1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS); 44 } 45 46 void f2fs_destroy_bioset(void) 47 { 48 bioset_exit(&f2fs_bioset); 49 } 50 51 static bool __is_cp_guaranteed(struct page *page) 52 { 53 struct address_space *mapping = page->mapping; 54 struct inode *inode; 55 struct f2fs_sb_info *sbi; 56 57 if (!mapping) 58 return false; 59 60 inode = mapping->host; 61 sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi) || 64 inode->i_ino == F2FS_NODE_INO(sbi) || 65 S_ISDIR(inode->i_mode)) 66 return true; 67 68 if (f2fs_is_compressed_page(page)) 69 return false; 70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 71 page_private_gcing(page)) 72 return true; 73 return false; 74 } 75 76 static enum count_type __read_io_type(struct page *page) 77 { 78 struct address_space *mapping = page_file_mapping(page); 79 80 if (mapping) { 81 struct inode *inode = mapping->host; 82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 83 84 if (inode->i_ino == F2FS_META_INO(sbi)) 85 return F2FS_RD_META; 86 87 if (inode->i_ino == F2FS_NODE_INO(sbi)) 88 return F2FS_RD_NODE; 89 } 90 return F2FS_RD_DATA; 91 } 92 93 /* postprocessing steps for read bios */ 94 enum bio_post_read_step { 95 #ifdef CONFIG_FS_ENCRYPTION 96 STEP_DECRYPT = 1 << 0, 97 #else 98 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 99 #endif 100 #ifdef CONFIG_F2FS_FS_COMPRESSION 101 STEP_DECOMPRESS = 1 << 1, 102 #else 103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 104 #endif 105 #ifdef CONFIG_FS_VERITY 106 STEP_VERITY = 1 << 2, 107 #else 108 STEP_VERITY = 0, /* compile out the verity-related code */ 109 #endif 110 }; 111 112 struct bio_post_read_ctx { 113 struct bio *bio; 114 struct f2fs_sb_info *sbi; 115 struct work_struct work; 116 unsigned int enabled_steps; 117 /* 118 * decompression_attempted keeps track of whether 119 * f2fs_end_read_compressed_page() has been called on the pages in the 120 * bio that belong to a compressed cluster yet. 121 */ 122 bool decompression_attempted; 123 block_t fs_blkaddr; 124 }; 125 126 /* 127 * Update and unlock a bio's pages, and free the bio. 128 * 129 * This marks pages up-to-date only if there was no error in the bio (I/O error, 130 * decryption error, or verity error), as indicated by bio->bi_status. 131 * 132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 133 * aren't marked up-to-date here, as decompression is done on a per-compression- 134 * cluster basis rather than a per-bio basis. Instead, we only must do two 135 * things for each compressed page here: call f2fs_end_read_compressed_page() 136 * with failed=true if an error occurred before it would have normally gotten 137 * called (i.e., I/O error or decryption error, but *not* verity error), and 138 * release the bio's reference to the decompress_io_ctx of the page's cluster. 139 */ 140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 141 { 142 struct bio_vec *bv; 143 struct bvec_iter_all iter_all; 144 struct bio_post_read_ctx *ctx = bio->bi_private; 145 146 bio_for_each_segment_all(bv, bio, iter_all) { 147 struct page *page = bv->bv_page; 148 149 if (f2fs_is_compressed_page(page)) { 150 if (ctx && !ctx->decompression_attempted) 151 f2fs_end_read_compressed_page(page, true, 0, 152 in_task); 153 f2fs_put_page_dic(page, in_task); 154 continue; 155 } 156 157 if (bio->bi_status) 158 ClearPageUptodate(page); 159 else 160 SetPageUptodate(page); 161 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 162 unlock_page(page); 163 } 164 165 if (ctx) 166 mempool_free(ctx, bio_post_read_ctx_pool); 167 bio_put(bio); 168 } 169 170 static void f2fs_verify_bio(struct work_struct *work) 171 { 172 struct bio_post_read_ctx *ctx = 173 container_of(work, struct bio_post_read_ctx, work); 174 struct bio *bio = ctx->bio; 175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 176 177 /* 178 * fsverity_verify_bio() may call readahead() again, and while verity 179 * will be disabled for this, decryption and/or decompression may still 180 * be needed, resulting in another bio_post_read_ctx being allocated. 181 * So to prevent deadlocks we need to release the current ctx to the 182 * mempool first. This assumes that verity is the last post-read step. 183 */ 184 mempool_free(ctx, bio_post_read_ctx_pool); 185 bio->bi_private = NULL; 186 187 /* 188 * Verify the bio's pages with fs-verity. Exclude compressed pages, 189 * as those were handled separately by f2fs_end_read_compressed_page(). 190 */ 191 if (may_have_compressed_pages) { 192 struct bio_vec *bv; 193 struct bvec_iter_all iter_all; 194 195 bio_for_each_segment_all(bv, bio, iter_all) { 196 struct page *page = bv->bv_page; 197 198 if (!f2fs_is_compressed_page(page) && 199 !fsverity_verify_page(page)) { 200 bio->bi_status = BLK_STS_IOERR; 201 break; 202 } 203 } 204 } else { 205 fsverity_verify_bio(bio); 206 } 207 208 f2fs_finish_read_bio(bio, true); 209 } 210 211 /* 212 * If the bio's data needs to be verified with fs-verity, then enqueue the 213 * verity work for the bio. Otherwise finish the bio now. 214 * 215 * Note that to avoid deadlocks, the verity work can't be done on the 216 * decryption/decompression workqueue. This is because verifying the data pages 217 * can involve reading verity metadata pages from the file, and these verity 218 * metadata pages may be encrypted and/or compressed. 219 */ 220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 221 { 222 struct bio_post_read_ctx *ctx = bio->bi_private; 223 224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 225 INIT_WORK(&ctx->work, f2fs_verify_bio); 226 fsverity_enqueue_verify_work(&ctx->work); 227 } else { 228 f2fs_finish_read_bio(bio, in_task); 229 } 230 } 231 232 /* 233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 234 * remaining page was read by @ctx->bio. 235 * 236 * Note that a bio may span clusters (even a mix of compressed and uncompressed 237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 238 * that the bio includes at least one compressed page. The actual decompression 239 * is done on a per-cluster basis, not a per-bio basis. 240 */ 241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 242 bool in_task) 243 { 244 struct bio_vec *bv; 245 struct bvec_iter_all iter_all; 246 bool all_compressed = true; 247 block_t blkaddr = ctx->fs_blkaddr; 248 249 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 250 struct page *page = bv->bv_page; 251 252 if (f2fs_is_compressed_page(page)) 253 f2fs_end_read_compressed_page(page, false, blkaddr, 254 in_task); 255 else 256 all_compressed = false; 257 258 blkaddr++; 259 } 260 261 ctx->decompression_attempted = true; 262 263 /* 264 * Optimization: if all the bio's pages are compressed, then scheduling 265 * the per-bio verity work is unnecessary, as verity will be fully 266 * handled at the compression cluster level. 267 */ 268 if (all_compressed) 269 ctx->enabled_steps &= ~STEP_VERITY; 270 } 271 272 static void f2fs_post_read_work(struct work_struct *work) 273 { 274 struct bio_post_read_ctx *ctx = 275 container_of(work, struct bio_post_read_ctx, work); 276 struct bio *bio = ctx->bio; 277 278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 279 f2fs_finish_read_bio(bio, true); 280 return; 281 } 282 283 if (ctx->enabled_steps & STEP_DECOMPRESS) 284 f2fs_handle_step_decompress(ctx, true); 285 286 f2fs_verify_and_finish_bio(bio, true); 287 } 288 289 static void f2fs_read_end_io(struct bio *bio) 290 { 291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 292 struct bio_post_read_ctx *ctx; 293 bool intask = in_task(); 294 295 iostat_update_and_unbind_ctx(bio); 296 ctx = bio->bi_private; 297 298 if (time_to_inject(sbi, FAULT_READ_IO)) 299 bio->bi_status = BLK_STS_IOERR; 300 301 if (bio->bi_status) { 302 f2fs_finish_read_bio(bio, intask); 303 return; 304 } 305 306 if (ctx) { 307 unsigned int enabled_steps = ctx->enabled_steps & 308 (STEP_DECRYPT | STEP_DECOMPRESS); 309 310 /* 311 * If we have only decompression step between decompression and 312 * decrypt, we don't need post processing for this. 313 */ 314 if (enabled_steps == STEP_DECOMPRESS && 315 !f2fs_low_mem_mode(sbi)) { 316 f2fs_handle_step_decompress(ctx, intask); 317 } else if (enabled_steps) { 318 INIT_WORK(&ctx->work, f2fs_post_read_work); 319 queue_work(ctx->sbi->post_read_wq, &ctx->work); 320 return; 321 } 322 } 323 324 f2fs_verify_and_finish_bio(bio, intask); 325 } 326 327 static void f2fs_write_end_io(struct bio *bio) 328 { 329 struct f2fs_sb_info *sbi; 330 struct bio_vec *bvec; 331 struct bvec_iter_all iter_all; 332 333 iostat_update_and_unbind_ctx(bio); 334 sbi = bio->bi_private; 335 336 if (time_to_inject(sbi, FAULT_WRITE_IO)) 337 bio->bi_status = BLK_STS_IOERR; 338 339 bio_for_each_segment_all(bvec, bio, iter_all) { 340 struct page *page = bvec->bv_page; 341 enum count_type type = WB_DATA_TYPE(page); 342 343 if (page_private_dummy(page)) { 344 clear_page_private_dummy(page); 345 unlock_page(page); 346 mempool_free(page, sbi->write_io_dummy); 347 348 if (unlikely(bio->bi_status)) 349 f2fs_stop_checkpoint(sbi, true, 350 STOP_CP_REASON_WRITE_FAIL); 351 continue; 352 } 353 354 fscrypt_finalize_bounce_page(&page); 355 356 #ifdef CONFIG_F2FS_FS_COMPRESSION 357 if (f2fs_is_compressed_page(page)) { 358 f2fs_compress_write_end_io(bio, page); 359 continue; 360 } 361 #endif 362 363 if (unlikely(bio->bi_status)) { 364 mapping_set_error(page->mapping, -EIO); 365 if (type == F2FS_WB_CP_DATA) 366 f2fs_stop_checkpoint(sbi, true, 367 STOP_CP_REASON_WRITE_FAIL); 368 } 369 370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 371 page->index != nid_of_node(page)); 372 373 dec_page_count(sbi, type); 374 if (f2fs_in_warm_node_list(sbi, page)) 375 f2fs_del_fsync_node_entry(sbi, page); 376 clear_page_private_gcing(page); 377 end_page_writeback(page); 378 } 379 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 380 wq_has_sleeper(&sbi->cp_wait)) 381 wake_up(&sbi->cp_wait); 382 383 bio_put(bio); 384 } 385 386 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 387 block_t blk_addr, sector_t *sector) 388 { 389 struct block_device *bdev = sbi->sb->s_bdev; 390 int i; 391 392 if (f2fs_is_multi_device(sbi)) { 393 for (i = 0; i < sbi->s_ndevs; i++) { 394 if (FDEV(i).start_blk <= blk_addr && 395 FDEV(i).end_blk >= blk_addr) { 396 blk_addr -= FDEV(i).start_blk; 397 bdev = FDEV(i).bdev; 398 break; 399 } 400 } 401 } 402 403 if (sector) 404 *sector = SECTOR_FROM_BLOCK(blk_addr); 405 return bdev; 406 } 407 408 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 409 { 410 int i; 411 412 if (!f2fs_is_multi_device(sbi)) 413 return 0; 414 415 for (i = 0; i < sbi->s_ndevs; i++) 416 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 417 return i; 418 return 0; 419 } 420 421 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 422 { 423 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 424 unsigned int fua_flag, meta_flag, io_flag; 425 blk_opf_t op_flags = 0; 426 427 if (fio->op != REQ_OP_WRITE) 428 return 0; 429 if (fio->type == DATA) 430 io_flag = fio->sbi->data_io_flag; 431 else if (fio->type == NODE) 432 io_flag = fio->sbi->node_io_flag; 433 else 434 return 0; 435 436 fua_flag = io_flag & temp_mask; 437 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 438 439 /* 440 * data/node io flag bits per temp: 441 * REQ_META | REQ_FUA | 442 * 5 | 4 | 3 | 2 | 1 | 0 | 443 * Cold | Warm | Hot | Cold | Warm | Hot | 444 */ 445 if ((1 << fio->temp) & meta_flag) 446 op_flags |= REQ_META; 447 if ((1 << fio->temp) & fua_flag) 448 op_flags |= REQ_FUA; 449 return op_flags; 450 } 451 452 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 453 { 454 struct f2fs_sb_info *sbi = fio->sbi; 455 struct block_device *bdev; 456 sector_t sector; 457 struct bio *bio; 458 459 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 460 bio = bio_alloc_bioset(bdev, npages, 461 fio->op | fio->op_flags | f2fs_io_flags(fio), 462 GFP_NOIO, &f2fs_bioset); 463 bio->bi_iter.bi_sector = sector; 464 if (is_read_io(fio->op)) { 465 bio->bi_end_io = f2fs_read_end_io; 466 bio->bi_private = NULL; 467 } else { 468 bio->bi_end_io = f2fs_write_end_io; 469 bio->bi_private = sbi; 470 } 471 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 472 473 if (fio->io_wbc) 474 wbc_init_bio(fio->io_wbc, bio); 475 476 return bio; 477 } 478 479 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 480 pgoff_t first_idx, 481 const struct f2fs_io_info *fio, 482 gfp_t gfp_mask) 483 { 484 /* 485 * The f2fs garbage collector sets ->encrypted_page when it wants to 486 * read/write raw data without encryption. 487 */ 488 if (!fio || !fio->encrypted_page) 489 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 490 } 491 492 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 493 pgoff_t next_idx, 494 const struct f2fs_io_info *fio) 495 { 496 /* 497 * The f2fs garbage collector sets ->encrypted_page when it wants to 498 * read/write raw data without encryption. 499 */ 500 if (fio && fio->encrypted_page) 501 return !bio_has_crypt_ctx(bio); 502 503 return fscrypt_mergeable_bio(bio, inode, next_idx); 504 } 505 506 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 507 enum page_type type) 508 { 509 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 510 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 511 512 iostat_update_submit_ctx(bio, type); 513 submit_bio(bio); 514 } 515 516 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio) 517 { 518 unsigned int start = 519 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi); 520 521 if (start == 0) 522 return; 523 524 /* fill dummy pages */ 525 for (; start < F2FS_IO_SIZE(sbi); start++) { 526 struct page *page = 527 mempool_alloc(sbi->write_io_dummy, 528 GFP_NOIO | __GFP_NOFAIL); 529 f2fs_bug_on(sbi, !page); 530 531 lock_page(page); 532 533 zero_user_segment(page, 0, PAGE_SIZE); 534 set_page_private_dummy(page); 535 536 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 537 f2fs_bug_on(sbi, 1); 538 } 539 } 540 541 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 542 enum page_type type) 543 { 544 WARN_ON_ONCE(is_read_io(bio_op(bio))); 545 546 if (type == DATA || type == NODE) { 547 if (f2fs_lfs_mode(sbi) && current->plug) 548 blk_finish_plug(current->plug); 549 550 if (F2FS_IO_ALIGNED(sbi)) { 551 f2fs_align_write_bio(sbi, bio); 552 /* 553 * In the NODE case, we lose next block address chain. 554 * So, we need to do checkpoint in f2fs_sync_file. 555 */ 556 if (type == NODE) 557 set_sbi_flag(sbi, SBI_NEED_CP); 558 } 559 } 560 561 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 562 iostat_update_submit_ctx(bio, type); 563 submit_bio(bio); 564 } 565 566 static void __submit_merged_bio(struct f2fs_bio_info *io) 567 { 568 struct f2fs_io_info *fio = &io->fio; 569 570 if (!io->bio) 571 return; 572 573 if (is_read_io(fio->op)) { 574 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 575 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 576 } else { 577 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 578 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 579 } 580 io->bio = NULL; 581 } 582 583 static bool __has_merged_page(struct bio *bio, struct inode *inode, 584 struct page *page, nid_t ino) 585 { 586 struct bio_vec *bvec; 587 struct bvec_iter_all iter_all; 588 589 if (!bio) 590 return false; 591 592 if (!inode && !page && !ino) 593 return true; 594 595 bio_for_each_segment_all(bvec, bio, iter_all) { 596 struct page *target = bvec->bv_page; 597 598 if (fscrypt_is_bounce_page(target)) { 599 target = fscrypt_pagecache_page(target); 600 if (IS_ERR(target)) 601 continue; 602 } 603 if (f2fs_is_compressed_page(target)) { 604 target = f2fs_compress_control_page(target); 605 if (IS_ERR(target)) 606 continue; 607 } 608 609 if (inode && inode == target->mapping->host) 610 return true; 611 if (page && page == target) 612 return true; 613 if (ino && ino == ino_of_node(target)) 614 return true; 615 } 616 617 return false; 618 } 619 620 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 621 { 622 int i; 623 624 for (i = 0; i < NR_PAGE_TYPE; i++) { 625 int n = (i == META) ? 1 : NR_TEMP_TYPE; 626 int j; 627 628 sbi->write_io[i] = f2fs_kmalloc(sbi, 629 array_size(n, sizeof(struct f2fs_bio_info)), 630 GFP_KERNEL); 631 if (!sbi->write_io[i]) 632 return -ENOMEM; 633 634 for (j = HOT; j < n; j++) { 635 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 636 sbi->write_io[i][j].sbi = sbi; 637 sbi->write_io[i][j].bio = NULL; 638 spin_lock_init(&sbi->write_io[i][j].io_lock); 639 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 640 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 641 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 642 } 643 } 644 645 return 0; 646 } 647 648 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 649 enum page_type type, enum temp_type temp) 650 { 651 enum page_type btype = PAGE_TYPE_OF_BIO(type); 652 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 653 654 f2fs_down_write(&io->io_rwsem); 655 656 if (!io->bio) 657 goto unlock_out; 658 659 /* change META to META_FLUSH in the checkpoint procedure */ 660 if (type >= META_FLUSH) { 661 io->fio.type = META_FLUSH; 662 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 663 if (!test_opt(sbi, NOBARRIER)) 664 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 665 } 666 __submit_merged_bio(io); 667 unlock_out: 668 f2fs_up_write(&io->io_rwsem); 669 } 670 671 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 672 struct inode *inode, struct page *page, 673 nid_t ino, enum page_type type, bool force) 674 { 675 enum temp_type temp; 676 bool ret = true; 677 678 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 679 if (!force) { 680 enum page_type btype = PAGE_TYPE_OF_BIO(type); 681 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 682 683 f2fs_down_read(&io->io_rwsem); 684 ret = __has_merged_page(io->bio, inode, page, ino); 685 f2fs_up_read(&io->io_rwsem); 686 } 687 if (ret) 688 __f2fs_submit_merged_write(sbi, type, temp); 689 690 /* TODO: use HOT temp only for meta pages now. */ 691 if (type >= META) 692 break; 693 } 694 } 695 696 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 697 { 698 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 699 } 700 701 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 702 struct inode *inode, struct page *page, 703 nid_t ino, enum page_type type) 704 { 705 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 706 } 707 708 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 709 { 710 f2fs_submit_merged_write(sbi, DATA); 711 f2fs_submit_merged_write(sbi, NODE); 712 f2fs_submit_merged_write(sbi, META); 713 } 714 715 /* 716 * Fill the locked page with data located in the block address. 717 * A caller needs to unlock the page on failure. 718 */ 719 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 720 { 721 struct bio *bio; 722 struct page *page = fio->encrypted_page ? 723 fio->encrypted_page : fio->page; 724 725 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 726 fio->is_por ? META_POR : (__is_meta_io(fio) ? 727 META_GENERIC : DATA_GENERIC_ENHANCE))) { 728 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 729 return -EFSCORRUPTED; 730 } 731 732 trace_f2fs_submit_page_bio(page, fio); 733 734 /* Allocate a new bio */ 735 bio = __bio_alloc(fio, 1); 736 737 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 738 fio->page->index, fio, GFP_NOIO); 739 740 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 741 bio_put(bio); 742 return -EFAULT; 743 } 744 745 if (fio->io_wbc && !is_read_io(fio->op)) 746 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 747 748 inc_page_count(fio->sbi, is_read_io(fio->op) ? 749 __read_io_type(page) : WB_DATA_TYPE(fio->page)); 750 751 if (is_read_io(bio_op(bio))) 752 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 753 else 754 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 755 return 0; 756 } 757 758 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 759 block_t last_blkaddr, block_t cur_blkaddr) 760 { 761 if (unlikely(sbi->max_io_bytes && 762 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 763 return false; 764 if (last_blkaddr + 1 != cur_blkaddr) 765 return false; 766 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 767 } 768 769 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 770 struct f2fs_io_info *fio) 771 { 772 if (io->fio.op != fio->op) 773 return false; 774 return io->fio.op_flags == fio->op_flags; 775 } 776 777 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 778 struct f2fs_bio_info *io, 779 struct f2fs_io_info *fio, 780 block_t last_blkaddr, 781 block_t cur_blkaddr) 782 { 783 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 784 unsigned int filled_blocks = 785 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 786 unsigned int io_size = F2FS_IO_SIZE(sbi); 787 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 788 789 /* IOs in bio is aligned and left space of vectors is not enough */ 790 if (!(filled_blocks % io_size) && left_vecs < io_size) 791 return false; 792 } 793 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 794 return false; 795 return io_type_is_mergeable(io, fio); 796 } 797 798 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 799 struct page *page, enum temp_type temp) 800 { 801 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 802 struct bio_entry *be; 803 804 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 805 be->bio = bio; 806 bio_get(bio); 807 808 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 809 f2fs_bug_on(sbi, 1); 810 811 f2fs_down_write(&io->bio_list_lock); 812 list_add_tail(&be->list, &io->bio_list); 813 f2fs_up_write(&io->bio_list_lock); 814 } 815 816 static void del_bio_entry(struct bio_entry *be) 817 { 818 list_del(&be->list); 819 kmem_cache_free(bio_entry_slab, be); 820 } 821 822 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 823 struct page *page) 824 { 825 struct f2fs_sb_info *sbi = fio->sbi; 826 enum temp_type temp; 827 bool found = false; 828 int ret = -EAGAIN; 829 830 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 831 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 832 struct list_head *head = &io->bio_list; 833 struct bio_entry *be; 834 835 f2fs_down_write(&io->bio_list_lock); 836 list_for_each_entry(be, head, list) { 837 if (be->bio != *bio) 838 continue; 839 840 found = true; 841 842 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 843 *fio->last_block, 844 fio->new_blkaddr)); 845 if (f2fs_crypt_mergeable_bio(*bio, 846 fio->page->mapping->host, 847 fio->page->index, fio) && 848 bio_add_page(*bio, page, PAGE_SIZE, 0) == 849 PAGE_SIZE) { 850 ret = 0; 851 break; 852 } 853 854 /* page can't be merged into bio; submit the bio */ 855 del_bio_entry(be); 856 f2fs_submit_write_bio(sbi, *bio, DATA); 857 break; 858 } 859 f2fs_up_write(&io->bio_list_lock); 860 } 861 862 if (ret) { 863 bio_put(*bio); 864 *bio = NULL; 865 } 866 867 return ret; 868 } 869 870 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 871 struct bio **bio, struct page *page) 872 { 873 enum temp_type temp; 874 bool found = false; 875 struct bio *target = bio ? *bio : NULL; 876 877 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 878 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 879 struct list_head *head = &io->bio_list; 880 struct bio_entry *be; 881 882 if (list_empty(head)) 883 continue; 884 885 f2fs_down_read(&io->bio_list_lock); 886 list_for_each_entry(be, head, list) { 887 if (target) 888 found = (target == be->bio); 889 else 890 found = __has_merged_page(be->bio, NULL, 891 page, 0); 892 if (found) 893 break; 894 } 895 f2fs_up_read(&io->bio_list_lock); 896 897 if (!found) 898 continue; 899 900 found = false; 901 902 f2fs_down_write(&io->bio_list_lock); 903 list_for_each_entry(be, head, list) { 904 if (target) 905 found = (target == be->bio); 906 else 907 found = __has_merged_page(be->bio, NULL, 908 page, 0); 909 if (found) { 910 target = be->bio; 911 del_bio_entry(be); 912 break; 913 } 914 } 915 f2fs_up_write(&io->bio_list_lock); 916 } 917 918 if (found) 919 f2fs_submit_write_bio(sbi, target, DATA); 920 if (bio && *bio) { 921 bio_put(*bio); 922 *bio = NULL; 923 } 924 } 925 926 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 927 { 928 struct bio *bio = *fio->bio; 929 struct page *page = fio->encrypted_page ? 930 fio->encrypted_page : fio->page; 931 932 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 933 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { 934 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 935 return -EFSCORRUPTED; 936 } 937 938 trace_f2fs_submit_page_bio(page, fio); 939 940 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 941 fio->new_blkaddr)) 942 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 943 alloc_new: 944 if (!bio) { 945 bio = __bio_alloc(fio, BIO_MAX_VECS); 946 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 947 fio->page->index, fio, GFP_NOIO); 948 949 add_bio_entry(fio->sbi, bio, page, fio->temp); 950 } else { 951 if (add_ipu_page(fio, &bio, page)) 952 goto alloc_new; 953 } 954 955 if (fio->io_wbc) 956 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 957 958 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 959 960 *fio->last_block = fio->new_blkaddr; 961 *fio->bio = bio; 962 963 return 0; 964 } 965 966 void f2fs_submit_page_write(struct f2fs_io_info *fio) 967 { 968 struct f2fs_sb_info *sbi = fio->sbi; 969 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 970 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 971 struct page *bio_page; 972 973 f2fs_bug_on(sbi, is_read_io(fio->op)); 974 975 f2fs_down_write(&io->io_rwsem); 976 next: 977 if (fio->in_list) { 978 spin_lock(&io->io_lock); 979 if (list_empty(&io->io_list)) { 980 spin_unlock(&io->io_lock); 981 goto out; 982 } 983 fio = list_first_entry(&io->io_list, 984 struct f2fs_io_info, list); 985 list_del(&fio->list); 986 spin_unlock(&io->io_lock); 987 } 988 989 verify_fio_blkaddr(fio); 990 991 if (fio->encrypted_page) 992 bio_page = fio->encrypted_page; 993 else if (fio->compressed_page) 994 bio_page = fio->compressed_page; 995 else 996 bio_page = fio->page; 997 998 /* set submitted = true as a return value */ 999 fio->submitted = 1; 1000 1001 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 1002 1003 if (io->bio && 1004 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 1005 fio->new_blkaddr) || 1006 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 1007 bio_page->index, fio))) 1008 __submit_merged_bio(io); 1009 alloc_new: 1010 if (io->bio == NULL) { 1011 if (F2FS_IO_ALIGNED(sbi) && 1012 (fio->type == DATA || fio->type == NODE) && 1013 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 1014 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 1015 fio->retry = 1; 1016 goto skip; 1017 } 1018 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1019 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1020 bio_page->index, fio, GFP_NOIO); 1021 io->fio = *fio; 1022 } 1023 1024 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1025 __submit_merged_bio(io); 1026 goto alloc_new; 1027 } 1028 1029 if (fio->io_wbc) 1030 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 1031 1032 io->last_block_in_bio = fio->new_blkaddr; 1033 1034 trace_f2fs_submit_page_write(fio->page, fio); 1035 skip: 1036 if (fio->in_list) 1037 goto next; 1038 out: 1039 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1040 !f2fs_is_checkpoint_ready(sbi)) 1041 __submit_merged_bio(io); 1042 f2fs_up_write(&io->io_rwsem); 1043 } 1044 1045 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1046 unsigned nr_pages, blk_opf_t op_flag, 1047 pgoff_t first_idx, bool for_write) 1048 { 1049 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1050 struct bio *bio; 1051 struct bio_post_read_ctx *ctx = NULL; 1052 unsigned int post_read_steps = 0; 1053 sector_t sector; 1054 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1055 1056 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1057 REQ_OP_READ | op_flag, 1058 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1059 if (!bio) 1060 return ERR_PTR(-ENOMEM); 1061 bio->bi_iter.bi_sector = sector; 1062 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1063 bio->bi_end_io = f2fs_read_end_io; 1064 1065 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1066 post_read_steps |= STEP_DECRYPT; 1067 1068 if (f2fs_need_verity(inode, first_idx)) 1069 post_read_steps |= STEP_VERITY; 1070 1071 /* 1072 * STEP_DECOMPRESS is handled specially, since a compressed file might 1073 * contain both compressed and uncompressed clusters. We'll allocate a 1074 * bio_post_read_ctx if the file is compressed, but the caller is 1075 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1076 */ 1077 1078 if (post_read_steps || f2fs_compressed_file(inode)) { 1079 /* Due to the mempool, this never fails. */ 1080 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1081 ctx->bio = bio; 1082 ctx->sbi = sbi; 1083 ctx->enabled_steps = post_read_steps; 1084 ctx->fs_blkaddr = blkaddr; 1085 ctx->decompression_attempted = false; 1086 bio->bi_private = ctx; 1087 } 1088 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1089 1090 return bio; 1091 } 1092 1093 /* This can handle encryption stuffs */ 1094 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1095 block_t blkaddr, blk_opf_t op_flags, 1096 bool for_write) 1097 { 1098 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1099 struct bio *bio; 1100 1101 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1102 page->index, for_write); 1103 if (IS_ERR(bio)) 1104 return PTR_ERR(bio); 1105 1106 /* wait for GCed page writeback via META_MAPPING */ 1107 f2fs_wait_on_block_writeback(inode, blkaddr); 1108 1109 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1110 bio_put(bio); 1111 return -EFAULT; 1112 } 1113 inc_page_count(sbi, F2FS_RD_DATA); 1114 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1115 f2fs_submit_read_bio(sbi, bio, DATA); 1116 return 0; 1117 } 1118 1119 static void __set_data_blkaddr(struct dnode_of_data *dn) 1120 { 1121 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1122 __le32 *addr_array; 1123 int base = 0; 1124 1125 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1126 base = get_extra_isize(dn->inode); 1127 1128 /* Get physical address of data block */ 1129 addr_array = blkaddr_in_node(rn); 1130 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1131 } 1132 1133 /* 1134 * Lock ordering for the change of data block address: 1135 * ->data_page 1136 * ->node_page 1137 * update block addresses in the node page 1138 */ 1139 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1140 { 1141 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1142 __set_data_blkaddr(dn); 1143 if (set_page_dirty(dn->node_page)) 1144 dn->node_changed = true; 1145 } 1146 1147 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1148 { 1149 dn->data_blkaddr = blkaddr; 1150 f2fs_set_data_blkaddr(dn); 1151 f2fs_update_read_extent_cache(dn); 1152 } 1153 1154 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1155 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1156 { 1157 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1158 int err; 1159 1160 if (!count) 1161 return 0; 1162 1163 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1164 return -EPERM; 1165 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1166 return err; 1167 1168 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1169 dn->ofs_in_node, count); 1170 1171 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1172 1173 for (; count > 0; dn->ofs_in_node++) { 1174 block_t blkaddr = f2fs_data_blkaddr(dn); 1175 1176 if (blkaddr == NULL_ADDR) { 1177 dn->data_blkaddr = NEW_ADDR; 1178 __set_data_blkaddr(dn); 1179 count--; 1180 } 1181 } 1182 1183 if (set_page_dirty(dn->node_page)) 1184 dn->node_changed = true; 1185 return 0; 1186 } 1187 1188 /* Should keep dn->ofs_in_node unchanged */ 1189 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1190 { 1191 unsigned int ofs_in_node = dn->ofs_in_node; 1192 int ret; 1193 1194 ret = f2fs_reserve_new_blocks(dn, 1); 1195 dn->ofs_in_node = ofs_in_node; 1196 return ret; 1197 } 1198 1199 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1200 { 1201 bool need_put = dn->inode_page ? false : true; 1202 int err; 1203 1204 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1205 if (err) 1206 return err; 1207 1208 if (dn->data_blkaddr == NULL_ADDR) 1209 err = f2fs_reserve_new_block(dn); 1210 if (err || need_put) 1211 f2fs_put_dnode(dn); 1212 return err; 1213 } 1214 1215 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1216 blk_opf_t op_flags, bool for_write, 1217 pgoff_t *next_pgofs) 1218 { 1219 struct address_space *mapping = inode->i_mapping; 1220 struct dnode_of_data dn; 1221 struct page *page; 1222 int err; 1223 1224 page = f2fs_grab_cache_page(mapping, index, for_write); 1225 if (!page) 1226 return ERR_PTR(-ENOMEM); 1227 1228 if (f2fs_lookup_read_extent_cache_block(inode, index, 1229 &dn.data_blkaddr)) { 1230 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1231 DATA_GENERIC_ENHANCE_READ)) { 1232 err = -EFSCORRUPTED; 1233 f2fs_handle_error(F2FS_I_SB(inode), 1234 ERROR_INVALID_BLKADDR); 1235 goto put_err; 1236 } 1237 goto got_it; 1238 } 1239 1240 set_new_dnode(&dn, inode, NULL, NULL, 0); 1241 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1242 if (err) { 1243 if (err == -ENOENT && next_pgofs) 1244 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1245 goto put_err; 1246 } 1247 f2fs_put_dnode(&dn); 1248 1249 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1250 err = -ENOENT; 1251 if (next_pgofs) 1252 *next_pgofs = index + 1; 1253 goto put_err; 1254 } 1255 if (dn.data_blkaddr != NEW_ADDR && 1256 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1257 dn.data_blkaddr, 1258 DATA_GENERIC_ENHANCE)) { 1259 err = -EFSCORRUPTED; 1260 f2fs_handle_error(F2FS_I_SB(inode), 1261 ERROR_INVALID_BLKADDR); 1262 goto put_err; 1263 } 1264 got_it: 1265 if (PageUptodate(page)) { 1266 unlock_page(page); 1267 return page; 1268 } 1269 1270 /* 1271 * A new dentry page is allocated but not able to be written, since its 1272 * new inode page couldn't be allocated due to -ENOSPC. 1273 * In such the case, its blkaddr can be remained as NEW_ADDR. 1274 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1275 * f2fs_init_inode_metadata. 1276 */ 1277 if (dn.data_blkaddr == NEW_ADDR) { 1278 zero_user_segment(page, 0, PAGE_SIZE); 1279 if (!PageUptodate(page)) 1280 SetPageUptodate(page); 1281 unlock_page(page); 1282 return page; 1283 } 1284 1285 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1286 op_flags, for_write); 1287 if (err) 1288 goto put_err; 1289 return page; 1290 1291 put_err: 1292 f2fs_put_page(page, 1); 1293 return ERR_PTR(err); 1294 } 1295 1296 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1297 pgoff_t *next_pgofs) 1298 { 1299 struct address_space *mapping = inode->i_mapping; 1300 struct page *page; 1301 1302 page = find_get_page(mapping, index); 1303 if (page && PageUptodate(page)) 1304 return page; 1305 f2fs_put_page(page, 0); 1306 1307 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1308 if (IS_ERR(page)) 1309 return page; 1310 1311 if (PageUptodate(page)) 1312 return page; 1313 1314 wait_on_page_locked(page); 1315 if (unlikely(!PageUptodate(page))) { 1316 f2fs_put_page(page, 0); 1317 return ERR_PTR(-EIO); 1318 } 1319 return page; 1320 } 1321 1322 /* 1323 * If it tries to access a hole, return an error. 1324 * Because, the callers, functions in dir.c and GC, should be able to know 1325 * whether this page exists or not. 1326 */ 1327 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1328 bool for_write) 1329 { 1330 struct address_space *mapping = inode->i_mapping; 1331 struct page *page; 1332 repeat: 1333 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1334 if (IS_ERR(page)) 1335 return page; 1336 1337 /* wait for read completion */ 1338 lock_page(page); 1339 if (unlikely(page->mapping != mapping)) { 1340 f2fs_put_page(page, 1); 1341 goto repeat; 1342 } 1343 if (unlikely(!PageUptodate(page))) { 1344 f2fs_put_page(page, 1); 1345 return ERR_PTR(-EIO); 1346 } 1347 return page; 1348 } 1349 1350 /* 1351 * Caller ensures that this data page is never allocated. 1352 * A new zero-filled data page is allocated in the page cache. 1353 * 1354 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1355 * f2fs_unlock_op(). 1356 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1357 * ipage should be released by this function. 1358 */ 1359 struct page *f2fs_get_new_data_page(struct inode *inode, 1360 struct page *ipage, pgoff_t index, bool new_i_size) 1361 { 1362 struct address_space *mapping = inode->i_mapping; 1363 struct page *page; 1364 struct dnode_of_data dn; 1365 int err; 1366 1367 page = f2fs_grab_cache_page(mapping, index, true); 1368 if (!page) { 1369 /* 1370 * before exiting, we should make sure ipage will be released 1371 * if any error occur. 1372 */ 1373 f2fs_put_page(ipage, 1); 1374 return ERR_PTR(-ENOMEM); 1375 } 1376 1377 set_new_dnode(&dn, inode, ipage, NULL, 0); 1378 err = f2fs_reserve_block(&dn, index); 1379 if (err) { 1380 f2fs_put_page(page, 1); 1381 return ERR_PTR(err); 1382 } 1383 if (!ipage) 1384 f2fs_put_dnode(&dn); 1385 1386 if (PageUptodate(page)) 1387 goto got_it; 1388 1389 if (dn.data_blkaddr == NEW_ADDR) { 1390 zero_user_segment(page, 0, PAGE_SIZE); 1391 if (!PageUptodate(page)) 1392 SetPageUptodate(page); 1393 } else { 1394 f2fs_put_page(page, 1); 1395 1396 /* if ipage exists, blkaddr should be NEW_ADDR */ 1397 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1398 page = f2fs_get_lock_data_page(inode, index, true); 1399 if (IS_ERR(page)) 1400 return page; 1401 } 1402 got_it: 1403 if (new_i_size && i_size_read(inode) < 1404 ((loff_t)(index + 1) << PAGE_SHIFT)) 1405 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1406 return page; 1407 } 1408 1409 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1410 { 1411 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1412 struct f2fs_summary sum; 1413 struct node_info ni; 1414 block_t old_blkaddr; 1415 blkcnt_t count = 1; 1416 int err; 1417 1418 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1419 return -EPERM; 1420 1421 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1422 if (err) 1423 return err; 1424 1425 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1426 if (dn->data_blkaddr == NULL_ADDR) { 1427 err = inc_valid_block_count(sbi, dn->inode, &count); 1428 if (unlikely(err)) 1429 return err; 1430 } 1431 1432 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1433 old_blkaddr = dn->data_blkaddr; 1434 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1435 &sum, seg_type, NULL); 1436 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1437 invalidate_mapping_pages(META_MAPPING(sbi), 1438 old_blkaddr, old_blkaddr); 1439 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1440 } 1441 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1442 return 0; 1443 } 1444 1445 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1446 { 1447 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1448 f2fs_down_read(&sbi->node_change); 1449 else 1450 f2fs_lock_op(sbi); 1451 } 1452 1453 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1454 { 1455 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1456 f2fs_up_read(&sbi->node_change); 1457 else 1458 f2fs_unlock_op(sbi); 1459 } 1460 1461 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1462 { 1463 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1464 int err = 0; 1465 1466 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1467 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1468 &dn->data_blkaddr)) 1469 err = f2fs_reserve_block(dn, index); 1470 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1471 1472 return err; 1473 } 1474 1475 static int f2fs_map_no_dnode(struct inode *inode, 1476 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1477 pgoff_t pgoff) 1478 { 1479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1480 1481 /* 1482 * There is one exceptional case that read_node_page() may return 1483 * -ENOENT due to filesystem has been shutdown or cp_error, return 1484 * -EIO in that case. 1485 */ 1486 if (map->m_may_create && 1487 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1488 return -EIO; 1489 1490 if (map->m_next_pgofs) 1491 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1492 if (map->m_next_extent) 1493 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1494 return 0; 1495 } 1496 1497 static bool f2fs_map_blocks_cached(struct inode *inode, 1498 struct f2fs_map_blocks *map, int flag) 1499 { 1500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1501 unsigned int maxblocks = map->m_len; 1502 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1503 struct extent_info ei = {}; 1504 1505 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1506 return false; 1507 1508 map->m_pblk = ei.blk + pgoff - ei.fofs; 1509 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1510 map->m_flags = F2FS_MAP_MAPPED; 1511 if (map->m_next_extent) 1512 *map->m_next_extent = pgoff + map->m_len; 1513 1514 /* for hardware encryption, but to avoid potential issue in future */ 1515 if (flag == F2FS_GET_BLOCK_DIO) 1516 f2fs_wait_on_block_writeback_range(inode, 1517 map->m_pblk, map->m_len); 1518 1519 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1520 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1521 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1522 1523 map->m_bdev = dev->bdev; 1524 map->m_pblk -= dev->start_blk; 1525 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1526 } else { 1527 map->m_bdev = inode->i_sb->s_bdev; 1528 } 1529 return true; 1530 } 1531 1532 /* 1533 * f2fs_map_blocks() tries to find or build mapping relationship which 1534 * maps continuous logical blocks to physical blocks, and return such 1535 * info via f2fs_map_blocks structure. 1536 */ 1537 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1538 { 1539 unsigned int maxblocks = map->m_len; 1540 struct dnode_of_data dn; 1541 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1542 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1543 pgoff_t pgofs, end_offset, end; 1544 int err = 0, ofs = 1; 1545 unsigned int ofs_in_node, last_ofs_in_node; 1546 blkcnt_t prealloc; 1547 block_t blkaddr; 1548 unsigned int start_pgofs; 1549 int bidx = 0; 1550 bool is_hole; 1551 1552 if (!maxblocks) 1553 return 0; 1554 1555 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1556 goto out; 1557 1558 map->m_bdev = inode->i_sb->s_bdev; 1559 map->m_multidev_dio = 1560 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1561 1562 map->m_len = 0; 1563 map->m_flags = 0; 1564 1565 /* it only supports block size == page size */ 1566 pgofs = (pgoff_t)map->m_lblk; 1567 end = pgofs + maxblocks; 1568 1569 next_dnode: 1570 if (map->m_may_create) 1571 f2fs_map_lock(sbi, flag); 1572 1573 /* When reading holes, we need its node page */ 1574 set_new_dnode(&dn, inode, NULL, NULL, 0); 1575 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1576 if (err) { 1577 if (flag == F2FS_GET_BLOCK_BMAP) 1578 map->m_pblk = 0; 1579 if (err == -ENOENT) 1580 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1581 goto unlock_out; 1582 } 1583 1584 start_pgofs = pgofs; 1585 prealloc = 0; 1586 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1587 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1588 1589 next_block: 1590 blkaddr = f2fs_data_blkaddr(&dn); 1591 is_hole = !__is_valid_data_blkaddr(blkaddr); 1592 if (!is_hole && 1593 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1594 err = -EFSCORRUPTED; 1595 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1596 goto sync_out; 1597 } 1598 1599 /* use out-place-update for direct IO under LFS mode */ 1600 if (map->m_may_create && 1601 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) { 1602 if (unlikely(f2fs_cp_error(sbi))) { 1603 err = -EIO; 1604 goto sync_out; 1605 } 1606 1607 switch (flag) { 1608 case F2FS_GET_BLOCK_PRE_AIO: 1609 if (blkaddr == NULL_ADDR) { 1610 prealloc++; 1611 last_ofs_in_node = dn.ofs_in_node; 1612 } 1613 break; 1614 case F2FS_GET_BLOCK_PRE_DIO: 1615 case F2FS_GET_BLOCK_DIO: 1616 err = __allocate_data_block(&dn, map->m_seg_type); 1617 if (err) 1618 goto sync_out; 1619 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1620 file_need_truncate(inode); 1621 set_inode_flag(inode, FI_APPEND_WRITE); 1622 break; 1623 default: 1624 WARN_ON_ONCE(1); 1625 err = -EIO; 1626 goto sync_out; 1627 } 1628 1629 blkaddr = dn.data_blkaddr; 1630 if (is_hole) 1631 map->m_flags |= F2FS_MAP_NEW; 1632 } else if (is_hole) { 1633 if (f2fs_compressed_file(inode) && 1634 f2fs_sanity_check_cluster(&dn) && 1635 (flag != F2FS_GET_BLOCK_FIEMAP || 1636 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1637 err = -EFSCORRUPTED; 1638 f2fs_handle_error(sbi, 1639 ERROR_CORRUPTED_CLUSTER); 1640 goto sync_out; 1641 } 1642 1643 switch (flag) { 1644 case F2FS_GET_BLOCK_PRECACHE: 1645 goto sync_out; 1646 case F2FS_GET_BLOCK_BMAP: 1647 map->m_pblk = 0; 1648 goto sync_out; 1649 case F2FS_GET_BLOCK_FIEMAP: 1650 if (blkaddr == NULL_ADDR) { 1651 if (map->m_next_pgofs) 1652 *map->m_next_pgofs = pgofs + 1; 1653 goto sync_out; 1654 } 1655 break; 1656 default: 1657 /* for defragment case */ 1658 if (map->m_next_pgofs) 1659 *map->m_next_pgofs = pgofs + 1; 1660 goto sync_out; 1661 } 1662 } 1663 1664 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1665 goto skip; 1666 1667 if (map->m_multidev_dio) 1668 bidx = f2fs_target_device_index(sbi, blkaddr); 1669 1670 if (map->m_len == 0) { 1671 /* reserved delalloc block should be mapped for fiemap. */ 1672 if (blkaddr == NEW_ADDR) 1673 map->m_flags |= F2FS_MAP_DELALLOC; 1674 map->m_flags |= F2FS_MAP_MAPPED; 1675 1676 map->m_pblk = blkaddr; 1677 map->m_len = 1; 1678 1679 if (map->m_multidev_dio) 1680 map->m_bdev = FDEV(bidx).bdev; 1681 } else if ((map->m_pblk != NEW_ADDR && 1682 blkaddr == (map->m_pblk + ofs)) || 1683 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1684 flag == F2FS_GET_BLOCK_PRE_DIO) { 1685 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1686 goto sync_out; 1687 ofs++; 1688 map->m_len++; 1689 } else { 1690 goto sync_out; 1691 } 1692 1693 skip: 1694 dn.ofs_in_node++; 1695 pgofs++; 1696 1697 /* preallocate blocks in batch for one dnode page */ 1698 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1699 (pgofs == end || dn.ofs_in_node == end_offset)) { 1700 1701 dn.ofs_in_node = ofs_in_node; 1702 err = f2fs_reserve_new_blocks(&dn, prealloc); 1703 if (err) 1704 goto sync_out; 1705 1706 map->m_len += dn.ofs_in_node - ofs_in_node; 1707 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1708 err = -ENOSPC; 1709 goto sync_out; 1710 } 1711 dn.ofs_in_node = end_offset; 1712 } 1713 1714 if (pgofs >= end) 1715 goto sync_out; 1716 else if (dn.ofs_in_node < end_offset) 1717 goto next_block; 1718 1719 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1720 if (map->m_flags & F2FS_MAP_MAPPED) { 1721 unsigned int ofs = start_pgofs - map->m_lblk; 1722 1723 f2fs_update_read_extent_cache_range(&dn, 1724 start_pgofs, map->m_pblk + ofs, 1725 map->m_len - ofs); 1726 } 1727 } 1728 1729 f2fs_put_dnode(&dn); 1730 1731 if (map->m_may_create) { 1732 f2fs_map_unlock(sbi, flag); 1733 f2fs_balance_fs(sbi, dn.node_changed); 1734 } 1735 goto next_dnode; 1736 1737 sync_out: 1738 1739 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1740 /* 1741 * for hardware encryption, but to avoid potential issue 1742 * in future 1743 */ 1744 f2fs_wait_on_block_writeback_range(inode, 1745 map->m_pblk, map->m_len); 1746 1747 if (map->m_multidev_dio) { 1748 block_t blk_addr = map->m_pblk; 1749 1750 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1751 1752 map->m_bdev = FDEV(bidx).bdev; 1753 map->m_pblk -= FDEV(bidx).start_blk; 1754 1755 if (map->m_may_create) 1756 f2fs_update_device_state(sbi, inode->i_ino, 1757 blk_addr, map->m_len); 1758 1759 f2fs_bug_on(sbi, blk_addr + map->m_len > 1760 FDEV(bidx).end_blk + 1); 1761 } 1762 } 1763 1764 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1765 if (map->m_flags & F2FS_MAP_MAPPED) { 1766 unsigned int ofs = start_pgofs - map->m_lblk; 1767 1768 f2fs_update_read_extent_cache_range(&dn, 1769 start_pgofs, map->m_pblk + ofs, 1770 map->m_len - ofs); 1771 } 1772 if (map->m_next_extent) 1773 *map->m_next_extent = pgofs + 1; 1774 } 1775 f2fs_put_dnode(&dn); 1776 unlock_out: 1777 if (map->m_may_create) { 1778 f2fs_map_unlock(sbi, flag); 1779 f2fs_balance_fs(sbi, dn.node_changed); 1780 } 1781 out: 1782 trace_f2fs_map_blocks(inode, map, flag, err); 1783 return err; 1784 } 1785 1786 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1787 { 1788 struct f2fs_map_blocks map; 1789 block_t last_lblk; 1790 int err; 1791 1792 if (pos + len > i_size_read(inode)) 1793 return false; 1794 1795 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1796 map.m_next_pgofs = NULL; 1797 map.m_next_extent = NULL; 1798 map.m_seg_type = NO_CHECK_TYPE; 1799 map.m_may_create = false; 1800 last_lblk = F2FS_BLK_ALIGN(pos + len); 1801 1802 while (map.m_lblk < last_lblk) { 1803 map.m_len = last_lblk - map.m_lblk; 1804 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1805 if (err || map.m_len == 0) 1806 return false; 1807 map.m_lblk += map.m_len; 1808 } 1809 return true; 1810 } 1811 1812 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1813 { 1814 return (bytes >> inode->i_blkbits); 1815 } 1816 1817 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1818 { 1819 return (blks << inode->i_blkbits); 1820 } 1821 1822 static int f2fs_xattr_fiemap(struct inode *inode, 1823 struct fiemap_extent_info *fieinfo) 1824 { 1825 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1826 struct page *page; 1827 struct node_info ni; 1828 __u64 phys = 0, len; 1829 __u32 flags; 1830 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1831 int err = 0; 1832 1833 if (f2fs_has_inline_xattr(inode)) { 1834 int offset; 1835 1836 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1837 inode->i_ino, false); 1838 if (!page) 1839 return -ENOMEM; 1840 1841 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1842 if (err) { 1843 f2fs_put_page(page, 1); 1844 return err; 1845 } 1846 1847 phys = blks_to_bytes(inode, ni.blk_addr); 1848 offset = offsetof(struct f2fs_inode, i_addr) + 1849 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1850 get_inline_xattr_addrs(inode)); 1851 1852 phys += offset; 1853 len = inline_xattr_size(inode); 1854 1855 f2fs_put_page(page, 1); 1856 1857 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1858 1859 if (!xnid) 1860 flags |= FIEMAP_EXTENT_LAST; 1861 1862 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1863 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1864 if (err) 1865 return err; 1866 } 1867 1868 if (xnid) { 1869 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1870 if (!page) 1871 return -ENOMEM; 1872 1873 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1874 if (err) { 1875 f2fs_put_page(page, 1); 1876 return err; 1877 } 1878 1879 phys = blks_to_bytes(inode, ni.blk_addr); 1880 len = inode->i_sb->s_blocksize; 1881 1882 f2fs_put_page(page, 1); 1883 1884 flags = FIEMAP_EXTENT_LAST; 1885 } 1886 1887 if (phys) { 1888 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1889 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1890 } 1891 1892 return (err < 0 ? err : 0); 1893 } 1894 1895 static loff_t max_inode_blocks(struct inode *inode) 1896 { 1897 loff_t result = ADDRS_PER_INODE(inode); 1898 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1899 1900 /* two direct node blocks */ 1901 result += (leaf_count * 2); 1902 1903 /* two indirect node blocks */ 1904 leaf_count *= NIDS_PER_BLOCK; 1905 result += (leaf_count * 2); 1906 1907 /* one double indirect node block */ 1908 leaf_count *= NIDS_PER_BLOCK; 1909 result += leaf_count; 1910 1911 return result; 1912 } 1913 1914 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1915 u64 start, u64 len) 1916 { 1917 struct f2fs_map_blocks map; 1918 sector_t start_blk, last_blk; 1919 pgoff_t next_pgofs; 1920 u64 logical = 0, phys = 0, size = 0; 1921 u32 flags = 0; 1922 int ret = 0; 1923 bool compr_cluster = false, compr_appended; 1924 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1925 unsigned int count_in_cluster = 0; 1926 loff_t maxbytes; 1927 1928 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1929 ret = f2fs_precache_extents(inode); 1930 if (ret) 1931 return ret; 1932 } 1933 1934 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1935 if (ret) 1936 return ret; 1937 1938 inode_lock(inode); 1939 1940 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1941 if (start > maxbytes) { 1942 ret = -EFBIG; 1943 goto out; 1944 } 1945 1946 if (len > maxbytes || (maxbytes - len) < start) 1947 len = maxbytes - start; 1948 1949 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1950 ret = f2fs_xattr_fiemap(inode, fieinfo); 1951 goto out; 1952 } 1953 1954 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1955 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1956 if (ret != -EAGAIN) 1957 goto out; 1958 } 1959 1960 if (bytes_to_blks(inode, len) == 0) 1961 len = blks_to_bytes(inode, 1); 1962 1963 start_blk = bytes_to_blks(inode, start); 1964 last_blk = bytes_to_blks(inode, start + len - 1); 1965 1966 next: 1967 memset(&map, 0, sizeof(map)); 1968 map.m_lblk = start_blk; 1969 map.m_len = bytes_to_blks(inode, len); 1970 map.m_next_pgofs = &next_pgofs; 1971 map.m_seg_type = NO_CHECK_TYPE; 1972 1973 if (compr_cluster) { 1974 map.m_lblk += 1; 1975 map.m_len = cluster_size - count_in_cluster; 1976 } 1977 1978 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 1979 if (ret) 1980 goto out; 1981 1982 /* HOLE */ 1983 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1984 start_blk = next_pgofs; 1985 1986 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1987 max_inode_blocks(inode))) 1988 goto prep_next; 1989 1990 flags |= FIEMAP_EXTENT_LAST; 1991 } 1992 1993 compr_appended = false; 1994 /* In a case of compressed cluster, append this to the last extent */ 1995 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 1996 !(map.m_flags & F2FS_MAP_FLAGS))) { 1997 compr_appended = true; 1998 goto skip_fill; 1999 } 2000 2001 if (size) { 2002 flags |= FIEMAP_EXTENT_MERGED; 2003 if (IS_ENCRYPTED(inode)) 2004 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2005 2006 ret = fiemap_fill_next_extent(fieinfo, logical, 2007 phys, size, flags); 2008 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2009 if (ret) 2010 goto out; 2011 size = 0; 2012 } 2013 2014 if (start_blk > last_blk) 2015 goto out; 2016 2017 skip_fill: 2018 if (map.m_pblk == COMPRESS_ADDR) { 2019 compr_cluster = true; 2020 count_in_cluster = 1; 2021 } else if (compr_appended) { 2022 unsigned int appended_blks = cluster_size - 2023 count_in_cluster + 1; 2024 size += blks_to_bytes(inode, appended_blks); 2025 start_blk += appended_blks; 2026 compr_cluster = false; 2027 } else { 2028 logical = blks_to_bytes(inode, start_blk); 2029 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2030 blks_to_bytes(inode, map.m_pblk) : 0; 2031 size = blks_to_bytes(inode, map.m_len); 2032 flags = 0; 2033 2034 if (compr_cluster) { 2035 flags = FIEMAP_EXTENT_ENCODED; 2036 count_in_cluster += map.m_len; 2037 if (count_in_cluster == cluster_size) { 2038 compr_cluster = false; 2039 size += blks_to_bytes(inode, 1); 2040 } 2041 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2042 flags = FIEMAP_EXTENT_UNWRITTEN; 2043 } 2044 2045 start_blk += bytes_to_blks(inode, size); 2046 } 2047 2048 prep_next: 2049 cond_resched(); 2050 if (fatal_signal_pending(current)) 2051 ret = -EINTR; 2052 else 2053 goto next; 2054 out: 2055 if (ret == 1) 2056 ret = 0; 2057 2058 inode_unlock(inode); 2059 return ret; 2060 } 2061 2062 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2063 { 2064 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2065 return inode->i_sb->s_maxbytes; 2066 2067 return i_size_read(inode); 2068 } 2069 2070 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2071 unsigned nr_pages, 2072 struct f2fs_map_blocks *map, 2073 struct bio **bio_ret, 2074 sector_t *last_block_in_bio, 2075 bool is_readahead) 2076 { 2077 struct bio *bio = *bio_ret; 2078 const unsigned blocksize = blks_to_bytes(inode, 1); 2079 sector_t block_in_file; 2080 sector_t last_block; 2081 sector_t last_block_in_file; 2082 sector_t block_nr; 2083 int ret = 0; 2084 2085 block_in_file = (sector_t)page_index(page); 2086 last_block = block_in_file + nr_pages; 2087 last_block_in_file = bytes_to_blks(inode, 2088 f2fs_readpage_limit(inode) + blocksize - 1); 2089 if (last_block > last_block_in_file) 2090 last_block = last_block_in_file; 2091 2092 /* just zeroing out page which is beyond EOF */ 2093 if (block_in_file >= last_block) 2094 goto zero_out; 2095 /* 2096 * Map blocks using the previous result first. 2097 */ 2098 if ((map->m_flags & F2FS_MAP_MAPPED) && 2099 block_in_file > map->m_lblk && 2100 block_in_file < (map->m_lblk + map->m_len)) 2101 goto got_it; 2102 2103 /* 2104 * Then do more f2fs_map_blocks() calls until we are 2105 * done with this page. 2106 */ 2107 map->m_lblk = block_in_file; 2108 map->m_len = last_block - block_in_file; 2109 2110 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2111 if (ret) 2112 goto out; 2113 got_it: 2114 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2115 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2116 SetPageMappedToDisk(page); 2117 2118 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2119 DATA_GENERIC_ENHANCE_READ)) { 2120 ret = -EFSCORRUPTED; 2121 f2fs_handle_error(F2FS_I_SB(inode), 2122 ERROR_INVALID_BLKADDR); 2123 goto out; 2124 } 2125 } else { 2126 zero_out: 2127 zero_user_segment(page, 0, PAGE_SIZE); 2128 if (f2fs_need_verity(inode, page->index) && 2129 !fsverity_verify_page(page)) { 2130 ret = -EIO; 2131 goto out; 2132 } 2133 if (!PageUptodate(page)) 2134 SetPageUptodate(page); 2135 unlock_page(page); 2136 goto out; 2137 } 2138 2139 /* 2140 * This page will go to BIO. Do we need to send this 2141 * BIO off first? 2142 */ 2143 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2144 *last_block_in_bio, block_nr) || 2145 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2146 submit_and_realloc: 2147 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2148 bio = NULL; 2149 } 2150 if (bio == NULL) { 2151 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2152 is_readahead ? REQ_RAHEAD : 0, page->index, 2153 false); 2154 if (IS_ERR(bio)) { 2155 ret = PTR_ERR(bio); 2156 bio = NULL; 2157 goto out; 2158 } 2159 } 2160 2161 /* 2162 * If the page is under writeback, we need to wait for 2163 * its completion to see the correct decrypted data. 2164 */ 2165 f2fs_wait_on_block_writeback(inode, block_nr); 2166 2167 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2168 goto submit_and_realloc; 2169 2170 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2171 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2172 F2FS_BLKSIZE); 2173 *last_block_in_bio = block_nr; 2174 goto out; 2175 out: 2176 *bio_ret = bio; 2177 return ret; 2178 } 2179 2180 #ifdef CONFIG_F2FS_FS_COMPRESSION 2181 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2182 unsigned nr_pages, sector_t *last_block_in_bio, 2183 bool is_readahead, bool for_write) 2184 { 2185 struct dnode_of_data dn; 2186 struct inode *inode = cc->inode; 2187 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2188 struct bio *bio = *bio_ret; 2189 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2190 sector_t last_block_in_file; 2191 const unsigned blocksize = blks_to_bytes(inode, 1); 2192 struct decompress_io_ctx *dic = NULL; 2193 struct extent_info ei = {}; 2194 bool from_dnode = true; 2195 int i; 2196 int ret = 0; 2197 2198 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2199 2200 last_block_in_file = bytes_to_blks(inode, 2201 f2fs_readpage_limit(inode) + blocksize - 1); 2202 2203 /* get rid of pages beyond EOF */ 2204 for (i = 0; i < cc->cluster_size; i++) { 2205 struct page *page = cc->rpages[i]; 2206 2207 if (!page) 2208 continue; 2209 if ((sector_t)page->index >= last_block_in_file) { 2210 zero_user_segment(page, 0, PAGE_SIZE); 2211 if (!PageUptodate(page)) 2212 SetPageUptodate(page); 2213 } else if (!PageUptodate(page)) { 2214 continue; 2215 } 2216 unlock_page(page); 2217 if (for_write) 2218 put_page(page); 2219 cc->rpages[i] = NULL; 2220 cc->nr_rpages--; 2221 } 2222 2223 /* we are done since all pages are beyond EOF */ 2224 if (f2fs_cluster_is_empty(cc)) 2225 goto out; 2226 2227 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2228 from_dnode = false; 2229 2230 if (!from_dnode) 2231 goto skip_reading_dnode; 2232 2233 set_new_dnode(&dn, inode, NULL, NULL, 0); 2234 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2235 if (ret) 2236 goto out; 2237 2238 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2239 2240 skip_reading_dnode: 2241 for (i = 1; i < cc->cluster_size; i++) { 2242 block_t blkaddr; 2243 2244 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2245 dn.ofs_in_node + i) : 2246 ei.blk + i - 1; 2247 2248 if (!__is_valid_data_blkaddr(blkaddr)) 2249 break; 2250 2251 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2252 ret = -EFAULT; 2253 goto out_put_dnode; 2254 } 2255 cc->nr_cpages++; 2256 2257 if (!from_dnode && i >= ei.c_len) 2258 break; 2259 } 2260 2261 /* nothing to decompress */ 2262 if (cc->nr_cpages == 0) { 2263 ret = 0; 2264 goto out_put_dnode; 2265 } 2266 2267 dic = f2fs_alloc_dic(cc); 2268 if (IS_ERR(dic)) { 2269 ret = PTR_ERR(dic); 2270 goto out_put_dnode; 2271 } 2272 2273 for (i = 0; i < cc->nr_cpages; i++) { 2274 struct page *page = dic->cpages[i]; 2275 block_t blkaddr; 2276 struct bio_post_read_ctx *ctx; 2277 2278 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2279 dn.ofs_in_node + i + 1) : 2280 ei.blk + i; 2281 2282 f2fs_wait_on_block_writeback(inode, blkaddr); 2283 2284 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2285 if (atomic_dec_and_test(&dic->remaining_pages)) 2286 f2fs_decompress_cluster(dic, true); 2287 continue; 2288 } 2289 2290 if (bio && (!page_is_mergeable(sbi, bio, 2291 *last_block_in_bio, blkaddr) || 2292 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2293 submit_and_realloc: 2294 f2fs_submit_read_bio(sbi, bio, DATA); 2295 bio = NULL; 2296 } 2297 2298 if (!bio) { 2299 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2300 is_readahead ? REQ_RAHEAD : 0, 2301 page->index, for_write); 2302 if (IS_ERR(bio)) { 2303 ret = PTR_ERR(bio); 2304 f2fs_decompress_end_io(dic, ret, true); 2305 f2fs_put_dnode(&dn); 2306 *bio_ret = NULL; 2307 return ret; 2308 } 2309 } 2310 2311 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2312 goto submit_and_realloc; 2313 2314 ctx = get_post_read_ctx(bio); 2315 ctx->enabled_steps |= STEP_DECOMPRESS; 2316 refcount_inc(&dic->refcnt); 2317 2318 inc_page_count(sbi, F2FS_RD_DATA); 2319 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2320 *last_block_in_bio = blkaddr; 2321 } 2322 2323 if (from_dnode) 2324 f2fs_put_dnode(&dn); 2325 2326 *bio_ret = bio; 2327 return 0; 2328 2329 out_put_dnode: 2330 if (from_dnode) 2331 f2fs_put_dnode(&dn); 2332 out: 2333 for (i = 0; i < cc->cluster_size; i++) { 2334 if (cc->rpages[i]) { 2335 ClearPageUptodate(cc->rpages[i]); 2336 unlock_page(cc->rpages[i]); 2337 } 2338 } 2339 *bio_ret = bio; 2340 return ret; 2341 } 2342 #endif 2343 2344 /* 2345 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2346 * Major change was from block_size == page_size in f2fs by default. 2347 */ 2348 static int f2fs_mpage_readpages(struct inode *inode, 2349 struct readahead_control *rac, struct page *page) 2350 { 2351 struct bio *bio = NULL; 2352 sector_t last_block_in_bio = 0; 2353 struct f2fs_map_blocks map; 2354 #ifdef CONFIG_F2FS_FS_COMPRESSION 2355 struct compress_ctx cc = { 2356 .inode = inode, 2357 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2358 .cluster_size = F2FS_I(inode)->i_cluster_size, 2359 .cluster_idx = NULL_CLUSTER, 2360 .rpages = NULL, 2361 .cpages = NULL, 2362 .nr_rpages = 0, 2363 .nr_cpages = 0, 2364 }; 2365 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2366 #endif 2367 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2368 unsigned max_nr_pages = nr_pages; 2369 int ret = 0; 2370 2371 map.m_pblk = 0; 2372 map.m_lblk = 0; 2373 map.m_len = 0; 2374 map.m_flags = 0; 2375 map.m_next_pgofs = NULL; 2376 map.m_next_extent = NULL; 2377 map.m_seg_type = NO_CHECK_TYPE; 2378 map.m_may_create = false; 2379 2380 for (; nr_pages; nr_pages--) { 2381 if (rac) { 2382 page = readahead_page(rac); 2383 prefetchw(&page->flags); 2384 } 2385 2386 #ifdef CONFIG_F2FS_FS_COMPRESSION 2387 if (f2fs_compressed_file(inode)) { 2388 /* there are remained compressed pages, submit them */ 2389 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2390 ret = f2fs_read_multi_pages(&cc, &bio, 2391 max_nr_pages, 2392 &last_block_in_bio, 2393 rac != NULL, false); 2394 f2fs_destroy_compress_ctx(&cc, false); 2395 if (ret) 2396 goto set_error_page; 2397 } 2398 if (cc.cluster_idx == NULL_CLUSTER) { 2399 if (nc_cluster_idx == 2400 page->index >> cc.log_cluster_size) { 2401 goto read_single_page; 2402 } 2403 2404 ret = f2fs_is_compressed_cluster(inode, page->index); 2405 if (ret < 0) 2406 goto set_error_page; 2407 else if (!ret) { 2408 nc_cluster_idx = 2409 page->index >> cc.log_cluster_size; 2410 goto read_single_page; 2411 } 2412 2413 nc_cluster_idx = NULL_CLUSTER; 2414 } 2415 ret = f2fs_init_compress_ctx(&cc); 2416 if (ret) 2417 goto set_error_page; 2418 2419 f2fs_compress_ctx_add_page(&cc, page); 2420 2421 goto next_page; 2422 } 2423 read_single_page: 2424 #endif 2425 2426 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2427 &bio, &last_block_in_bio, rac); 2428 if (ret) { 2429 #ifdef CONFIG_F2FS_FS_COMPRESSION 2430 set_error_page: 2431 #endif 2432 zero_user_segment(page, 0, PAGE_SIZE); 2433 unlock_page(page); 2434 } 2435 #ifdef CONFIG_F2FS_FS_COMPRESSION 2436 next_page: 2437 #endif 2438 if (rac) 2439 put_page(page); 2440 2441 #ifdef CONFIG_F2FS_FS_COMPRESSION 2442 if (f2fs_compressed_file(inode)) { 2443 /* last page */ 2444 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2445 ret = f2fs_read_multi_pages(&cc, &bio, 2446 max_nr_pages, 2447 &last_block_in_bio, 2448 rac != NULL, false); 2449 f2fs_destroy_compress_ctx(&cc, false); 2450 } 2451 } 2452 #endif 2453 } 2454 if (bio) 2455 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2456 return ret; 2457 } 2458 2459 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2460 { 2461 struct page *page = &folio->page; 2462 struct inode *inode = page_file_mapping(page)->host; 2463 int ret = -EAGAIN; 2464 2465 trace_f2fs_readpage(page, DATA); 2466 2467 if (!f2fs_is_compress_backend_ready(inode)) { 2468 unlock_page(page); 2469 return -EOPNOTSUPP; 2470 } 2471 2472 /* If the file has inline data, try to read it directly */ 2473 if (f2fs_has_inline_data(inode)) 2474 ret = f2fs_read_inline_data(inode, page); 2475 if (ret == -EAGAIN) 2476 ret = f2fs_mpage_readpages(inode, NULL, page); 2477 return ret; 2478 } 2479 2480 static void f2fs_readahead(struct readahead_control *rac) 2481 { 2482 struct inode *inode = rac->mapping->host; 2483 2484 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2485 2486 if (!f2fs_is_compress_backend_ready(inode)) 2487 return; 2488 2489 /* If the file has inline data, skip readahead */ 2490 if (f2fs_has_inline_data(inode)) 2491 return; 2492 2493 f2fs_mpage_readpages(inode, rac, NULL); 2494 } 2495 2496 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2497 { 2498 struct inode *inode = fio->page->mapping->host; 2499 struct page *mpage, *page; 2500 gfp_t gfp_flags = GFP_NOFS; 2501 2502 if (!f2fs_encrypted_file(inode)) 2503 return 0; 2504 2505 page = fio->compressed_page ? fio->compressed_page : fio->page; 2506 2507 /* wait for GCed page writeback via META_MAPPING */ 2508 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2509 2510 if (fscrypt_inode_uses_inline_crypto(inode)) 2511 return 0; 2512 2513 retry_encrypt: 2514 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2515 PAGE_SIZE, 0, gfp_flags); 2516 if (IS_ERR(fio->encrypted_page)) { 2517 /* flush pending IOs and wait for a while in the ENOMEM case */ 2518 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2519 f2fs_flush_merged_writes(fio->sbi); 2520 memalloc_retry_wait(GFP_NOFS); 2521 gfp_flags |= __GFP_NOFAIL; 2522 goto retry_encrypt; 2523 } 2524 return PTR_ERR(fio->encrypted_page); 2525 } 2526 2527 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2528 if (mpage) { 2529 if (PageUptodate(mpage)) 2530 memcpy(page_address(mpage), 2531 page_address(fio->encrypted_page), PAGE_SIZE); 2532 f2fs_put_page(mpage, 1); 2533 } 2534 return 0; 2535 } 2536 2537 static inline bool check_inplace_update_policy(struct inode *inode, 2538 struct f2fs_io_info *fio) 2539 { 2540 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2541 2542 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2543 is_inode_flag_set(inode, FI_OPU_WRITE)) 2544 return false; 2545 if (IS_F2FS_IPU_FORCE(sbi)) 2546 return true; 2547 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2548 return true; 2549 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2550 return true; 2551 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2552 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2553 return true; 2554 2555 /* 2556 * IPU for rewrite async pages 2557 */ 2558 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2559 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2560 return true; 2561 2562 /* this is only set during fdatasync */ 2563 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2564 return true; 2565 2566 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2567 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2568 return true; 2569 2570 return false; 2571 } 2572 2573 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2574 { 2575 /* swap file is migrating in aligned write mode */ 2576 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2577 return false; 2578 2579 if (f2fs_is_pinned_file(inode)) 2580 return true; 2581 2582 /* if this is cold file, we should overwrite to avoid fragmentation */ 2583 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2584 return true; 2585 2586 return check_inplace_update_policy(inode, fio); 2587 } 2588 2589 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2590 { 2591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2592 2593 /* The below cases were checked when setting it. */ 2594 if (f2fs_is_pinned_file(inode)) 2595 return false; 2596 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2597 return true; 2598 if (f2fs_lfs_mode(sbi)) 2599 return true; 2600 if (S_ISDIR(inode->i_mode)) 2601 return true; 2602 if (IS_NOQUOTA(inode)) 2603 return true; 2604 if (f2fs_is_atomic_file(inode)) 2605 return true; 2606 2607 /* swap file is migrating in aligned write mode */ 2608 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2609 return true; 2610 2611 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2612 return true; 2613 2614 if (fio) { 2615 if (page_private_gcing(fio->page)) 2616 return true; 2617 if (page_private_dummy(fio->page)) 2618 return true; 2619 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2620 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2621 return true; 2622 } 2623 return false; 2624 } 2625 2626 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2627 { 2628 struct inode *inode = fio->page->mapping->host; 2629 2630 if (f2fs_should_update_outplace(inode, fio)) 2631 return false; 2632 2633 return f2fs_should_update_inplace(inode, fio); 2634 } 2635 2636 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2637 { 2638 struct page *page = fio->page; 2639 struct inode *inode = page->mapping->host; 2640 struct dnode_of_data dn; 2641 struct node_info ni; 2642 bool ipu_force = false; 2643 int err = 0; 2644 2645 /* Use COW inode to make dnode_of_data for atomic write */ 2646 if (f2fs_is_atomic_file(inode)) 2647 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2648 else 2649 set_new_dnode(&dn, inode, NULL, NULL, 0); 2650 2651 if (need_inplace_update(fio) && 2652 f2fs_lookup_read_extent_cache_block(inode, page->index, 2653 &fio->old_blkaddr)) { 2654 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2655 DATA_GENERIC_ENHANCE)) { 2656 f2fs_handle_error(fio->sbi, 2657 ERROR_INVALID_BLKADDR); 2658 return -EFSCORRUPTED; 2659 } 2660 2661 ipu_force = true; 2662 fio->need_lock = LOCK_DONE; 2663 goto got_it; 2664 } 2665 2666 /* Deadlock due to between page->lock and f2fs_lock_op */ 2667 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2668 return -EAGAIN; 2669 2670 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2671 if (err) 2672 goto out; 2673 2674 fio->old_blkaddr = dn.data_blkaddr; 2675 2676 /* This page is already truncated */ 2677 if (fio->old_blkaddr == NULL_ADDR) { 2678 ClearPageUptodate(page); 2679 clear_page_private_gcing(page); 2680 goto out_writepage; 2681 } 2682 got_it: 2683 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2684 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2685 DATA_GENERIC_ENHANCE)) { 2686 err = -EFSCORRUPTED; 2687 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 2688 goto out_writepage; 2689 } 2690 2691 /* 2692 * If current allocation needs SSR, 2693 * it had better in-place writes for updated data. 2694 */ 2695 if (ipu_force || 2696 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2697 need_inplace_update(fio))) { 2698 err = f2fs_encrypt_one_page(fio); 2699 if (err) 2700 goto out_writepage; 2701 2702 set_page_writeback(page); 2703 f2fs_put_dnode(&dn); 2704 if (fio->need_lock == LOCK_REQ) 2705 f2fs_unlock_op(fio->sbi); 2706 err = f2fs_inplace_write_data(fio); 2707 if (err) { 2708 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2709 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2710 if (PageWriteback(page)) 2711 end_page_writeback(page); 2712 } else { 2713 set_inode_flag(inode, FI_UPDATE_WRITE); 2714 } 2715 trace_f2fs_do_write_data_page(fio->page, IPU); 2716 return err; 2717 } 2718 2719 if (fio->need_lock == LOCK_RETRY) { 2720 if (!f2fs_trylock_op(fio->sbi)) { 2721 err = -EAGAIN; 2722 goto out_writepage; 2723 } 2724 fio->need_lock = LOCK_REQ; 2725 } 2726 2727 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2728 if (err) 2729 goto out_writepage; 2730 2731 fio->version = ni.version; 2732 2733 err = f2fs_encrypt_one_page(fio); 2734 if (err) 2735 goto out_writepage; 2736 2737 set_page_writeback(page); 2738 2739 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2740 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2741 2742 /* LFS mode write path */ 2743 f2fs_outplace_write_data(&dn, fio); 2744 trace_f2fs_do_write_data_page(page, OPU); 2745 set_inode_flag(inode, FI_APPEND_WRITE); 2746 if (page->index == 0) 2747 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2748 out_writepage: 2749 f2fs_put_dnode(&dn); 2750 out: 2751 if (fio->need_lock == LOCK_REQ) 2752 f2fs_unlock_op(fio->sbi); 2753 return err; 2754 } 2755 2756 int f2fs_write_single_data_page(struct page *page, int *submitted, 2757 struct bio **bio, 2758 sector_t *last_block, 2759 struct writeback_control *wbc, 2760 enum iostat_type io_type, 2761 int compr_blocks, 2762 bool allow_balance) 2763 { 2764 struct inode *inode = page->mapping->host; 2765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2766 loff_t i_size = i_size_read(inode); 2767 const pgoff_t end_index = ((unsigned long long)i_size) 2768 >> PAGE_SHIFT; 2769 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2770 unsigned offset = 0; 2771 bool need_balance_fs = false; 2772 int err = 0; 2773 struct f2fs_io_info fio = { 2774 .sbi = sbi, 2775 .ino = inode->i_ino, 2776 .type = DATA, 2777 .op = REQ_OP_WRITE, 2778 .op_flags = wbc_to_write_flags(wbc), 2779 .old_blkaddr = NULL_ADDR, 2780 .page = page, 2781 .encrypted_page = NULL, 2782 .submitted = 0, 2783 .compr_blocks = compr_blocks, 2784 .need_lock = LOCK_RETRY, 2785 .post_read = f2fs_post_read_required(inode) ? 1 : 0, 2786 .io_type = io_type, 2787 .io_wbc = wbc, 2788 .bio = bio, 2789 .last_block = last_block, 2790 }; 2791 2792 trace_f2fs_writepage(page, DATA); 2793 2794 /* we should bypass data pages to proceed the kworker jobs */ 2795 if (unlikely(f2fs_cp_error(sbi))) { 2796 mapping_set_error(page->mapping, -EIO); 2797 /* 2798 * don't drop any dirty dentry pages for keeping lastest 2799 * directory structure. 2800 */ 2801 if (S_ISDIR(inode->i_mode)) 2802 goto redirty_out; 2803 goto out; 2804 } 2805 2806 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2807 goto redirty_out; 2808 2809 if (page->index < end_index || 2810 f2fs_verity_in_progress(inode) || 2811 compr_blocks) 2812 goto write; 2813 2814 /* 2815 * If the offset is out-of-range of file size, 2816 * this page does not have to be written to disk. 2817 */ 2818 offset = i_size & (PAGE_SIZE - 1); 2819 if ((page->index >= end_index + 1) || !offset) 2820 goto out; 2821 2822 zero_user_segment(page, offset, PAGE_SIZE); 2823 write: 2824 if (f2fs_is_drop_cache(inode)) 2825 goto out; 2826 2827 /* Dentry/quota blocks are controlled by checkpoint */ 2828 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2829 /* 2830 * We need to wait for node_write to avoid block allocation during 2831 * checkpoint. This can only happen to quota writes which can cause 2832 * the below discard race condition. 2833 */ 2834 if (IS_NOQUOTA(inode)) 2835 f2fs_down_read(&sbi->node_write); 2836 2837 fio.need_lock = LOCK_DONE; 2838 err = f2fs_do_write_data_page(&fio); 2839 2840 if (IS_NOQUOTA(inode)) 2841 f2fs_up_read(&sbi->node_write); 2842 2843 goto done; 2844 } 2845 2846 if (!wbc->for_reclaim) 2847 need_balance_fs = true; 2848 else if (has_not_enough_free_secs(sbi, 0, 0)) 2849 goto redirty_out; 2850 else 2851 set_inode_flag(inode, FI_HOT_DATA); 2852 2853 err = -EAGAIN; 2854 if (f2fs_has_inline_data(inode)) { 2855 err = f2fs_write_inline_data(inode, page); 2856 if (!err) 2857 goto out; 2858 } 2859 2860 if (err == -EAGAIN) { 2861 err = f2fs_do_write_data_page(&fio); 2862 if (err == -EAGAIN) { 2863 fio.need_lock = LOCK_REQ; 2864 err = f2fs_do_write_data_page(&fio); 2865 } 2866 } 2867 2868 if (err) { 2869 file_set_keep_isize(inode); 2870 } else { 2871 spin_lock(&F2FS_I(inode)->i_size_lock); 2872 if (F2FS_I(inode)->last_disk_size < psize) 2873 F2FS_I(inode)->last_disk_size = psize; 2874 spin_unlock(&F2FS_I(inode)->i_size_lock); 2875 } 2876 2877 done: 2878 if (err && err != -ENOENT) 2879 goto redirty_out; 2880 2881 out: 2882 inode_dec_dirty_pages(inode); 2883 if (err) { 2884 ClearPageUptodate(page); 2885 clear_page_private_gcing(page); 2886 } 2887 2888 if (wbc->for_reclaim) { 2889 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2890 clear_inode_flag(inode, FI_HOT_DATA); 2891 f2fs_remove_dirty_inode(inode); 2892 submitted = NULL; 2893 } 2894 unlock_page(page); 2895 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2896 !F2FS_I(inode)->wb_task && allow_balance) 2897 f2fs_balance_fs(sbi, need_balance_fs); 2898 2899 if (unlikely(f2fs_cp_error(sbi))) { 2900 f2fs_submit_merged_write(sbi, DATA); 2901 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2902 submitted = NULL; 2903 } 2904 2905 if (submitted) 2906 *submitted = fio.submitted; 2907 2908 return 0; 2909 2910 redirty_out: 2911 redirty_page_for_writepage(wbc, page); 2912 /* 2913 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2914 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2915 * file_write_and_wait_range() will see EIO error, which is critical 2916 * to return value of fsync() followed by atomic_write failure to user. 2917 */ 2918 if (!err || wbc->for_reclaim) 2919 return AOP_WRITEPAGE_ACTIVATE; 2920 unlock_page(page); 2921 return err; 2922 } 2923 2924 static int f2fs_write_data_page(struct page *page, 2925 struct writeback_control *wbc) 2926 { 2927 #ifdef CONFIG_F2FS_FS_COMPRESSION 2928 struct inode *inode = page->mapping->host; 2929 2930 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2931 goto out; 2932 2933 if (f2fs_compressed_file(inode)) { 2934 if (f2fs_is_compressed_cluster(inode, page->index)) { 2935 redirty_page_for_writepage(wbc, page); 2936 return AOP_WRITEPAGE_ACTIVATE; 2937 } 2938 } 2939 out: 2940 #endif 2941 2942 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2943 wbc, FS_DATA_IO, 0, true); 2944 } 2945 2946 /* 2947 * This function was copied from write_cache_pages from mm/page-writeback.c. 2948 * The major change is making write step of cold data page separately from 2949 * warm/hot data page. 2950 */ 2951 static int f2fs_write_cache_pages(struct address_space *mapping, 2952 struct writeback_control *wbc, 2953 enum iostat_type io_type) 2954 { 2955 int ret = 0; 2956 int done = 0, retry = 0; 2957 struct page *pages[F2FS_ONSTACK_PAGES]; 2958 struct folio_batch fbatch; 2959 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2960 struct bio *bio = NULL; 2961 sector_t last_block; 2962 #ifdef CONFIG_F2FS_FS_COMPRESSION 2963 struct inode *inode = mapping->host; 2964 struct compress_ctx cc = { 2965 .inode = inode, 2966 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2967 .cluster_size = F2FS_I(inode)->i_cluster_size, 2968 .cluster_idx = NULL_CLUSTER, 2969 .rpages = NULL, 2970 .nr_rpages = 0, 2971 .cpages = NULL, 2972 .valid_nr_cpages = 0, 2973 .rbuf = NULL, 2974 .cbuf = NULL, 2975 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2976 .private = NULL, 2977 }; 2978 #endif 2979 int nr_folios, p, idx; 2980 int nr_pages; 2981 pgoff_t index; 2982 pgoff_t end; /* Inclusive */ 2983 pgoff_t done_index; 2984 int range_whole = 0; 2985 xa_mark_t tag; 2986 int nwritten = 0; 2987 int submitted = 0; 2988 int i; 2989 2990 folio_batch_init(&fbatch); 2991 2992 if (get_dirty_pages(mapping->host) <= 2993 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2994 set_inode_flag(mapping->host, FI_HOT_DATA); 2995 else 2996 clear_inode_flag(mapping->host, FI_HOT_DATA); 2997 2998 if (wbc->range_cyclic) { 2999 index = mapping->writeback_index; /* prev offset */ 3000 end = -1; 3001 } else { 3002 index = wbc->range_start >> PAGE_SHIFT; 3003 end = wbc->range_end >> PAGE_SHIFT; 3004 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3005 range_whole = 1; 3006 } 3007 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3008 tag = PAGECACHE_TAG_TOWRITE; 3009 else 3010 tag = PAGECACHE_TAG_DIRTY; 3011 retry: 3012 retry = 0; 3013 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3014 tag_pages_for_writeback(mapping, index, end); 3015 done_index = index; 3016 while (!done && !retry && (index <= end)) { 3017 nr_pages = 0; 3018 again: 3019 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3020 tag, &fbatch); 3021 if (nr_folios == 0) { 3022 if (nr_pages) 3023 goto write; 3024 break; 3025 } 3026 3027 for (i = 0; i < nr_folios; i++) { 3028 struct folio *folio = fbatch.folios[i]; 3029 3030 idx = 0; 3031 p = folio_nr_pages(folio); 3032 add_more: 3033 pages[nr_pages] = folio_page(folio, idx); 3034 folio_get(folio); 3035 if (++nr_pages == F2FS_ONSTACK_PAGES) { 3036 index = folio->index + idx + 1; 3037 folio_batch_release(&fbatch); 3038 goto write; 3039 } 3040 if (++idx < p) 3041 goto add_more; 3042 } 3043 folio_batch_release(&fbatch); 3044 goto again; 3045 write: 3046 for (i = 0; i < nr_pages; i++) { 3047 struct page *page = pages[i]; 3048 struct folio *folio = page_folio(page); 3049 bool need_readd; 3050 readd: 3051 need_readd = false; 3052 #ifdef CONFIG_F2FS_FS_COMPRESSION 3053 if (f2fs_compressed_file(inode)) { 3054 void *fsdata = NULL; 3055 struct page *pagep; 3056 int ret2; 3057 3058 ret = f2fs_init_compress_ctx(&cc); 3059 if (ret) { 3060 done = 1; 3061 break; 3062 } 3063 3064 if (!f2fs_cluster_can_merge_page(&cc, 3065 folio->index)) { 3066 ret = f2fs_write_multi_pages(&cc, 3067 &submitted, wbc, io_type); 3068 if (!ret) 3069 need_readd = true; 3070 goto result; 3071 } 3072 3073 if (unlikely(f2fs_cp_error(sbi))) 3074 goto lock_folio; 3075 3076 if (!f2fs_cluster_is_empty(&cc)) 3077 goto lock_folio; 3078 3079 if (f2fs_all_cluster_page_ready(&cc, 3080 pages, i, nr_pages, true)) 3081 goto lock_folio; 3082 3083 ret2 = f2fs_prepare_compress_overwrite( 3084 inode, &pagep, 3085 folio->index, &fsdata); 3086 if (ret2 < 0) { 3087 ret = ret2; 3088 done = 1; 3089 break; 3090 } else if (ret2 && 3091 (!f2fs_compress_write_end(inode, 3092 fsdata, folio->index, 1) || 3093 !f2fs_all_cluster_page_ready(&cc, 3094 pages, i, nr_pages, 3095 false))) { 3096 retry = 1; 3097 break; 3098 } 3099 } 3100 #endif 3101 /* give a priority to WB_SYNC threads */ 3102 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3103 wbc->sync_mode == WB_SYNC_NONE) { 3104 done = 1; 3105 break; 3106 } 3107 #ifdef CONFIG_F2FS_FS_COMPRESSION 3108 lock_folio: 3109 #endif 3110 done_index = folio->index; 3111 retry_write: 3112 folio_lock(folio); 3113 3114 if (unlikely(folio->mapping != mapping)) { 3115 continue_unlock: 3116 folio_unlock(folio); 3117 continue; 3118 } 3119 3120 if (!folio_test_dirty(folio)) { 3121 /* someone wrote it for us */ 3122 goto continue_unlock; 3123 } 3124 3125 if (folio_test_writeback(folio)) { 3126 if (wbc->sync_mode != WB_SYNC_NONE) 3127 f2fs_wait_on_page_writeback( 3128 &folio->page, 3129 DATA, true, true); 3130 else 3131 goto continue_unlock; 3132 } 3133 3134 if (!folio_clear_dirty_for_io(folio)) 3135 goto continue_unlock; 3136 3137 #ifdef CONFIG_F2FS_FS_COMPRESSION 3138 if (f2fs_compressed_file(inode)) { 3139 folio_get(folio); 3140 f2fs_compress_ctx_add_page(&cc, &folio->page); 3141 continue; 3142 } 3143 #endif 3144 ret = f2fs_write_single_data_page(&folio->page, 3145 &submitted, &bio, &last_block, 3146 wbc, io_type, 0, true); 3147 if (ret == AOP_WRITEPAGE_ACTIVATE) 3148 folio_unlock(folio); 3149 #ifdef CONFIG_F2FS_FS_COMPRESSION 3150 result: 3151 #endif 3152 nwritten += submitted; 3153 wbc->nr_to_write -= submitted; 3154 3155 if (unlikely(ret)) { 3156 /* 3157 * keep nr_to_write, since vfs uses this to 3158 * get # of written pages. 3159 */ 3160 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3161 ret = 0; 3162 goto next; 3163 } else if (ret == -EAGAIN) { 3164 ret = 0; 3165 if (wbc->sync_mode == WB_SYNC_ALL) { 3166 f2fs_io_schedule_timeout( 3167 DEFAULT_IO_TIMEOUT); 3168 goto retry_write; 3169 } 3170 goto next; 3171 } 3172 done_index = folio->index + 3173 folio_nr_pages(folio); 3174 done = 1; 3175 break; 3176 } 3177 3178 if (wbc->nr_to_write <= 0 && 3179 wbc->sync_mode == WB_SYNC_NONE) { 3180 done = 1; 3181 break; 3182 } 3183 next: 3184 if (need_readd) 3185 goto readd; 3186 } 3187 release_pages(pages, nr_pages); 3188 cond_resched(); 3189 } 3190 #ifdef CONFIG_F2FS_FS_COMPRESSION 3191 /* flush remained pages in compress cluster */ 3192 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3193 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3194 nwritten += submitted; 3195 wbc->nr_to_write -= submitted; 3196 if (ret) { 3197 done = 1; 3198 retry = 0; 3199 } 3200 } 3201 if (f2fs_compressed_file(inode)) 3202 f2fs_destroy_compress_ctx(&cc, false); 3203 #endif 3204 if (retry) { 3205 index = 0; 3206 end = -1; 3207 goto retry; 3208 } 3209 if (wbc->range_cyclic && !done) 3210 done_index = 0; 3211 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3212 mapping->writeback_index = done_index; 3213 3214 if (nwritten) 3215 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3216 NULL, 0, DATA); 3217 /* submit cached bio of IPU write */ 3218 if (bio) 3219 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3220 3221 return ret; 3222 } 3223 3224 static inline bool __should_serialize_io(struct inode *inode, 3225 struct writeback_control *wbc) 3226 { 3227 /* to avoid deadlock in path of data flush */ 3228 if (F2FS_I(inode)->wb_task) 3229 return false; 3230 3231 if (!S_ISREG(inode->i_mode)) 3232 return false; 3233 if (IS_NOQUOTA(inode)) 3234 return false; 3235 3236 if (f2fs_need_compress_data(inode)) 3237 return true; 3238 if (wbc->sync_mode != WB_SYNC_ALL) 3239 return true; 3240 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3241 return true; 3242 return false; 3243 } 3244 3245 static int __f2fs_write_data_pages(struct address_space *mapping, 3246 struct writeback_control *wbc, 3247 enum iostat_type io_type) 3248 { 3249 struct inode *inode = mapping->host; 3250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3251 struct blk_plug plug; 3252 int ret; 3253 bool locked = false; 3254 3255 /* deal with chardevs and other special file */ 3256 if (!mapping->a_ops->writepage) 3257 return 0; 3258 3259 /* skip writing if there is no dirty page in this inode */ 3260 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3261 return 0; 3262 3263 /* during POR, we don't need to trigger writepage at all. */ 3264 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3265 goto skip_write; 3266 3267 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3268 wbc->sync_mode == WB_SYNC_NONE && 3269 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3270 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3271 goto skip_write; 3272 3273 /* skip writing in file defragment preparing stage */ 3274 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3275 goto skip_write; 3276 3277 trace_f2fs_writepages(mapping->host, wbc, DATA); 3278 3279 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3280 if (wbc->sync_mode == WB_SYNC_ALL) 3281 atomic_inc(&sbi->wb_sync_req[DATA]); 3282 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3283 /* to avoid potential deadlock */ 3284 if (current->plug) 3285 blk_finish_plug(current->plug); 3286 goto skip_write; 3287 } 3288 3289 if (__should_serialize_io(inode, wbc)) { 3290 mutex_lock(&sbi->writepages); 3291 locked = true; 3292 } 3293 3294 blk_start_plug(&plug); 3295 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3296 blk_finish_plug(&plug); 3297 3298 if (locked) 3299 mutex_unlock(&sbi->writepages); 3300 3301 if (wbc->sync_mode == WB_SYNC_ALL) 3302 atomic_dec(&sbi->wb_sync_req[DATA]); 3303 /* 3304 * if some pages were truncated, we cannot guarantee its mapping->host 3305 * to detect pending bios. 3306 */ 3307 3308 f2fs_remove_dirty_inode(inode); 3309 return ret; 3310 3311 skip_write: 3312 wbc->pages_skipped += get_dirty_pages(inode); 3313 trace_f2fs_writepages(mapping->host, wbc, DATA); 3314 return 0; 3315 } 3316 3317 static int f2fs_write_data_pages(struct address_space *mapping, 3318 struct writeback_control *wbc) 3319 { 3320 struct inode *inode = mapping->host; 3321 3322 return __f2fs_write_data_pages(mapping, wbc, 3323 F2FS_I(inode)->cp_task == current ? 3324 FS_CP_DATA_IO : FS_DATA_IO); 3325 } 3326 3327 void f2fs_write_failed(struct inode *inode, loff_t to) 3328 { 3329 loff_t i_size = i_size_read(inode); 3330 3331 if (IS_NOQUOTA(inode)) 3332 return; 3333 3334 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3335 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3336 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3337 filemap_invalidate_lock(inode->i_mapping); 3338 3339 truncate_pagecache(inode, i_size); 3340 f2fs_truncate_blocks(inode, i_size, true); 3341 3342 filemap_invalidate_unlock(inode->i_mapping); 3343 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3344 } 3345 } 3346 3347 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3348 struct page *page, loff_t pos, unsigned len, 3349 block_t *blk_addr, bool *node_changed) 3350 { 3351 struct inode *inode = page->mapping->host; 3352 pgoff_t index = page->index; 3353 struct dnode_of_data dn; 3354 struct page *ipage; 3355 bool locked = false; 3356 int flag = F2FS_GET_BLOCK_PRE_AIO; 3357 int err = 0; 3358 3359 /* 3360 * If a whole page is being written and we already preallocated all the 3361 * blocks, then there is no need to get a block address now. 3362 */ 3363 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3364 return 0; 3365 3366 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3367 if (f2fs_has_inline_data(inode)) { 3368 if (pos + len > MAX_INLINE_DATA(inode)) 3369 flag = F2FS_GET_BLOCK_DEFAULT; 3370 f2fs_map_lock(sbi, flag); 3371 locked = true; 3372 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3373 f2fs_map_lock(sbi, flag); 3374 locked = true; 3375 } 3376 3377 restart: 3378 /* check inline_data */ 3379 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3380 if (IS_ERR(ipage)) { 3381 err = PTR_ERR(ipage); 3382 goto unlock_out; 3383 } 3384 3385 set_new_dnode(&dn, inode, ipage, ipage, 0); 3386 3387 if (f2fs_has_inline_data(inode)) { 3388 if (pos + len <= MAX_INLINE_DATA(inode)) { 3389 f2fs_do_read_inline_data(page, ipage); 3390 set_inode_flag(inode, FI_DATA_EXIST); 3391 if (inode->i_nlink) 3392 set_page_private_inline(ipage); 3393 goto out; 3394 } 3395 err = f2fs_convert_inline_page(&dn, page); 3396 if (err || dn.data_blkaddr != NULL_ADDR) 3397 goto out; 3398 } 3399 3400 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3401 &dn.data_blkaddr)) { 3402 if (locked) { 3403 err = f2fs_reserve_block(&dn, index); 3404 goto out; 3405 } 3406 3407 /* hole case */ 3408 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3409 if (!err && dn.data_blkaddr != NULL_ADDR) 3410 goto out; 3411 f2fs_put_dnode(&dn); 3412 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3413 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3414 locked = true; 3415 goto restart; 3416 } 3417 out: 3418 if (!err) { 3419 /* convert_inline_page can make node_changed */ 3420 *blk_addr = dn.data_blkaddr; 3421 *node_changed = dn.node_changed; 3422 } 3423 f2fs_put_dnode(&dn); 3424 unlock_out: 3425 if (locked) 3426 f2fs_map_unlock(sbi, flag); 3427 return err; 3428 } 3429 3430 static int __find_data_block(struct inode *inode, pgoff_t index, 3431 block_t *blk_addr) 3432 { 3433 struct dnode_of_data dn; 3434 struct page *ipage; 3435 int err = 0; 3436 3437 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3438 if (IS_ERR(ipage)) 3439 return PTR_ERR(ipage); 3440 3441 set_new_dnode(&dn, inode, ipage, ipage, 0); 3442 3443 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3444 &dn.data_blkaddr)) { 3445 /* hole case */ 3446 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3447 if (err) { 3448 dn.data_blkaddr = NULL_ADDR; 3449 err = 0; 3450 } 3451 } 3452 *blk_addr = dn.data_blkaddr; 3453 f2fs_put_dnode(&dn); 3454 return err; 3455 } 3456 3457 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3458 block_t *blk_addr, bool *node_changed) 3459 { 3460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3461 struct dnode_of_data dn; 3462 struct page *ipage; 3463 int err = 0; 3464 3465 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3466 3467 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3468 if (IS_ERR(ipage)) { 3469 err = PTR_ERR(ipage); 3470 goto unlock_out; 3471 } 3472 set_new_dnode(&dn, inode, ipage, ipage, 0); 3473 3474 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3475 &dn.data_blkaddr)) 3476 err = f2fs_reserve_block(&dn, index); 3477 3478 *blk_addr = dn.data_blkaddr; 3479 *node_changed = dn.node_changed; 3480 f2fs_put_dnode(&dn); 3481 3482 unlock_out: 3483 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3484 return err; 3485 } 3486 3487 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3488 struct page *page, loff_t pos, unsigned int len, 3489 block_t *blk_addr, bool *node_changed) 3490 { 3491 struct inode *inode = page->mapping->host; 3492 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3493 pgoff_t index = page->index; 3494 int err = 0; 3495 block_t ori_blk_addr = NULL_ADDR; 3496 3497 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3498 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3499 goto reserve_block; 3500 3501 /* Look for the block in COW inode first */ 3502 err = __find_data_block(cow_inode, index, blk_addr); 3503 if (err) 3504 return err; 3505 else if (*blk_addr != NULL_ADDR) 3506 return 0; 3507 3508 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3509 goto reserve_block; 3510 3511 /* Look for the block in the original inode */ 3512 err = __find_data_block(inode, index, &ori_blk_addr); 3513 if (err) 3514 return err; 3515 3516 reserve_block: 3517 /* Finally, we should reserve a new block in COW inode for the update */ 3518 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3519 if (err) 3520 return err; 3521 inc_atomic_write_cnt(inode); 3522 3523 if (ori_blk_addr != NULL_ADDR) 3524 *blk_addr = ori_blk_addr; 3525 return 0; 3526 } 3527 3528 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3529 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3530 { 3531 struct inode *inode = mapping->host; 3532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3533 struct page *page = NULL; 3534 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3535 bool need_balance = false; 3536 block_t blkaddr = NULL_ADDR; 3537 int err = 0; 3538 3539 trace_f2fs_write_begin(inode, pos, len); 3540 3541 if (!f2fs_is_checkpoint_ready(sbi)) { 3542 err = -ENOSPC; 3543 goto fail; 3544 } 3545 3546 /* 3547 * We should check this at this moment to avoid deadlock on inode page 3548 * and #0 page. The locking rule for inline_data conversion should be: 3549 * lock_page(page #0) -> lock_page(inode_page) 3550 */ 3551 if (index != 0) { 3552 err = f2fs_convert_inline_inode(inode); 3553 if (err) 3554 goto fail; 3555 } 3556 3557 #ifdef CONFIG_F2FS_FS_COMPRESSION 3558 if (f2fs_compressed_file(inode)) { 3559 int ret; 3560 3561 *fsdata = NULL; 3562 3563 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3564 goto repeat; 3565 3566 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3567 index, fsdata); 3568 if (ret < 0) { 3569 err = ret; 3570 goto fail; 3571 } else if (ret) { 3572 return 0; 3573 } 3574 } 3575 #endif 3576 3577 repeat: 3578 /* 3579 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3580 * wait_for_stable_page. Will wait that below with our IO control. 3581 */ 3582 page = f2fs_pagecache_get_page(mapping, index, 3583 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3584 if (!page) { 3585 err = -ENOMEM; 3586 goto fail; 3587 } 3588 3589 /* TODO: cluster can be compressed due to race with .writepage */ 3590 3591 *pagep = page; 3592 3593 if (f2fs_is_atomic_file(inode)) 3594 err = prepare_atomic_write_begin(sbi, page, pos, len, 3595 &blkaddr, &need_balance); 3596 else 3597 err = prepare_write_begin(sbi, page, pos, len, 3598 &blkaddr, &need_balance); 3599 if (err) 3600 goto fail; 3601 3602 if (need_balance && !IS_NOQUOTA(inode) && 3603 has_not_enough_free_secs(sbi, 0, 0)) { 3604 unlock_page(page); 3605 f2fs_balance_fs(sbi, true); 3606 lock_page(page); 3607 if (page->mapping != mapping) { 3608 /* The page got truncated from under us */ 3609 f2fs_put_page(page, 1); 3610 goto repeat; 3611 } 3612 } 3613 3614 f2fs_wait_on_page_writeback(page, DATA, false, true); 3615 3616 if (len == PAGE_SIZE || PageUptodate(page)) 3617 return 0; 3618 3619 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3620 !f2fs_verity_in_progress(inode)) { 3621 zero_user_segment(page, len, PAGE_SIZE); 3622 return 0; 3623 } 3624 3625 if (blkaddr == NEW_ADDR) { 3626 zero_user_segment(page, 0, PAGE_SIZE); 3627 SetPageUptodate(page); 3628 } else { 3629 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3630 DATA_GENERIC_ENHANCE_READ)) { 3631 err = -EFSCORRUPTED; 3632 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3633 goto fail; 3634 } 3635 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3636 if (err) 3637 goto fail; 3638 3639 lock_page(page); 3640 if (unlikely(page->mapping != mapping)) { 3641 f2fs_put_page(page, 1); 3642 goto repeat; 3643 } 3644 if (unlikely(!PageUptodate(page))) { 3645 err = -EIO; 3646 goto fail; 3647 } 3648 } 3649 return 0; 3650 3651 fail: 3652 f2fs_put_page(page, 1); 3653 f2fs_write_failed(inode, pos + len); 3654 return err; 3655 } 3656 3657 static int f2fs_write_end(struct file *file, 3658 struct address_space *mapping, 3659 loff_t pos, unsigned len, unsigned copied, 3660 struct page *page, void *fsdata) 3661 { 3662 struct inode *inode = page->mapping->host; 3663 3664 trace_f2fs_write_end(inode, pos, len, copied); 3665 3666 /* 3667 * This should be come from len == PAGE_SIZE, and we expect copied 3668 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3669 * let generic_perform_write() try to copy data again through copied=0. 3670 */ 3671 if (!PageUptodate(page)) { 3672 if (unlikely(copied != len)) 3673 copied = 0; 3674 else 3675 SetPageUptodate(page); 3676 } 3677 3678 #ifdef CONFIG_F2FS_FS_COMPRESSION 3679 /* overwrite compressed file */ 3680 if (f2fs_compressed_file(inode) && fsdata) { 3681 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3682 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3683 3684 if (pos + copied > i_size_read(inode) && 3685 !f2fs_verity_in_progress(inode)) 3686 f2fs_i_size_write(inode, pos + copied); 3687 return copied; 3688 } 3689 #endif 3690 3691 if (!copied) 3692 goto unlock_out; 3693 3694 set_page_dirty(page); 3695 3696 if (pos + copied > i_size_read(inode) && 3697 !f2fs_verity_in_progress(inode)) { 3698 f2fs_i_size_write(inode, pos + copied); 3699 if (f2fs_is_atomic_file(inode)) 3700 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3701 pos + copied); 3702 } 3703 unlock_out: 3704 f2fs_put_page(page, 1); 3705 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3706 return copied; 3707 } 3708 3709 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3710 { 3711 struct inode *inode = folio->mapping->host; 3712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3713 3714 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3715 (offset || length != folio_size(folio))) 3716 return; 3717 3718 if (folio_test_dirty(folio)) { 3719 if (inode->i_ino == F2FS_META_INO(sbi)) { 3720 dec_page_count(sbi, F2FS_DIRTY_META); 3721 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3722 dec_page_count(sbi, F2FS_DIRTY_NODES); 3723 } else { 3724 inode_dec_dirty_pages(inode); 3725 f2fs_remove_dirty_inode(inode); 3726 } 3727 } 3728 3729 clear_page_private_reference(&folio->page); 3730 clear_page_private_gcing(&folio->page); 3731 3732 if (test_opt(sbi, COMPRESS_CACHE) && 3733 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3734 clear_page_private_data(&folio->page); 3735 3736 folio_detach_private(folio); 3737 } 3738 3739 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3740 { 3741 struct f2fs_sb_info *sbi; 3742 3743 /* If this is dirty folio, keep private data */ 3744 if (folio_test_dirty(folio)) 3745 return false; 3746 3747 sbi = F2FS_M_SB(folio->mapping); 3748 if (test_opt(sbi, COMPRESS_CACHE)) { 3749 struct inode *inode = folio->mapping->host; 3750 3751 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3752 clear_page_private_data(&folio->page); 3753 } 3754 3755 clear_page_private_reference(&folio->page); 3756 clear_page_private_gcing(&folio->page); 3757 3758 folio_detach_private(folio); 3759 return true; 3760 } 3761 3762 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3763 struct folio *folio) 3764 { 3765 struct inode *inode = mapping->host; 3766 3767 trace_f2fs_set_page_dirty(&folio->page, DATA); 3768 3769 if (!folio_test_uptodate(folio)) 3770 folio_mark_uptodate(folio); 3771 BUG_ON(folio_test_swapcache(folio)); 3772 3773 if (filemap_dirty_folio(mapping, folio)) { 3774 f2fs_update_dirty_folio(inode, folio); 3775 return true; 3776 } 3777 return false; 3778 } 3779 3780 3781 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3782 { 3783 #ifdef CONFIG_F2FS_FS_COMPRESSION 3784 struct dnode_of_data dn; 3785 sector_t start_idx, blknr = 0; 3786 int ret; 3787 3788 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3789 3790 set_new_dnode(&dn, inode, NULL, NULL, 0); 3791 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3792 if (ret) 3793 return 0; 3794 3795 if (dn.data_blkaddr != COMPRESS_ADDR) { 3796 dn.ofs_in_node += block - start_idx; 3797 blknr = f2fs_data_blkaddr(&dn); 3798 if (!__is_valid_data_blkaddr(blknr)) 3799 blknr = 0; 3800 } 3801 3802 f2fs_put_dnode(&dn); 3803 return blknr; 3804 #else 3805 return 0; 3806 #endif 3807 } 3808 3809 3810 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3811 { 3812 struct inode *inode = mapping->host; 3813 sector_t blknr = 0; 3814 3815 if (f2fs_has_inline_data(inode)) 3816 goto out; 3817 3818 /* make sure allocating whole blocks */ 3819 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3820 filemap_write_and_wait(mapping); 3821 3822 /* Block number less than F2FS MAX BLOCKS */ 3823 if (unlikely(block >= max_file_blocks(inode))) 3824 goto out; 3825 3826 if (f2fs_compressed_file(inode)) { 3827 blknr = f2fs_bmap_compress(inode, block); 3828 } else { 3829 struct f2fs_map_blocks map; 3830 3831 memset(&map, 0, sizeof(map)); 3832 map.m_lblk = block; 3833 map.m_len = 1; 3834 map.m_next_pgofs = NULL; 3835 map.m_seg_type = NO_CHECK_TYPE; 3836 3837 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3838 blknr = map.m_pblk; 3839 } 3840 out: 3841 trace_f2fs_bmap(inode, block, blknr); 3842 return blknr; 3843 } 3844 3845 #ifdef CONFIG_SWAP 3846 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3847 unsigned int blkcnt) 3848 { 3849 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3850 unsigned int blkofs; 3851 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3852 unsigned int secidx = start_blk / blk_per_sec; 3853 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3854 int ret = 0; 3855 3856 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3857 filemap_invalidate_lock(inode->i_mapping); 3858 3859 set_inode_flag(inode, FI_ALIGNED_WRITE); 3860 set_inode_flag(inode, FI_OPU_WRITE); 3861 3862 for (; secidx < end_sec; secidx++) { 3863 f2fs_down_write(&sbi->pin_sem); 3864 3865 f2fs_lock_op(sbi); 3866 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3867 f2fs_unlock_op(sbi); 3868 3869 set_inode_flag(inode, FI_SKIP_WRITES); 3870 3871 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3872 struct page *page; 3873 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3874 3875 page = f2fs_get_lock_data_page(inode, blkidx, true); 3876 if (IS_ERR(page)) { 3877 f2fs_up_write(&sbi->pin_sem); 3878 ret = PTR_ERR(page); 3879 goto done; 3880 } 3881 3882 set_page_dirty(page); 3883 f2fs_put_page(page, 1); 3884 } 3885 3886 clear_inode_flag(inode, FI_SKIP_WRITES); 3887 3888 ret = filemap_fdatawrite(inode->i_mapping); 3889 3890 f2fs_up_write(&sbi->pin_sem); 3891 3892 if (ret) 3893 break; 3894 } 3895 3896 done: 3897 clear_inode_flag(inode, FI_SKIP_WRITES); 3898 clear_inode_flag(inode, FI_OPU_WRITE); 3899 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3900 3901 filemap_invalidate_unlock(inode->i_mapping); 3902 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3903 3904 return ret; 3905 } 3906 3907 static int check_swap_activate(struct swap_info_struct *sis, 3908 struct file *swap_file, sector_t *span) 3909 { 3910 struct address_space *mapping = swap_file->f_mapping; 3911 struct inode *inode = mapping->host; 3912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3913 sector_t cur_lblock; 3914 sector_t last_lblock; 3915 sector_t pblock; 3916 sector_t lowest_pblock = -1; 3917 sector_t highest_pblock = 0; 3918 int nr_extents = 0; 3919 unsigned long nr_pblocks; 3920 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3921 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3922 unsigned int not_aligned = 0; 3923 int ret = 0; 3924 3925 /* 3926 * Map all the blocks into the extent list. This code doesn't try 3927 * to be very smart. 3928 */ 3929 cur_lblock = 0; 3930 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3931 3932 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3933 struct f2fs_map_blocks map; 3934 retry: 3935 cond_resched(); 3936 3937 memset(&map, 0, sizeof(map)); 3938 map.m_lblk = cur_lblock; 3939 map.m_len = last_lblock - cur_lblock; 3940 map.m_next_pgofs = NULL; 3941 map.m_next_extent = NULL; 3942 map.m_seg_type = NO_CHECK_TYPE; 3943 map.m_may_create = false; 3944 3945 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3946 if (ret) 3947 goto out; 3948 3949 /* hole */ 3950 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3951 f2fs_err(sbi, "Swapfile has holes"); 3952 ret = -EINVAL; 3953 goto out; 3954 } 3955 3956 pblock = map.m_pblk; 3957 nr_pblocks = map.m_len; 3958 3959 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3960 nr_pblocks & sec_blks_mask) { 3961 not_aligned++; 3962 3963 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3964 if (cur_lblock + nr_pblocks > sis->max) 3965 nr_pblocks -= blks_per_sec; 3966 3967 if (!nr_pblocks) { 3968 /* this extent is last one */ 3969 nr_pblocks = map.m_len; 3970 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3971 goto next; 3972 } 3973 3974 ret = f2fs_migrate_blocks(inode, cur_lblock, 3975 nr_pblocks); 3976 if (ret) 3977 goto out; 3978 goto retry; 3979 } 3980 next: 3981 if (cur_lblock + nr_pblocks >= sis->max) 3982 nr_pblocks = sis->max - cur_lblock; 3983 3984 if (cur_lblock) { /* exclude the header page */ 3985 if (pblock < lowest_pblock) 3986 lowest_pblock = pblock; 3987 if (pblock + nr_pblocks - 1 > highest_pblock) 3988 highest_pblock = pblock + nr_pblocks - 1; 3989 } 3990 3991 /* 3992 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3993 */ 3994 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3995 if (ret < 0) 3996 goto out; 3997 nr_extents += ret; 3998 cur_lblock += nr_pblocks; 3999 } 4000 ret = nr_extents; 4001 *span = 1 + highest_pblock - lowest_pblock; 4002 if (cur_lblock == 0) 4003 cur_lblock = 1; /* force Empty message */ 4004 sis->max = cur_lblock; 4005 sis->pages = cur_lblock - 1; 4006 sis->highest_bit = cur_lblock - 1; 4007 out: 4008 if (not_aligned) 4009 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 4010 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4011 return ret; 4012 } 4013 4014 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4015 sector_t *span) 4016 { 4017 struct inode *inode = file_inode(file); 4018 int ret; 4019 4020 if (!S_ISREG(inode->i_mode)) 4021 return -EINVAL; 4022 4023 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4024 return -EROFS; 4025 4026 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 4027 f2fs_err(F2FS_I_SB(inode), 4028 "Swapfile not supported in LFS mode"); 4029 return -EINVAL; 4030 } 4031 4032 ret = f2fs_convert_inline_inode(inode); 4033 if (ret) 4034 return ret; 4035 4036 if (!f2fs_disable_compressed_file(inode)) 4037 return -EINVAL; 4038 4039 f2fs_precache_extents(inode); 4040 4041 ret = check_swap_activate(sis, file, span); 4042 if (ret < 0) 4043 return ret; 4044 4045 stat_inc_swapfile_inode(inode); 4046 set_inode_flag(inode, FI_PIN_FILE); 4047 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4048 return ret; 4049 } 4050 4051 static void f2fs_swap_deactivate(struct file *file) 4052 { 4053 struct inode *inode = file_inode(file); 4054 4055 stat_dec_swapfile_inode(inode); 4056 clear_inode_flag(inode, FI_PIN_FILE); 4057 } 4058 #else 4059 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4060 sector_t *span) 4061 { 4062 return -EOPNOTSUPP; 4063 } 4064 4065 static void f2fs_swap_deactivate(struct file *file) 4066 { 4067 } 4068 #endif 4069 4070 const struct address_space_operations f2fs_dblock_aops = { 4071 .read_folio = f2fs_read_data_folio, 4072 .readahead = f2fs_readahead, 4073 .writepage = f2fs_write_data_page, 4074 .writepages = f2fs_write_data_pages, 4075 .write_begin = f2fs_write_begin, 4076 .write_end = f2fs_write_end, 4077 .dirty_folio = f2fs_dirty_data_folio, 4078 .migrate_folio = filemap_migrate_folio, 4079 .invalidate_folio = f2fs_invalidate_folio, 4080 .release_folio = f2fs_release_folio, 4081 .direct_IO = noop_direct_IO, 4082 .bmap = f2fs_bmap, 4083 .swap_activate = f2fs_swap_activate, 4084 .swap_deactivate = f2fs_swap_deactivate, 4085 }; 4086 4087 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4088 { 4089 struct address_space *mapping = page_mapping(page); 4090 unsigned long flags; 4091 4092 xa_lock_irqsave(&mapping->i_pages, flags); 4093 __xa_clear_mark(&mapping->i_pages, page_index(page), 4094 PAGECACHE_TAG_DIRTY); 4095 xa_unlock_irqrestore(&mapping->i_pages, flags); 4096 } 4097 4098 int __init f2fs_init_post_read_processing(void) 4099 { 4100 bio_post_read_ctx_cache = 4101 kmem_cache_create("f2fs_bio_post_read_ctx", 4102 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4103 if (!bio_post_read_ctx_cache) 4104 goto fail; 4105 bio_post_read_ctx_pool = 4106 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4107 bio_post_read_ctx_cache); 4108 if (!bio_post_read_ctx_pool) 4109 goto fail_free_cache; 4110 return 0; 4111 4112 fail_free_cache: 4113 kmem_cache_destroy(bio_post_read_ctx_cache); 4114 fail: 4115 return -ENOMEM; 4116 } 4117 4118 void f2fs_destroy_post_read_processing(void) 4119 { 4120 mempool_destroy(bio_post_read_ctx_pool); 4121 kmem_cache_destroy(bio_post_read_ctx_cache); 4122 } 4123 4124 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4125 { 4126 if (!f2fs_sb_has_encrypt(sbi) && 4127 !f2fs_sb_has_verity(sbi) && 4128 !f2fs_sb_has_compression(sbi)) 4129 return 0; 4130 4131 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4132 WQ_UNBOUND | WQ_HIGHPRI, 4133 num_online_cpus()); 4134 return sbi->post_read_wq ? 0 : -ENOMEM; 4135 } 4136 4137 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4138 { 4139 if (sbi->post_read_wq) 4140 destroy_workqueue(sbi->post_read_wq); 4141 } 4142 4143 int __init f2fs_init_bio_entry_cache(void) 4144 { 4145 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4146 sizeof(struct bio_entry)); 4147 return bio_entry_slab ? 0 : -ENOMEM; 4148 } 4149 4150 void f2fs_destroy_bio_entry_cache(void) 4151 { 4152 kmem_cache_destroy(bio_entry_slab); 4153 } 4154 4155 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4156 unsigned int flags, struct iomap *iomap, 4157 struct iomap *srcmap) 4158 { 4159 struct f2fs_map_blocks map = {}; 4160 pgoff_t next_pgofs = 0; 4161 int err; 4162 4163 map.m_lblk = bytes_to_blks(inode, offset); 4164 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4165 map.m_next_pgofs = &next_pgofs; 4166 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4167 if (flags & IOMAP_WRITE) 4168 map.m_may_create = true; 4169 4170 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4171 if (err) 4172 return err; 4173 4174 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4175 4176 /* 4177 * When inline encryption is enabled, sometimes I/O to an encrypted file 4178 * has to be broken up to guarantee DUN contiguity. Handle this by 4179 * limiting the length of the mapping returned. 4180 */ 4181 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4182 4183 /* 4184 * We should never see delalloc or compressed extents here based on 4185 * prior flushing and checks. 4186 */ 4187 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4188 return -EINVAL; 4189 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4190 return -EINVAL; 4191 4192 if (map.m_pblk != NULL_ADDR) { 4193 iomap->length = blks_to_bytes(inode, map.m_len); 4194 iomap->type = IOMAP_MAPPED; 4195 iomap->flags |= IOMAP_F_MERGED; 4196 iomap->bdev = map.m_bdev; 4197 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4198 } else { 4199 if (flags & IOMAP_WRITE) 4200 return -ENOTBLK; 4201 iomap->length = blks_to_bytes(inode, next_pgofs) - 4202 iomap->offset; 4203 iomap->type = IOMAP_HOLE; 4204 iomap->addr = IOMAP_NULL_ADDR; 4205 } 4206 4207 if (map.m_flags & F2FS_MAP_NEW) 4208 iomap->flags |= IOMAP_F_NEW; 4209 if ((inode->i_state & I_DIRTY_DATASYNC) || 4210 offset + length > i_size_read(inode)) 4211 iomap->flags |= IOMAP_F_DIRTY; 4212 4213 return 0; 4214 } 4215 4216 const struct iomap_ops f2fs_iomap_ops = { 4217 .iomap_begin = f2fs_iomap_begin, 4218 }; 4219