xref: /openbmc/linux/fs/f2fs/data.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32 
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 	struct address_space *mapping = page->mapping;
36 	struct inode *inode;
37 	struct f2fs_sb_info *sbi;
38 
39 	if (!mapping)
40 		return false;
41 
42 	inode = mapping->host;
43 	sbi = F2FS_I_SB(inode);
44 
45 	if (inode->i_ino == F2FS_META_INO(sbi) ||
46 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47 			S_ISDIR(inode->i_mode) ||
48 			is_cold_data(page))
49 		return true;
50 	return false;
51 }
52 
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 	struct bio_vec *bvec;
56 	int i;
57 
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
60 		f2fs_show_injection_info(FAULT_IO);
61 		bio->bi_status = BLK_STS_IOERR;
62 	}
63 #endif
64 
65 	if (f2fs_bio_encrypted(bio)) {
66 		if (bio->bi_status) {
67 			fscrypt_release_ctx(bio->bi_private);
68 		} else {
69 			fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 			return;
71 		}
72 	}
73 
74 	bio_for_each_segment_all(bvec, bio, i) {
75 		struct page *page = bvec->bv_page;
76 
77 		if (!bio->bi_status) {
78 			if (!PageUptodate(page))
79 				SetPageUptodate(page);
80 		} else {
81 			ClearPageUptodate(page);
82 			SetPageError(page);
83 		}
84 		unlock_page(page);
85 	}
86 	bio_put(bio);
87 }
88 
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 	struct f2fs_sb_info *sbi = bio->bi_private;
92 	struct bio_vec *bvec;
93 	int i;
94 
95 	bio_for_each_segment_all(bvec, bio, i) {
96 		struct page *page = bvec->bv_page;
97 		enum count_type type = WB_DATA_TYPE(page);
98 
99 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 			set_page_private(page, (unsigned long)NULL);
101 			ClearPagePrivate(page);
102 			unlock_page(page);
103 			mempool_free(page, sbi->write_io_dummy);
104 
105 			if (unlikely(bio->bi_status))
106 				f2fs_stop_checkpoint(sbi, true);
107 			continue;
108 		}
109 
110 		fscrypt_pullback_bio_page(&page, true);
111 
112 		if (unlikely(bio->bi_status)) {
113 			mapping_set_error(page->mapping, -EIO);
114 			if (type == F2FS_WB_CP_DATA)
115 				f2fs_stop_checkpoint(sbi, true);
116 		}
117 
118 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
119 					page->index != nid_of_node(page));
120 
121 		dec_page_count(sbi, type);
122 		clear_cold_data(page);
123 		end_page_writeback(page);
124 	}
125 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
126 				wq_has_sleeper(&sbi->cp_wait))
127 		wake_up(&sbi->cp_wait);
128 
129 	bio_put(bio);
130 }
131 
132 /*
133  * Return true, if pre_bio's bdev is same as its target device.
134  */
135 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
136 				block_t blk_addr, struct bio *bio)
137 {
138 	struct block_device *bdev = sbi->sb->s_bdev;
139 	int i;
140 
141 	for (i = 0; i < sbi->s_ndevs; i++) {
142 		if (FDEV(i).start_blk <= blk_addr &&
143 					FDEV(i).end_blk >= blk_addr) {
144 			blk_addr -= FDEV(i).start_blk;
145 			bdev = FDEV(i).bdev;
146 			break;
147 		}
148 	}
149 	if (bio) {
150 		bio_set_dev(bio, bdev);
151 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
152 	}
153 	return bdev;
154 }
155 
156 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
157 {
158 	int i;
159 
160 	for (i = 0; i < sbi->s_ndevs; i++)
161 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
162 			return i;
163 	return 0;
164 }
165 
166 static bool __same_bdev(struct f2fs_sb_info *sbi,
167 				block_t blk_addr, struct bio *bio)
168 {
169 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
170 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
171 }
172 
173 /*
174  * Low-level block read/write IO operations.
175  */
176 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
177 				struct writeback_control *wbc,
178 				int npages, bool is_read,
179 				enum page_type type, enum temp_type temp)
180 {
181 	struct bio *bio;
182 
183 	bio = f2fs_bio_alloc(sbi, npages, true);
184 
185 	f2fs_target_device(sbi, blk_addr, bio);
186 	if (is_read) {
187 		bio->bi_end_io = f2fs_read_end_io;
188 		bio->bi_private = NULL;
189 	} else {
190 		bio->bi_end_io = f2fs_write_end_io;
191 		bio->bi_private = sbi;
192 		bio->bi_write_hint = io_type_to_rw_hint(sbi, type, temp);
193 	}
194 	if (wbc)
195 		wbc_init_bio(wbc, bio);
196 
197 	return bio;
198 }
199 
200 static inline void __submit_bio(struct f2fs_sb_info *sbi,
201 				struct bio *bio, enum page_type type)
202 {
203 	if (!is_read_io(bio_op(bio))) {
204 		unsigned int start;
205 
206 		if (type != DATA && type != NODE)
207 			goto submit_io;
208 
209 		if (f2fs_sb_has_blkzoned(sbi->sb) && current->plug)
210 			blk_finish_plug(current->plug);
211 
212 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
213 		start %= F2FS_IO_SIZE(sbi);
214 
215 		if (start == 0)
216 			goto submit_io;
217 
218 		/* fill dummy pages */
219 		for (; start < F2FS_IO_SIZE(sbi); start++) {
220 			struct page *page =
221 				mempool_alloc(sbi->write_io_dummy,
222 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
223 			f2fs_bug_on(sbi, !page);
224 
225 			SetPagePrivate(page);
226 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
227 			lock_page(page);
228 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
229 				f2fs_bug_on(sbi, 1);
230 		}
231 		/*
232 		 * In the NODE case, we lose next block address chain. So, we
233 		 * need to do checkpoint in f2fs_sync_file.
234 		 */
235 		if (type == NODE)
236 			set_sbi_flag(sbi, SBI_NEED_CP);
237 	}
238 submit_io:
239 	if (is_read_io(bio_op(bio)))
240 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
241 	else
242 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
243 	submit_bio(bio);
244 }
245 
246 static void __submit_merged_bio(struct f2fs_bio_info *io)
247 {
248 	struct f2fs_io_info *fio = &io->fio;
249 
250 	if (!io->bio)
251 		return;
252 
253 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
254 
255 	if (is_read_io(fio->op))
256 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
257 	else
258 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
259 
260 	__submit_bio(io->sbi, io->bio, fio->type);
261 	io->bio = NULL;
262 }
263 
264 static bool __has_merged_page(struct f2fs_bio_info *io,
265 				struct inode *inode, nid_t ino, pgoff_t idx)
266 {
267 	struct bio_vec *bvec;
268 	struct page *target;
269 	int i;
270 
271 	if (!io->bio)
272 		return false;
273 
274 	if (!inode && !ino)
275 		return true;
276 
277 	bio_for_each_segment_all(bvec, io->bio, i) {
278 
279 		if (bvec->bv_page->mapping)
280 			target = bvec->bv_page;
281 		else
282 			target = fscrypt_control_page(bvec->bv_page);
283 
284 		if (idx != target->index)
285 			continue;
286 
287 		if (inode && inode == target->mapping->host)
288 			return true;
289 		if (ino && ino == ino_of_node(target))
290 			return true;
291 	}
292 
293 	return false;
294 }
295 
296 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
297 				nid_t ino, pgoff_t idx, enum page_type type)
298 {
299 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
300 	enum temp_type temp;
301 	struct f2fs_bio_info *io;
302 	bool ret = false;
303 
304 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
305 		io = sbi->write_io[btype] + temp;
306 
307 		down_read(&io->io_rwsem);
308 		ret = __has_merged_page(io, inode, ino, idx);
309 		up_read(&io->io_rwsem);
310 
311 		/* TODO: use HOT temp only for meta pages now. */
312 		if (ret || btype == META)
313 			break;
314 	}
315 	return ret;
316 }
317 
318 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
319 				enum page_type type, enum temp_type temp)
320 {
321 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
322 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
323 
324 	down_write(&io->io_rwsem);
325 
326 	/* change META to META_FLUSH in the checkpoint procedure */
327 	if (type >= META_FLUSH) {
328 		io->fio.type = META_FLUSH;
329 		io->fio.op = REQ_OP_WRITE;
330 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
331 		if (!test_opt(sbi, NOBARRIER))
332 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
333 	}
334 	__submit_merged_bio(io);
335 	up_write(&io->io_rwsem);
336 }
337 
338 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
339 				struct inode *inode, nid_t ino, pgoff_t idx,
340 				enum page_type type, bool force)
341 {
342 	enum temp_type temp;
343 
344 	if (!force && !has_merged_page(sbi, inode, ino, idx, type))
345 		return;
346 
347 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
348 
349 		__f2fs_submit_merged_write(sbi, type, temp);
350 
351 		/* TODO: use HOT temp only for meta pages now. */
352 		if (type >= META)
353 			break;
354 	}
355 }
356 
357 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
358 {
359 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
360 }
361 
362 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
363 				struct inode *inode, nid_t ino, pgoff_t idx,
364 				enum page_type type)
365 {
366 	__submit_merged_write_cond(sbi, inode, ino, idx, type, false);
367 }
368 
369 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
370 {
371 	f2fs_submit_merged_write(sbi, DATA);
372 	f2fs_submit_merged_write(sbi, NODE);
373 	f2fs_submit_merged_write(sbi, META);
374 }
375 
376 /*
377  * Fill the locked page with data located in the block address.
378  * A caller needs to unlock the page on failure.
379  */
380 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
381 {
382 	struct bio *bio;
383 	struct page *page = fio->encrypted_page ?
384 			fio->encrypted_page : fio->page;
385 
386 	verify_block_addr(fio, fio->new_blkaddr);
387 	trace_f2fs_submit_page_bio(page, fio);
388 	f2fs_trace_ios(fio, 0);
389 
390 	/* Allocate a new bio */
391 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
392 				1, is_read_io(fio->op), fio->type, fio->temp);
393 
394 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
395 		bio_put(bio);
396 		return -EFAULT;
397 	}
398 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
399 
400 	__submit_bio(fio->sbi, bio, fio->type);
401 
402 	if (!is_read_io(fio->op))
403 		inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
404 	return 0;
405 }
406 
407 int f2fs_submit_page_write(struct f2fs_io_info *fio)
408 {
409 	struct f2fs_sb_info *sbi = fio->sbi;
410 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
411 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
412 	struct page *bio_page;
413 	int err = 0;
414 
415 	f2fs_bug_on(sbi, is_read_io(fio->op));
416 
417 	down_write(&io->io_rwsem);
418 next:
419 	if (fio->in_list) {
420 		spin_lock(&io->io_lock);
421 		if (list_empty(&io->io_list)) {
422 			spin_unlock(&io->io_lock);
423 			goto out_fail;
424 		}
425 		fio = list_first_entry(&io->io_list,
426 						struct f2fs_io_info, list);
427 		list_del(&fio->list);
428 		spin_unlock(&io->io_lock);
429 	}
430 
431 	if (fio->old_blkaddr != NEW_ADDR)
432 		verify_block_addr(fio, fio->old_blkaddr);
433 	verify_block_addr(fio, fio->new_blkaddr);
434 
435 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
436 
437 	/* set submitted = true as a return value */
438 	fio->submitted = true;
439 
440 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
441 
442 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
443 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
444 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
445 		__submit_merged_bio(io);
446 alloc_new:
447 	if (io->bio == NULL) {
448 		if ((fio->type == DATA || fio->type == NODE) &&
449 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
450 			err = -EAGAIN;
451 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
452 			goto out_fail;
453 		}
454 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
455 						BIO_MAX_PAGES, false,
456 						fio->type, fio->temp);
457 		io->fio = *fio;
458 	}
459 
460 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
461 		__submit_merged_bio(io);
462 		goto alloc_new;
463 	}
464 
465 	if (fio->io_wbc)
466 		wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
467 
468 	io->last_block_in_bio = fio->new_blkaddr;
469 	f2fs_trace_ios(fio, 0);
470 
471 	trace_f2fs_submit_page_write(fio->page, fio);
472 
473 	if (fio->in_list)
474 		goto next;
475 out_fail:
476 	up_write(&io->io_rwsem);
477 	return err;
478 }
479 
480 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
481 							 unsigned nr_pages)
482 {
483 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
484 	struct fscrypt_ctx *ctx = NULL;
485 	struct bio *bio;
486 
487 	if (f2fs_encrypted_file(inode)) {
488 		ctx = fscrypt_get_ctx(inode, GFP_NOFS);
489 		if (IS_ERR(ctx))
490 			return ERR_CAST(ctx);
491 
492 		/* wait the page to be moved by cleaning */
493 		f2fs_wait_on_block_writeback(sbi, blkaddr);
494 	}
495 
496 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
497 	if (!bio) {
498 		if (ctx)
499 			fscrypt_release_ctx(ctx);
500 		return ERR_PTR(-ENOMEM);
501 	}
502 	f2fs_target_device(sbi, blkaddr, bio);
503 	bio->bi_end_io = f2fs_read_end_io;
504 	bio->bi_private = ctx;
505 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
506 
507 	return bio;
508 }
509 
510 /* This can handle encryption stuffs */
511 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
512 							block_t blkaddr)
513 {
514 	struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
515 
516 	if (IS_ERR(bio))
517 		return PTR_ERR(bio);
518 
519 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
520 		bio_put(bio);
521 		return -EFAULT;
522 	}
523 	__submit_bio(F2FS_I_SB(inode), bio, DATA);
524 	return 0;
525 }
526 
527 static void __set_data_blkaddr(struct dnode_of_data *dn)
528 {
529 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
530 	__le32 *addr_array;
531 	int base = 0;
532 
533 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
534 		base = get_extra_isize(dn->inode);
535 
536 	/* Get physical address of data block */
537 	addr_array = blkaddr_in_node(rn);
538 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
539 }
540 
541 /*
542  * Lock ordering for the change of data block address:
543  * ->data_page
544  *  ->node_page
545  *    update block addresses in the node page
546  */
547 void set_data_blkaddr(struct dnode_of_data *dn)
548 {
549 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
550 	__set_data_blkaddr(dn);
551 	if (set_page_dirty(dn->node_page))
552 		dn->node_changed = true;
553 }
554 
555 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
556 {
557 	dn->data_blkaddr = blkaddr;
558 	set_data_blkaddr(dn);
559 	f2fs_update_extent_cache(dn);
560 }
561 
562 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
563 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
564 {
565 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
566 	int err;
567 
568 	if (!count)
569 		return 0;
570 
571 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
572 		return -EPERM;
573 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
574 		return err;
575 
576 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
577 						dn->ofs_in_node, count);
578 
579 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
580 
581 	for (; count > 0; dn->ofs_in_node++) {
582 		block_t blkaddr = datablock_addr(dn->inode,
583 					dn->node_page, dn->ofs_in_node);
584 		if (blkaddr == NULL_ADDR) {
585 			dn->data_blkaddr = NEW_ADDR;
586 			__set_data_blkaddr(dn);
587 			count--;
588 		}
589 	}
590 
591 	if (set_page_dirty(dn->node_page))
592 		dn->node_changed = true;
593 	return 0;
594 }
595 
596 /* Should keep dn->ofs_in_node unchanged */
597 int reserve_new_block(struct dnode_of_data *dn)
598 {
599 	unsigned int ofs_in_node = dn->ofs_in_node;
600 	int ret;
601 
602 	ret = reserve_new_blocks(dn, 1);
603 	dn->ofs_in_node = ofs_in_node;
604 	return ret;
605 }
606 
607 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
608 {
609 	bool need_put = dn->inode_page ? false : true;
610 	int err;
611 
612 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
613 	if (err)
614 		return err;
615 
616 	if (dn->data_blkaddr == NULL_ADDR)
617 		err = reserve_new_block(dn);
618 	if (err || need_put)
619 		f2fs_put_dnode(dn);
620 	return err;
621 }
622 
623 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
624 {
625 	struct extent_info ei  = {0,0,0};
626 	struct inode *inode = dn->inode;
627 
628 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
629 		dn->data_blkaddr = ei.blk + index - ei.fofs;
630 		return 0;
631 	}
632 
633 	return f2fs_reserve_block(dn, index);
634 }
635 
636 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
637 						int op_flags, bool for_write)
638 {
639 	struct address_space *mapping = inode->i_mapping;
640 	struct dnode_of_data dn;
641 	struct page *page;
642 	struct extent_info ei = {0,0,0};
643 	int err;
644 
645 	page = f2fs_grab_cache_page(mapping, index, for_write);
646 	if (!page)
647 		return ERR_PTR(-ENOMEM);
648 
649 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
650 		dn.data_blkaddr = ei.blk + index - ei.fofs;
651 		goto got_it;
652 	}
653 
654 	set_new_dnode(&dn, inode, NULL, NULL, 0);
655 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
656 	if (err)
657 		goto put_err;
658 	f2fs_put_dnode(&dn);
659 
660 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
661 		err = -ENOENT;
662 		goto put_err;
663 	}
664 got_it:
665 	if (PageUptodate(page)) {
666 		unlock_page(page);
667 		return page;
668 	}
669 
670 	/*
671 	 * A new dentry page is allocated but not able to be written, since its
672 	 * new inode page couldn't be allocated due to -ENOSPC.
673 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
674 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
675 	 */
676 	if (dn.data_blkaddr == NEW_ADDR) {
677 		zero_user_segment(page, 0, PAGE_SIZE);
678 		if (!PageUptodate(page))
679 			SetPageUptodate(page);
680 		unlock_page(page);
681 		return page;
682 	}
683 
684 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
685 	if (err)
686 		goto put_err;
687 	return page;
688 
689 put_err:
690 	f2fs_put_page(page, 1);
691 	return ERR_PTR(err);
692 }
693 
694 struct page *find_data_page(struct inode *inode, pgoff_t index)
695 {
696 	struct address_space *mapping = inode->i_mapping;
697 	struct page *page;
698 
699 	page = find_get_page(mapping, index);
700 	if (page && PageUptodate(page))
701 		return page;
702 	f2fs_put_page(page, 0);
703 
704 	page = get_read_data_page(inode, index, 0, false);
705 	if (IS_ERR(page))
706 		return page;
707 
708 	if (PageUptodate(page))
709 		return page;
710 
711 	wait_on_page_locked(page);
712 	if (unlikely(!PageUptodate(page))) {
713 		f2fs_put_page(page, 0);
714 		return ERR_PTR(-EIO);
715 	}
716 	return page;
717 }
718 
719 /*
720  * If it tries to access a hole, return an error.
721  * Because, the callers, functions in dir.c and GC, should be able to know
722  * whether this page exists or not.
723  */
724 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
725 							bool for_write)
726 {
727 	struct address_space *mapping = inode->i_mapping;
728 	struct page *page;
729 repeat:
730 	page = get_read_data_page(inode, index, 0, for_write);
731 	if (IS_ERR(page))
732 		return page;
733 
734 	/* wait for read completion */
735 	lock_page(page);
736 	if (unlikely(page->mapping != mapping)) {
737 		f2fs_put_page(page, 1);
738 		goto repeat;
739 	}
740 	if (unlikely(!PageUptodate(page))) {
741 		f2fs_put_page(page, 1);
742 		return ERR_PTR(-EIO);
743 	}
744 	return page;
745 }
746 
747 /*
748  * Caller ensures that this data page is never allocated.
749  * A new zero-filled data page is allocated in the page cache.
750  *
751  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
752  * f2fs_unlock_op().
753  * Note that, ipage is set only by make_empty_dir, and if any error occur,
754  * ipage should be released by this function.
755  */
756 struct page *get_new_data_page(struct inode *inode,
757 		struct page *ipage, pgoff_t index, bool new_i_size)
758 {
759 	struct address_space *mapping = inode->i_mapping;
760 	struct page *page;
761 	struct dnode_of_data dn;
762 	int err;
763 
764 	page = f2fs_grab_cache_page(mapping, index, true);
765 	if (!page) {
766 		/*
767 		 * before exiting, we should make sure ipage will be released
768 		 * if any error occur.
769 		 */
770 		f2fs_put_page(ipage, 1);
771 		return ERR_PTR(-ENOMEM);
772 	}
773 
774 	set_new_dnode(&dn, inode, ipage, NULL, 0);
775 	err = f2fs_reserve_block(&dn, index);
776 	if (err) {
777 		f2fs_put_page(page, 1);
778 		return ERR_PTR(err);
779 	}
780 	if (!ipage)
781 		f2fs_put_dnode(&dn);
782 
783 	if (PageUptodate(page))
784 		goto got_it;
785 
786 	if (dn.data_blkaddr == NEW_ADDR) {
787 		zero_user_segment(page, 0, PAGE_SIZE);
788 		if (!PageUptodate(page))
789 			SetPageUptodate(page);
790 	} else {
791 		f2fs_put_page(page, 1);
792 
793 		/* if ipage exists, blkaddr should be NEW_ADDR */
794 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
795 		page = get_lock_data_page(inode, index, true);
796 		if (IS_ERR(page))
797 			return page;
798 	}
799 got_it:
800 	if (new_i_size && i_size_read(inode) <
801 				((loff_t)(index + 1) << PAGE_SHIFT))
802 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
803 	return page;
804 }
805 
806 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
807 {
808 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
809 	struct f2fs_summary sum;
810 	struct node_info ni;
811 	pgoff_t fofs;
812 	blkcnt_t count = 1;
813 	int err;
814 
815 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
816 		return -EPERM;
817 
818 	dn->data_blkaddr = datablock_addr(dn->inode,
819 				dn->node_page, dn->ofs_in_node);
820 	if (dn->data_blkaddr == NEW_ADDR)
821 		goto alloc;
822 
823 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
824 		return err;
825 
826 alloc:
827 	get_node_info(sbi, dn->nid, &ni);
828 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
829 
830 	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
831 					&sum, seg_type, NULL, false);
832 	set_data_blkaddr(dn);
833 
834 	/* update i_size */
835 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
836 							dn->ofs_in_node;
837 	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
838 		f2fs_i_size_write(dn->inode,
839 				((loff_t)(fofs + 1) << PAGE_SHIFT));
840 	return 0;
841 }
842 
843 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
844 {
845 	struct inode *inode = file_inode(iocb->ki_filp);
846 	struct f2fs_map_blocks map;
847 	int flag;
848 	int err = 0;
849 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
850 
851 	/* convert inline data for Direct I/O*/
852 	if (direct_io) {
853 		err = f2fs_convert_inline_inode(inode);
854 		if (err)
855 			return err;
856 	}
857 
858 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
859 		return 0;
860 
861 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
862 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
863 	if (map.m_len > map.m_lblk)
864 		map.m_len -= map.m_lblk;
865 	else
866 		map.m_len = 0;
867 
868 	map.m_next_pgofs = NULL;
869 	map.m_next_extent = NULL;
870 	map.m_seg_type = NO_CHECK_TYPE;
871 
872 	if (direct_io) {
873 		map.m_seg_type = rw_hint_to_seg_type(iocb->ki_hint);
874 		flag = f2fs_force_buffered_io(inode, WRITE) ?
875 					F2FS_GET_BLOCK_PRE_AIO :
876 					F2FS_GET_BLOCK_PRE_DIO;
877 		goto map_blocks;
878 	}
879 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
880 		err = f2fs_convert_inline_inode(inode);
881 		if (err)
882 			return err;
883 	}
884 	if (f2fs_has_inline_data(inode))
885 		return err;
886 
887 	flag = F2FS_GET_BLOCK_PRE_AIO;
888 
889 map_blocks:
890 	err = f2fs_map_blocks(inode, &map, 1, flag);
891 	if (map.m_len > 0 && err == -ENOSPC) {
892 		if (!direct_io)
893 			set_inode_flag(inode, FI_NO_PREALLOC);
894 		err = 0;
895 	}
896 	return err;
897 }
898 
899 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
900 {
901 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
902 		if (lock)
903 			down_read(&sbi->node_change);
904 		else
905 			up_read(&sbi->node_change);
906 	} else {
907 		if (lock)
908 			f2fs_lock_op(sbi);
909 		else
910 			f2fs_unlock_op(sbi);
911 	}
912 }
913 
914 /*
915  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
916  * f2fs_map_blocks structure.
917  * If original data blocks are allocated, then give them to blockdev.
918  * Otherwise,
919  *     a. preallocate requested block addresses
920  *     b. do not use extent cache for better performance
921  *     c. give the block addresses to blockdev
922  */
923 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
924 						int create, int flag)
925 {
926 	unsigned int maxblocks = map->m_len;
927 	struct dnode_of_data dn;
928 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
929 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
930 	pgoff_t pgofs, end_offset, end;
931 	int err = 0, ofs = 1;
932 	unsigned int ofs_in_node, last_ofs_in_node;
933 	blkcnt_t prealloc;
934 	struct extent_info ei = {0,0,0};
935 	block_t blkaddr;
936 	unsigned int start_pgofs;
937 
938 	if (!maxblocks)
939 		return 0;
940 
941 	map->m_len = 0;
942 	map->m_flags = 0;
943 
944 	/* it only supports block size == page size */
945 	pgofs =	(pgoff_t)map->m_lblk;
946 	end = pgofs + maxblocks;
947 
948 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
949 		map->m_pblk = ei.blk + pgofs - ei.fofs;
950 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
951 		map->m_flags = F2FS_MAP_MAPPED;
952 		if (map->m_next_extent)
953 			*map->m_next_extent = pgofs + map->m_len;
954 		goto out;
955 	}
956 
957 next_dnode:
958 	if (create)
959 		__do_map_lock(sbi, flag, true);
960 
961 	/* When reading holes, we need its node page */
962 	set_new_dnode(&dn, inode, NULL, NULL, 0);
963 	err = get_dnode_of_data(&dn, pgofs, mode);
964 	if (err) {
965 		if (flag == F2FS_GET_BLOCK_BMAP)
966 			map->m_pblk = 0;
967 		if (err == -ENOENT) {
968 			err = 0;
969 			if (map->m_next_pgofs)
970 				*map->m_next_pgofs =
971 					get_next_page_offset(&dn, pgofs);
972 			if (map->m_next_extent)
973 				*map->m_next_extent =
974 					get_next_page_offset(&dn, pgofs);
975 		}
976 		goto unlock_out;
977 	}
978 
979 	start_pgofs = pgofs;
980 	prealloc = 0;
981 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
982 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
983 
984 next_block:
985 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
986 
987 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
988 		if (create) {
989 			if (unlikely(f2fs_cp_error(sbi))) {
990 				err = -EIO;
991 				goto sync_out;
992 			}
993 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
994 				if (blkaddr == NULL_ADDR) {
995 					prealloc++;
996 					last_ofs_in_node = dn.ofs_in_node;
997 				}
998 			} else {
999 				err = __allocate_data_block(&dn,
1000 							map->m_seg_type);
1001 				if (!err)
1002 					set_inode_flag(inode, FI_APPEND_WRITE);
1003 			}
1004 			if (err)
1005 				goto sync_out;
1006 			map->m_flags |= F2FS_MAP_NEW;
1007 			blkaddr = dn.data_blkaddr;
1008 		} else {
1009 			if (flag == F2FS_GET_BLOCK_BMAP) {
1010 				map->m_pblk = 0;
1011 				goto sync_out;
1012 			}
1013 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1014 				goto sync_out;
1015 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1016 						blkaddr == NULL_ADDR) {
1017 				if (map->m_next_pgofs)
1018 					*map->m_next_pgofs = pgofs + 1;
1019 				goto sync_out;
1020 			}
1021 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1022 				/* for defragment case */
1023 				if (map->m_next_pgofs)
1024 					*map->m_next_pgofs = pgofs + 1;
1025 				goto sync_out;
1026 			}
1027 		}
1028 	}
1029 
1030 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1031 		goto skip;
1032 
1033 	if (map->m_len == 0) {
1034 		/* preallocated unwritten block should be mapped for fiemap. */
1035 		if (blkaddr == NEW_ADDR)
1036 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1037 		map->m_flags |= F2FS_MAP_MAPPED;
1038 
1039 		map->m_pblk = blkaddr;
1040 		map->m_len = 1;
1041 	} else if ((map->m_pblk != NEW_ADDR &&
1042 			blkaddr == (map->m_pblk + ofs)) ||
1043 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1044 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1045 		ofs++;
1046 		map->m_len++;
1047 	} else {
1048 		goto sync_out;
1049 	}
1050 
1051 skip:
1052 	dn.ofs_in_node++;
1053 	pgofs++;
1054 
1055 	/* preallocate blocks in batch for one dnode page */
1056 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1057 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1058 
1059 		dn.ofs_in_node = ofs_in_node;
1060 		err = reserve_new_blocks(&dn, prealloc);
1061 		if (err)
1062 			goto sync_out;
1063 
1064 		map->m_len += dn.ofs_in_node - ofs_in_node;
1065 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1066 			err = -ENOSPC;
1067 			goto sync_out;
1068 		}
1069 		dn.ofs_in_node = end_offset;
1070 	}
1071 
1072 	if (pgofs >= end)
1073 		goto sync_out;
1074 	else if (dn.ofs_in_node < end_offset)
1075 		goto next_block;
1076 
1077 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1078 		if (map->m_flags & F2FS_MAP_MAPPED) {
1079 			unsigned int ofs = start_pgofs - map->m_lblk;
1080 
1081 			f2fs_update_extent_cache_range(&dn,
1082 				start_pgofs, map->m_pblk + ofs,
1083 				map->m_len - ofs);
1084 		}
1085 	}
1086 
1087 	f2fs_put_dnode(&dn);
1088 
1089 	if (create) {
1090 		__do_map_lock(sbi, flag, false);
1091 		f2fs_balance_fs(sbi, dn.node_changed);
1092 	}
1093 	goto next_dnode;
1094 
1095 sync_out:
1096 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1097 		if (map->m_flags & F2FS_MAP_MAPPED) {
1098 			unsigned int ofs = start_pgofs - map->m_lblk;
1099 
1100 			f2fs_update_extent_cache_range(&dn,
1101 				start_pgofs, map->m_pblk + ofs,
1102 				map->m_len - ofs);
1103 		}
1104 		if (map->m_next_extent)
1105 			*map->m_next_extent = pgofs + 1;
1106 	}
1107 	f2fs_put_dnode(&dn);
1108 unlock_out:
1109 	if (create) {
1110 		__do_map_lock(sbi, flag, false);
1111 		f2fs_balance_fs(sbi, dn.node_changed);
1112 	}
1113 out:
1114 	trace_f2fs_map_blocks(inode, map, err);
1115 	return err;
1116 }
1117 
1118 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1119 {
1120 	struct f2fs_map_blocks map;
1121 	block_t last_lblk;
1122 	int err;
1123 
1124 	if (pos + len > i_size_read(inode))
1125 		return false;
1126 
1127 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1128 	map.m_next_pgofs = NULL;
1129 	map.m_next_extent = NULL;
1130 	map.m_seg_type = NO_CHECK_TYPE;
1131 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1132 
1133 	while (map.m_lblk < last_lblk) {
1134 		map.m_len = last_lblk - map.m_lblk;
1135 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1136 		if (err || map.m_len == 0)
1137 			return false;
1138 		map.m_lblk += map.m_len;
1139 	}
1140 	return true;
1141 }
1142 
1143 static int __get_data_block(struct inode *inode, sector_t iblock,
1144 			struct buffer_head *bh, int create, int flag,
1145 			pgoff_t *next_pgofs, int seg_type)
1146 {
1147 	struct f2fs_map_blocks map;
1148 	int err;
1149 
1150 	map.m_lblk = iblock;
1151 	map.m_len = bh->b_size >> inode->i_blkbits;
1152 	map.m_next_pgofs = next_pgofs;
1153 	map.m_next_extent = NULL;
1154 	map.m_seg_type = seg_type;
1155 
1156 	err = f2fs_map_blocks(inode, &map, create, flag);
1157 	if (!err) {
1158 		map_bh(bh, inode->i_sb, map.m_pblk);
1159 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1160 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1161 	}
1162 	return err;
1163 }
1164 
1165 static int get_data_block(struct inode *inode, sector_t iblock,
1166 			struct buffer_head *bh_result, int create, int flag,
1167 			pgoff_t *next_pgofs)
1168 {
1169 	return __get_data_block(inode, iblock, bh_result, create,
1170 							flag, next_pgofs,
1171 							NO_CHECK_TYPE);
1172 }
1173 
1174 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1175 			struct buffer_head *bh_result, int create)
1176 {
1177 	return __get_data_block(inode, iblock, bh_result, create,
1178 						F2FS_GET_BLOCK_DEFAULT, NULL,
1179 						rw_hint_to_seg_type(
1180 							inode->i_write_hint));
1181 }
1182 
1183 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1184 			struct buffer_head *bh_result, int create)
1185 {
1186 	/* Block number less than F2FS MAX BLOCKS */
1187 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1188 		return -EFBIG;
1189 
1190 	return __get_data_block(inode, iblock, bh_result, create,
1191 						F2FS_GET_BLOCK_BMAP, NULL,
1192 						NO_CHECK_TYPE);
1193 }
1194 
1195 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1196 {
1197 	return (offset >> inode->i_blkbits);
1198 }
1199 
1200 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1201 {
1202 	return (blk << inode->i_blkbits);
1203 }
1204 
1205 static int f2fs_xattr_fiemap(struct inode *inode,
1206 				struct fiemap_extent_info *fieinfo)
1207 {
1208 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1209 	struct page *page;
1210 	struct node_info ni;
1211 	__u64 phys = 0, len;
1212 	__u32 flags;
1213 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1214 	int err = 0;
1215 
1216 	if (f2fs_has_inline_xattr(inode)) {
1217 		int offset;
1218 
1219 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1220 						inode->i_ino, false);
1221 		if (!page)
1222 			return -ENOMEM;
1223 
1224 		get_node_info(sbi, inode->i_ino, &ni);
1225 
1226 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1227 		offset = offsetof(struct f2fs_inode, i_addr) +
1228 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1229 					get_inline_xattr_addrs(inode));
1230 
1231 		phys += offset;
1232 		len = inline_xattr_size(inode);
1233 
1234 		f2fs_put_page(page, 1);
1235 
1236 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1237 
1238 		if (!xnid)
1239 			flags |= FIEMAP_EXTENT_LAST;
1240 
1241 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1242 		if (err || err == 1)
1243 			return err;
1244 	}
1245 
1246 	if (xnid) {
1247 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1248 		if (!page)
1249 			return -ENOMEM;
1250 
1251 		get_node_info(sbi, xnid, &ni);
1252 
1253 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1254 		len = inode->i_sb->s_blocksize;
1255 
1256 		f2fs_put_page(page, 1);
1257 
1258 		flags = FIEMAP_EXTENT_LAST;
1259 	}
1260 
1261 	if (phys)
1262 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1263 
1264 	return (err < 0 ? err : 0);
1265 }
1266 
1267 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1268 		u64 start, u64 len)
1269 {
1270 	struct buffer_head map_bh;
1271 	sector_t start_blk, last_blk;
1272 	pgoff_t next_pgofs;
1273 	u64 logical = 0, phys = 0, size = 0;
1274 	u32 flags = 0;
1275 	int ret = 0;
1276 
1277 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1278 		ret = f2fs_precache_extents(inode);
1279 		if (ret)
1280 			return ret;
1281 	}
1282 
1283 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1284 	if (ret)
1285 		return ret;
1286 
1287 	inode_lock(inode);
1288 
1289 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1290 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1291 		goto out;
1292 	}
1293 
1294 	if (f2fs_has_inline_data(inode)) {
1295 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1296 		if (ret != -EAGAIN)
1297 			goto out;
1298 	}
1299 
1300 	if (logical_to_blk(inode, len) == 0)
1301 		len = blk_to_logical(inode, 1);
1302 
1303 	start_blk = logical_to_blk(inode, start);
1304 	last_blk = logical_to_blk(inode, start + len - 1);
1305 
1306 next:
1307 	memset(&map_bh, 0, sizeof(struct buffer_head));
1308 	map_bh.b_size = len;
1309 
1310 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1311 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1312 	if (ret)
1313 		goto out;
1314 
1315 	/* HOLE */
1316 	if (!buffer_mapped(&map_bh)) {
1317 		start_blk = next_pgofs;
1318 
1319 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1320 					F2FS_I_SB(inode)->max_file_blocks))
1321 			goto prep_next;
1322 
1323 		flags |= FIEMAP_EXTENT_LAST;
1324 	}
1325 
1326 	if (size) {
1327 		if (f2fs_encrypted_inode(inode))
1328 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1329 
1330 		ret = fiemap_fill_next_extent(fieinfo, logical,
1331 				phys, size, flags);
1332 	}
1333 
1334 	if (start_blk > last_blk || ret)
1335 		goto out;
1336 
1337 	logical = blk_to_logical(inode, start_blk);
1338 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1339 	size = map_bh.b_size;
1340 	flags = 0;
1341 	if (buffer_unwritten(&map_bh))
1342 		flags = FIEMAP_EXTENT_UNWRITTEN;
1343 
1344 	start_blk += logical_to_blk(inode, size);
1345 
1346 prep_next:
1347 	cond_resched();
1348 	if (fatal_signal_pending(current))
1349 		ret = -EINTR;
1350 	else
1351 		goto next;
1352 out:
1353 	if (ret == 1)
1354 		ret = 0;
1355 
1356 	inode_unlock(inode);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1362  * Major change was from block_size == page_size in f2fs by default.
1363  */
1364 static int f2fs_mpage_readpages(struct address_space *mapping,
1365 			struct list_head *pages, struct page *page,
1366 			unsigned nr_pages)
1367 {
1368 	struct bio *bio = NULL;
1369 	sector_t last_block_in_bio = 0;
1370 	struct inode *inode = mapping->host;
1371 	const unsigned blkbits = inode->i_blkbits;
1372 	const unsigned blocksize = 1 << blkbits;
1373 	sector_t block_in_file;
1374 	sector_t last_block;
1375 	sector_t last_block_in_file;
1376 	sector_t block_nr;
1377 	struct f2fs_map_blocks map;
1378 
1379 	map.m_pblk = 0;
1380 	map.m_lblk = 0;
1381 	map.m_len = 0;
1382 	map.m_flags = 0;
1383 	map.m_next_pgofs = NULL;
1384 	map.m_next_extent = NULL;
1385 	map.m_seg_type = NO_CHECK_TYPE;
1386 
1387 	for (; nr_pages; nr_pages--) {
1388 		if (pages) {
1389 			page = list_last_entry(pages, struct page, lru);
1390 
1391 			prefetchw(&page->flags);
1392 			list_del(&page->lru);
1393 			if (add_to_page_cache_lru(page, mapping,
1394 						  page->index,
1395 						  readahead_gfp_mask(mapping)))
1396 				goto next_page;
1397 		}
1398 
1399 		block_in_file = (sector_t)page->index;
1400 		last_block = block_in_file + nr_pages;
1401 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1402 								blkbits;
1403 		if (last_block > last_block_in_file)
1404 			last_block = last_block_in_file;
1405 
1406 		/*
1407 		 * Map blocks using the previous result first.
1408 		 */
1409 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1410 				block_in_file > map.m_lblk &&
1411 				block_in_file < (map.m_lblk + map.m_len))
1412 			goto got_it;
1413 
1414 		/*
1415 		 * Then do more f2fs_map_blocks() calls until we are
1416 		 * done with this page.
1417 		 */
1418 		map.m_flags = 0;
1419 
1420 		if (block_in_file < last_block) {
1421 			map.m_lblk = block_in_file;
1422 			map.m_len = last_block - block_in_file;
1423 
1424 			if (f2fs_map_blocks(inode, &map, 0,
1425 						F2FS_GET_BLOCK_DEFAULT))
1426 				goto set_error_page;
1427 		}
1428 got_it:
1429 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1430 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1431 			SetPageMappedToDisk(page);
1432 
1433 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1434 				SetPageUptodate(page);
1435 				goto confused;
1436 			}
1437 		} else {
1438 			zero_user_segment(page, 0, PAGE_SIZE);
1439 			if (!PageUptodate(page))
1440 				SetPageUptodate(page);
1441 			unlock_page(page);
1442 			goto next_page;
1443 		}
1444 
1445 		/*
1446 		 * This page will go to BIO.  Do we need to send this
1447 		 * BIO off first?
1448 		 */
1449 		if (bio && (last_block_in_bio != block_nr - 1 ||
1450 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1451 submit_and_realloc:
1452 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1453 			bio = NULL;
1454 		}
1455 		if (bio == NULL) {
1456 			bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1457 			if (IS_ERR(bio)) {
1458 				bio = NULL;
1459 				goto set_error_page;
1460 			}
1461 		}
1462 
1463 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1464 			goto submit_and_realloc;
1465 
1466 		last_block_in_bio = block_nr;
1467 		goto next_page;
1468 set_error_page:
1469 		SetPageError(page);
1470 		zero_user_segment(page, 0, PAGE_SIZE);
1471 		unlock_page(page);
1472 		goto next_page;
1473 confused:
1474 		if (bio) {
1475 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1476 			bio = NULL;
1477 		}
1478 		unlock_page(page);
1479 next_page:
1480 		if (pages)
1481 			put_page(page);
1482 	}
1483 	BUG_ON(pages && !list_empty(pages));
1484 	if (bio)
1485 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1486 	return 0;
1487 }
1488 
1489 static int f2fs_read_data_page(struct file *file, struct page *page)
1490 {
1491 	struct inode *inode = page->mapping->host;
1492 	int ret = -EAGAIN;
1493 
1494 	trace_f2fs_readpage(page, DATA);
1495 
1496 	/* If the file has inline data, try to read it directly */
1497 	if (f2fs_has_inline_data(inode))
1498 		ret = f2fs_read_inline_data(inode, page);
1499 	if (ret == -EAGAIN)
1500 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1501 	return ret;
1502 }
1503 
1504 static int f2fs_read_data_pages(struct file *file,
1505 			struct address_space *mapping,
1506 			struct list_head *pages, unsigned nr_pages)
1507 {
1508 	struct inode *inode = mapping->host;
1509 	struct page *page = list_last_entry(pages, struct page, lru);
1510 
1511 	trace_f2fs_readpages(inode, page, nr_pages);
1512 
1513 	/* If the file has inline data, skip readpages */
1514 	if (f2fs_has_inline_data(inode))
1515 		return 0;
1516 
1517 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1518 }
1519 
1520 static int encrypt_one_page(struct f2fs_io_info *fio)
1521 {
1522 	struct inode *inode = fio->page->mapping->host;
1523 	gfp_t gfp_flags = GFP_NOFS;
1524 
1525 	if (!f2fs_encrypted_file(inode))
1526 		return 0;
1527 
1528 	/* wait for GCed encrypted page writeback */
1529 	f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1530 
1531 retry_encrypt:
1532 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1533 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1534 	if (!IS_ERR(fio->encrypted_page))
1535 		return 0;
1536 
1537 	/* flush pending IOs and wait for a while in the ENOMEM case */
1538 	if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1539 		f2fs_flush_merged_writes(fio->sbi);
1540 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1541 		gfp_flags |= __GFP_NOFAIL;
1542 		goto retry_encrypt;
1543 	}
1544 	return PTR_ERR(fio->encrypted_page);
1545 }
1546 
1547 static inline bool check_inplace_update_policy(struct inode *inode,
1548 				struct f2fs_io_info *fio)
1549 {
1550 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1551 	unsigned int policy = SM_I(sbi)->ipu_policy;
1552 
1553 	if (policy & (0x1 << F2FS_IPU_FORCE))
1554 		return true;
1555 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
1556 		return true;
1557 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1558 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1559 		return true;
1560 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
1561 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1562 		return true;
1563 
1564 	/*
1565 	 * IPU for rewrite async pages
1566 	 */
1567 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1568 			fio && fio->op == REQ_OP_WRITE &&
1569 			!(fio->op_flags & REQ_SYNC) &&
1570 			!f2fs_encrypted_inode(inode))
1571 		return true;
1572 
1573 	/* this is only set during fdatasync */
1574 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1575 			is_inode_flag_set(inode, FI_NEED_IPU))
1576 		return true;
1577 
1578 	return false;
1579 }
1580 
1581 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1582 {
1583 	if (f2fs_is_pinned_file(inode))
1584 		return true;
1585 
1586 	/* if this is cold file, we should overwrite to avoid fragmentation */
1587 	if (file_is_cold(inode))
1588 		return true;
1589 
1590 	return check_inplace_update_policy(inode, fio);
1591 }
1592 
1593 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1594 {
1595 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1596 
1597 	if (test_opt(sbi, LFS))
1598 		return true;
1599 	if (S_ISDIR(inode->i_mode))
1600 		return true;
1601 	if (f2fs_is_atomic_file(inode))
1602 		return true;
1603 	if (fio) {
1604 		if (is_cold_data(fio->page))
1605 			return true;
1606 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1607 			return true;
1608 	}
1609 	return false;
1610 }
1611 
1612 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1613 {
1614 	struct inode *inode = fio->page->mapping->host;
1615 
1616 	if (should_update_outplace(inode, fio))
1617 		return false;
1618 
1619 	return should_update_inplace(inode, fio);
1620 }
1621 
1622 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1623 {
1624 	if (fio->old_blkaddr == NEW_ADDR)
1625 		return false;
1626 	if (fio->old_blkaddr == NULL_ADDR)
1627 		return false;
1628 	return true;
1629 }
1630 
1631 int do_write_data_page(struct f2fs_io_info *fio)
1632 {
1633 	struct page *page = fio->page;
1634 	struct inode *inode = page->mapping->host;
1635 	struct dnode_of_data dn;
1636 	struct extent_info ei = {0,0,0};
1637 	bool ipu_force = false;
1638 	int err = 0;
1639 
1640 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1641 	if (need_inplace_update(fio) &&
1642 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1643 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1644 
1645 		if (valid_ipu_blkaddr(fio)) {
1646 			ipu_force = true;
1647 			fio->need_lock = LOCK_DONE;
1648 			goto got_it;
1649 		}
1650 	}
1651 
1652 	/* Deadlock due to between page->lock and f2fs_lock_op */
1653 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1654 		return -EAGAIN;
1655 
1656 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1657 	if (err)
1658 		goto out;
1659 
1660 	fio->old_blkaddr = dn.data_blkaddr;
1661 
1662 	/* This page is already truncated */
1663 	if (fio->old_blkaddr == NULL_ADDR) {
1664 		ClearPageUptodate(page);
1665 		goto out_writepage;
1666 	}
1667 got_it:
1668 	/*
1669 	 * If current allocation needs SSR,
1670 	 * it had better in-place writes for updated data.
1671 	 */
1672 	if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1673 		err = encrypt_one_page(fio);
1674 		if (err)
1675 			goto out_writepage;
1676 
1677 		set_page_writeback(page);
1678 		f2fs_put_dnode(&dn);
1679 		if (fio->need_lock == LOCK_REQ)
1680 			f2fs_unlock_op(fio->sbi);
1681 		err = rewrite_data_page(fio);
1682 		trace_f2fs_do_write_data_page(fio->page, IPU);
1683 		set_inode_flag(inode, FI_UPDATE_WRITE);
1684 		return err;
1685 	}
1686 
1687 	if (fio->need_lock == LOCK_RETRY) {
1688 		if (!f2fs_trylock_op(fio->sbi)) {
1689 			err = -EAGAIN;
1690 			goto out_writepage;
1691 		}
1692 		fio->need_lock = LOCK_REQ;
1693 	}
1694 
1695 	err = encrypt_one_page(fio);
1696 	if (err)
1697 		goto out_writepage;
1698 
1699 	set_page_writeback(page);
1700 
1701 	/* LFS mode write path */
1702 	write_data_page(&dn, fio);
1703 	trace_f2fs_do_write_data_page(page, OPU);
1704 	set_inode_flag(inode, FI_APPEND_WRITE);
1705 	if (page->index == 0)
1706 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1707 out_writepage:
1708 	f2fs_put_dnode(&dn);
1709 out:
1710 	if (fio->need_lock == LOCK_REQ)
1711 		f2fs_unlock_op(fio->sbi);
1712 	return err;
1713 }
1714 
1715 static int __write_data_page(struct page *page, bool *submitted,
1716 				struct writeback_control *wbc,
1717 				enum iostat_type io_type)
1718 {
1719 	struct inode *inode = page->mapping->host;
1720 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1721 	loff_t i_size = i_size_read(inode);
1722 	const pgoff_t end_index = ((unsigned long long) i_size)
1723 							>> PAGE_SHIFT;
1724 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1725 	unsigned offset = 0;
1726 	bool need_balance_fs = false;
1727 	int err = 0;
1728 	struct f2fs_io_info fio = {
1729 		.sbi = sbi,
1730 		.ino = inode->i_ino,
1731 		.type = DATA,
1732 		.op = REQ_OP_WRITE,
1733 		.op_flags = wbc_to_write_flags(wbc),
1734 		.old_blkaddr = NULL_ADDR,
1735 		.page = page,
1736 		.encrypted_page = NULL,
1737 		.submitted = false,
1738 		.need_lock = LOCK_RETRY,
1739 		.io_type = io_type,
1740 		.io_wbc = wbc,
1741 	};
1742 
1743 	trace_f2fs_writepage(page, DATA);
1744 
1745 	/* we should bypass data pages to proceed the kworkder jobs */
1746 	if (unlikely(f2fs_cp_error(sbi))) {
1747 		mapping_set_error(page->mapping, -EIO);
1748 		goto out;
1749 	}
1750 
1751 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1752 		goto redirty_out;
1753 
1754 	if (page->index < end_index)
1755 		goto write;
1756 
1757 	/*
1758 	 * If the offset is out-of-range of file size,
1759 	 * this page does not have to be written to disk.
1760 	 */
1761 	offset = i_size & (PAGE_SIZE - 1);
1762 	if ((page->index >= end_index + 1) || !offset)
1763 		goto out;
1764 
1765 	zero_user_segment(page, offset, PAGE_SIZE);
1766 write:
1767 	if (f2fs_is_drop_cache(inode))
1768 		goto out;
1769 	/* we should not write 0'th page having journal header */
1770 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1771 			(!wbc->for_reclaim &&
1772 			available_free_memory(sbi, BASE_CHECK))))
1773 		goto redirty_out;
1774 
1775 	/* Dentry blocks are controlled by checkpoint */
1776 	if (S_ISDIR(inode->i_mode)) {
1777 		fio.need_lock = LOCK_DONE;
1778 		err = do_write_data_page(&fio);
1779 		goto done;
1780 	}
1781 
1782 	if (!wbc->for_reclaim)
1783 		need_balance_fs = true;
1784 	else if (has_not_enough_free_secs(sbi, 0, 0))
1785 		goto redirty_out;
1786 	else
1787 		set_inode_flag(inode, FI_HOT_DATA);
1788 
1789 	err = -EAGAIN;
1790 	if (f2fs_has_inline_data(inode)) {
1791 		err = f2fs_write_inline_data(inode, page);
1792 		if (!err)
1793 			goto out;
1794 	}
1795 
1796 	if (err == -EAGAIN) {
1797 		err = do_write_data_page(&fio);
1798 		if (err == -EAGAIN) {
1799 			fio.need_lock = LOCK_REQ;
1800 			err = do_write_data_page(&fio);
1801 		}
1802 	}
1803 
1804 	if (err) {
1805 		file_set_keep_isize(inode);
1806 	} else {
1807 		down_write(&F2FS_I(inode)->i_sem);
1808 		if (F2FS_I(inode)->last_disk_size < psize)
1809 			F2FS_I(inode)->last_disk_size = psize;
1810 		up_write(&F2FS_I(inode)->i_sem);
1811 	}
1812 
1813 done:
1814 	if (err && err != -ENOENT)
1815 		goto redirty_out;
1816 
1817 out:
1818 	inode_dec_dirty_pages(inode);
1819 	if (err)
1820 		ClearPageUptodate(page);
1821 
1822 	if (wbc->for_reclaim) {
1823 		f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1824 		clear_inode_flag(inode, FI_HOT_DATA);
1825 		remove_dirty_inode(inode);
1826 		submitted = NULL;
1827 	}
1828 
1829 	unlock_page(page);
1830 	if (!S_ISDIR(inode->i_mode))
1831 		f2fs_balance_fs(sbi, need_balance_fs);
1832 
1833 	if (unlikely(f2fs_cp_error(sbi))) {
1834 		f2fs_submit_merged_write(sbi, DATA);
1835 		submitted = NULL;
1836 	}
1837 
1838 	if (submitted)
1839 		*submitted = fio.submitted;
1840 
1841 	return 0;
1842 
1843 redirty_out:
1844 	redirty_page_for_writepage(wbc, page);
1845 	if (!err)
1846 		return AOP_WRITEPAGE_ACTIVATE;
1847 	unlock_page(page);
1848 	return err;
1849 }
1850 
1851 static int f2fs_write_data_page(struct page *page,
1852 					struct writeback_control *wbc)
1853 {
1854 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1855 }
1856 
1857 /*
1858  * This function was copied from write_cche_pages from mm/page-writeback.c.
1859  * The major change is making write step of cold data page separately from
1860  * warm/hot data page.
1861  */
1862 static int f2fs_write_cache_pages(struct address_space *mapping,
1863 					struct writeback_control *wbc,
1864 					enum iostat_type io_type)
1865 {
1866 	int ret = 0;
1867 	int done = 0;
1868 	struct pagevec pvec;
1869 	int nr_pages;
1870 	pgoff_t uninitialized_var(writeback_index);
1871 	pgoff_t index;
1872 	pgoff_t end;		/* Inclusive */
1873 	pgoff_t done_index;
1874 	pgoff_t last_idx = ULONG_MAX;
1875 	int cycled;
1876 	int range_whole = 0;
1877 	int tag;
1878 
1879 	pagevec_init(&pvec);
1880 
1881 	if (get_dirty_pages(mapping->host) <=
1882 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1883 		set_inode_flag(mapping->host, FI_HOT_DATA);
1884 	else
1885 		clear_inode_flag(mapping->host, FI_HOT_DATA);
1886 
1887 	if (wbc->range_cyclic) {
1888 		writeback_index = mapping->writeback_index; /* prev offset */
1889 		index = writeback_index;
1890 		if (index == 0)
1891 			cycled = 1;
1892 		else
1893 			cycled = 0;
1894 		end = -1;
1895 	} else {
1896 		index = wbc->range_start >> PAGE_SHIFT;
1897 		end = wbc->range_end >> PAGE_SHIFT;
1898 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1899 			range_whole = 1;
1900 		cycled = 1; /* ignore range_cyclic tests */
1901 	}
1902 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1903 		tag = PAGECACHE_TAG_TOWRITE;
1904 	else
1905 		tag = PAGECACHE_TAG_DIRTY;
1906 retry:
1907 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1908 		tag_pages_for_writeback(mapping, index, end);
1909 	done_index = index;
1910 	while (!done && (index <= end)) {
1911 		int i;
1912 
1913 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
1914 				tag);
1915 		if (nr_pages == 0)
1916 			break;
1917 
1918 		for (i = 0; i < nr_pages; i++) {
1919 			struct page *page = pvec.pages[i];
1920 			bool submitted = false;
1921 
1922 			done_index = page->index;
1923 retry_write:
1924 			lock_page(page);
1925 
1926 			if (unlikely(page->mapping != mapping)) {
1927 continue_unlock:
1928 				unlock_page(page);
1929 				continue;
1930 			}
1931 
1932 			if (!PageDirty(page)) {
1933 				/* someone wrote it for us */
1934 				goto continue_unlock;
1935 			}
1936 
1937 			if (PageWriteback(page)) {
1938 				if (wbc->sync_mode != WB_SYNC_NONE)
1939 					f2fs_wait_on_page_writeback(page,
1940 								DATA, true);
1941 				else
1942 					goto continue_unlock;
1943 			}
1944 
1945 			BUG_ON(PageWriteback(page));
1946 			if (!clear_page_dirty_for_io(page))
1947 				goto continue_unlock;
1948 
1949 			ret = __write_data_page(page, &submitted, wbc, io_type);
1950 			if (unlikely(ret)) {
1951 				/*
1952 				 * keep nr_to_write, since vfs uses this to
1953 				 * get # of written pages.
1954 				 */
1955 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1956 					unlock_page(page);
1957 					ret = 0;
1958 					continue;
1959 				} else if (ret == -EAGAIN) {
1960 					ret = 0;
1961 					if (wbc->sync_mode == WB_SYNC_ALL) {
1962 						cond_resched();
1963 						congestion_wait(BLK_RW_ASYNC,
1964 									HZ/50);
1965 						goto retry_write;
1966 					}
1967 					continue;
1968 				}
1969 				done_index = page->index + 1;
1970 				done = 1;
1971 				break;
1972 			} else if (submitted) {
1973 				last_idx = page->index;
1974 			}
1975 
1976 			/* give a priority to WB_SYNC threads */
1977 			if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1978 					--wbc->nr_to_write <= 0) &&
1979 					wbc->sync_mode == WB_SYNC_NONE) {
1980 				done = 1;
1981 				break;
1982 			}
1983 		}
1984 		pagevec_release(&pvec);
1985 		cond_resched();
1986 	}
1987 
1988 	if (!cycled && !done) {
1989 		cycled = 1;
1990 		index = 0;
1991 		end = writeback_index - 1;
1992 		goto retry;
1993 	}
1994 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1995 		mapping->writeback_index = done_index;
1996 
1997 	if (last_idx != ULONG_MAX)
1998 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1999 						0, last_idx, DATA);
2000 
2001 	return ret;
2002 }
2003 
2004 int __f2fs_write_data_pages(struct address_space *mapping,
2005 						struct writeback_control *wbc,
2006 						enum iostat_type io_type)
2007 {
2008 	struct inode *inode = mapping->host;
2009 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2010 	struct blk_plug plug;
2011 	int ret;
2012 
2013 	/* deal with chardevs and other special file */
2014 	if (!mapping->a_ops->writepage)
2015 		return 0;
2016 
2017 	/* skip writing if there is no dirty page in this inode */
2018 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2019 		return 0;
2020 
2021 	/* during POR, we don't need to trigger writepage at all. */
2022 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2023 		goto skip_write;
2024 
2025 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2026 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2027 			available_free_memory(sbi, DIRTY_DENTS))
2028 		goto skip_write;
2029 
2030 	/* skip writing during file defragment */
2031 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2032 		goto skip_write;
2033 
2034 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2035 
2036 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2037 	if (wbc->sync_mode == WB_SYNC_ALL)
2038 		atomic_inc(&sbi->wb_sync_req);
2039 	else if (atomic_read(&sbi->wb_sync_req))
2040 		goto skip_write;
2041 
2042 	blk_start_plug(&plug);
2043 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2044 	blk_finish_plug(&plug);
2045 
2046 	if (wbc->sync_mode == WB_SYNC_ALL)
2047 		atomic_dec(&sbi->wb_sync_req);
2048 	/*
2049 	 * if some pages were truncated, we cannot guarantee its mapping->host
2050 	 * to detect pending bios.
2051 	 */
2052 
2053 	remove_dirty_inode(inode);
2054 	return ret;
2055 
2056 skip_write:
2057 	wbc->pages_skipped += get_dirty_pages(inode);
2058 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2059 	return 0;
2060 }
2061 
2062 static int f2fs_write_data_pages(struct address_space *mapping,
2063 			    struct writeback_control *wbc)
2064 {
2065 	struct inode *inode = mapping->host;
2066 
2067 	return __f2fs_write_data_pages(mapping, wbc,
2068 			F2FS_I(inode)->cp_task == current ?
2069 			FS_CP_DATA_IO : FS_DATA_IO);
2070 }
2071 
2072 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2073 {
2074 	struct inode *inode = mapping->host;
2075 	loff_t i_size = i_size_read(inode);
2076 
2077 	if (to > i_size) {
2078 		down_write(&F2FS_I(inode)->i_mmap_sem);
2079 		truncate_pagecache(inode, i_size);
2080 		truncate_blocks(inode, i_size, true);
2081 		up_write(&F2FS_I(inode)->i_mmap_sem);
2082 	}
2083 }
2084 
2085 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2086 			struct page *page, loff_t pos, unsigned len,
2087 			block_t *blk_addr, bool *node_changed)
2088 {
2089 	struct inode *inode = page->mapping->host;
2090 	pgoff_t index = page->index;
2091 	struct dnode_of_data dn;
2092 	struct page *ipage;
2093 	bool locked = false;
2094 	struct extent_info ei = {0,0,0};
2095 	int err = 0;
2096 
2097 	/*
2098 	 * we already allocated all the blocks, so we don't need to get
2099 	 * the block addresses when there is no need to fill the page.
2100 	 */
2101 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2102 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2103 		return 0;
2104 
2105 	if (f2fs_has_inline_data(inode) ||
2106 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2107 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2108 		locked = true;
2109 	}
2110 restart:
2111 	/* check inline_data */
2112 	ipage = get_node_page(sbi, inode->i_ino);
2113 	if (IS_ERR(ipage)) {
2114 		err = PTR_ERR(ipage);
2115 		goto unlock_out;
2116 	}
2117 
2118 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2119 
2120 	if (f2fs_has_inline_data(inode)) {
2121 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2122 			read_inline_data(page, ipage);
2123 			set_inode_flag(inode, FI_DATA_EXIST);
2124 			if (inode->i_nlink)
2125 				set_inline_node(ipage);
2126 		} else {
2127 			err = f2fs_convert_inline_page(&dn, page);
2128 			if (err)
2129 				goto out;
2130 			if (dn.data_blkaddr == NULL_ADDR)
2131 				err = f2fs_get_block(&dn, index);
2132 		}
2133 	} else if (locked) {
2134 		err = f2fs_get_block(&dn, index);
2135 	} else {
2136 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2137 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2138 		} else {
2139 			/* hole case */
2140 			err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
2141 			if (err || dn.data_blkaddr == NULL_ADDR) {
2142 				f2fs_put_dnode(&dn);
2143 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2144 								true);
2145 				locked = true;
2146 				goto restart;
2147 			}
2148 		}
2149 	}
2150 
2151 	/* convert_inline_page can make node_changed */
2152 	*blk_addr = dn.data_blkaddr;
2153 	*node_changed = dn.node_changed;
2154 out:
2155 	f2fs_put_dnode(&dn);
2156 unlock_out:
2157 	if (locked)
2158 		__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2159 	return err;
2160 }
2161 
2162 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2163 		loff_t pos, unsigned len, unsigned flags,
2164 		struct page **pagep, void **fsdata)
2165 {
2166 	struct inode *inode = mapping->host;
2167 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2168 	struct page *page = NULL;
2169 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2170 	bool need_balance = false, drop_atomic = false;
2171 	block_t blkaddr = NULL_ADDR;
2172 	int err = 0;
2173 
2174 	trace_f2fs_write_begin(inode, pos, len, flags);
2175 
2176 	if (f2fs_is_atomic_file(inode) &&
2177 			!available_free_memory(sbi, INMEM_PAGES)) {
2178 		err = -ENOMEM;
2179 		drop_atomic = true;
2180 		goto fail;
2181 	}
2182 
2183 	/*
2184 	 * We should check this at this moment to avoid deadlock on inode page
2185 	 * and #0 page. The locking rule for inline_data conversion should be:
2186 	 * lock_page(page #0) -> lock_page(inode_page)
2187 	 */
2188 	if (index != 0) {
2189 		err = f2fs_convert_inline_inode(inode);
2190 		if (err)
2191 			goto fail;
2192 	}
2193 repeat:
2194 	/*
2195 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2196 	 * wait_for_stable_page. Will wait that below with our IO control.
2197 	 */
2198 	page = f2fs_pagecache_get_page(mapping, index,
2199 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2200 	if (!page) {
2201 		err = -ENOMEM;
2202 		goto fail;
2203 	}
2204 
2205 	*pagep = page;
2206 
2207 	err = prepare_write_begin(sbi, page, pos, len,
2208 					&blkaddr, &need_balance);
2209 	if (err)
2210 		goto fail;
2211 
2212 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2213 		unlock_page(page);
2214 		f2fs_balance_fs(sbi, true);
2215 		lock_page(page);
2216 		if (page->mapping != mapping) {
2217 			/* The page got truncated from under us */
2218 			f2fs_put_page(page, 1);
2219 			goto repeat;
2220 		}
2221 	}
2222 
2223 	f2fs_wait_on_page_writeback(page, DATA, false);
2224 
2225 	/* wait for GCed encrypted page writeback */
2226 	if (f2fs_encrypted_file(inode))
2227 		f2fs_wait_on_block_writeback(sbi, blkaddr);
2228 
2229 	if (len == PAGE_SIZE || PageUptodate(page))
2230 		return 0;
2231 
2232 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2233 		zero_user_segment(page, len, PAGE_SIZE);
2234 		return 0;
2235 	}
2236 
2237 	if (blkaddr == NEW_ADDR) {
2238 		zero_user_segment(page, 0, PAGE_SIZE);
2239 		SetPageUptodate(page);
2240 	} else {
2241 		err = f2fs_submit_page_read(inode, page, blkaddr);
2242 		if (err)
2243 			goto fail;
2244 
2245 		lock_page(page);
2246 		if (unlikely(page->mapping != mapping)) {
2247 			f2fs_put_page(page, 1);
2248 			goto repeat;
2249 		}
2250 		if (unlikely(!PageUptodate(page))) {
2251 			err = -EIO;
2252 			goto fail;
2253 		}
2254 	}
2255 	return 0;
2256 
2257 fail:
2258 	f2fs_put_page(page, 1);
2259 	f2fs_write_failed(mapping, pos + len);
2260 	if (drop_atomic)
2261 		drop_inmem_pages_all(sbi);
2262 	return err;
2263 }
2264 
2265 static int f2fs_write_end(struct file *file,
2266 			struct address_space *mapping,
2267 			loff_t pos, unsigned len, unsigned copied,
2268 			struct page *page, void *fsdata)
2269 {
2270 	struct inode *inode = page->mapping->host;
2271 
2272 	trace_f2fs_write_end(inode, pos, len, copied);
2273 
2274 	/*
2275 	 * This should be come from len == PAGE_SIZE, and we expect copied
2276 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2277 	 * let generic_perform_write() try to copy data again through copied=0.
2278 	 */
2279 	if (!PageUptodate(page)) {
2280 		if (unlikely(copied != len))
2281 			copied = 0;
2282 		else
2283 			SetPageUptodate(page);
2284 	}
2285 	if (!copied)
2286 		goto unlock_out;
2287 
2288 	set_page_dirty(page);
2289 
2290 	if (pos + copied > i_size_read(inode))
2291 		f2fs_i_size_write(inode, pos + copied);
2292 unlock_out:
2293 	f2fs_put_page(page, 1);
2294 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2295 	return copied;
2296 }
2297 
2298 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2299 			   loff_t offset)
2300 {
2301 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2302 
2303 	if (offset & blocksize_mask)
2304 		return -EINVAL;
2305 
2306 	if (iov_iter_alignment(iter) & blocksize_mask)
2307 		return -EINVAL;
2308 
2309 	return 0;
2310 }
2311 
2312 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2313 {
2314 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2315 	struct inode *inode = mapping->host;
2316 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2317 	size_t count = iov_iter_count(iter);
2318 	loff_t offset = iocb->ki_pos;
2319 	int rw = iov_iter_rw(iter);
2320 	int err;
2321 	enum rw_hint hint = iocb->ki_hint;
2322 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2323 
2324 	err = check_direct_IO(inode, iter, offset);
2325 	if (err)
2326 		return err;
2327 
2328 	if (f2fs_force_buffered_io(inode, rw))
2329 		return 0;
2330 
2331 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2332 
2333 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2334 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2335 
2336 	if (!down_read_trylock(&F2FS_I(inode)->dio_rwsem[rw])) {
2337 		if (iocb->ki_flags & IOCB_NOWAIT) {
2338 			iocb->ki_hint = hint;
2339 			err = -EAGAIN;
2340 			goto out;
2341 		}
2342 		down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2343 	}
2344 
2345 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2346 	up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2347 
2348 	if (rw == WRITE) {
2349 		if (whint_mode == WHINT_MODE_OFF)
2350 			iocb->ki_hint = hint;
2351 		if (err > 0) {
2352 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2353 									err);
2354 			set_inode_flag(inode, FI_UPDATE_WRITE);
2355 		} else if (err < 0) {
2356 			f2fs_write_failed(mapping, offset + count);
2357 		}
2358 	}
2359 
2360 out:
2361 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2362 
2363 	return err;
2364 }
2365 
2366 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2367 							unsigned int length)
2368 {
2369 	struct inode *inode = page->mapping->host;
2370 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2371 
2372 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2373 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2374 		return;
2375 
2376 	if (PageDirty(page)) {
2377 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2378 			dec_page_count(sbi, F2FS_DIRTY_META);
2379 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2380 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2381 		} else {
2382 			inode_dec_dirty_pages(inode);
2383 			remove_dirty_inode(inode);
2384 		}
2385 	}
2386 
2387 	/* This is atomic written page, keep Private */
2388 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2389 		return drop_inmem_page(inode, page);
2390 
2391 	set_page_private(page, 0);
2392 	ClearPagePrivate(page);
2393 }
2394 
2395 int f2fs_release_page(struct page *page, gfp_t wait)
2396 {
2397 	/* If this is dirty page, keep PagePrivate */
2398 	if (PageDirty(page))
2399 		return 0;
2400 
2401 	/* This is atomic written page, keep Private */
2402 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2403 		return 0;
2404 
2405 	set_page_private(page, 0);
2406 	ClearPagePrivate(page);
2407 	return 1;
2408 }
2409 
2410 /*
2411  * This was copied from __set_page_dirty_buffers which gives higher performance
2412  * in very high speed storages. (e.g., pmem)
2413  */
2414 void f2fs_set_page_dirty_nobuffers(struct page *page)
2415 {
2416 	struct address_space *mapping = page->mapping;
2417 	unsigned long flags;
2418 
2419 	if (unlikely(!mapping))
2420 		return;
2421 
2422 	spin_lock(&mapping->private_lock);
2423 	lock_page_memcg(page);
2424 	SetPageDirty(page);
2425 	spin_unlock(&mapping->private_lock);
2426 
2427 	xa_lock_irqsave(&mapping->i_pages, flags);
2428 	WARN_ON_ONCE(!PageUptodate(page));
2429 	account_page_dirtied(page, mapping);
2430 	radix_tree_tag_set(&mapping->i_pages,
2431 			page_index(page), PAGECACHE_TAG_DIRTY);
2432 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2433 	unlock_page_memcg(page);
2434 
2435 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2436 	return;
2437 }
2438 
2439 static int f2fs_set_data_page_dirty(struct page *page)
2440 {
2441 	struct address_space *mapping = page->mapping;
2442 	struct inode *inode = mapping->host;
2443 
2444 	trace_f2fs_set_page_dirty(page, DATA);
2445 
2446 	if (!PageUptodate(page))
2447 		SetPageUptodate(page);
2448 
2449 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2450 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2451 			register_inmem_page(inode, page);
2452 			return 1;
2453 		}
2454 		/*
2455 		 * Previously, this page has been registered, we just
2456 		 * return here.
2457 		 */
2458 		return 0;
2459 	}
2460 
2461 	if (!PageDirty(page)) {
2462 		f2fs_set_page_dirty_nobuffers(page);
2463 		update_dirty_page(inode, page);
2464 		return 1;
2465 	}
2466 	return 0;
2467 }
2468 
2469 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2470 {
2471 	struct inode *inode = mapping->host;
2472 
2473 	if (f2fs_has_inline_data(inode))
2474 		return 0;
2475 
2476 	/* make sure allocating whole blocks */
2477 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2478 		filemap_write_and_wait(mapping);
2479 
2480 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2481 }
2482 
2483 #ifdef CONFIG_MIGRATION
2484 #include <linux/migrate.h>
2485 
2486 int f2fs_migrate_page(struct address_space *mapping,
2487 		struct page *newpage, struct page *page, enum migrate_mode mode)
2488 {
2489 	int rc, extra_count;
2490 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2491 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2492 
2493 	BUG_ON(PageWriteback(page));
2494 
2495 	/* migrating an atomic written page is safe with the inmem_lock hold */
2496 	if (atomic_written) {
2497 		if (mode != MIGRATE_SYNC)
2498 			return -EBUSY;
2499 		if (!mutex_trylock(&fi->inmem_lock))
2500 			return -EAGAIN;
2501 	}
2502 
2503 	/*
2504 	 * A reference is expected if PagePrivate set when move mapping,
2505 	 * however F2FS breaks this for maintaining dirty page counts when
2506 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2507 	 */
2508 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2509 	rc = migrate_page_move_mapping(mapping, newpage,
2510 				page, NULL, mode, extra_count);
2511 	if (rc != MIGRATEPAGE_SUCCESS) {
2512 		if (atomic_written)
2513 			mutex_unlock(&fi->inmem_lock);
2514 		return rc;
2515 	}
2516 
2517 	if (atomic_written) {
2518 		struct inmem_pages *cur;
2519 		list_for_each_entry(cur, &fi->inmem_pages, list)
2520 			if (cur->page == page) {
2521 				cur->page = newpage;
2522 				break;
2523 			}
2524 		mutex_unlock(&fi->inmem_lock);
2525 		put_page(page);
2526 		get_page(newpage);
2527 	}
2528 
2529 	if (PagePrivate(page))
2530 		SetPagePrivate(newpage);
2531 	set_page_private(newpage, page_private(page));
2532 
2533 	if (mode != MIGRATE_SYNC_NO_COPY)
2534 		migrate_page_copy(newpage, page);
2535 	else
2536 		migrate_page_states(newpage, page);
2537 
2538 	return MIGRATEPAGE_SUCCESS;
2539 }
2540 #endif
2541 
2542 const struct address_space_operations f2fs_dblock_aops = {
2543 	.readpage	= f2fs_read_data_page,
2544 	.readpages	= f2fs_read_data_pages,
2545 	.writepage	= f2fs_write_data_page,
2546 	.writepages	= f2fs_write_data_pages,
2547 	.write_begin	= f2fs_write_begin,
2548 	.write_end	= f2fs_write_end,
2549 	.set_page_dirty	= f2fs_set_data_page_dirty,
2550 	.invalidatepage	= f2fs_invalidate_page,
2551 	.releasepage	= f2fs_release_page,
2552 	.direct_IO	= f2fs_direct_IO,
2553 	.bmap		= f2fs_bmap,
2554 #ifdef CONFIG_MIGRATION
2555 	.migratepage    = f2fs_migrate_page,
2556 #endif
2557 };
2558