = __insert_extent_tree(sbi, et, &ei, NULL);
596 	if (en) {
597 		et->cached_en = en;
598 
599 		spin_lock(&sbi->extent_lock);
600 		list_add_tail(&en->list, &sbi->extent_list);
601 		spin_unlock(&sbi->extent_lock);
602 	}
603 out:
604 	write_unlock(&et->lock);
605 	atomic_dec(&et->refcount);
606 }
607 
608 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
609 							struct extent_info *ei)
610 {
611 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
612 	struct extent_tree *et;
613 	struct extent_node *en;
614 
615 	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
616 
617 	et = __find_extent_tree(sbi, inode->i_ino);
618 	if (!et)
619 		return false;
620 
621 	read_lock(&et->lock);
622 	en = __lookup_extent_tree(et, pgofs);
623 	if (en) {
624 		*ei = en->ei;
625 		spin_lock(&sbi->extent_lock);
626 		if (!list_empty(&en->list))
627 			list_move_tail(&en->list, &sbi->extent_list);
628 		spin_unlock(&sbi->extent_lock);
629 		stat_inc_read_hit(sbi->sb);
630 	}
631 	stat_inc_total_hit(sbi->sb);
632 	read_unlock(&et->lock);
633 
634 	trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
635 
636 	atomic_dec(&et->refcount);
637 	return en ? true : false;
638 }
639 
640 static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
641 							block_t blkaddr)
642 {
643 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
644 	struct extent_tree *et;
645 	struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
646 	struct extent_node *den = NULL;
647 	struct extent_info ei, dei;
648 	unsigned int endofs;
649 
650 	trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
651 
652 	et = __grab_extent_tree(inode);
653 
654 	write_lock(&et->lock);
655 
656 	/* 1. lookup and remove existing extent info in cache */
657 	en = __lookup_extent_tree(et, fofs);
658 	if (!en)
659 		goto update_extent;
660 
661 	dei = en->ei;
662 	__detach_extent_node(sbi, et, en);
663 
664 	/* 2. if extent can be split more, split and insert the left part */
665 	if (dei.len > 1) {
666 		/*  insert left part of split extent into cache */
667 		if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
668 			set_extent_info(&ei, dei.fofs, dei.blk,
669 							fofs - dei.fofs);
670 			en1 = __insert_extent_tree(sbi, et, &ei, NULL);
671 		}
672 
673 		/* insert right part of split extent into cache */
674 		endofs = dei.fofs + dei.len - 1;
675 		if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
676 			set_extent_info(&ei, fofs + 1,
677 				fofs - dei.fofs + dei.blk, endofs - fofs);
678 			en2 = __insert_extent_tree(sbi, et, &ei, NULL);
679 		}
680 	}
681 
682 update_extent:
683 	/* 3. update extent in extent cache */
684 	if (blkaddr) {
685 		set_extent_info(&ei, fofs, blkaddr, 1);
686 		en3 = __insert_extent_tree(sbi, et, &ei, &den);
687 	}
688 
689 	/* 4. update in global extent list */
690 	spin_lock(&sbi->extent_lock);
691 	if (en && !list_empty(&en->list))
692 		list_del(&en->list);
693 	/*
694 	 * en1 and en2 split from en, they will become more and more smaller
695 	 * fragments after splitting several times. So if the length is smaller
696 	 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
697 	 */
698 	if (en1)
699 		list_add_tail(&en1->list, &sbi->extent_list);
700 	if (en2)
701 		list_add_tail(&en2->list, &sbi->extent_list);
702 	if (en3) {
703 		if (list_empty(&en3->list))
704 			list_add_tail(&en3->list, &sbi->extent_list);
705 		else
706 			list_move_tail(&en3->list, &sbi->extent_list);
707 	}
708 	if (den && !list_empty(&den->list))
709 		list_del(&den->list);
710 	spin_unlock(&sbi->extent_lock);
711 
712 	/* 5. release extent node */
713 	if (en)
714 		kmem_cache_free(extent_node_slab, en);
715 	if (den)
716 		kmem_cache_free(extent_node_slab, den);
717 
718 	write_unlock(&et->lock);
719 	atomic_dec(&et->refcount);
720 }
721 
722 void f2fs_preserve_extent_tree(struct inode *inode)
723 {
724 	struct extent_tree *et;
725 	struct extent_info *ext = &F2FS_I(inode)->ext;
726 	bool sync = false;
727 
728 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
729 		return;
730 
731 	et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
732 	if (!et) {
733 		if (ext->len) {
734 			ext->len = 0;
735 			update_inode_page(inode);
736 		}
737 		return;
738 	}
739 
740 	read_lock(&et->lock);
741 	if (et->count) {
742 		struct extent_node *en;
743 
744 		if (et->cached_en) {
745 			en = et->cached_en;
746 		} else {
747 			struct rb_node *node = rb_first(&et->root);
748 
749 			if (!node)
750 				node = rb_last(&et->root);
751 			en = rb_entry(node, struct extent_node, rb_node);
752 		}
753 
754 		if (__is_extent_same(ext, &en->ei))
755 			goto out;
756 
757 		*ext = en->ei;
758 		sync = true;
759 	} else if (ext->len) {
760 		ext->len = 0;
761 		sync = true;
762 	}
763 out:
764 	read_unlock(&et->lock);
765 	atomic_dec(&et->refcount);
766 
767 	if (sync)
768 		update_inode_page(inode);
769 }
770 
771 void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
772 {
773 	struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
774 	struct extent_node *en, *tmp;
775 	unsigned long ino = F2FS_ROOT_INO(sbi);
776 	struct radix_tree_iter iter;
777 	void **slot;
778 	unsigned int found;
779 	unsigned int node_cnt = 0, tree_cnt = 0;
780 
781 	if (!test_opt(sbi, EXTENT_CACHE))
782 		return;
783 
784 	if (available_free_memory(sbi, EXTENT_CACHE))
785 		return;
786 
787 	spin_lock(&sbi->extent_lock);
788 	list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
789 		if (!nr_shrink--)
790 			break;
791 		list_del_init(&en->list);
792 	}
793 	spin_unlock(&sbi->extent_lock);
794 
795 	down_read(&sbi->extent_tree_lock);
796 	while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
797 				(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
798 		unsigned i;
799 
800 		ino = treevec[found - 1]->ino + 1;
801 		for (i = 0; i < found; i++) {
802 			struct extent_tree *et = treevec[i];
803 
804 			atomic_inc(&et->refcount);
805 			write_lock(&et->lock);
806 			node_cnt += __free_extent_tree(sbi, et, false);
807 			write_unlock(&et->lock);
808 			atomic_dec(&et->refcount);
809 		}
810 	}
811 	up_read(&sbi->extent_tree_lock);
812 
813 	down_write(&sbi->extent_tree_lock);
814 	radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
815 							F2FS_ROOT_INO(sbi)) {
816 		struct extent_tree *et = (struct extent_tree *)*slot;
817 
818 		if (!atomic_read(&et->refcount) && !et->count) {
819 			radix_tree_delete(&sbi->extent_tree_root, et->ino);
820 			kmem_cache_free(extent_tree_slab, et);
821 			sbi->total_ext_tree--;
822 			tree_cnt++;
823 		}
824 	}
825 	up_write(&sbi->extent_tree_lock);
826 
827 	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
828 }
829 
830 void f2fs_destroy_extent_tree(struct inode *inode)
831 {
832 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
833 	struct extent_tree *et;
834 	unsigned int node_cnt = 0;
835 
836 	if (!test_opt(sbi, EXTENT_CACHE))
837 		return;
838 
839 	et = __find_extent_tree(sbi, inode->i_ino);
840 	if (!et)
841 		goto out;
842 
843 	/* free all extent info belong to this extent tree */
844 	write_lock(&et->lock);
845 	node_cnt = __free_extent_tree(sbi, et, true);
846 	write_unlock(&et->lock);
847 
848 	atomic_dec(&et->refcount);
849 
850 	/* try to find and delete extent tree entry in radix tree */
851 	down_write(&sbi->extent_tree_lock);
852 	et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
853 	if (!et) {
854 		up_write(&sbi->extent_tree_lock);
855 		goto out;
856 	}
857 	f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
858 	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
859 	kmem_cache_free(extent_tree_slab, et);
860 	sbi->total_ext_tree--;
861 	up_write(&sbi->extent_tree_lock);
862 out:
863 	trace_f2fs_destroy_extent_tree(inode, node_cnt);
864 	return;
865 }
866 
867 void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
868 {
869 	if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
870 		f2fs_init_extent_tree(inode, i_ext);
871 
872 	write_lock(&F2FS_I(inode)->ext_lock);
873 	get_extent_info(&F2FS_I(inode)->ext, *i_ext);
874 	write_unlock(&F2FS_I(inode)->ext_lock);
875 }
876 
877 static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
878 							struct extent_info *ei)
879 {
880 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
881 		return false;
882 
883 	if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
884 		return f2fs_lookup_extent_tree(inode, pgofs, ei);
885 
886 	return lookup_extent_info(inode, pgofs, ei);
887 }
888 
889 void f2fs_update_extent_cache(struct dnode_of_data *dn)
890 {
891 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
892 	pgoff_t fofs;
893 
894 	f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
895 
896 	if (is_inode_flag_set(fi, FI_NO_EXTENT))
897 		return;
898 
899 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
900 							dn->ofs_in_node;
901 
902 	if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
903 		return f2fs_update_extent_tree(dn->inode, fofs,
904 							dn->data_blkaddr);
905 
906 	if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
907 		sync_inode_page(dn);
908 }
909 
910 struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
911 {
912 	struct address_space *mapping = inode->i_mapping;
913 	struct dnode_of_data dn;
914 	struct page *page;
915 	struct extent_info ei;
916 	int err;
917 	struct f2fs_io_info fio = {
918 		.sbi = F2FS_I_SB(inode),
919 		.type = DATA,
920 		.rw = rw,
921 		.encrypted_page = NULL,
922 	};
923 
924 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
925 		return read_mapping_page(mapping, index, NULL);
926 
927 	page = grab_cache_page(mapping, index);
928 	if (!page)
929 		return ERR_PTR(-ENOMEM);
930 
931 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
932 		dn.data_blkaddr = ei.blk + index - ei.fofs;
933 		goto got_it;
934 	}
935 
936 	set_new_dnode(&dn, inode, NULL, NULL, 0);
937 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
938 	if (err) {
939 		f2fs_put_page(page, 1);
940 		return ERR_PTR(err);
941 	}
942 	f2fs_put_dnode(&dn);
943 
944 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
945 		f2fs_put_page(page, 1);
946 		return ERR_PTR(-ENOENT);
947 	}
948 got_it:
949 	if (PageUptodate(page)) {
950 		unlock_page(page);
951 		return page;
952 	}
953 
954 	/*
955 	 * A new dentry page is allocated but not able to be written, since its
956 	 * new inode page couldn't be allocated due to -ENOSPC.
957 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
958 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
959 	 */
960 	if (dn.data_blkaddr == NEW_ADDR) {
961 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
962 		SetPageUptodate(page);
963 		unlock_page(page);
964 		return page;
965 	}
966 
967 	fio.blk_addr = dn.data_blkaddr;
968 	fio.page = page;
969 	err = f2fs_submit_page_bio(&fio);
970 	if (err)
971 		return ERR_PTR(err);
972 	return page;
973 }
974 
975 struct page *find_data_page(struct inode *inode, pgoff_t index)
976 {
977 	struct address_space *mapping = inode->i_mapping;
978 	struct page *page;
979 
980 	page = find_get_page(mapping, index);
981 	if (page && PageUptodate(page))
982 		return page;
983 	f2fs_put_page(page, 0);
984 
985 	page = get_read_data_page(inode, index, READ_SYNC);
986 	if (IS_ERR(page))
987 		return page;
988 
989 	if (PageUptodate(page))
990 		return page;
991 
992 	wait_on_page_locked(page);
993 	if (unlikely(!PageUptodate(page))) {
994 		f2fs_put_page(page, 0);
995 		return ERR_PTR(-EIO);
996 	}
997 	return page;
998 }
999 
1000 /*
1001  * If it tries to access a hole, return an error.
1002  * Because, the callers, functions in dir.c and GC, should be able to know
1003  * whether this page exists or not.
1004  */
1005 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
1006 {
1007 	struct address_space *mapping = inode->i_mapping;
1008 	struct page *page;
1009 repeat:
1010 	page = get_read_data_page(inode, index, READ_SYNC);
1011 	if (IS_ERR(page))
1012 		return page;
1013 
1014 	/* wait for read completion */
1015 	lock_page(page);
1016 	if (unlikely(!PageUptodate(page))) {
1017 		f2fs_put_page(page, 1);
1018 		return ERR_PTR(-EIO);
1019 	}
1020 	if (unlikely(page->mapping != mapping)) {
1021 		f2fs_put_page(page, 1);
1022 		goto repeat;
1023 	}
1024 	return page;
1025 }
1026 
1027 /*
1028  * Caller ensures that this data page is never allocated.
1029  * A new zero-filled data page is allocated in the page cache.
1030  *
1031  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1032  * f2fs_unlock_op().
1033  * Note that, ipage is set only by make_empty_dir.
1034  */
1035 struct page *get_new_data_page(struct inode *inode,
1036 		struct page *ipage, pgoff_t index, bool new_i_size)
1037 {
1038 	struct address_space *mapping = inode->i_mapping;
1039 	struct page *page;
1040 	struct dnode_of_data dn;
1041 	int err;
1042 repeat:
1043 	page = grab_cache_page(mapping, index);
1044 	if (!page)
1045 		return ERR_PTR(-ENOMEM);
1046 
1047 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1048 	err = f2fs_reserve_block(&dn, index);
1049 	if (err) {
1050 		f2fs_put_page(page, 1);
1051 		return ERR_PTR(err);
1052 	}
1053 	if (!ipage)
1054 		f2fs_put_dnode(&dn);
1055 
1056 	if (PageUptodate(page))
1057 		goto got_it;
1058 
1059 	if (dn.data_blkaddr == NEW_ADDR) {
1060 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1061 		SetPageUptodate(page);
1062 	} else {
1063 		f2fs_put_page(page, 1);
1064 
1065 		page = get_read_data_page(inode, index, READ_SYNC);
1066 		if (IS_ERR(page))
1067 			goto repeat;
1068 
1069 		/* wait for read completion */
1070 		lock_page(page);
1071 	}
1072 got_it:
1073 	if (new_i_size &&
1074 		i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1075 		i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
1076 		/* Only the directory inode sets new_i_size */
1077 		set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
1078 	}
1079 	return page;
1080 }
1081 
1082 static int __allocate_data_block(struct dnode_of_data *dn)
1083 {
1084 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1085 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
1086 	struct f2fs_summary sum;
1087 	struct node_info ni;
1088 	int seg = CURSEG_WARM_DATA;
1089 	pgoff_t fofs;
1090 
1091 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1092 		return -EPERM;
1093 
1094 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1095 	if (dn->data_blkaddr == NEW_ADDR)
1096 		goto alloc;
1097 
1098 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1099 		return -ENOSPC;
1100 
1101 alloc:
1102 	get_node_info(sbi, dn->nid, &ni);
1103 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1104 
1105 	if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1106 		seg = CURSEG_DIRECT_IO;
1107 
1108 	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1109 								&sum, seg);
1110 
1111 	/* direct IO doesn't use extent cache to maximize the performance */
1112 	set_data_blkaddr(dn);
1113 
1114 	/* update i_size */
1115 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1116 							dn->ofs_in_node;
1117 	if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1118 		i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1119 
1120 	return 0;
1121 }
1122 
1123 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1124 							size_t count)
1125 {
1126 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 	struct dnode_of_data dn;
1128 	u64 start = F2FS_BYTES_TO_BLK(offset);
1129 	u64 len = F2FS_BYTES_TO_BLK(count);
1130 	bool allocated;
1131 	u64 end_offset;
1132 
1133 	while (len) {
1134 		f2fs_balance_fs(sbi);
1135 		f2fs_lock_op(sbi);
1136 
1137 		/* When reading holes, we need its node page */
1138 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1139 		if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1140 			goto out;
1141 
1142 		allocated = false;
1143 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1144 
1145 		while (dn.ofs_in_node < end_offset && len) {
1146 			block_t blkaddr;
1147 
1148 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1149 			if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
1150 				if (__allocate_data_block(&dn))
1151 					goto sync_out;
1152 				allocated = true;
1153 			}
1154 			len--;
1155 			start++;
1156 			dn.ofs_in_node++;
1157 		}
1158 
1159 		if (allocated)
1160 			sync_inode_page(&dn);
1161 
1162 		f2fs_put_dnode(&dn);
1163 		f2fs_unlock_op(sbi);
1164 	}
1165 	return;
1166 
1167 sync_out:
1168 	if (allocated)
1169 		sync_inode_page(&dn);
1170 	f2fs_put_dnode(&dn);
1171 out:
1172 	f2fs_unlock_op(sbi);
1173 	return;
1174 }
1175 
1176 /*
1177  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1178  * f2fs_map_blocks structure.
1179  * If original data blocks are allocated, then give them to blockdev.
1180  * Otherwise,
1181  *     a. preallocate requested block addresses
1182  *     b. do not use extent cache for better performance
1183  *     c. give the block addresses to blockdev
1184  */
1185 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1186 			int create, bool fiemap)
1187 {
1188 	unsigned int maxblocks = map->m_len;
1189 	struct dnode_of_data dn;
1190 	int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1191 	pgoff_t pgofs, end_offset;
1192 	int err = 0, ofs = 1;
1193 	struct extent_info ei;
1194 	bool allocated = false;
1195 
1196 	map->m_len = 0;
1197 	map->m_flags = 0;
1198 
1199 	/* it only supports block size == page size */
1200 	pgofs =	(pgoff_t)map->m_lblk;
1201 
1202 	if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1203 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1204 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1205 		map->m_flags = F2FS_MAP_MAPPED;
1206 		goto out;
1207 	}
1208 
1209 	if (create)
1210 		f2fs_lock_op(F2FS_I_SB(inode));
1211 
1212 	/* When reading holes, we need its node page */
1213 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1214 	err = get_dnode_of_data(&dn, pgofs, mode);
1215 	if (err) {
1216 		if (err == -ENOENT)
1217 			err = 0;
1218 		goto unlock_out;
1219 	}
1220 	if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1221 		goto put_out;
1222 
1223 	if (dn.data_blkaddr != NULL_ADDR) {
1224 		map->m_flags = F2FS_MAP_MAPPED;
1225 		map->m_pblk = dn.data_blkaddr;
1226 		if (dn.data_blkaddr == NEW_ADDR)
1227 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1228 	} else if (create) {
1229 		err = __allocate_data_block(&dn);
1230 		if (err)
1231 			goto put_out;
1232 		allocated = true;
1233 		map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1234 		map->m_pblk = dn.data_blkaddr;
1235 	} else {
1236 		goto put_out;
1237 	}
1238 
1239 	end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1240 	map->m_len = 1;
1241 	dn.ofs_in_node++;
1242 	pgofs++;
1243 
1244 get_next:
1245 	if (dn.ofs_in_node >= end_offset) {
1246 		if (allocated)
1247 			sync_inode_page(&dn);
1248 		allocated = false;
1249 		f2fs_put_dnode(&dn);
1250 
1251 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1252 		err = get_dnode_of_data(&dn, pgofs, mode);
1253 		if (err) {
1254 			if (err == -ENOENT)
1255 				err = 0;
1256 			goto unlock_out;
1257 		}
1258 		if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1259 			goto put_out;
1260 
1261 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1262 	}
1263 
1264 	if (maxblocks > map->m_len) {
1265 		block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1266 		if (blkaddr == NULL_ADDR && create) {
1267 			err = __allocate_data_block(&dn);
1268 			if (err)
1269 				goto sync_out;
1270 			allocated = true;
1271 			map->m_flags |= F2FS_MAP_NEW;
1272 			blkaddr = dn.data_blkaddr;
1273 		}
1274 		/* Give more consecutive addresses for the readahead */
1275 		if ((map->m_pblk != NEW_ADDR &&
1276 				blkaddr == (map->m_pblk + ofs)) ||
1277 				(map->m_pblk == NEW_ADDR &&
1278 				blkaddr == NEW_ADDR)) {
1279 			ofs++;
1280 			dn.ofs_in_node++;
1281 			pgofs++;
1282 			map->m_len++;
1283 			goto get_next;
1284 		}
1285 	}
1286 sync_out:
1287 	if (allocated)
1288 		sync_inode_page(&dn);
1289 put_out:
1290 	f2fs_put_dnode(&dn);
1291 unlock_out:
1292 	if (create)
1293 		f2fs_unlock_op(F2FS_I_SB(inode));
1294 out:
1295 	trace_f2fs_map_blocks(inode, map, err);
1296 	return err;
1297 }
1298 
1299 static int __get_data_block(struct inode *inode, sector_t iblock,
1300 			struct buffer_head *bh, int create, bool fiemap)
1301 {
1302 	struct f2fs_map_blocks map;
1303 	int ret;
1304 
1305 	map.m_lblk = iblock;
1306 	map.m_len = bh->b_size >> inode->i_blkbits;
1307 
1308 	ret = f2fs_map_blocks(inode, &map, create, fiemap);
1309 	if (!ret) {
1310 		map_bh(bh, inode->i_sb, map.m_pblk);
1311 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1312 		bh->b_size = map.m_len << inode->i_blkbits;
1313 	}
1314 	return ret;
1315 }
1316 
1317 static int get_data_block(struct inode *inode, sector_t iblock,
1318 			struct buffer_head *bh_result, int create)
1319 {
1320 	return __get_data_block(inode, iblock, bh_result, create, false);
1321 }
1322 
1323 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1324 			struct buffer_head *bh_result, int create)
1325 {
1326 	return __get_data_block(inode, iblock, bh_result, create, true);
1327 }
1328 
1329 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1330 {
1331 	return (offset >> inode->i_blkbits);
1332 }
1333 
1334 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1335 {
1336 	return (blk << inode->i_blkbits);
1337 }
1338 
1339 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1340 		u64 start, u64 len)
1341 {
1342 	struct buffer_head map_bh;
1343 	sector_t start_blk, last_blk;
1344 	loff_t isize = i_size_read(inode);
1345 	u64 logical = 0, phys = 0, size = 0;
1346 	u32 flags = 0;
1347 	bool past_eof = false, whole_file = false;
1348 	int ret = 0;
1349 
1350 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1351 	if (ret)
1352 		return ret;
1353 
1354 	mutex_lock(&inode->i_mutex);
1355 
1356 	if (len >= isize) {
1357 		whole_file = true;
1358 		len = isize;
1359 	}
1360 
1361 	if (logical_to_blk(inode, len) == 0)
1362 		len = blk_to_logical(inode, 1);
1363 
1364 	start_blk = logical_to_blk(inode, start);
1365 	last_blk = logical_to_blk(inode, start + len - 1);
1366 next:
1367 	memset(&map_bh, 0, sizeof(struct buffer_head));
1368 	map_bh.b_size = len;
1369 
1370 	ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
1371 	if (ret)
1372 		goto out;
1373 
1374 	/* HOLE */
1375 	if (!buffer_mapped(&map_bh)) {
1376 		start_blk++;
1377 
1378 		if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
1379 			past_eof = 1;
1380 
1381 		if (past_eof && size) {
1382 			flags |= FIEMAP_EXTENT_LAST;
1383 			ret = fiemap_fill_next_extent(fieinfo, logical,
1384 					phys, size, flags);
1385 		} else if (size) {
1386 			ret = fiemap_fill_next_extent(fieinfo, logical,
1387 					phys, size, flags);
1388 			size = 0;
1389 		}
1390 
1391 		/* if we have holes up to/past EOF then we're done */
1392 		if (start_blk > last_blk || past_eof || ret)
1393 			goto out;
1394 	} else {
1395 		if (start_blk > last_blk && !whole_file) {
1396 			ret = fiemap_fill_next_extent(fieinfo, logical,
1397 					phys, size, flags);
1398 			goto out;
1399 		}
1400 
1401 		/*
1402 		 * if size != 0 then we know we already have an extent
1403 		 * to add, so add it.
1404 		 */
1405 		if (size) {
1406 			ret = fiemap_fill_next_extent(fieinfo, logical,
1407 					phys, size, flags);
1408 			if (ret)
1409 				goto out;
1410 		}
1411 
1412 		logical = blk_to_logical(inode, start_blk);
1413 		phys = blk_to_logical(inode, map_bh.b_blocknr);
1414 		size = map_bh.b_size;
1415 		flags = 0;
1416 		if (buffer_unwritten(&map_bh))
1417 			flags = FIEMAP_EXTENT_UNWRITTEN;
1418 
1419 		start_blk += logical_to_blk(inode, size);
1420 
1421 		/*
1422 		 * If we are past the EOF, then we need to make sure as
1423 		 * soon as we find a hole that the last extent we found
1424 		 * is marked with FIEMAP_EXTENT_LAST
1425 		 */
1426 		if (!past_eof && logical + size >= isize)
1427 			past_eof = true;
1428 	}
1429 	cond_resched();
1430 	if (fatal_signal_pending(current))
1431 		ret = -EINTR;
1432 	else
1433 		goto next;
1434 out:
1435 	if (ret == 1)
1436 		ret = 0;
1437 
1438 	mutex_unlock(&inode->i_mutex);
1439 	return ret;
1440 }
1441 
1442 /*
1443  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1444  * Major change was from block_size == page_size in f2fs by default.
1445  */
1446 static int f2fs_mpage_readpages(struct address_space *mapping,
1447 			struct list_head *pages, struct page *page,
1448 			unsigned nr_pages)
1449 {
1450 	struct bio *bio = NULL;
1451 	unsigned page_idx;
1452 	sector_t last_block_in_bio = 0;
1453 	struct inode *inode = mapping->host;
1454 	const unsigned blkbits = inode->i_blkbits;
1455 	const unsigned blocksize = 1 << blkbits;
1456 	sector_t block_in_file;
1457 	sector_t last_block;
1458 	sector_t last_block_in_file;
1459 	sector_t block_nr;
1460 	struct block_device *bdev = inode->i_sb->s_bdev;
1461 	struct f2fs_map_blocks map;
1462 
1463 	map.m_pblk = 0;
1464 	map.m_lblk = 0;
1465 	map.m_len = 0;
1466 	map.m_flags = 0;
1467 
1468 	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1469 
1470 		prefetchw(&page->flags);
1471 		if (pages) {
1472 			page = list_entry(pages->prev, struct page, lru);
1473 			list_del(&page->lru);
1474 			if (add_to_page_cache_lru(page, mapping,
1475 						  page->index, GFP_KERNEL))
1476 				goto next_page;
1477 		}
1478 
1479 		block_in_file = (sector_t)page->index;
1480 		last_block = block_in_file + nr_pages;
1481 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1482 								blkbits;
1483 		if (last_block > last_block_in_file)
1484 			last_block = last_block_in_file;
1485 
1486 		/*
1487 		 * Map blocks using the previous result first.
1488 		 */
1489 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1490 				block_in_file > map.m_lblk &&
1491 				block_in_file < (map.m_lblk + map.m_len))
1492 			goto got_it;
1493 
1494 		/*
1495 		 * Then do more f2fs_map_blocks() calls until we are
1496 		 * done with this page.
1497 		 */
1498 		map.m_flags = 0;
1499 
1500 		if (block_in_file < last_block) {
1501 			map.m_lblk = block_in_file;
1502 			map.m_len = last_block - block_in_file;
1503 
1504 			if (f2fs_map_blocks(inode, &map, 0, false))
1505 				goto set_error_page;
1506 		}
1507 got_it:
1508 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1509 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1510 			SetPageMappedToDisk(page);
1511 
1512 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1513 				SetPageUptodate(page);
1514 				goto confused;
1515 			}
1516 		} else {
1517 			zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1518 			SetPageUptodate(page);
1519 			unlock_page(page);
1520 			goto next_page;
1521 		}
1522 
1523 		/*
1524 		 * This page will go to BIO.  Do we need to send this
1525 		 * BIO off first?
1526 		 */
1527 		if (bio && (last_block_in_bio != block_nr - 1)) {
1528 submit_and_realloc:
1529 			submit_bio(READ, bio);
1530 			bio = NULL;
1531 		}
1532 		if (bio == NULL) {
1533 			struct f2fs_crypto_ctx *ctx = NULL;
1534 
1535 			if (f2fs_encrypted_inode(inode) &&
1536 					S_ISREG(inode->i_mode)) {
1537 				struct page *cpage;
1538 
1539 				ctx = f2fs_get_crypto_ctx(inode);
1540 				if (IS_ERR(ctx))
1541 					goto set_error_page;
1542 
1543 				/* wait the page to be moved by cleaning */
1544 				cpage = find_lock_page(
1545 						META_MAPPING(F2FS_I_SB(inode)),
1546 						block_nr);
1547 				if (cpage) {
1548 					f2fs_wait_on_page_writeback(cpage,
1549 									DATA);
1550 					f2fs_put_page(cpage, 1);
1551 				}
1552 			}
1553 
1554 			bio = bio_alloc(GFP_KERNEL,
1555 				min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
1556 			if (!bio) {
1557 				if (ctx)
1558 					f2fs_release_crypto_ctx(ctx);
1559 				goto set_error_page;
1560 			}
1561 			bio->bi_bdev = bdev;
1562 			bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1563 			bio->bi_end_io = f2fs_read_end_io;
1564 			bio->bi_private = ctx;
1565 		}
1566 
1567 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1568 			goto submit_and_realloc;
1569 
1570 		last_block_in_bio = block_nr;
1571 		goto next_page;
1572 set_error_page:
1573 		SetPageError(page);
1574 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1575 		unlock_page(page);
1576 		goto next_page;
1577 confused:
1578 		if (bio) {
1579 			submit_bio(READ, bio);
1580 			bio = NULL;
1581 		}
1582 		unlock_page(page);
1583 next_page:
1584 		if (pages)
1585 			page_cache_release(page);
1586 	}
1587 	BUG_ON(pages && !list_empty(pages));
1588 	if (bio)
1589 		submit_bio(READ, bio);
1590 	return 0;
1591 }
1592 
1593 static int f2fs_read_data_page(struct file *file, struct page *page)
1594 {
1595 	struct inode *inode = page->mapping->host;
1596 	int ret = -EAGAIN;
1597 
1598 	trace_f2fs_readpage(page, DATA);
1599 
1600 	/* If the file has inline data, try to read it directly */
1601 	if (f2fs_has_inline_data(inode))
1602 		ret = f2fs_read_inline_data(inode, page);
1603 	if (ret == -EAGAIN)
1604 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1605 	return ret;
1606 }
1607 
1608 static int f2fs_read_data_pages(struct file *file,
1609 			struct address_space *mapping,
1610 			struct list_head *pages, unsigned nr_pages)
1611 {
1612 	struct inode *inode = file->f_mapping->host;
1613 
1614 	/* If the file has inline data, skip readpages */
1615 	if (f2fs_has_inline_data(inode))
1616 		return 0;
1617 
1618 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1619 }
1620 
1621 int do_write_data_page(struct f2fs_io_info *fio)
1622 {
1623 	struct page *page = fio->page;
1624 	struct inode *inode = page->mapping->host;
1625 	struct dnode_of_data dn;
1626 	int err = 0;
1627 
1628 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1629 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1630 	if (err)
1631 		return err;
1632 
1633 	fio->blk_addr = dn.data_blkaddr;
1634 
1635 	/* This page is already truncated */
1636 	if (fio->blk_addr == NULL_ADDR) {
1637 		ClearPageUptodate(page);
1638 		goto out_writepage;
1639 	}
1640 
1641 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1642 		fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1643 		if (IS_ERR(fio->encrypted_page)) {
1644 			err = PTR_ERR(fio->encrypted_page);
1645 			goto out_writepage;
1646 		}
1647 	}
1648 
1649 	set_page_writeback(page);
1650 
1651 	/*
1652 	 * If current allocation needs SSR,
1653 	 * it had better in-place writes for updated data.
1654 	 */
1655 	if (unlikely(fio->blk_addr != NEW_ADDR &&
1656 			!is_cold_data(page) &&
1657 			need_inplace_update(inode))) {
1658 		rewrite_data_page(fio);
1659 		set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1660 		trace_f2fs_do_write_data_page(page, IPU);
1661 	} else {
1662 		write_data_page(&dn, fio);
1663 		set_data_blkaddr(&dn);
1664 		f2fs_update_extent_cache(&dn);
1665 		trace_f2fs_do_write_data_page(page, OPU);
1666 		set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1667 		if (page->index == 0)
1668 			set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1669 	}
1670 out_writepage:
1671 	f2fs_put_dnode(&dn);
1672 	return err;
1673 }
1674 
1675 static int f2fs_write_data_page(struct page *page,
1676 					struct writeback_control *wbc)
1677 {
1678 	struct inode *inode = page->mapping->host;
1679 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1680 	loff_t i_size = i_size_read(inode);
1681 	const pgoff_t end_index = ((unsigned long long) i_size)
1682 							>> PAGE_CACHE_SHIFT;
1683 	unsigned offset = 0;
1684 	bool need_balance_fs = false;
1685 	int err = 0;
1686 	struct f2fs_io_info fio = {
1687 		.sbi = sbi,
1688 		.type = DATA,
1689 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1690 		.page = page,
1691 		.encrypted_page = NULL,
1692 	};
1693 
1694 	trace_f2fs_writepage(page, DATA);
1695 
1696 	if (page->index < end_index)
1697 		goto write;
1698 
1699 	/*
1700 	 * If the offset is out-of-range of file size,
1701 	 * this page does not have to be written to disk.
1702 	 */
1703 	offset = i_size & (PAGE_CACHE_SIZE - 1);
1704 	if ((page->index >= end_index + 1) || !offset)
1705 		goto out;
1706 
1707 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1708 write:
1709 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1710 		goto redirty_out;
1711 	if (f2fs_is_drop_cache(inode))
1712 		goto out;
1713 	if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1714 			available_free_memory(sbi, BASE_CHECK))
1715 		goto redirty_out;
1716 
1717 	/* Dentry blocks are controlled by checkpoint */
1718 	if (S_ISDIR(inode->i_mode)) {
1719 		if (unlikely(f2fs_cp_error(sbi)))
1720 			goto redirty_out;
1721 		err = do_write_data_page(&fio);
1722 		goto done;
1723 	}
1724 
1725 	/* we should bypass data pages to proceed the kworkder jobs */
1726 	if (unlikely(f2fs_cp_error(sbi))) {
1727 		SetPageError(page);
1728 		goto out;
1729 	}
1730 
1731 	if (!wbc->for_reclaim)
1732 		need_balance_fs = true;
1733 	else if (has_not_enough_free_secs(sbi, 0))
1734 		goto redirty_out;
1735 
1736 	err = -EAGAIN;
1737 	f2fs_lock_op(sbi);
1738 	if (f2fs_has_inline_data(inode))
1739 		err = f2fs_write_inline_data(inode, page);
1740 	if (err == -EAGAIN)
1741 		err = do_write_data_page(&fio);
1742 	f2fs_unlock_op(sbi);
1743 done:
1744 	if (err && err != -ENOENT)
1745 		goto redirty_out;
1746 
1747 	clear_cold_data(page);
1748 out:
1749 	inode_dec_dirty_pages(inode);
1750 	if (err)
1751 		ClearPageUptodate(page);
1752 	unlock_page(page);
1753 	if (need_balance_fs)
1754 		f2fs_balance_fs(sbi);
1755 	if (wbc->for_reclaim)
1756 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
1757 	return 0;
1758 
1759 redirty_out:
1760 	redirty_page_for_writepage(wbc, page);
1761 	return AOP_WRITEPAGE_ACTIVATE;
1762 }
1763 
1764 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1765 			void *data)
1766 {
1767 	struct address_space *mapping = data;
1768 	int ret = mapping->a_ops->writepage(page, wbc);
1769 	mapping_set_error(mapping, ret);
1770 	return ret;
1771 }
1772 
1773 static int f2fs_write_data_pages(struct address_space *mapping,
1774 			    struct writeback_control *wbc)
1775 {
1776 	struct inode *inode = mapping->host;
1777 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1778 	bool locked = false;
1779 	int ret;
1780 	long diff;
1781 
1782 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1783 
1784 	/* deal with chardevs and other special file */
1785 	if (!mapping->a_ops->writepage)
1786 		return 0;
1787 
1788 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1789 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1790 			available_free_memory(sbi, DIRTY_DENTS))
1791 		goto skip_write;
1792 
1793 	/* during POR, we don't need to trigger writepage at all. */
1794 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1795 		goto skip_write;
1796 
1797 	diff = nr_pages_to_write(sbi, DATA, wbc);
1798 
1799 	if (!S_ISDIR(inode->i_mode)) {
1800 		mutex_lock(&sbi->writepages);
1801 		locked = true;
1802 	}
1803 	ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1804 	if (locked)
1805 		mutex_unlock(&sbi->writepages);
1806 
1807 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
1808 
1809 	remove_dirty_dir_inode(inode);
1810 
1811 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1812 	return ret;
1813 
1814 skip_write:
1815 	wbc->pages_skipped += get_dirty_pages(inode);
1816 	return 0;
1817 }
1818 
1819 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1820 {
1821 	struct inode *inode = mapping->host;
1822 
1823 	if (to > inode->i_size) {
1824 		truncate_pagecache(inode, inode->i_size);
1825 		truncate_blocks(inode, inode->i_size, true);
1826 	}
1827 }
1828 
1829 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1830 		loff_t pos, unsigned len, unsigned flags,
1831 		struct page **pagep, void **fsdata)
1832 {
1833 	struct inode *inode = mapping->host;
1834 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1835 	struct page *page, *ipage;
1836 	pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1837 	struct dnode_of_data dn;
1838 	int err = 0;
1839 
1840 	trace_f2fs_write_begin(inode, pos, len, flags);
1841 
1842 	f2fs_balance_fs(sbi);
1843 
1844 	/*
1845 	 * We should check this at this moment to avoid deadlock on inode page
1846 	 * and #0 page. The locking rule for inline_data conversion should be:
1847 	 * lock_page(page #0) -> lock_page(inode_page)
1848 	 */
1849 	if (index != 0) {
1850 		err = f2fs_convert_inline_inode(inode);
1851 		if (err)
1852 			goto fail;
1853 	}
1854 repeat:
1855 	page = grab_cache_page_write_begin(mapping, index, flags);
1856 	if (!page) {
1857 		err = -ENOMEM;
1858 		goto fail;
1859 	}
1860 
1861 	*pagep = page;
1862 
1863 	f2fs_lock_op(sbi);
1864 
1865 	/* check inline_data */
1866 	ipage = get_node_page(sbi, inode->i_ino);
1867 	if (IS_ERR(ipage)) {
1868 		err = PTR_ERR(ipage);
1869 		goto unlock_fail;
1870 	}
1871 
1872 	set_new_dnode(&dn, inode, ipage, ipage, 0);
1873 
1874 	if (f2fs_has_inline_data(inode)) {
1875 		if (pos + len <= MAX_INLINE_DATA) {
1876 			read_inline_data(page, ipage);
1877 			set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1878 			sync_inode_page(&dn);
1879 			goto put_next;
1880 		}
1881 		err = f2fs_convert_inline_page(&dn, page);
1882 		if (err)
1883 			goto put_fail;
1884 	}
1885 	err = f2fs_reserve_block(&dn, index);
1886 	if (err)
1887 		goto put_fail;
1888 put_next:
1889 	f2fs_put_dnode(&dn);
1890 	f2fs_unlock_op(sbi);
1891 
1892 	if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1893 		return 0;
1894 
1895 	f2fs_wait_on_page_writeback(page, DATA);
1896 
1897 	if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1898 		unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1899 		unsigned end = start + len;
1900 
1901 		/* Reading beyond i_size is simple: memset to zero */
1902 		zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1903 		goto out;
1904 	}
1905 
1906 	if (dn.data_blkaddr == NEW_ADDR) {
1907 		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1908 	} else {
1909 		struct f2fs_io_info fio = {
1910 			.sbi = sbi,
1911 			.type = DATA,
1912 			.rw = READ_SYNC,
1913 			.blk_addr = dn.data_blkaddr,
1914 			.page = page,
1915 			.encrypted_page = NULL,
1916 		};
1917 		err = f2fs_submit_page_bio(&fio);
1918 		if (err)
1919 			goto fail;
1920 
1921 		lock_page(page);
1922 		if (unlikely(!PageUptodate(page))) {
1923 			f2fs_put_page(page, 1);
1924 			err = -EIO;
1925 			goto fail;
1926 		}
1927 		if (unlikely(page->mapping != mapping)) {
1928 			f2fs_put_page(page, 1);
1929 			goto repeat;
1930 		}
1931 
1932 		/* avoid symlink page */
1933 		if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1934 			err = f2fs_decrypt_one(inode, page);
1935 			if (err) {
1936 				f2fs_put_page(page, 1);
1937 				goto fail;
1938 			}
1939 		}
1940 	}
1941 out:
1942 	SetPageUptodate(page);
1943 	clear_cold_data(page);
1944 	return 0;
1945 
1946 put_fail:
1947 	f2fs_put_dnode(&dn);
1948 unlock_fail:
1949 	f2fs_unlock_op(sbi);
1950 	f2fs_put_page(page, 1);
1951 fail:
1952 	f2fs_write_failed(mapping, pos + len);
1953 	return err;
1954 }
1955 
1956 static int f2fs_write_end(struct file *file,
1957 			struct address_space *mapping,
1958 			loff_t pos, unsigned len, unsigned copied,
1959 			struct page *page, void *fsdata)
1960 {
1961 	struct inode *inode = page->mapping->host;
1962 
1963 	trace_f2fs_write_end(inode, pos, len, copied);
1964 
1965 	set_page_dirty(page);
1966 
1967 	if (pos + copied > i_size_read(inode)) {
1968 		i_size_write(inode, pos + copied);
1969 		mark_inode_dirty(inode);
1970 		update_inode_page(inode);
1971 	}
1972 
1973 	f2fs_put_page(page, 1);
1974 	return copied;
1975 }
1976 
1977 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1978 			   loff_t offset)
1979 {
1980 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1981 
1982 	if (iov_iter_rw(iter) == READ)
1983 		return 0;
1984 
1985 	if (offset & blocksize_mask)
1986 		return -EINVAL;
1987 
1988 	if (iov_iter_alignment(iter) & blocksize_mask)
1989 		return -EINVAL;
1990 
1991 	return 0;
1992 }
1993 
1994 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1995 			      loff_t offset)
1996 {
1997 	struct file *file = iocb->ki_filp;
1998 	struct address_space *mapping = file->f_mapping;
1999 	struct inode *inode = mapping->host;
2000 	size_t count = iov_iter_count(iter);
2001 	int err;
2002 
2003 	/* we don't need to use inline_data strictly */
2004 	if (f2fs_has_inline_data(inode)) {
2005 		err = f2fs_convert_inline_inode(inode);
2006 		if (err)
2007 			return err;
2008 	}
2009 
2010 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
2011 		return 0;
2012 
2013 	if (check_direct_IO(inode, iter, offset))
2014 		return 0;
2015 
2016 	trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
2017 
2018 	if (iov_iter_rw(iter) == WRITE)
2019 		__allocate_data_blocks(inode, offset, count);
2020 
2021 	err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
2022 	if (err < 0 && iov_iter_rw(iter) == WRITE)
2023 		f2fs_write_failed(mapping, offset + count);
2024 
2025 	trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
2026 
2027 	return err;
2028 }
2029 
2030 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2031 							unsigned int length)
2032 {
2033 	struct inode *inode = page->mapping->host;
2034 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2035 
2036 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2037 		(offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
2038 		return;
2039 
2040 	if (PageDirty(page)) {
2041 		if (inode->i_ino == F2FS_META_INO(sbi))
2042 			dec_page_count(sbi, F2FS_DIRTY_META);
2043 		else if (inode->i_ino == F2FS_NODE_INO(sbi))
2044 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2045 		else
2046 			inode_dec_dirty_pages(inode);
2047 	}
2048 	ClearPagePrivate(page);
2049 }
2050 
2051 int f2fs_release_page(struct page *page, gfp_t wait)
2052 {
2053 	/* If this is dirty page, keep PagePrivate */
2054 	if (PageDirty(page))
2055 		return 0;
2056 
2057 	ClearPagePrivate(page);
2058 	return 1;
2059 }
2060 
2061 static int f2fs_set_data_page_dirty(struct page *page)
2062 {
2063 	struct address_space *mapping = page->mapping;
2064 	struct inode *inode = mapping->host;
2065 
2066 	trace_f2fs_set_page_dirty(page, DATA);
2067 
2068 	SetPageUptodate(page);
2069 
2070 	if (f2fs_is_atomic_file(inode)) {
2071 		register_inmem_page(inode, page);
2072 		return 1;
2073 	}
2074 
2075 	if (!PageDirty(page)) {
2076 		__set_page_dirty_nobuffers(page);
2077 		update_dirty_page(inode, page);
2078 		return 1;
2079 	}
2080 	return 0;
2081 }
2082 
2083 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2084 {
2085 	struct inode *inode = mapping->host;
2086 
2087 	/* we don't need to use inline_data strictly */
2088 	if (f2fs_has_inline_data(inode)) {
2089 		int err = f2fs_convert_inline_inode(inode);
2090 		if (err)
2091 			return err;
2092 	}
2093 	return generic_block_bmap(mapping, block, get_data_block);
2094 }
2095 
2096 void init_extent_cache_info(struct f2fs_sb_info *sbi)
2097 {
2098 	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
2099 	init_rwsem(&sbi->extent_tree_lock);
2100 	INIT_LIST_HEAD(&sbi->extent_list);
2101 	spin_lock_init(&sbi->extent_lock);
2102 	sbi->total_ext_tree = 0;
2103 	atomic_set(&sbi->total_ext_node, 0);
2104 }
2105 
2106 int __init create_extent_cache(void)
2107 {
2108 	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
2109 			sizeof(struct extent_tree));
2110 	if (!extent_tree_slab)
2111 		return -ENOMEM;
2112 	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
2113 			sizeof(struct extent_node));
2114 	if (!extent_node_slab) {
2115 		kmem_cache_destroy(extent_tree_slab);
2116 		return -ENOMEM;
2117 	}
2118 	return 0;
2119 }
2120 
2121 void destroy_extent_cache(void)
2122 {
2123 	kmem_cache_destroy(extent_node_slab);
2124 	kmem_cache_destroy(extent_tree_slab);
2125 }
2126 
2127 const struct address_space_operations f2fs_dblock_aops = {
2128 	.readpage	= f2fs_read_data_page,
2129 	.readpages	= f2fs_read_data_pages,
2130 	.writepage	= f2fs_write_data_page,
2131 	.writepages	= f2fs_write_data_pages,
2132 	.write_begin	= f2fs_write_begin,
2133 	.write_end	= f2fs_write_end,
2134 	.set_page_dirty	= f2fs_set_data_page_dirty,
2135 	.invalidatepage	= f2fs_invalidate_page,
2136 	.releasepage	= f2fs_release_page,
2137 	.direct_IO	= f2fs_direct_IO,
2138 	.bmap		= f2fs_bmap,
2139 };
2140