1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS); 44 } 45 46 void f2fs_destroy_bioset(void) 47 { 48 bioset_exit(&f2fs_bioset); 49 } 50 51 bool f2fs_is_cp_guaranteed(struct page *page) 52 { 53 struct address_space *mapping = page->mapping; 54 struct inode *inode; 55 struct f2fs_sb_info *sbi; 56 57 if (!mapping) 58 return false; 59 60 inode = mapping->host; 61 sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi) || 64 inode->i_ino == F2FS_NODE_INO(sbi) || 65 S_ISDIR(inode->i_mode)) 66 return true; 67 68 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 69 page_private_gcing(page)) 70 return true; 71 return false; 72 } 73 74 static enum count_type __read_io_type(struct page *page) 75 { 76 struct address_space *mapping = page_file_mapping(page); 77 78 if (mapping) { 79 struct inode *inode = mapping->host; 80 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 81 82 if (inode->i_ino == F2FS_META_INO(sbi)) 83 return F2FS_RD_META; 84 85 if (inode->i_ino == F2FS_NODE_INO(sbi)) 86 return F2FS_RD_NODE; 87 } 88 return F2FS_RD_DATA; 89 } 90 91 /* postprocessing steps for read bios */ 92 enum bio_post_read_step { 93 #ifdef CONFIG_FS_ENCRYPTION 94 STEP_DECRYPT = BIT(0), 95 #else 96 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 97 #endif 98 #ifdef CONFIG_F2FS_FS_COMPRESSION 99 STEP_DECOMPRESS = BIT(1), 100 #else 101 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 102 #endif 103 #ifdef CONFIG_FS_VERITY 104 STEP_VERITY = BIT(2), 105 #else 106 STEP_VERITY = 0, /* compile out the verity-related code */ 107 #endif 108 }; 109 110 struct bio_post_read_ctx { 111 struct bio *bio; 112 struct f2fs_sb_info *sbi; 113 struct work_struct work; 114 unsigned int enabled_steps; 115 /* 116 * decompression_attempted keeps track of whether 117 * f2fs_end_read_compressed_page() has been called on the pages in the 118 * bio that belong to a compressed cluster yet. 119 */ 120 bool decompression_attempted; 121 block_t fs_blkaddr; 122 }; 123 124 /* 125 * Update and unlock a bio's pages, and free the bio. 126 * 127 * This marks pages up-to-date only if there was no error in the bio (I/O error, 128 * decryption error, or verity error), as indicated by bio->bi_status. 129 * 130 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 131 * aren't marked up-to-date here, as decompression is done on a per-compression- 132 * cluster basis rather than a per-bio basis. Instead, we only must do two 133 * things for each compressed page here: call f2fs_end_read_compressed_page() 134 * with failed=true if an error occurred before it would have normally gotten 135 * called (i.e., I/O error or decryption error, but *not* verity error), and 136 * release the bio's reference to the decompress_io_ctx of the page's cluster. 137 */ 138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 139 { 140 struct bio_vec *bv; 141 struct bvec_iter_all iter_all; 142 struct bio_post_read_ctx *ctx = bio->bi_private; 143 144 bio_for_each_segment_all(bv, bio, iter_all) { 145 struct page *page = bv->bv_page; 146 147 if (f2fs_is_compressed_page(page)) { 148 if (ctx && !ctx->decompression_attempted) 149 f2fs_end_read_compressed_page(page, true, 0, 150 in_task); 151 f2fs_put_page_dic(page, in_task); 152 continue; 153 } 154 155 if (bio->bi_status) 156 ClearPageUptodate(page); 157 else 158 SetPageUptodate(page); 159 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 160 unlock_page(page); 161 } 162 163 if (ctx) 164 mempool_free(ctx, bio_post_read_ctx_pool); 165 bio_put(bio); 166 } 167 168 static void f2fs_verify_bio(struct work_struct *work) 169 { 170 struct bio_post_read_ctx *ctx = 171 container_of(work, struct bio_post_read_ctx, work); 172 struct bio *bio = ctx->bio; 173 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 174 175 /* 176 * fsverity_verify_bio() may call readahead() again, and while verity 177 * will be disabled for this, decryption and/or decompression may still 178 * be needed, resulting in another bio_post_read_ctx being allocated. 179 * So to prevent deadlocks we need to release the current ctx to the 180 * mempool first. This assumes that verity is the last post-read step. 181 */ 182 mempool_free(ctx, bio_post_read_ctx_pool); 183 bio->bi_private = NULL; 184 185 /* 186 * Verify the bio's pages with fs-verity. Exclude compressed pages, 187 * as those were handled separately by f2fs_end_read_compressed_page(). 188 */ 189 if (may_have_compressed_pages) { 190 struct bio_vec *bv; 191 struct bvec_iter_all iter_all; 192 193 bio_for_each_segment_all(bv, bio, iter_all) { 194 struct page *page = bv->bv_page; 195 196 if (!f2fs_is_compressed_page(page) && 197 !fsverity_verify_page(page)) { 198 bio->bi_status = BLK_STS_IOERR; 199 break; 200 } 201 } 202 } else { 203 fsverity_verify_bio(bio); 204 } 205 206 f2fs_finish_read_bio(bio, true); 207 } 208 209 /* 210 * If the bio's data needs to be verified with fs-verity, then enqueue the 211 * verity work for the bio. Otherwise finish the bio now. 212 * 213 * Note that to avoid deadlocks, the verity work can't be done on the 214 * decryption/decompression workqueue. This is because verifying the data pages 215 * can involve reading verity metadata pages from the file, and these verity 216 * metadata pages may be encrypted and/or compressed. 217 */ 218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 219 { 220 struct bio_post_read_ctx *ctx = bio->bi_private; 221 222 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 223 INIT_WORK(&ctx->work, f2fs_verify_bio); 224 fsverity_enqueue_verify_work(&ctx->work); 225 } else { 226 f2fs_finish_read_bio(bio, in_task); 227 } 228 } 229 230 /* 231 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 232 * remaining page was read by @ctx->bio. 233 * 234 * Note that a bio may span clusters (even a mix of compressed and uncompressed 235 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 236 * that the bio includes at least one compressed page. The actual decompression 237 * is done on a per-cluster basis, not a per-bio basis. 238 */ 239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 240 bool in_task) 241 { 242 struct bio_vec *bv; 243 struct bvec_iter_all iter_all; 244 bool all_compressed = true; 245 block_t blkaddr = ctx->fs_blkaddr; 246 247 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 248 struct page *page = bv->bv_page; 249 250 if (f2fs_is_compressed_page(page)) 251 f2fs_end_read_compressed_page(page, false, blkaddr, 252 in_task); 253 else 254 all_compressed = false; 255 256 blkaddr++; 257 } 258 259 ctx->decompression_attempted = true; 260 261 /* 262 * Optimization: if all the bio's pages are compressed, then scheduling 263 * the per-bio verity work is unnecessary, as verity will be fully 264 * handled at the compression cluster level. 265 */ 266 if (all_compressed) 267 ctx->enabled_steps &= ~STEP_VERITY; 268 } 269 270 static void f2fs_post_read_work(struct work_struct *work) 271 { 272 struct bio_post_read_ctx *ctx = 273 container_of(work, struct bio_post_read_ctx, work); 274 struct bio *bio = ctx->bio; 275 276 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 277 f2fs_finish_read_bio(bio, true); 278 return; 279 } 280 281 if (ctx->enabled_steps & STEP_DECOMPRESS) 282 f2fs_handle_step_decompress(ctx, true); 283 284 f2fs_verify_and_finish_bio(bio, true); 285 } 286 287 static void f2fs_read_end_io(struct bio *bio) 288 { 289 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 290 struct bio_post_read_ctx *ctx; 291 bool intask = in_task(); 292 293 iostat_update_and_unbind_ctx(bio); 294 ctx = bio->bi_private; 295 296 if (time_to_inject(sbi, FAULT_READ_IO)) 297 bio->bi_status = BLK_STS_IOERR; 298 299 if (bio->bi_status) { 300 f2fs_finish_read_bio(bio, intask); 301 return; 302 } 303 304 if (ctx) { 305 unsigned int enabled_steps = ctx->enabled_steps & 306 (STEP_DECRYPT | STEP_DECOMPRESS); 307 308 /* 309 * If we have only decompression step between decompression and 310 * decrypt, we don't need post processing for this. 311 */ 312 if (enabled_steps == STEP_DECOMPRESS && 313 !f2fs_low_mem_mode(sbi)) { 314 f2fs_handle_step_decompress(ctx, intask); 315 } else if (enabled_steps) { 316 INIT_WORK(&ctx->work, f2fs_post_read_work); 317 queue_work(ctx->sbi->post_read_wq, &ctx->work); 318 return; 319 } 320 } 321 322 f2fs_verify_and_finish_bio(bio, intask); 323 } 324 325 static void f2fs_write_end_io(struct bio *bio) 326 { 327 struct f2fs_sb_info *sbi; 328 struct bio_vec *bvec; 329 struct bvec_iter_all iter_all; 330 331 iostat_update_and_unbind_ctx(bio); 332 sbi = bio->bi_private; 333 334 if (time_to_inject(sbi, FAULT_WRITE_IO)) 335 bio->bi_status = BLK_STS_IOERR; 336 337 bio_for_each_segment_all(bvec, bio, iter_all) { 338 struct page *page = bvec->bv_page; 339 enum count_type type = WB_DATA_TYPE(page, false); 340 341 if (page_private_dummy(page)) { 342 clear_page_private_dummy(page); 343 unlock_page(page); 344 mempool_free(page, sbi->write_io_dummy); 345 346 if (unlikely(bio->bi_status)) 347 f2fs_stop_checkpoint(sbi, true, 348 STOP_CP_REASON_WRITE_FAIL); 349 continue; 350 } 351 352 fscrypt_finalize_bounce_page(&page); 353 354 #ifdef CONFIG_F2FS_FS_COMPRESSION 355 if (f2fs_is_compressed_page(page)) { 356 f2fs_compress_write_end_io(bio, page); 357 continue; 358 } 359 #endif 360 361 if (unlikely(bio->bi_status)) { 362 mapping_set_error(page->mapping, -EIO); 363 if (type == F2FS_WB_CP_DATA) 364 f2fs_stop_checkpoint(sbi, true, 365 STOP_CP_REASON_WRITE_FAIL); 366 } 367 368 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 369 page->index != nid_of_node(page)); 370 371 dec_page_count(sbi, type); 372 if (f2fs_in_warm_node_list(sbi, page)) 373 f2fs_del_fsync_node_entry(sbi, page); 374 clear_page_private_gcing(page); 375 end_page_writeback(page); 376 } 377 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 378 wq_has_sleeper(&sbi->cp_wait)) 379 wake_up(&sbi->cp_wait); 380 381 bio_put(bio); 382 } 383 384 #ifdef CONFIG_BLK_DEV_ZONED 385 static void f2fs_zone_write_end_io(struct bio *bio) 386 { 387 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 388 389 bio->bi_private = io->bi_private; 390 complete(&io->zone_wait); 391 f2fs_write_end_io(bio); 392 } 393 #endif 394 395 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 396 block_t blk_addr, sector_t *sector) 397 { 398 struct block_device *bdev = sbi->sb->s_bdev; 399 int i; 400 401 if (f2fs_is_multi_device(sbi)) { 402 for (i = 0; i < sbi->s_ndevs; i++) { 403 if (FDEV(i).start_blk <= blk_addr && 404 FDEV(i).end_blk >= blk_addr) { 405 blk_addr -= FDEV(i).start_blk; 406 bdev = FDEV(i).bdev; 407 break; 408 } 409 } 410 } 411 412 if (sector) 413 *sector = SECTOR_FROM_BLOCK(blk_addr); 414 return bdev; 415 } 416 417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 418 { 419 int i; 420 421 if (!f2fs_is_multi_device(sbi)) 422 return 0; 423 424 for (i = 0; i < sbi->s_ndevs; i++) 425 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 426 return i; 427 return 0; 428 } 429 430 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 431 { 432 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 433 unsigned int fua_flag, meta_flag, io_flag; 434 blk_opf_t op_flags = 0; 435 436 if (fio->op != REQ_OP_WRITE) 437 return 0; 438 if (fio->type == DATA) 439 io_flag = fio->sbi->data_io_flag; 440 else if (fio->type == NODE) 441 io_flag = fio->sbi->node_io_flag; 442 else 443 return 0; 444 445 fua_flag = io_flag & temp_mask; 446 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 447 448 /* 449 * data/node io flag bits per temp: 450 * REQ_META | REQ_FUA | 451 * 5 | 4 | 3 | 2 | 1 | 0 | 452 * Cold | Warm | Hot | Cold | Warm | Hot | 453 */ 454 if (BIT(fio->temp) & meta_flag) 455 op_flags |= REQ_META; 456 if (BIT(fio->temp) & fua_flag) 457 op_flags |= REQ_FUA; 458 return op_flags; 459 } 460 461 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 462 { 463 struct f2fs_sb_info *sbi = fio->sbi; 464 struct block_device *bdev; 465 sector_t sector; 466 struct bio *bio; 467 468 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 469 bio = bio_alloc_bioset(bdev, npages, 470 fio->op | fio->op_flags | f2fs_io_flags(fio), 471 GFP_NOIO, &f2fs_bioset); 472 bio->bi_iter.bi_sector = sector; 473 if (is_read_io(fio->op)) { 474 bio->bi_end_io = f2fs_read_end_io; 475 bio->bi_private = NULL; 476 } else { 477 bio->bi_end_io = f2fs_write_end_io; 478 bio->bi_private = sbi; 479 } 480 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 481 482 if (fio->io_wbc) 483 wbc_init_bio(fio->io_wbc, bio); 484 485 return bio; 486 } 487 488 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 489 pgoff_t first_idx, 490 const struct f2fs_io_info *fio, 491 gfp_t gfp_mask) 492 { 493 /* 494 * The f2fs garbage collector sets ->encrypted_page when it wants to 495 * read/write raw data without encryption. 496 */ 497 if (!fio || !fio->encrypted_page) 498 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 499 } 500 501 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 502 pgoff_t next_idx, 503 const struct f2fs_io_info *fio) 504 { 505 /* 506 * The f2fs garbage collector sets ->encrypted_page when it wants to 507 * read/write raw data without encryption. 508 */ 509 if (fio && fio->encrypted_page) 510 return !bio_has_crypt_ctx(bio); 511 512 return fscrypt_mergeable_bio(bio, inode, next_idx); 513 } 514 515 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 516 enum page_type type) 517 { 518 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 519 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 520 521 iostat_update_submit_ctx(bio, type); 522 submit_bio(bio); 523 } 524 525 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio) 526 { 527 unsigned int start = 528 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi); 529 530 if (start == 0) 531 return; 532 533 /* fill dummy pages */ 534 for (; start < F2FS_IO_SIZE(sbi); start++) { 535 struct page *page = 536 mempool_alloc(sbi->write_io_dummy, 537 GFP_NOIO | __GFP_NOFAIL); 538 f2fs_bug_on(sbi, !page); 539 540 lock_page(page); 541 542 zero_user_segment(page, 0, PAGE_SIZE); 543 set_page_private_dummy(page); 544 545 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 546 f2fs_bug_on(sbi, 1); 547 } 548 } 549 550 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 551 enum page_type type) 552 { 553 WARN_ON_ONCE(is_read_io(bio_op(bio))); 554 555 if (type == DATA || type == NODE) { 556 if (f2fs_lfs_mode(sbi) && current->plug) 557 blk_finish_plug(current->plug); 558 559 if (F2FS_IO_ALIGNED(sbi)) { 560 f2fs_align_write_bio(sbi, bio); 561 /* 562 * In the NODE case, we lose next block address chain. 563 * So, we need to do checkpoint in f2fs_sync_file. 564 */ 565 if (type == NODE) 566 set_sbi_flag(sbi, SBI_NEED_CP); 567 } 568 } 569 570 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 571 iostat_update_submit_ctx(bio, type); 572 submit_bio(bio); 573 } 574 575 static void __submit_merged_bio(struct f2fs_bio_info *io) 576 { 577 struct f2fs_io_info *fio = &io->fio; 578 579 if (!io->bio) 580 return; 581 582 if (is_read_io(fio->op)) { 583 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 584 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 585 } else { 586 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 587 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 588 } 589 io->bio = NULL; 590 } 591 592 static bool __has_merged_page(struct bio *bio, struct inode *inode, 593 struct page *page, nid_t ino) 594 { 595 struct bio_vec *bvec; 596 struct bvec_iter_all iter_all; 597 598 if (!bio) 599 return false; 600 601 if (!inode && !page && !ino) 602 return true; 603 604 bio_for_each_segment_all(bvec, bio, iter_all) { 605 struct page *target = bvec->bv_page; 606 607 if (fscrypt_is_bounce_page(target)) { 608 target = fscrypt_pagecache_page(target); 609 if (IS_ERR(target)) 610 continue; 611 } 612 if (f2fs_is_compressed_page(target)) { 613 target = f2fs_compress_control_page(target); 614 if (IS_ERR(target)) 615 continue; 616 } 617 618 if (inode && inode == target->mapping->host) 619 return true; 620 if (page && page == target) 621 return true; 622 if (ino && ino == ino_of_node(target)) 623 return true; 624 } 625 626 return false; 627 } 628 629 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 630 { 631 int i; 632 633 for (i = 0; i < NR_PAGE_TYPE; i++) { 634 int n = (i == META) ? 1 : NR_TEMP_TYPE; 635 int j; 636 637 sbi->write_io[i] = f2fs_kmalloc(sbi, 638 array_size(n, sizeof(struct f2fs_bio_info)), 639 GFP_KERNEL); 640 if (!sbi->write_io[i]) 641 return -ENOMEM; 642 643 for (j = HOT; j < n; j++) { 644 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 645 sbi->write_io[i][j].sbi = sbi; 646 sbi->write_io[i][j].bio = NULL; 647 spin_lock_init(&sbi->write_io[i][j].io_lock); 648 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 649 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 650 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 651 #ifdef CONFIG_BLK_DEV_ZONED 652 init_completion(&sbi->write_io[i][j].zone_wait); 653 sbi->write_io[i][j].zone_pending_bio = NULL; 654 sbi->write_io[i][j].bi_private = NULL; 655 #endif 656 } 657 } 658 659 return 0; 660 } 661 662 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 663 enum page_type type, enum temp_type temp) 664 { 665 enum page_type btype = PAGE_TYPE_OF_BIO(type); 666 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 667 668 f2fs_down_write(&io->io_rwsem); 669 670 if (!io->bio) 671 goto unlock_out; 672 673 /* change META to META_FLUSH in the checkpoint procedure */ 674 if (type >= META_FLUSH) { 675 io->fio.type = META_FLUSH; 676 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 677 if (!test_opt(sbi, NOBARRIER)) 678 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 679 } 680 __submit_merged_bio(io); 681 unlock_out: 682 f2fs_up_write(&io->io_rwsem); 683 } 684 685 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 686 struct inode *inode, struct page *page, 687 nid_t ino, enum page_type type, bool force) 688 { 689 enum temp_type temp; 690 bool ret = true; 691 692 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 693 if (!force) { 694 enum page_type btype = PAGE_TYPE_OF_BIO(type); 695 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 696 697 f2fs_down_read(&io->io_rwsem); 698 ret = __has_merged_page(io->bio, inode, page, ino); 699 f2fs_up_read(&io->io_rwsem); 700 } 701 if (ret) 702 __f2fs_submit_merged_write(sbi, type, temp); 703 704 /* TODO: use HOT temp only for meta pages now. */ 705 if (type >= META) 706 break; 707 } 708 } 709 710 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 711 { 712 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 713 } 714 715 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 716 struct inode *inode, struct page *page, 717 nid_t ino, enum page_type type) 718 { 719 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 720 } 721 722 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 723 { 724 f2fs_submit_merged_write(sbi, DATA); 725 f2fs_submit_merged_write(sbi, NODE); 726 f2fs_submit_merged_write(sbi, META); 727 } 728 729 /* 730 * Fill the locked page with data located in the block address. 731 * A caller needs to unlock the page on failure. 732 */ 733 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 734 { 735 struct bio *bio; 736 struct page *page = fio->encrypted_page ? 737 fio->encrypted_page : fio->page; 738 739 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 740 fio->is_por ? META_POR : (__is_meta_io(fio) ? 741 META_GENERIC : DATA_GENERIC_ENHANCE))) { 742 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 743 return -EFSCORRUPTED; 744 } 745 746 trace_f2fs_submit_page_bio(page, fio); 747 748 /* Allocate a new bio */ 749 bio = __bio_alloc(fio, 1); 750 751 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 752 fio->page->index, fio, GFP_NOIO); 753 754 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 755 bio_put(bio); 756 return -EFAULT; 757 } 758 759 if (fio->io_wbc && !is_read_io(fio->op)) 760 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 761 762 inc_page_count(fio->sbi, is_read_io(fio->op) ? 763 __read_io_type(page) : WB_DATA_TYPE(fio->page, false)); 764 765 if (is_read_io(bio_op(bio))) 766 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 767 else 768 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 769 return 0; 770 } 771 772 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 773 block_t last_blkaddr, block_t cur_blkaddr) 774 { 775 if (unlikely(sbi->max_io_bytes && 776 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 777 return false; 778 if (last_blkaddr + 1 != cur_blkaddr) 779 return false; 780 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 781 } 782 783 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 784 struct f2fs_io_info *fio) 785 { 786 if (io->fio.op != fio->op) 787 return false; 788 return io->fio.op_flags == fio->op_flags; 789 } 790 791 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 792 struct f2fs_bio_info *io, 793 struct f2fs_io_info *fio, 794 block_t last_blkaddr, 795 block_t cur_blkaddr) 796 { 797 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 798 unsigned int filled_blocks = 799 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 800 unsigned int io_size = F2FS_IO_SIZE(sbi); 801 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 802 803 /* IOs in bio is aligned and left space of vectors is not enough */ 804 if (!(filled_blocks % io_size) && left_vecs < io_size) 805 return false; 806 } 807 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 808 return false; 809 return io_type_is_mergeable(io, fio); 810 } 811 812 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 813 struct page *page, enum temp_type temp) 814 { 815 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 816 struct bio_entry *be; 817 818 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 819 be->bio = bio; 820 bio_get(bio); 821 822 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 823 f2fs_bug_on(sbi, 1); 824 825 f2fs_down_write(&io->bio_list_lock); 826 list_add_tail(&be->list, &io->bio_list); 827 f2fs_up_write(&io->bio_list_lock); 828 } 829 830 static void del_bio_entry(struct bio_entry *be) 831 { 832 list_del(&be->list); 833 kmem_cache_free(bio_entry_slab, be); 834 } 835 836 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 837 struct page *page) 838 { 839 struct f2fs_sb_info *sbi = fio->sbi; 840 enum temp_type temp; 841 bool found = false; 842 int ret = -EAGAIN; 843 844 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 845 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 846 struct list_head *head = &io->bio_list; 847 struct bio_entry *be; 848 849 f2fs_down_write(&io->bio_list_lock); 850 list_for_each_entry(be, head, list) { 851 if (be->bio != *bio) 852 continue; 853 854 found = true; 855 856 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 857 *fio->last_block, 858 fio->new_blkaddr)); 859 if (f2fs_crypt_mergeable_bio(*bio, 860 fio->page->mapping->host, 861 fio->page->index, fio) && 862 bio_add_page(*bio, page, PAGE_SIZE, 0) == 863 PAGE_SIZE) { 864 ret = 0; 865 break; 866 } 867 868 /* page can't be merged into bio; submit the bio */ 869 del_bio_entry(be); 870 f2fs_submit_write_bio(sbi, *bio, DATA); 871 break; 872 } 873 f2fs_up_write(&io->bio_list_lock); 874 } 875 876 if (ret) { 877 bio_put(*bio); 878 *bio = NULL; 879 } 880 881 return ret; 882 } 883 884 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 885 struct bio **bio, struct page *page) 886 { 887 enum temp_type temp; 888 bool found = false; 889 struct bio *target = bio ? *bio : NULL; 890 891 f2fs_bug_on(sbi, !target && !page); 892 893 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 894 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 895 struct list_head *head = &io->bio_list; 896 struct bio_entry *be; 897 898 if (list_empty(head)) 899 continue; 900 901 f2fs_down_read(&io->bio_list_lock); 902 list_for_each_entry(be, head, list) { 903 if (target) 904 found = (target == be->bio); 905 else 906 found = __has_merged_page(be->bio, NULL, 907 page, 0); 908 if (found) 909 break; 910 } 911 f2fs_up_read(&io->bio_list_lock); 912 913 if (!found) 914 continue; 915 916 found = false; 917 918 f2fs_down_write(&io->bio_list_lock); 919 list_for_each_entry(be, head, list) { 920 if (target) 921 found = (target == be->bio); 922 else 923 found = __has_merged_page(be->bio, NULL, 924 page, 0); 925 if (found) { 926 target = be->bio; 927 del_bio_entry(be); 928 break; 929 } 930 } 931 f2fs_up_write(&io->bio_list_lock); 932 } 933 934 if (found) 935 f2fs_submit_write_bio(sbi, target, DATA); 936 if (bio && *bio) { 937 bio_put(*bio); 938 *bio = NULL; 939 } 940 } 941 942 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 943 { 944 struct bio *bio = *fio->bio; 945 struct page *page = fio->encrypted_page ? 946 fio->encrypted_page : fio->page; 947 948 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 949 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { 950 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 951 return -EFSCORRUPTED; 952 } 953 954 trace_f2fs_submit_page_bio(page, fio); 955 956 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 957 fio->new_blkaddr)) 958 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 959 alloc_new: 960 if (!bio) { 961 bio = __bio_alloc(fio, BIO_MAX_VECS); 962 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 963 fio->page->index, fio, GFP_NOIO); 964 965 add_bio_entry(fio->sbi, bio, page, fio->temp); 966 } else { 967 if (add_ipu_page(fio, &bio, page)) 968 goto alloc_new; 969 } 970 971 if (fio->io_wbc) 972 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 973 974 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false)); 975 976 *fio->last_block = fio->new_blkaddr; 977 *fio->bio = bio; 978 979 return 0; 980 } 981 982 #ifdef CONFIG_BLK_DEV_ZONED 983 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 984 { 985 int devi = 0; 986 987 if (f2fs_is_multi_device(sbi)) { 988 devi = f2fs_target_device_index(sbi, blkaddr); 989 if (blkaddr < FDEV(devi).start_blk || 990 blkaddr > FDEV(devi).end_blk) { 991 f2fs_err(sbi, "Invalid block %x", blkaddr); 992 return false; 993 } 994 blkaddr -= FDEV(devi).start_blk; 995 } 996 return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM && 997 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 998 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 999 } 1000 #endif 1001 1002 void f2fs_submit_page_write(struct f2fs_io_info *fio) 1003 { 1004 struct f2fs_sb_info *sbi = fio->sbi; 1005 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 1006 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 1007 struct page *bio_page; 1008 enum count_type type; 1009 1010 f2fs_bug_on(sbi, is_read_io(fio->op)); 1011 1012 f2fs_down_write(&io->io_rwsem); 1013 next: 1014 #ifdef CONFIG_BLK_DEV_ZONED 1015 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 1016 wait_for_completion_io(&io->zone_wait); 1017 bio_put(io->zone_pending_bio); 1018 io->zone_pending_bio = NULL; 1019 io->bi_private = NULL; 1020 } 1021 #endif 1022 1023 if (fio->in_list) { 1024 spin_lock(&io->io_lock); 1025 if (list_empty(&io->io_list)) { 1026 spin_unlock(&io->io_lock); 1027 goto out; 1028 } 1029 fio = list_first_entry(&io->io_list, 1030 struct f2fs_io_info, list); 1031 list_del(&fio->list); 1032 spin_unlock(&io->io_lock); 1033 } 1034 1035 verify_fio_blkaddr(fio); 1036 1037 if (fio->encrypted_page) 1038 bio_page = fio->encrypted_page; 1039 else if (fio->compressed_page) 1040 bio_page = fio->compressed_page; 1041 else 1042 bio_page = fio->page; 1043 1044 /* set submitted = true as a return value */ 1045 fio->submitted = 1; 1046 1047 type = WB_DATA_TYPE(bio_page, fio->compressed_page); 1048 inc_page_count(sbi, type); 1049 1050 if (io->bio && 1051 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 1052 fio->new_blkaddr) || 1053 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 1054 bio_page->index, fio))) 1055 __submit_merged_bio(io); 1056 alloc_new: 1057 if (io->bio == NULL) { 1058 if (F2FS_IO_ALIGNED(sbi) && 1059 (fio->type == DATA || fio->type == NODE) && 1060 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 1061 dec_page_count(sbi, WB_DATA_TYPE(bio_page, 1062 fio->compressed_page)); 1063 fio->retry = 1; 1064 goto skip; 1065 } 1066 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1067 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1068 bio_page->index, fio, GFP_NOIO); 1069 io->fio = *fio; 1070 } 1071 1072 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1073 __submit_merged_bio(io); 1074 goto alloc_new; 1075 } 1076 1077 if (fio->io_wbc) 1078 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 1079 1080 io->last_block_in_bio = fio->new_blkaddr; 1081 1082 trace_f2fs_submit_page_write(fio->page, fio); 1083 #ifdef CONFIG_BLK_DEV_ZONED 1084 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1085 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1086 bio_get(io->bio); 1087 reinit_completion(&io->zone_wait); 1088 io->bi_private = io->bio->bi_private; 1089 io->bio->bi_private = io; 1090 io->bio->bi_end_io = f2fs_zone_write_end_io; 1091 io->zone_pending_bio = io->bio; 1092 __submit_merged_bio(io); 1093 } 1094 #endif 1095 skip: 1096 if (fio->in_list) 1097 goto next; 1098 out: 1099 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1100 !f2fs_is_checkpoint_ready(sbi)) 1101 __submit_merged_bio(io); 1102 f2fs_up_write(&io->io_rwsem); 1103 } 1104 1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1106 unsigned nr_pages, blk_opf_t op_flag, 1107 pgoff_t first_idx, bool for_write) 1108 { 1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1110 struct bio *bio; 1111 struct bio_post_read_ctx *ctx = NULL; 1112 unsigned int post_read_steps = 0; 1113 sector_t sector; 1114 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1115 1116 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1117 REQ_OP_READ | op_flag, 1118 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1119 if (!bio) 1120 return ERR_PTR(-ENOMEM); 1121 bio->bi_iter.bi_sector = sector; 1122 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1123 bio->bi_end_io = f2fs_read_end_io; 1124 1125 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1126 post_read_steps |= STEP_DECRYPT; 1127 1128 if (f2fs_need_verity(inode, first_idx)) 1129 post_read_steps |= STEP_VERITY; 1130 1131 /* 1132 * STEP_DECOMPRESS is handled specially, since a compressed file might 1133 * contain both compressed and uncompressed clusters. We'll allocate a 1134 * bio_post_read_ctx if the file is compressed, but the caller is 1135 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1136 */ 1137 1138 if (post_read_steps || f2fs_compressed_file(inode)) { 1139 /* Due to the mempool, this never fails. */ 1140 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1141 ctx->bio = bio; 1142 ctx->sbi = sbi; 1143 ctx->enabled_steps = post_read_steps; 1144 ctx->fs_blkaddr = blkaddr; 1145 ctx->decompression_attempted = false; 1146 bio->bi_private = ctx; 1147 } 1148 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1149 1150 return bio; 1151 } 1152 1153 /* This can handle encryption stuffs */ 1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1155 block_t blkaddr, blk_opf_t op_flags, 1156 bool for_write) 1157 { 1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1159 struct bio *bio; 1160 1161 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1162 page->index, for_write); 1163 if (IS_ERR(bio)) 1164 return PTR_ERR(bio); 1165 1166 /* wait for GCed page writeback via META_MAPPING */ 1167 f2fs_wait_on_block_writeback(inode, blkaddr); 1168 1169 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1170 iostat_update_and_unbind_ctx(bio); 1171 if (bio->bi_private) 1172 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1173 bio_put(bio); 1174 return -EFAULT; 1175 } 1176 inc_page_count(sbi, F2FS_RD_DATA); 1177 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1178 f2fs_submit_read_bio(sbi, bio, DATA); 1179 return 0; 1180 } 1181 1182 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1183 { 1184 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page); 1185 1186 dn->data_blkaddr = blkaddr; 1187 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1188 } 1189 1190 /* 1191 * Lock ordering for the change of data block address: 1192 * ->data_page 1193 * ->node_page 1194 * update block addresses in the node page 1195 */ 1196 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1197 { 1198 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1199 __set_data_blkaddr(dn, blkaddr); 1200 if (set_page_dirty(dn->node_page)) 1201 dn->node_changed = true; 1202 } 1203 1204 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1205 { 1206 f2fs_set_data_blkaddr(dn, blkaddr); 1207 f2fs_update_read_extent_cache(dn); 1208 } 1209 1210 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1211 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1212 { 1213 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1214 int err; 1215 1216 if (!count) 1217 return 0; 1218 1219 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1220 return -EPERM; 1221 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1222 if (unlikely(err)) 1223 return err; 1224 1225 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1226 dn->ofs_in_node, count); 1227 1228 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1229 1230 for (; count > 0; dn->ofs_in_node++) { 1231 block_t blkaddr = f2fs_data_blkaddr(dn); 1232 1233 if (blkaddr == NULL_ADDR) { 1234 __set_data_blkaddr(dn, NEW_ADDR); 1235 count--; 1236 } 1237 } 1238 1239 if (set_page_dirty(dn->node_page)) 1240 dn->node_changed = true; 1241 return 0; 1242 } 1243 1244 /* Should keep dn->ofs_in_node unchanged */ 1245 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1246 { 1247 unsigned int ofs_in_node = dn->ofs_in_node; 1248 int ret; 1249 1250 ret = f2fs_reserve_new_blocks(dn, 1); 1251 dn->ofs_in_node = ofs_in_node; 1252 return ret; 1253 } 1254 1255 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1256 { 1257 bool need_put = dn->inode_page ? false : true; 1258 int err; 1259 1260 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1261 if (err) 1262 return err; 1263 1264 if (dn->data_blkaddr == NULL_ADDR) 1265 err = f2fs_reserve_new_block(dn); 1266 if (err || need_put) 1267 f2fs_put_dnode(dn); 1268 return err; 1269 } 1270 1271 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1272 blk_opf_t op_flags, bool for_write, 1273 pgoff_t *next_pgofs) 1274 { 1275 struct address_space *mapping = inode->i_mapping; 1276 struct dnode_of_data dn; 1277 struct page *page; 1278 int err; 1279 1280 page = f2fs_grab_cache_page(mapping, index, for_write); 1281 if (!page) 1282 return ERR_PTR(-ENOMEM); 1283 1284 if (f2fs_lookup_read_extent_cache_block(inode, index, 1285 &dn.data_blkaddr)) { 1286 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1287 DATA_GENERIC_ENHANCE_READ)) { 1288 err = -EFSCORRUPTED; 1289 f2fs_handle_error(F2FS_I_SB(inode), 1290 ERROR_INVALID_BLKADDR); 1291 goto put_err; 1292 } 1293 goto got_it; 1294 } 1295 1296 set_new_dnode(&dn, inode, NULL, NULL, 0); 1297 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1298 if (err) { 1299 if (err == -ENOENT && next_pgofs) 1300 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1301 goto put_err; 1302 } 1303 f2fs_put_dnode(&dn); 1304 1305 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1306 err = -ENOENT; 1307 if (next_pgofs) 1308 *next_pgofs = index + 1; 1309 goto put_err; 1310 } 1311 if (dn.data_blkaddr != NEW_ADDR && 1312 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1313 dn.data_blkaddr, 1314 DATA_GENERIC_ENHANCE)) { 1315 err = -EFSCORRUPTED; 1316 f2fs_handle_error(F2FS_I_SB(inode), 1317 ERROR_INVALID_BLKADDR); 1318 goto put_err; 1319 } 1320 got_it: 1321 if (PageUptodate(page)) { 1322 unlock_page(page); 1323 return page; 1324 } 1325 1326 /* 1327 * A new dentry page is allocated but not able to be written, since its 1328 * new inode page couldn't be allocated due to -ENOSPC. 1329 * In such the case, its blkaddr can be remained as NEW_ADDR. 1330 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1331 * f2fs_init_inode_metadata. 1332 */ 1333 if (dn.data_blkaddr == NEW_ADDR) { 1334 zero_user_segment(page, 0, PAGE_SIZE); 1335 if (!PageUptodate(page)) 1336 SetPageUptodate(page); 1337 unlock_page(page); 1338 return page; 1339 } 1340 1341 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1342 op_flags, for_write); 1343 if (err) 1344 goto put_err; 1345 return page; 1346 1347 put_err: 1348 f2fs_put_page(page, 1); 1349 return ERR_PTR(err); 1350 } 1351 1352 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1353 pgoff_t *next_pgofs) 1354 { 1355 struct address_space *mapping = inode->i_mapping; 1356 struct page *page; 1357 1358 page = find_get_page(mapping, index); 1359 if (page && PageUptodate(page)) 1360 return page; 1361 f2fs_put_page(page, 0); 1362 1363 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1364 if (IS_ERR(page)) 1365 return page; 1366 1367 if (PageUptodate(page)) 1368 return page; 1369 1370 wait_on_page_locked(page); 1371 if (unlikely(!PageUptodate(page))) { 1372 f2fs_put_page(page, 0); 1373 return ERR_PTR(-EIO); 1374 } 1375 return page; 1376 } 1377 1378 /* 1379 * If it tries to access a hole, return an error. 1380 * Because, the callers, functions in dir.c and GC, should be able to know 1381 * whether this page exists or not. 1382 */ 1383 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1384 bool for_write) 1385 { 1386 struct address_space *mapping = inode->i_mapping; 1387 struct page *page; 1388 1389 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1390 if (IS_ERR(page)) 1391 return page; 1392 1393 /* wait for read completion */ 1394 lock_page(page); 1395 if (unlikely(page->mapping != mapping || !PageUptodate(page))) { 1396 f2fs_put_page(page, 1); 1397 return ERR_PTR(-EIO); 1398 } 1399 return page; 1400 } 1401 1402 /* 1403 * Caller ensures that this data page is never allocated. 1404 * A new zero-filled data page is allocated in the page cache. 1405 * 1406 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1407 * f2fs_unlock_op(). 1408 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1409 * ipage should be released by this function. 1410 */ 1411 struct page *f2fs_get_new_data_page(struct inode *inode, 1412 struct page *ipage, pgoff_t index, bool new_i_size) 1413 { 1414 struct address_space *mapping = inode->i_mapping; 1415 struct page *page; 1416 struct dnode_of_data dn; 1417 int err; 1418 1419 page = f2fs_grab_cache_page(mapping, index, true); 1420 if (!page) { 1421 /* 1422 * before exiting, we should make sure ipage will be released 1423 * if any error occur. 1424 */ 1425 f2fs_put_page(ipage, 1); 1426 return ERR_PTR(-ENOMEM); 1427 } 1428 1429 set_new_dnode(&dn, inode, ipage, NULL, 0); 1430 err = f2fs_reserve_block(&dn, index); 1431 if (err) { 1432 f2fs_put_page(page, 1); 1433 return ERR_PTR(err); 1434 } 1435 if (!ipage) 1436 f2fs_put_dnode(&dn); 1437 1438 if (PageUptodate(page)) 1439 goto got_it; 1440 1441 if (dn.data_blkaddr == NEW_ADDR) { 1442 zero_user_segment(page, 0, PAGE_SIZE); 1443 if (!PageUptodate(page)) 1444 SetPageUptodate(page); 1445 } else { 1446 f2fs_put_page(page, 1); 1447 1448 /* if ipage exists, blkaddr should be NEW_ADDR */ 1449 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1450 page = f2fs_get_lock_data_page(inode, index, true); 1451 if (IS_ERR(page)) 1452 return page; 1453 } 1454 got_it: 1455 if (new_i_size && i_size_read(inode) < 1456 ((loff_t)(index + 1) << PAGE_SHIFT)) 1457 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1458 return page; 1459 } 1460 1461 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1462 { 1463 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1464 struct f2fs_summary sum; 1465 struct node_info ni; 1466 block_t old_blkaddr; 1467 blkcnt_t count = 1; 1468 int err; 1469 1470 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1471 return -EPERM; 1472 1473 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1474 if (err) 1475 return err; 1476 1477 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1478 if (dn->data_blkaddr == NULL_ADDR) { 1479 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1480 if (unlikely(err)) 1481 return err; 1482 } 1483 1484 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1485 old_blkaddr = dn->data_blkaddr; 1486 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1487 &sum, seg_type, NULL); 1488 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1489 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 1490 1491 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1492 return 0; 1493 } 1494 1495 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1496 { 1497 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1498 f2fs_down_read(&sbi->node_change); 1499 else 1500 f2fs_lock_op(sbi); 1501 } 1502 1503 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1504 { 1505 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1506 f2fs_up_read(&sbi->node_change); 1507 else 1508 f2fs_unlock_op(sbi); 1509 } 1510 1511 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1512 { 1513 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1514 int err = 0; 1515 1516 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1517 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1518 &dn->data_blkaddr)) 1519 err = f2fs_reserve_block(dn, index); 1520 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1521 1522 return err; 1523 } 1524 1525 static int f2fs_map_no_dnode(struct inode *inode, 1526 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1527 pgoff_t pgoff) 1528 { 1529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1530 1531 /* 1532 * There is one exceptional case that read_node_page() may return 1533 * -ENOENT due to filesystem has been shutdown or cp_error, return 1534 * -EIO in that case. 1535 */ 1536 if (map->m_may_create && 1537 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1538 return -EIO; 1539 1540 if (map->m_next_pgofs) 1541 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1542 if (map->m_next_extent) 1543 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1544 return 0; 1545 } 1546 1547 static bool f2fs_map_blocks_cached(struct inode *inode, 1548 struct f2fs_map_blocks *map, int flag) 1549 { 1550 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1551 unsigned int maxblocks = map->m_len; 1552 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1553 struct extent_info ei = {}; 1554 1555 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1556 return false; 1557 1558 map->m_pblk = ei.blk + pgoff - ei.fofs; 1559 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1560 map->m_flags = F2FS_MAP_MAPPED; 1561 if (map->m_next_extent) 1562 *map->m_next_extent = pgoff + map->m_len; 1563 1564 /* for hardware encryption, but to avoid potential issue in future */ 1565 if (flag == F2FS_GET_BLOCK_DIO) 1566 f2fs_wait_on_block_writeback_range(inode, 1567 map->m_pblk, map->m_len); 1568 1569 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1570 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1571 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1572 1573 map->m_bdev = dev->bdev; 1574 map->m_pblk -= dev->start_blk; 1575 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1576 } else { 1577 map->m_bdev = inode->i_sb->s_bdev; 1578 } 1579 return true; 1580 } 1581 1582 /* 1583 * f2fs_map_blocks() tries to find or build mapping relationship which 1584 * maps continuous logical blocks to physical blocks, and return such 1585 * info via f2fs_map_blocks structure. 1586 */ 1587 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1588 { 1589 unsigned int maxblocks = map->m_len; 1590 struct dnode_of_data dn; 1591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1592 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1593 pgoff_t pgofs, end_offset, end; 1594 int err = 0, ofs = 1; 1595 unsigned int ofs_in_node, last_ofs_in_node; 1596 blkcnt_t prealloc; 1597 block_t blkaddr; 1598 unsigned int start_pgofs; 1599 int bidx = 0; 1600 bool is_hole; 1601 1602 if (!maxblocks) 1603 return 0; 1604 1605 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1606 goto out; 1607 1608 map->m_bdev = inode->i_sb->s_bdev; 1609 map->m_multidev_dio = 1610 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1611 1612 map->m_len = 0; 1613 map->m_flags = 0; 1614 1615 /* it only supports block size == page size */ 1616 pgofs = (pgoff_t)map->m_lblk; 1617 end = pgofs + maxblocks; 1618 1619 next_dnode: 1620 if (map->m_may_create) 1621 f2fs_map_lock(sbi, flag); 1622 1623 /* When reading holes, we need its node page */ 1624 set_new_dnode(&dn, inode, NULL, NULL, 0); 1625 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1626 if (err) { 1627 if (flag == F2FS_GET_BLOCK_BMAP) 1628 map->m_pblk = 0; 1629 if (err == -ENOENT) 1630 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1631 goto unlock_out; 1632 } 1633 1634 start_pgofs = pgofs; 1635 prealloc = 0; 1636 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1637 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1638 1639 next_block: 1640 blkaddr = f2fs_data_blkaddr(&dn); 1641 is_hole = !__is_valid_data_blkaddr(blkaddr); 1642 if (!is_hole && 1643 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1644 err = -EFSCORRUPTED; 1645 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1646 goto sync_out; 1647 } 1648 1649 /* use out-place-update for direct IO under LFS mode */ 1650 if (map->m_may_create && 1651 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) { 1652 if (unlikely(f2fs_cp_error(sbi))) { 1653 err = -EIO; 1654 goto sync_out; 1655 } 1656 1657 switch (flag) { 1658 case F2FS_GET_BLOCK_PRE_AIO: 1659 if (blkaddr == NULL_ADDR) { 1660 prealloc++; 1661 last_ofs_in_node = dn.ofs_in_node; 1662 } 1663 break; 1664 case F2FS_GET_BLOCK_PRE_DIO: 1665 case F2FS_GET_BLOCK_DIO: 1666 err = __allocate_data_block(&dn, map->m_seg_type); 1667 if (err) 1668 goto sync_out; 1669 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1670 file_need_truncate(inode); 1671 set_inode_flag(inode, FI_APPEND_WRITE); 1672 break; 1673 default: 1674 WARN_ON_ONCE(1); 1675 err = -EIO; 1676 goto sync_out; 1677 } 1678 1679 blkaddr = dn.data_blkaddr; 1680 if (is_hole) 1681 map->m_flags |= F2FS_MAP_NEW; 1682 } else if (is_hole) { 1683 if (f2fs_compressed_file(inode) && 1684 f2fs_sanity_check_cluster(&dn) && 1685 (flag != F2FS_GET_BLOCK_FIEMAP || 1686 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1687 err = -EFSCORRUPTED; 1688 f2fs_handle_error(sbi, 1689 ERROR_CORRUPTED_CLUSTER); 1690 goto sync_out; 1691 } 1692 1693 switch (flag) { 1694 case F2FS_GET_BLOCK_PRECACHE: 1695 goto sync_out; 1696 case F2FS_GET_BLOCK_BMAP: 1697 map->m_pblk = 0; 1698 goto sync_out; 1699 case F2FS_GET_BLOCK_FIEMAP: 1700 if (blkaddr == NULL_ADDR) { 1701 if (map->m_next_pgofs) 1702 *map->m_next_pgofs = pgofs + 1; 1703 goto sync_out; 1704 } 1705 break; 1706 default: 1707 /* for defragment case */ 1708 if (map->m_next_pgofs) 1709 *map->m_next_pgofs = pgofs + 1; 1710 goto sync_out; 1711 } 1712 } 1713 1714 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1715 goto skip; 1716 1717 if (map->m_multidev_dio) 1718 bidx = f2fs_target_device_index(sbi, blkaddr); 1719 1720 if (map->m_len == 0) { 1721 /* reserved delalloc block should be mapped for fiemap. */ 1722 if (blkaddr == NEW_ADDR) 1723 map->m_flags |= F2FS_MAP_DELALLOC; 1724 map->m_flags |= F2FS_MAP_MAPPED; 1725 1726 map->m_pblk = blkaddr; 1727 map->m_len = 1; 1728 1729 if (map->m_multidev_dio) 1730 map->m_bdev = FDEV(bidx).bdev; 1731 } else if ((map->m_pblk != NEW_ADDR && 1732 blkaddr == (map->m_pblk + ofs)) || 1733 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1734 flag == F2FS_GET_BLOCK_PRE_DIO) { 1735 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1736 goto sync_out; 1737 ofs++; 1738 map->m_len++; 1739 } else { 1740 goto sync_out; 1741 } 1742 1743 skip: 1744 dn.ofs_in_node++; 1745 pgofs++; 1746 1747 /* preallocate blocks in batch for one dnode page */ 1748 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1749 (pgofs == end || dn.ofs_in_node == end_offset)) { 1750 1751 dn.ofs_in_node = ofs_in_node; 1752 err = f2fs_reserve_new_blocks(&dn, prealloc); 1753 if (err) 1754 goto sync_out; 1755 1756 map->m_len += dn.ofs_in_node - ofs_in_node; 1757 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1758 err = -ENOSPC; 1759 goto sync_out; 1760 } 1761 dn.ofs_in_node = end_offset; 1762 } 1763 1764 if (pgofs >= end) 1765 goto sync_out; 1766 else if (dn.ofs_in_node < end_offset) 1767 goto next_block; 1768 1769 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1770 if (map->m_flags & F2FS_MAP_MAPPED) { 1771 unsigned int ofs = start_pgofs - map->m_lblk; 1772 1773 f2fs_update_read_extent_cache_range(&dn, 1774 start_pgofs, map->m_pblk + ofs, 1775 map->m_len - ofs); 1776 } 1777 } 1778 1779 f2fs_put_dnode(&dn); 1780 1781 if (map->m_may_create) { 1782 f2fs_map_unlock(sbi, flag); 1783 f2fs_balance_fs(sbi, dn.node_changed); 1784 } 1785 goto next_dnode; 1786 1787 sync_out: 1788 1789 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1790 /* 1791 * for hardware encryption, but to avoid potential issue 1792 * in future 1793 */ 1794 f2fs_wait_on_block_writeback_range(inode, 1795 map->m_pblk, map->m_len); 1796 1797 if (map->m_multidev_dio) { 1798 block_t blk_addr = map->m_pblk; 1799 1800 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1801 1802 map->m_bdev = FDEV(bidx).bdev; 1803 map->m_pblk -= FDEV(bidx).start_blk; 1804 1805 if (map->m_may_create) 1806 f2fs_update_device_state(sbi, inode->i_ino, 1807 blk_addr, map->m_len); 1808 1809 f2fs_bug_on(sbi, blk_addr + map->m_len > 1810 FDEV(bidx).end_blk + 1); 1811 } 1812 } 1813 1814 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1815 if (map->m_flags & F2FS_MAP_MAPPED) { 1816 unsigned int ofs = start_pgofs - map->m_lblk; 1817 1818 f2fs_update_read_extent_cache_range(&dn, 1819 start_pgofs, map->m_pblk + ofs, 1820 map->m_len - ofs); 1821 } 1822 if (map->m_next_extent) 1823 *map->m_next_extent = pgofs + 1; 1824 } 1825 f2fs_put_dnode(&dn); 1826 unlock_out: 1827 if (map->m_may_create) { 1828 f2fs_map_unlock(sbi, flag); 1829 f2fs_balance_fs(sbi, dn.node_changed); 1830 } 1831 out: 1832 trace_f2fs_map_blocks(inode, map, flag, err); 1833 return err; 1834 } 1835 1836 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1837 { 1838 struct f2fs_map_blocks map; 1839 block_t last_lblk; 1840 int err; 1841 1842 if (pos + len > i_size_read(inode)) 1843 return false; 1844 1845 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1846 map.m_next_pgofs = NULL; 1847 map.m_next_extent = NULL; 1848 map.m_seg_type = NO_CHECK_TYPE; 1849 map.m_may_create = false; 1850 last_lblk = F2FS_BLK_ALIGN(pos + len); 1851 1852 while (map.m_lblk < last_lblk) { 1853 map.m_len = last_lblk - map.m_lblk; 1854 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1855 if (err || map.m_len == 0) 1856 return false; 1857 map.m_lblk += map.m_len; 1858 } 1859 return true; 1860 } 1861 1862 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1863 { 1864 return (bytes >> inode->i_blkbits); 1865 } 1866 1867 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1868 { 1869 return (blks << inode->i_blkbits); 1870 } 1871 1872 static int f2fs_xattr_fiemap(struct inode *inode, 1873 struct fiemap_extent_info *fieinfo) 1874 { 1875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1876 struct page *page; 1877 struct node_info ni; 1878 __u64 phys = 0, len; 1879 __u32 flags; 1880 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1881 int err = 0; 1882 1883 if (f2fs_has_inline_xattr(inode)) { 1884 int offset; 1885 1886 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1887 inode->i_ino, false); 1888 if (!page) 1889 return -ENOMEM; 1890 1891 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1892 if (err) { 1893 f2fs_put_page(page, 1); 1894 return err; 1895 } 1896 1897 phys = blks_to_bytes(inode, ni.blk_addr); 1898 offset = offsetof(struct f2fs_inode, i_addr) + 1899 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1900 get_inline_xattr_addrs(inode)); 1901 1902 phys += offset; 1903 len = inline_xattr_size(inode); 1904 1905 f2fs_put_page(page, 1); 1906 1907 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1908 1909 if (!xnid) 1910 flags |= FIEMAP_EXTENT_LAST; 1911 1912 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1913 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1914 if (err) 1915 return err; 1916 } 1917 1918 if (xnid) { 1919 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1920 if (!page) 1921 return -ENOMEM; 1922 1923 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1924 if (err) { 1925 f2fs_put_page(page, 1); 1926 return err; 1927 } 1928 1929 phys = blks_to_bytes(inode, ni.blk_addr); 1930 len = inode->i_sb->s_blocksize; 1931 1932 f2fs_put_page(page, 1); 1933 1934 flags = FIEMAP_EXTENT_LAST; 1935 } 1936 1937 if (phys) { 1938 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1939 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1940 } 1941 1942 return (err < 0 ? err : 0); 1943 } 1944 1945 static loff_t max_inode_blocks(struct inode *inode) 1946 { 1947 loff_t result = ADDRS_PER_INODE(inode); 1948 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1949 1950 /* two direct node blocks */ 1951 result += (leaf_count * 2); 1952 1953 /* two indirect node blocks */ 1954 leaf_count *= NIDS_PER_BLOCK; 1955 result += (leaf_count * 2); 1956 1957 /* one double indirect node block */ 1958 leaf_count *= NIDS_PER_BLOCK; 1959 result += leaf_count; 1960 1961 return result; 1962 } 1963 1964 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1965 u64 start, u64 len) 1966 { 1967 struct f2fs_map_blocks map; 1968 sector_t start_blk, last_blk; 1969 pgoff_t next_pgofs; 1970 u64 logical = 0, phys = 0, size = 0; 1971 u32 flags = 0; 1972 int ret = 0; 1973 bool compr_cluster = false, compr_appended; 1974 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1975 unsigned int count_in_cluster = 0; 1976 loff_t maxbytes; 1977 1978 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1979 ret = f2fs_precache_extents(inode); 1980 if (ret) 1981 return ret; 1982 } 1983 1984 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1985 if (ret) 1986 return ret; 1987 1988 inode_lock(inode); 1989 1990 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1991 if (start > maxbytes) { 1992 ret = -EFBIG; 1993 goto out; 1994 } 1995 1996 if (len > maxbytes || (maxbytes - len) < start) 1997 len = maxbytes - start; 1998 1999 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 2000 ret = f2fs_xattr_fiemap(inode, fieinfo); 2001 goto out; 2002 } 2003 2004 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 2005 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 2006 if (ret != -EAGAIN) 2007 goto out; 2008 } 2009 2010 if (bytes_to_blks(inode, len) == 0) 2011 len = blks_to_bytes(inode, 1); 2012 2013 start_blk = bytes_to_blks(inode, start); 2014 last_blk = bytes_to_blks(inode, start + len - 1); 2015 2016 next: 2017 memset(&map, 0, sizeof(map)); 2018 map.m_lblk = start_blk; 2019 map.m_len = bytes_to_blks(inode, len); 2020 map.m_next_pgofs = &next_pgofs; 2021 map.m_seg_type = NO_CHECK_TYPE; 2022 2023 if (compr_cluster) { 2024 map.m_lblk += 1; 2025 map.m_len = cluster_size - count_in_cluster; 2026 } 2027 2028 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 2029 if (ret) 2030 goto out; 2031 2032 /* HOLE */ 2033 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 2034 start_blk = next_pgofs; 2035 2036 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 2037 max_inode_blocks(inode))) 2038 goto prep_next; 2039 2040 flags |= FIEMAP_EXTENT_LAST; 2041 } 2042 2043 compr_appended = false; 2044 /* In a case of compressed cluster, append this to the last extent */ 2045 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 2046 !(map.m_flags & F2FS_MAP_FLAGS))) { 2047 compr_appended = true; 2048 goto skip_fill; 2049 } 2050 2051 if (size) { 2052 flags |= FIEMAP_EXTENT_MERGED; 2053 if (IS_ENCRYPTED(inode)) 2054 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2055 2056 ret = fiemap_fill_next_extent(fieinfo, logical, 2057 phys, size, flags); 2058 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2059 if (ret) 2060 goto out; 2061 size = 0; 2062 } 2063 2064 if (start_blk > last_blk) 2065 goto out; 2066 2067 skip_fill: 2068 if (map.m_pblk == COMPRESS_ADDR) { 2069 compr_cluster = true; 2070 count_in_cluster = 1; 2071 } else if (compr_appended) { 2072 unsigned int appended_blks = cluster_size - 2073 count_in_cluster + 1; 2074 size += blks_to_bytes(inode, appended_blks); 2075 start_blk += appended_blks; 2076 compr_cluster = false; 2077 } else { 2078 logical = blks_to_bytes(inode, start_blk); 2079 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2080 blks_to_bytes(inode, map.m_pblk) : 0; 2081 size = blks_to_bytes(inode, map.m_len); 2082 flags = 0; 2083 2084 if (compr_cluster) { 2085 flags = FIEMAP_EXTENT_ENCODED; 2086 count_in_cluster += map.m_len; 2087 if (count_in_cluster == cluster_size) { 2088 compr_cluster = false; 2089 size += blks_to_bytes(inode, 1); 2090 } 2091 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2092 flags = FIEMAP_EXTENT_UNWRITTEN; 2093 } 2094 2095 start_blk += bytes_to_blks(inode, size); 2096 } 2097 2098 prep_next: 2099 cond_resched(); 2100 if (fatal_signal_pending(current)) 2101 ret = -EINTR; 2102 else 2103 goto next; 2104 out: 2105 if (ret == 1) 2106 ret = 0; 2107 2108 inode_unlock(inode); 2109 return ret; 2110 } 2111 2112 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2113 { 2114 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2115 return inode->i_sb->s_maxbytes; 2116 2117 return i_size_read(inode); 2118 } 2119 2120 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2121 unsigned nr_pages, 2122 struct f2fs_map_blocks *map, 2123 struct bio **bio_ret, 2124 sector_t *last_block_in_bio, 2125 bool is_readahead) 2126 { 2127 struct bio *bio = *bio_ret; 2128 const unsigned blocksize = blks_to_bytes(inode, 1); 2129 sector_t block_in_file; 2130 sector_t last_block; 2131 sector_t last_block_in_file; 2132 sector_t block_nr; 2133 int ret = 0; 2134 2135 block_in_file = (sector_t)page_index(page); 2136 last_block = block_in_file + nr_pages; 2137 last_block_in_file = bytes_to_blks(inode, 2138 f2fs_readpage_limit(inode) + blocksize - 1); 2139 if (last_block > last_block_in_file) 2140 last_block = last_block_in_file; 2141 2142 /* just zeroing out page which is beyond EOF */ 2143 if (block_in_file >= last_block) 2144 goto zero_out; 2145 /* 2146 * Map blocks using the previous result first. 2147 */ 2148 if ((map->m_flags & F2FS_MAP_MAPPED) && 2149 block_in_file > map->m_lblk && 2150 block_in_file < (map->m_lblk + map->m_len)) 2151 goto got_it; 2152 2153 /* 2154 * Then do more f2fs_map_blocks() calls until we are 2155 * done with this page. 2156 */ 2157 map->m_lblk = block_in_file; 2158 map->m_len = last_block - block_in_file; 2159 2160 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2161 if (ret) 2162 goto out; 2163 got_it: 2164 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2165 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2166 SetPageMappedToDisk(page); 2167 2168 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2169 DATA_GENERIC_ENHANCE_READ)) { 2170 ret = -EFSCORRUPTED; 2171 f2fs_handle_error(F2FS_I_SB(inode), 2172 ERROR_INVALID_BLKADDR); 2173 goto out; 2174 } 2175 } else { 2176 zero_out: 2177 zero_user_segment(page, 0, PAGE_SIZE); 2178 if (f2fs_need_verity(inode, page->index) && 2179 !fsverity_verify_page(page)) { 2180 ret = -EIO; 2181 goto out; 2182 } 2183 if (!PageUptodate(page)) 2184 SetPageUptodate(page); 2185 unlock_page(page); 2186 goto out; 2187 } 2188 2189 /* 2190 * This page will go to BIO. Do we need to send this 2191 * BIO off first? 2192 */ 2193 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2194 *last_block_in_bio, block_nr) || 2195 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2196 submit_and_realloc: 2197 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2198 bio = NULL; 2199 } 2200 if (bio == NULL) { 2201 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2202 is_readahead ? REQ_RAHEAD : 0, page->index, 2203 false); 2204 if (IS_ERR(bio)) { 2205 ret = PTR_ERR(bio); 2206 bio = NULL; 2207 goto out; 2208 } 2209 } 2210 2211 /* 2212 * If the page is under writeback, we need to wait for 2213 * its completion to see the correct decrypted data. 2214 */ 2215 f2fs_wait_on_block_writeback(inode, block_nr); 2216 2217 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2218 goto submit_and_realloc; 2219 2220 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2221 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2222 F2FS_BLKSIZE); 2223 *last_block_in_bio = block_nr; 2224 out: 2225 *bio_ret = bio; 2226 return ret; 2227 } 2228 2229 #ifdef CONFIG_F2FS_FS_COMPRESSION 2230 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2231 unsigned nr_pages, sector_t *last_block_in_bio, 2232 bool is_readahead, bool for_write) 2233 { 2234 struct dnode_of_data dn; 2235 struct inode *inode = cc->inode; 2236 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2237 struct bio *bio = *bio_ret; 2238 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2239 sector_t last_block_in_file; 2240 const unsigned blocksize = blks_to_bytes(inode, 1); 2241 struct decompress_io_ctx *dic = NULL; 2242 struct extent_info ei = {}; 2243 bool from_dnode = true; 2244 int i; 2245 int ret = 0; 2246 2247 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2248 2249 last_block_in_file = bytes_to_blks(inode, 2250 f2fs_readpage_limit(inode) + blocksize - 1); 2251 2252 /* get rid of pages beyond EOF */ 2253 for (i = 0; i < cc->cluster_size; i++) { 2254 struct page *page = cc->rpages[i]; 2255 2256 if (!page) 2257 continue; 2258 if ((sector_t)page->index >= last_block_in_file) { 2259 zero_user_segment(page, 0, PAGE_SIZE); 2260 if (!PageUptodate(page)) 2261 SetPageUptodate(page); 2262 } else if (!PageUptodate(page)) { 2263 continue; 2264 } 2265 unlock_page(page); 2266 if (for_write) 2267 put_page(page); 2268 cc->rpages[i] = NULL; 2269 cc->nr_rpages--; 2270 } 2271 2272 /* we are done since all pages are beyond EOF */ 2273 if (f2fs_cluster_is_empty(cc)) 2274 goto out; 2275 2276 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2277 from_dnode = false; 2278 2279 if (!from_dnode) 2280 goto skip_reading_dnode; 2281 2282 set_new_dnode(&dn, inode, NULL, NULL, 0); 2283 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2284 if (ret) 2285 goto out; 2286 2287 if (unlikely(f2fs_cp_error(sbi))) { 2288 ret = -EIO; 2289 goto out_put_dnode; 2290 } 2291 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2292 2293 skip_reading_dnode: 2294 for (i = 1; i < cc->cluster_size; i++) { 2295 block_t blkaddr; 2296 2297 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2298 dn.ofs_in_node + i) : 2299 ei.blk + i - 1; 2300 2301 if (!__is_valid_data_blkaddr(blkaddr)) 2302 break; 2303 2304 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2305 ret = -EFAULT; 2306 goto out_put_dnode; 2307 } 2308 cc->nr_cpages++; 2309 2310 if (!from_dnode && i >= ei.c_len) 2311 break; 2312 } 2313 2314 /* nothing to decompress */ 2315 if (cc->nr_cpages == 0) { 2316 ret = 0; 2317 goto out_put_dnode; 2318 } 2319 2320 dic = f2fs_alloc_dic(cc); 2321 if (IS_ERR(dic)) { 2322 ret = PTR_ERR(dic); 2323 goto out_put_dnode; 2324 } 2325 2326 for (i = 0; i < cc->nr_cpages; i++) { 2327 struct page *page = dic->cpages[i]; 2328 block_t blkaddr; 2329 struct bio_post_read_ctx *ctx; 2330 2331 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2332 dn.ofs_in_node + i + 1) : 2333 ei.blk + i; 2334 2335 f2fs_wait_on_block_writeback(inode, blkaddr); 2336 2337 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2338 if (atomic_dec_and_test(&dic->remaining_pages)) { 2339 f2fs_decompress_cluster(dic, true); 2340 break; 2341 } 2342 continue; 2343 } 2344 2345 if (bio && (!page_is_mergeable(sbi, bio, 2346 *last_block_in_bio, blkaddr) || 2347 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2348 submit_and_realloc: 2349 f2fs_submit_read_bio(sbi, bio, DATA); 2350 bio = NULL; 2351 } 2352 2353 if (!bio) { 2354 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2355 is_readahead ? REQ_RAHEAD : 0, 2356 page->index, for_write); 2357 if (IS_ERR(bio)) { 2358 ret = PTR_ERR(bio); 2359 f2fs_decompress_end_io(dic, ret, true); 2360 f2fs_put_dnode(&dn); 2361 *bio_ret = NULL; 2362 return ret; 2363 } 2364 } 2365 2366 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2367 goto submit_and_realloc; 2368 2369 ctx = get_post_read_ctx(bio); 2370 ctx->enabled_steps |= STEP_DECOMPRESS; 2371 refcount_inc(&dic->refcnt); 2372 2373 inc_page_count(sbi, F2FS_RD_DATA); 2374 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2375 *last_block_in_bio = blkaddr; 2376 } 2377 2378 if (from_dnode) 2379 f2fs_put_dnode(&dn); 2380 2381 *bio_ret = bio; 2382 return 0; 2383 2384 out_put_dnode: 2385 if (from_dnode) 2386 f2fs_put_dnode(&dn); 2387 out: 2388 for (i = 0; i < cc->cluster_size; i++) { 2389 if (cc->rpages[i]) { 2390 ClearPageUptodate(cc->rpages[i]); 2391 unlock_page(cc->rpages[i]); 2392 } 2393 } 2394 *bio_ret = bio; 2395 return ret; 2396 } 2397 #endif 2398 2399 /* 2400 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2401 * Major change was from block_size == page_size in f2fs by default. 2402 */ 2403 static int f2fs_mpage_readpages(struct inode *inode, 2404 struct readahead_control *rac, struct page *page) 2405 { 2406 struct bio *bio = NULL; 2407 sector_t last_block_in_bio = 0; 2408 struct f2fs_map_blocks map; 2409 #ifdef CONFIG_F2FS_FS_COMPRESSION 2410 struct compress_ctx cc = { 2411 .inode = inode, 2412 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2413 .cluster_size = F2FS_I(inode)->i_cluster_size, 2414 .cluster_idx = NULL_CLUSTER, 2415 .rpages = NULL, 2416 .cpages = NULL, 2417 .nr_rpages = 0, 2418 .nr_cpages = 0, 2419 }; 2420 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2421 #endif 2422 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2423 unsigned max_nr_pages = nr_pages; 2424 int ret = 0; 2425 2426 map.m_pblk = 0; 2427 map.m_lblk = 0; 2428 map.m_len = 0; 2429 map.m_flags = 0; 2430 map.m_next_pgofs = NULL; 2431 map.m_next_extent = NULL; 2432 map.m_seg_type = NO_CHECK_TYPE; 2433 map.m_may_create = false; 2434 2435 for (; nr_pages; nr_pages--) { 2436 if (rac) { 2437 page = readahead_page(rac); 2438 prefetchw(&page->flags); 2439 } 2440 2441 #ifdef CONFIG_F2FS_FS_COMPRESSION 2442 if (f2fs_compressed_file(inode)) { 2443 /* there are remained compressed pages, submit them */ 2444 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2445 ret = f2fs_read_multi_pages(&cc, &bio, 2446 max_nr_pages, 2447 &last_block_in_bio, 2448 rac != NULL, false); 2449 f2fs_destroy_compress_ctx(&cc, false); 2450 if (ret) 2451 goto set_error_page; 2452 } 2453 if (cc.cluster_idx == NULL_CLUSTER) { 2454 if (nc_cluster_idx == 2455 page->index >> cc.log_cluster_size) { 2456 goto read_single_page; 2457 } 2458 2459 ret = f2fs_is_compressed_cluster(inode, page->index); 2460 if (ret < 0) 2461 goto set_error_page; 2462 else if (!ret) { 2463 nc_cluster_idx = 2464 page->index >> cc.log_cluster_size; 2465 goto read_single_page; 2466 } 2467 2468 nc_cluster_idx = NULL_CLUSTER; 2469 } 2470 ret = f2fs_init_compress_ctx(&cc); 2471 if (ret) 2472 goto set_error_page; 2473 2474 f2fs_compress_ctx_add_page(&cc, page); 2475 2476 goto next_page; 2477 } 2478 read_single_page: 2479 #endif 2480 2481 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2482 &bio, &last_block_in_bio, rac); 2483 if (ret) { 2484 #ifdef CONFIG_F2FS_FS_COMPRESSION 2485 set_error_page: 2486 #endif 2487 zero_user_segment(page, 0, PAGE_SIZE); 2488 unlock_page(page); 2489 } 2490 #ifdef CONFIG_F2FS_FS_COMPRESSION 2491 next_page: 2492 #endif 2493 if (rac) 2494 put_page(page); 2495 2496 #ifdef CONFIG_F2FS_FS_COMPRESSION 2497 if (f2fs_compressed_file(inode)) { 2498 /* last page */ 2499 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2500 ret = f2fs_read_multi_pages(&cc, &bio, 2501 max_nr_pages, 2502 &last_block_in_bio, 2503 rac != NULL, false); 2504 f2fs_destroy_compress_ctx(&cc, false); 2505 } 2506 } 2507 #endif 2508 } 2509 if (bio) 2510 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2511 return ret; 2512 } 2513 2514 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2515 { 2516 struct page *page = &folio->page; 2517 struct inode *inode = page_file_mapping(page)->host; 2518 int ret = -EAGAIN; 2519 2520 trace_f2fs_readpage(page, DATA); 2521 2522 if (!f2fs_is_compress_backend_ready(inode)) { 2523 unlock_page(page); 2524 return -EOPNOTSUPP; 2525 } 2526 2527 /* If the file has inline data, try to read it directly */ 2528 if (f2fs_has_inline_data(inode)) 2529 ret = f2fs_read_inline_data(inode, page); 2530 if (ret == -EAGAIN) 2531 ret = f2fs_mpage_readpages(inode, NULL, page); 2532 return ret; 2533 } 2534 2535 static void f2fs_readahead(struct readahead_control *rac) 2536 { 2537 struct inode *inode = rac->mapping->host; 2538 2539 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2540 2541 if (!f2fs_is_compress_backend_ready(inode)) 2542 return; 2543 2544 /* If the file has inline data, skip readahead */ 2545 if (f2fs_has_inline_data(inode)) 2546 return; 2547 2548 f2fs_mpage_readpages(inode, rac, NULL); 2549 } 2550 2551 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2552 { 2553 struct inode *inode = fio->page->mapping->host; 2554 struct page *mpage, *page; 2555 gfp_t gfp_flags = GFP_NOFS; 2556 2557 if (!f2fs_encrypted_file(inode)) 2558 return 0; 2559 2560 page = fio->compressed_page ? fio->compressed_page : fio->page; 2561 2562 if (fscrypt_inode_uses_inline_crypto(inode)) 2563 return 0; 2564 2565 retry_encrypt: 2566 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2567 PAGE_SIZE, 0, gfp_flags); 2568 if (IS_ERR(fio->encrypted_page)) { 2569 /* flush pending IOs and wait for a while in the ENOMEM case */ 2570 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2571 f2fs_flush_merged_writes(fio->sbi); 2572 memalloc_retry_wait(GFP_NOFS); 2573 gfp_flags |= __GFP_NOFAIL; 2574 goto retry_encrypt; 2575 } 2576 return PTR_ERR(fio->encrypted_page); 2577 } 2578 2579 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2580 if (mpage) { 2581 if (PageUptodate(mpage)) 2582 memcpy(page_address(mpage), 2583 page_address(fio->encrypted_page), PAGE_SIZE); 2584 f2fs_put_page(mpage, 1); 2585 } 2586 return 0; 2587 } 2588 2589 static inline bool check_inplace_update_policy(struct inode *inode, 2590 struct f2fs_io_info *fio) 2591 { 2592 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2593 2594 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2595 is_inode_flag_set(inode, FI_OPU_WRITE)) 2596 return false; 2597 if (IS_F2FS_IPU_FORCE(sbi)) 2598 return true; 2599 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2600 return true; 2601 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2602 return true; 2603 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2604 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2605 return true; 2606 2607 /* 2608 * IPU for rewrite async pages 2609 */ 2610 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2611 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2612 return true; 2613 2614 /* this is only set during fdatasync */ 2615 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2616 return true; 2617 2618 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2619 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2620 return true; 2621 2622 return false; 2623 } 2624 2625 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2626 { 2627 /* swap file is migrating in aligned write mode */ 2628 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2629 return false; 2630 2631 if (f2fs_is_pinned_file(inode)) 2632 return true; 2633 2634 /* if this is cold file, we should overwrite to avoid fragmentation */ 2635 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2636 return true; 2637 2638 return check_inplace_update_policy(inode, fio); 2639 } 2640 2641 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2642 { 2643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2644 2645 /* The below cases were checked when setting it. */ 2646 if (f2fs_is_pinned_file(inode)) 2647 return false; 2648 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2649 return true; 2650 if (f2fs_lfs_mode(sbi)) 2651 return true; 2652 if (S_ISDIR(inode->i_mode)) 2653 return true; 2654 if (IS_NOQUOTA(inode)) 2655 return true; 2656 if (f2fs_is_atomic_file(inode)) 2657 return true; 2658 2659 /* swap file is migrating in aligned write mode */ 2660 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2661 return true; 2662 2663 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2664 return true; 2665 2666 if (fio) { 2667 if (page_private_gcing(fio->page)) 2668 return true; 2669 if (page_private_dummy(fio->page)) 2670 return true; 2671 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2672 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2673 return true; 2674 } 2675 return false; 2676 } 2677 2678 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2679 { 2680 struct inode *inode = fio->page->mapping->host; 2681 2682 if (f2fs_should_update_outplace(inode, fio)) 2683 return false; 2684 2685 return f2fs_should_update_inplace(inode, fio); 2686 } 2687 2688 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2689 { 2690 struct page *page = fio->page; 2691 struct inode *inode = page->mapping->host; 2692 struct dnode_of_data dn; 2693 struct node_info ni; 2694 bool ipu_force = false; 2695 int err = 0; 2696 2697 /* Use COW inode to make dnode_of_data for atomic write */ 2698 if (f2fs_is_atomic_file(inode)) 2699 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2700 else 2701 set_new_dnode(&dn, inode, NULL, NULL, 0); 2702 2703 if (need_inplace_update(fio) && 2704 f2fs_lookup_read_extent_cache_block(inode, page->index, 2705 &fio->old_blkaddr)) { 2706 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2707 DATA_GENERIC_ENHANCE)) { 2708 f2fs_handle_error(fio->sbi, 2709 ERROR_INVALID_BLKADDR); 2710 return -EFSCORRUPTED; 2711 } 2712 2713 ipu_force = true; 2714 fio->need_lock = LOCK_DONE; 2715 goto got_it; 2716 } 2717 2718 /* Deadlock due to between page->lock and f2fs_lock_op */ 2719 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2720 return -EAGAIN; 2721 2722 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2723 if (err) 2724 goto out; 2725 2726 fio->old_blkaddr = dn.data_blkaddr; 2727 2728 /* This page is already truncated */ 2729 if (fio->old_blkaddr == NULL_ADDR) { 2730 ClearPageUptodate(page); 2731 clear_page_private_gcing(page); 2732 goto out_writepage; 2733 } 2734 got_it: 2735 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2736 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2737 DATA_GENERIC_ENHANCE)) { 2738 err = -EFSCORRUPTED; 2739 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 2740 goto out_writepage; 2741 } 2742 2743 /* wait for GCed page writeback via META_MAPPING */ 2744 if (fio->post_read) 2745 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2746 2747 /* 2748 * If current allocation needs SSR, 2749 * it had better in-place writes for updated data. 2750 */ 2751 if (ipu_force || 2752 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2753 need_inplace_update(fio))) { 2754 err = f2fs_encrypt_one_page(fio); 2755 if (err) 2756 goto out_writepage; 2757 2758 set_page_writeback(page); 2759 f2fs_put_dnode(&dn); 2760 if (fio->need_lock == LOCK_REQ) 2761 f2fs_unlock_op(fio->sbi); 2762 err = f2fs_inplace_write_data(fio); 2763 if (err) { 2764 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2765 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2766 if (PageWriteback(page)) 2767 end_page_writeback(page); 2768 } else { 2769 set_inode_flag(inode, FI_UPDATE_WRITE); 2770 } 2771 trace_f2fs_do_write_data_page(fio->page, IPU); 2772 return err; 2773 } 2774 2775 if (fio->need_lock == LOCK_RETRY) { 2776 if (!f2fs_trylock_op(fio->sbi)) { 2777 err = -EAGAIN; 2778 goto out_writepage; 2779 } 2780 fio->need_lock = LOCK_REQ; 2781 } 2782 2783 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2784 if (err) 2785 goto out_writepage; 2786 2787 fio->version = ni.version; 2788 2789 err = f2fs_encrypt_one_page(fio); 2790 if (err) 2791 goto out_writepage; 2792 2793 set_page_writeback(page); 2794 2795 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2796 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2797 2798 /* LFS mode write path */ 2799 f2fs_outplace_write_data(&dn, fio); 2800 trace_f2fs_do_write_data_page(page, OPU); 2801 set_inode_flag(inode, FI_APPEND_WRITE); 2802 out_writepage: 2803 f2fs_put_dnode(&dn); 2804 out: 2805 if (fio->need_lock == LOCK_REQ) 2806 f2fs_unlock_op(fio->sbi); 2807 return err; 2808 } 2809 2810 int f2fs_write_single_data_page(struct page *page, int *submitted, 2811 struct bio **bio, 2812 sector_t *last_block, 2813 struct writeback_control *wbc, 2814 enum iostat_type io_type, 2815 int compr_blocks, 2816 bool allow_balance) 2817 { 2818 struct inode *inode = page->mapping->host; 2819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2820 loff_t i_size = i_size_read(inode); 2821 const pgoff_t end_index = ((unsigned long long)i_size) 2822 >> PAGE_SHIFT; 2823 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2824 unsigned offset = 0; 2825 bool need_balance_fs = false; 2826 bool quota_inode = IS_NOQUOTA(inode); 2827 int err = 0; 2828 struct f2fs_io_info fio = { 2829 .sbi = sbi, 2830 .ino = inode->i_ino, 2831 .type = DATA, 2832 .op = REQ_OP_WRITE, 2833 .op_flags = wbc_to_write_flags(wbc), 2834 .old_blkaddr = NULL_ADDR, 2835 .page = page, 2836 .encrypted_page = NULL, 2837 .submitted = 0, 2838 .compr_blocks = compr_blocks, 2839 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY, 2840 .post_read = f2fs_post_read_required(inode) ? 1 : 0, 2841 .io_type = io_type, 2842 .io_wbc = wbc, 2843 .bio = bio, 2844 .last_block = last_block, 2845 }; 2846 2847 trace_f2fs_writepage(page, DATA); 2848 2849 /* we should bypass data pages to proceed the kworker jobs */ 2850 if (unlikely(f2fs_cp_error(sbi))) { 2851 mapping_set_error(page->mapping, -EIO); 2852 /* 2853 * don't drop any dirty dentry pages for keeping lastest 2854 * directory structure. 2855 */ 2856 if (S_ISDIR(inode->i_mode) && 2857 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2858 goto redirty_out; 2859 2860 /* keep data pages in remount-ro mode */ 2861 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2862 goto redirty_out; 2863 goto out; 2864 } 2865 2866 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2867 goto redirty_out; 2868 2869 if (page->index < end_index || 2870 f2fs_verity_in_progress(inode) || 2871 compr_blocks) 2872 goto write; 2873 2874 /* 2875 * If the offset is out-of-range of file size, 2876 * this page does not have to be written to disk. 2877 */ 2878 offset = i_size & (PAGE_SIZE - 1); 2879 if ((page->index >= end_index + 1) || !offset) 2880 goto out; 2881 2882 zero_user_segment(page, offset, PAGE_SIZE); 2883 write: 2884 /* Dentry/quota blocks are controlled by checkpoint */ 2885 if (S_ISDIR(inode->i_mode) || quota_inode) { 2886 /* 2887 * We need to wait for node_write to avoid block allocation during 2888 * checkpoint. This can only happen to quota writes which can cause 2889 * the below discard race condition. 2890 */ 2891 if (quota_inode) 2892 f2fs_down_read(&sbi->node_write); 2893 2894 fio.need_lock = LOCK_DONE; 2895 err = f2fs_do_write_data_page(&fio); 2896 2897 if (quota_inode) 2898 f2fs_up_read(&sbi->node_write); 2899 2900 goto done; 2901 } 2902 2903 if (!wbc->for_reclaim) 2904 need_balance_fs = true; 2905 else if (has_not_enough_free_secs(sbi, 0, 0)) 2906 goto redirty_out; 2907 else 2908 set_inode_flag(inode, FI_HOT_DATA); 2909 2910 err = -EAGAIN; 2911 if (f2fs_has_inline_data(inode)) { 2912 err = f2fs_write_inline_data(inode, page); 2913 if (!err) 2914 goto out; 2915 } 2916 2917 if (err == -EAGAIN) { 2918 err = f2fs_do_write_data_page(&fio); 2919 if (err == -EAGAIN) { 2920 f2fs_bug_on(sbi, compr_blocks); 2921 fio.need_lock = LOCK_REQ; 2922 err = f2fs_do_write_data_page(&fio); 2923 } 2924 } 2925 2926 if (err) { 2927 file_set_keep_isize(inode); 2928 } else { 2929 spin_lock(&F2FS_I(inode)->i_size_lock); 2930 if (F2FS_I(inode)->last_disk_size < psize) 2931 F2FS_I(inode)->last_disk_size = psize; 2932 spin_unlock(&F2FS_I(inode)->i_size_lock); 2933 } 2934 2935 done: 2936 if (err && err != -ENOENT) 2937 goto redirty_out; 2938 2939 out: 2940 inode_dec_dirty_pages(inode); 2941 if (err) { 2942 ClearPageUptodate(page); 2943 clear_page_private_gcing(page); 2944 } 2945 2946 if (wbc->for_reclaim) { 2947 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2948 clear_inode_flag(inode, FI_HOT_DATA); 2949 f2fs_remove_dirty_inode(inode); 2950 submitted = NULL; 2951 } 2952 unlock_page(page); 2953 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2954 !F2FS_I(inode)->wb_task && allow_balance) 2955 f2fs_balance_fs(sbi, need_balance_fs); 2956 2957 if (unlikely(f2fs_cp_error(sbi))) { 2958 f2fs_submit_merged_write(sbi, DATA); 2959 if (bio && *bio) 2960 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2961 submitted = NULL; 2962 } 2963 2964 if (submitted) 2965 *submitted = fio.submitted; 2966 2967 return 0; 2968 2969 redirty_out: 2970 redirty_page_for_writepage(wbc, page); 2971 /* 2972 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2973 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2974 * file_write_and_wait_range() will see EIO error, which is critical 2975 * to return value of fsync() followed by atomic_write failure to user. 2976 */ 2977 if (!err || wbc->for_reclaim) 2978 return AOP_WRITEPAGE_ACTIVATE; 2979 unlock_page(page); 2980 return err; 2981 } 2982 2983 static int f2fs_write_data_page(struct page *page, 2984 struct writeback_control *wbc) 2985 { 2986 #ifdef CONFIG_F2FS_FS_COMPRESSION 2987 struct inode *inode = page->mapping->host; 2988 2989 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2990 goto out; 2991 2992 if (f2fs_compressed_file(inode)) { 2993 if (f2fs_is_compressed_cluster(inode, page->index)) { 2994 redirty_page_for_writepage(wbc, page); 2995 return AOP_WRITEPAGE_ACTIVATE; 2996 } 2997 } 2998 out: 2999 #endif 3000 3001 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 3002 wbc, FS_DATA_IO, 0, true); 3003 } 3004 3005 /* 3006 * This function was copied from write_cache_pages from mm/page-writeback.c. 3007 * The major change is making write step of cold data page separately from 3008 * warm/hot data page. 3009 */ 3010 static int f2fs_write_cache_pages(struct address_space *mapping, 3011 struct writeback_control *wbc, 3012 enum iostat_type io_type) 3013 { 3014 int ret = 0; 3015 int done = 0, retry = 0; 3016 struct page *pages_local[F2FS_ONSTACK_PAGES]; 3017 struct page **pages = pages_local; 3018 struct folio_batch fbatch; 3019 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 3020 struct bio *bio = NULL; 3021 sector_t last_block; 3022 #ifdef CONFIG_F2FS_FS_COMPRESSION 3023 struct inode *inode = mapping->host; 3024 struct compress_ctx cc = { 3025 .inode = inode, 3026 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 3027 .cluster_size = F2FS_I(inode)->i_cluster_size, 3028 .cluster_idx = NULL_CLUSTER, 3029 .rpages = NULL, 3030 .nr_rpages = 0, 3031 .cpages = NULL, 3032 .valid_nr_cpages = 0, 3033 .rbuf = NULL, 3034 .cbuf = NULL, 3035 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 3036 .private = NULL, 3037 }; 3038 #endif 3039 int nr_folios, p, idx; 3040 int nr_pages; 3041 unsigned int max_pages = F2FS_ONSTACK_PAGES; 3042 pgoff_t index; 3043 pgoff_t end; /* Inclusive */ 3044 pgoff_t done_index; 3045 int range_whole = 0; 3046 xa_mark_t tag; 3047 int nwritten = 0; 3048 int submitted = 0; 3049 int i; 3050 3051 #ifdef CONFIG_F2FS_FS_COMPRESSION 3052 if (f2fs_compressed_file(inode) && 3053 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 3054 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 3055 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 3056 max_pages = 1 << cc.log_cluster_size; 3057 } 3058 #endif 3059 3060 folio_batch_init(&fbatch); 3061 3062 if (get_dirty_pages(mapping->host) <= 3063 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3064 set_inode_flag(mapping->host, FI_HOT_DATA); 3065 else 3066 clear_inode_flag(mapping->host, FI_HOT_DATA); 3067 3068 if (wbc->range_cyclic) { 3069 index = mapping->writeback_index; /* prev offset */ 3070 end = -1; 3071 } else { 3072 index = wbc->range_start >> PAGE_SHIFT; 3073 end = wbc->range_end >> PAGE_SHIFT; 3074 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3075 range_whole = 1; 3076 } 3077 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3078 tag = PAGECACHE_TAG_TOWRITE; 3079 else 3080 tag = PAGECACHE_TAG_DIRTY; 3081 retry: 3082 retry = 0; 3083 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3084 tag_pages_for_writeback(mapping, index, end); 3085 done_index = index; 3086 while (!done && !retry && (index <= end)) { 3087 nr_pages = 0; 3088 again: 3089 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3090 tag, &fbatch); 3091 if (nr_folios == 0) { 3092 if (nr_pages) 3093 goto write; 3094 break; 3095 } 3096 3097 for (i = 0; i < nr_folios; i++) { 3098 struct folio *folio = fbatch.folios[i]; 3099 3100 idx = 0; 3101 p = folio_nr_pages(folio); 3102 add_more: 3103 pages[nr_pages] = folio_page(folio, idx); 3104 folio_get(folio); 3105 if (++nr_pages == max_pages) { 3106 index = folio->index + idx + 1; 3107 folio_batch_release(&fbatch); 3108 goto write; 3109 } 3110 if (++idx < p) 3111 goto add_more; 3112 } 3113 folio_batch_release(&fbatch); 3114 goto again; 3115 write: 3116 for (i = 0; i < nr_pages; i++) { 3117 struct page *page = pages[i]; 3118 struct folio *folio = page_folio(page); 3119 bool need_readd; 3120 readd: 3121 need_readd = false; 3122 #ifdef CONFIG_F2FS_FS_COMPRESSION 3123 if (f2fs_compressed_file(inode)) { 3124 void *fsdata = NULL; 3125 struct page *pagep; 3126 int ret2; 3127 3128 ret = f2fs_init_compress_ctx(&cc); 3129 if (ret) { 3130 done = 1; 3131 break; 3132 } 3133 3134 if (!f2fs_cluster_can_merge_page(&cc, 3135 folio->index)) { 3136 ret = f2fs_write_multi_pages(&cc, 3137 &submitted, wbc, io_type); 3138 if (!ret) 3139 need_readd = true; 3140 goto result; 3141 } 3142 3143 if (unlikely(f2fs_cp_error(sbi))) 3144 goto lock_folio; 3145 3146 if (!f2fs_cluster_is_empty(&cc)) 3147 goto lock_folio; 3148 3149 if (f2fs_all_cluster_page_ready(&cc, 3150 pages, i, nr_pages, true)) 3151 goto lock_folio; 3152 3153 ret2 = f2fs_prepare_compress_overwrite( 3154 inode, &pagep, 3155 folio->index, &fsdata); 3156 if (ret2 < 0) { 3157 ret = ret2; 3158 done = 1; 3159 break; 3160 } else if (ret2 && 3161 (!f2fs_compress_write_end(inode, 3162 fsdata, folio->index, 1) || 3163 !f2fs_all_cluster_page_ready(&cc, 3164 pages, i, nr_pages, 3165 false))) { 3166 retry = 1; 3167 break; 3168 } 3169 } 3170 #endif 3171 /* give a priority to WB_SYNC threads */ 3172 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3173 wbc->sync_mode == WB_SYNC_NONE) { 3174 done = 1; 3175 break; 3176 } 3177 #ifdef CONFIG_F2FS_FS_COMPRESSION 3178 lock_folio: 3179 #endif 3180 done_index = folio->index; 3181 retry_write: 3182 folio_lock(folio); 3183 3184 if (unlikely(folio->mapping != mapping)) { 3185 continue_unlock: 3186 folio_unlock(folio); 3187 continue; 3188 } 3189 3190 if (!folio_test_dirty(folio)) { 3191 /* someone wrote it for us */ 3192 goto continue_unlock; 3193 } 3194 3195 if (folio_test_writeback(folio)) { 3196 if (wbc->sync_mode == WB_SYNC_NONE) 3197 goto continue_unlock; 3198 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); 3199 } 3200 3201 if (!folio_clear_dirty_for_io(folio)) 3202 goto continue_unlock; 3203 3204 #ifdef CONFIG_F2FS_FS_COMPRESSION 3205 if (f2fs_compressed_file(inode)) { 3206 folio_get(folio); 3207 f2fs_compress_ctx_add_page(&cc, &folio->page); 3208 continue; 3209 } 3210 #endif 3211 ret = f2fs_write_single_data_page(&folio->page, 3212 &submitted, &bio, &last_block, 3213 wbc, io_type, 0, true); 3214 if (ret == AOP_WRITEPAGE_ACTIVATE) 3215 folio_unlock(folio); 3216 #ifdef CONFIG_F2FS_FS_COMPRESSION 3217 result: 3218 #endif 3219 nwritten += submitted; 3220 wbc->nr_to_write -= submitted; 3221 3222 if (unlikely(ret)) { 3223 /* 3224 * keep nr_to_write, since vfs uses this to 3225 * get # of written pages. 3226 */ 3227 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3228 ret = 0; 3229 goto next; 3230 } else if (ret == -EAGAIN) { 3231 ret = 0; 3232 if (wbc->sync_mode == WB_SYNC_ALL) { 3233 f2fs_io_schedule_timeout( 3234 DEFAULT_IO_TIMEOUT); 3235 goto retry_write; 3236 } 3237 goto next; 3238 } 3239 done_index = folio_next_index(folio); 3240 done = 1; 3241 break; 3242 } 3243 3244 if (wbc->nr_to_write <= 0 && 3245 wbc->sync_mode == WB_SYNC_NONE) { 3246 done = 1; 3247 break; 3248 } 3249 next: 3250 if (need_readd) 3251 goto readd; 3252 } 3253 release_pages(pages, nr_pages); 3254 cond_resched(); 3255 } 3256 #ifdef CONFIG_F2FS_FS_COMPRESSION 3257 /* flush remained pages in compress cluster */ 3258 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3259 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3260 nwritten += submitted; 3261 wbc->nr_to_write -= submitted; 3262 if (ret) { 3263 done = 1; 3264 retry = 0; 3265 } 3266 } 3267 if (f2fs_compressed_file(inode)) 3268 f2fs_destroy_compress_ctx(&cc, false); 3269 #endif 3270 if (retry) { 3271 index = 0; 3272 end = -1; 3273 goto retry; 3274 } 3275 if (wbc->range_cyclic && !done) 3276 done_index = 0; 3277 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3278 mapping->writeback_index = done_index; 3279 3280 if (nwritten) 3281 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3282 NULL, 0, DATA); 3283 /* submit cached bio of IPU write */ 3284 if (bio) 3285 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3286 3287 #ifdef CONFIG_F2FS_FS_COMPRESSION 3288 if (pages != pages_local) 3289 kfree(pages); 3290 #endif 3291 3292 return ret; 3293 } 3294 3295 static inline bool __should_serialize_io(struct inode *inode, 3296 struct writeback_control *wbc) 3297 { 3298 /* to avoid deadlock in path of data flush */ 3299 if (F2FS_I(inode)->wb_task) 3300 return false; 3301 3302 if (!S_ISREG(inode->i_mode)) 3303 return false; 3304 if (IS_NOQUOTA(inode)) 3305 return false; 3306 3307 if (f2fs_need_compress_data(inode)) 3308 return true; 3309 if (wbc->sync_mode != WB_SYNC_ALL) 3310 return true; 3311 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3312 return true; 3313 return false; 3314 } 3315 3316 static int __f2fs_write_data_pages(struct address_space *mapping, 3317 struct writeback_control *wbc, 3318 enum iostat_type io_type) 3319 { 3320 struct inode *inode = mapping->host; 3321 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3322 struct blk_plug plug; 3323 int ret; 3324 bool locked = false; 3325 3326 /* deal with chardevs and other special file */ 3327 if (!mapping->a_ops->writepage) 3328 return 0; 3329 3330 /* skip writing if there is no dirty page in this inode */ 3331 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3332 return 0; 3333 3334 /* during POR, we don't need to trigger writepage at all. */ 3335 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3336 goto skip_write; 3337 3338 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3339 wbc->sync_mode == WB_SYNC_NONE && 3340 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3341 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3342 goto skip_write; 3343 3344 /* skip writing in file defragment preparing stage */ 3345 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3346 goto skip_write; 3347 3348 trace_f2fs_writepages(mapping->host, wbc, DATA); 3349 3350 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3351 if (wbc->sync_mode == WB_SYNC_ALL) 3352 atomic_inc(&sbi->wb_sync_req[DATA]); 3353 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3354 /* to avoid potential deadlock */ 3355 if (current->plug) 3356 blk_finish_plug(current->plug); 3357 goto skip_write; 3358 } 3359 3360 if (__should_serialize_io(inode, wbc)) { 3361 mutex_lock(&sbi->writepages); 3362 locked = true; 3363 } 3364 3365 blk_start_plug(&plug); 3366 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3367 blk_finish_plug(&plug); 3368 3369 if (locked) 3370 mutex_unlock(&sbi->writepages); 3371 3372 if (wbc->sync_mode == WB_SYNC_ALL) 3373 atomic_dec(&sbi->wb_sync_req[DATA]); 3374 /* 3375 * if some pages were truncated, we cannot guarantee its mapping->host 3376 * to detect pending bios. 3377 */ 3378 3379 f2fs_remove_dirty_inode(inode); 3380 return ret; 3381 3382 skip_write: 3383 wbc->pages_skipped += get_dirty_pages(inode); 3384 trace_f2fs_writepages(mapping->host, wbc, DATA); 3385 return 0; 3386 } 3387 3388 static int f2fs_write_data_pages(struct address_space *mapping, 3389 struct writeback_control *wbc) 3390 { 3391 struct inode *inode = mapping->host; 3392 3393 return __f2fs_write_data_pages(mapping, wbc, 3394 F2FS_I(inode)->cp_task == current ? 3395 FS_CP_DATA_IO : FS_DATA_IO); 3396 } 3397 3398 void f2fs_write_failed(struct inode *inode, loff_t to) 3399 { 3400 loff_t i_size = i_size_read(inode); 3401 3402 if (IS_NOQUOTA(inode)) 3403 return; 3404 3405 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3406 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3407 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3408 filemap_invalidate_lock(inode->i_mapping); 3409 3410 truncate_pagecache(inode, i_size); 3411 f2fs_truncate_blocks(inode, i_size, true); 3412 3413 filemap_invalidate_unlock(inode->i_mapping); 3414 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3415 } 3416 } 3417 3418 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3419 struct page *page, loff_t pos, unsigned len, 3420 block_t *blk_addr, bool *node_changed) 3421 { 3422 struct inode *inode = page->mapping->host; 3423 pgoff_t index = page->index; 3424 struct dnode_of_data dn; 3425 struct page *ipage; 3426 bool locked = false; 3427 int flag = F2FS_GET_BLOCK_PRE_AIO; 3428 int err = 0; 3429 3430 /* 3431 * If a whole page is being written and we already preallocated all the 3432 * blocks, then there is no need to get a block address now. 3433 */ 3434 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3435 return 0; 3436 3437 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3438 if (f2fs_has_inline_data(inode)) { 3439 if (pos + len > MAX_INLINE_DATA(inode)) 3440 flag = F2FS_GET_BLOCK_DEFAULT; 3441 f2fs_map_lock(sbi, flag); 3442 locked = true; 3443 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3444 f2fs_map_lock(sbi, flag); 3445 locked = true; 3446 } 3447 3448 restart: 3449 /* check inline_data */ 3450 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3451 if (IS_ERR(ipage)) { 3452 err = PTR_ERR(ipage); 3453 goto unlock_out; 3454 } 3455 3456 set_new_dnode(&dn, inode, ipage, ipage, 0); 3457 3458 if (f2fs_has_inline_data(inode)) { 3459 if (pos + len <= MAX_INLINE_DATA(inode)) { 3460 f2fs_do_read_inline_data(page, ipage); 3461 set_inode_flag(inode, FI_DATA_EXIST); 3462 if (inode->i_nlink) 3463 set_page_private_inline(ipage); 3464 goto out; 3465 } 3466 err = f2fs_convert_inline_page(&dn, page); 3467 if (err || dn.data_blkaddr != NULL_ADDR) 3468 goto out; 3469 } 3470 3471 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3472 &dn.data_blkaddr)) { 3473 if (locked) { 3474 err = f2fs_reserve_block(&dn, index); 3475 goto out; 3476 } 3477 3478 /* hole case */ 3479 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3480 if (!err && dn.data_blkaddr != NULL_ADDR) 3481 goto out; 3482 f2fs_put_dnode(&dn); 3483 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3484 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3485 locked = true; 3486 goto restart; 3487 } 3488 out: 3489 if (!err) { 3490 /* convert_inline_page can make node_changed */ 3491 *blk_addr = dn.data_blkaddr; 3492 *node_changed = dn.node_changed; 3493 } 3494 f2fs_put_dnode(&dn); 3495 unlock_out: 3496 if (locked) 3497 f2fs_map_unlock(sbi, flag); 3498 return err; 3499 } 3500 3501 static int __find_data_block(struct inode *inode, pgoff_t index, 3502 block_t *blk_addr) 3503 { 3504 struct dnode_of_data dn; 3505 struct page *ipage; 3506 int err = 0; 3507 3508 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3509 if (IS_ERR(ipage)) 3510 return PTR_ERR(ipage); 3511 3512 set_new_dnode(&dn, inode, ipage, ipage, 0); 3513 3514 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3515 &dn.data_blkaddr)) { 3516 /* hole case */ 3517 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3518 if (err) { 3519 dn.data_blkaddr = NULL_ADDR; 3520 err = 0; 3521 } 3522 } 3523 *blk_addr = dn.data_blkaddr; 3524 f2fs_put_dnode(&dn); 3525 return err; 3526 } 3527 3528 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3529 block_t *blk_addr, bool *node_changed) 3530 { 3531 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3532 struct dnode_of_data dn; 3533 struct page *ipage; 3534 int err = 0; 3535 3536 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3537 3538 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3539 if (IS_ERR(ipage)) { 3540 err = PTR_ERR(ipage); 3541 goto unlock_out; 3542 } 3543 set_new_dnode(&dn, inode, ipage, ipage, 0); 3544 3545 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3546 &dn.data_blkaddr)) 3547 err = f2fs_reserve_block(&dn, index); 3548 3549 *blk_addr = dn.data_blkaddr; 3550 *node_changed = dn.node_changed; 3551 f2fs_put_dnode(&dn); 3552 3553 unlock_out: 3554 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3555 return err; 3556 } 3557 3558 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3559 struct page *page, loff_t pos, unsigned int len, 3560 block_t *blk_addr, bool *node_changed, bool *use_cow) 3561 { 3562 struct inode *inode = page->mapping->host; 3563 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3564 pgoff_t index = page->index; 3565 int err = 0; 3566 block_t ori_blk_addr = NULL_ADDR; 3567 3568 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3569 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3570 goto reserve_block; 3571 3572 /* Look for the block in COW inode first */ 3573 err = __find_data_block(cow_inode, index, blk_addr); 3574 if (err) { 3575 return err; 3576 } else if (*blk_addr != NULL_ADDR) { 3577 *use_cow = true; 3578 return 0; 3579 } 3580 3581 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3582 goto reserve_block; 3583 3584 /* Look for the block in the original inode */ 3585 err = __find_data_block(inode, index, &ori_blk_addr); 3586 if (err) 3587 return err; 3588 3589 reserve_block: 3590 /* Finally, we should reserve a new block in COW inode for the update */ 3591 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3592 if (err) 3593 return err; 3594 inc_atomic_write_cnt(inode); 3595 3596 if (ori_blk_addr != NULL_ADDR) 3597 *blk_addr = ori_blk_addr; 3598 return 0; 3599 } 3600 3601 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3602 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3603 { 3604 struct inode *inode = mapping->host; 3605 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3606 struct page *page = NULL; 3607 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3608 bool need_balance = false; 3609 bool use_cow = false; 3610 block_t blkaddr = NULL_ADDR; 3611 int err = 0; 3612 3613 trace_f2fs_write_begin(inode, pos, len); 3614 3615 if (!f2fs_is_checkpoint_ready(sbi)) { 3616 err = -ENOSPC; 3617 goto fail; 3618 } 3619 3620 /* 3621 * We should check this at this moment to avoid deadlock on inode page 3622 * and #0 page. The locking rule for inline_data conversion should be: 3623 * lock_page(page #0) -> lock_page(inode_page) 3624 */ 3625 if (index != 0) { 3626 err = f2fs_convert_inline_inode(inode); 3627 if (err) 3628 goto fail; 3629 } 3630 3631 #ifdef CONFIG_F2FS_FS_COMPRESSION 3632 if (f2fs_compressed_file(inode)) { 3633 int ret; 3634 3635 *fsdata = NULL; 3636 3637 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3638 goto repeat; 3639 3640 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3641 index, fsdata); 3642 if (ret < 0) { 3643 err = ret; 3644 goto fail; 3645 } else if (ret) { 3646 return 0; 3647 } 3648 } 3649 #endif 3650 3651 repeat: 3652 /* 3653 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3654 * wait_for_stable_page. Will wait that below with our IO control. 3655 */ 3656 page = f2fs_pagecache_get_page(mapping, index, 3657 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3658 if (!page) { 3659 err = -ENOMEM; 3660 goto fail; 3661 } 3662 3663 /* TODO: cluster can be compressed due to race with .writepage */ 3664 3665 *pagep = page; 3666 3667 if (f2fs_is_atomic_file(inode)) 3668 err = prepare_atomic_write_begin(sbi, page, pos, len, 3669 &blkaddr, &need_balance, &use_cow); 3670 else 3671 err = prepare_write_begin(sbi, page, pos, len, 3672 &blkaddr, &need_balance); 3673 if (err) 3674 goto fail; 3675 3676 if (need_balance && !IS_NOQUOTA(inode) && 3677 has_not_enough_free_secs(sbi, 0, 0)) { 3678 unlock_page(page); 3679 f2fs_balance_fs(sbi, true); 3680 lock_page(page); 3681 if (page->mapping != mapping) { 3682 /* The page got truncated from under us */ 3683 f2fs_put_page(page, 1); 3684 goto repeat; 3685 } 3686 } 3687 3688 f2fs_wait_on_page_writeback(page, DATA, false, true); 3689 3690 if (len == PAGE_SIZE || PageUptodate(page)) 3691 return 0; 3692 3693 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3694 !f2fs_verity_in_progress(inode)) { 3695 zero_user_segment(page, len, PAGE_SIZE); 3696 return 0; 3697 } 3698 3699 if (blkaddr == NEW_ADDR) { 3700 zero_user_segment(page, 0, PAGE_SIZE); 3701 SetPageUptodate(page); 3702 } else { 3703 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3704 DATA_GENERIC_ENHANCE_READ)) { 3705 err = -EFSCORRUPTED; 3706 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3707 goto fail; 3708 } 3709 err = f2fs_submit_page_read(use_cow ? 3710 F2FS_I(inode)->cow_inode : inode, page, 3711 blkaddr, 0, true); 3712 if (err) 3713 goto fail; 3714 3715 lock_page(page); 3716 if (unlikely(page->mapping != mapping)) { 3717 f2fs_put_page(page, 1); 3718 goto repeat; 3719 } 3720 if (unlikely(!PageUptodate(page))) { 3721 err = -EIO; 3722 goto fail; 3723 } 3724 } 3725 return 0; 3726 3727 fail: 3728 f2fs_put_page(page, 1); 3729 f2fs_write_failed(inode, pos + len); 3730 return err; 3731 } 3732 3733 static int f2fs_write_end(struct file *file, 3734 struct address_space *mapping, 3735 loff_t pos, unsigned len, unsigned copied, 3736 struct page *page, void *fsdata) 3737 { 3738 struct inode *inode = page->mapping->host; 3739 3740 trace_f2fs_write_end(inode, pos, len, copied); 3741 3742 /* 3743 * This should be come from len == PAGE_SIZE, and we expect copied 3744 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3745 * let generic_perform_write() try to copy data again through copied=0. 3746 */ 3747 if (!PageUptodate(page)) { 3748 if (unlikely(copied != len)) 3749 copied = 0; 3750 else 3751 SetPageUptodate(page); 3752 } 3753 3754 #ifdef CONFIG_F2FS_FS_COMPRESSION 3755 /* overwrite compressed file */ 3756 if (f2fs_compressed_file(inode) && fsdata) { 3757 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3758 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3759 3760 if (pos + copied > i_size_read(inode) && 3761 !f2fs_verity_in_progress(inode)) 3762 f2fs_i_size_write(inode, pos + copied); 3763 return copied; 3764 } 3765 #endif 3766 3767 if (!copied) 3768 goto unlock_out; 3769 3770 set_page_dirty(page); 3771 3772 if (pos + copied > i_size_read(inode) && 3773 !f2fs_verity_in_progress(inode)) { 3774 f2fs_i_size_write(inode, pos + copied); 3775 if (f2fs_is_atomic_file(inode)) 3776 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3777 pos + copied); 3778 } 3779 unlock_out: 3780 f2fs_put_page(page, 1); 3781 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3782 return copied; 3783 } 3784 3785 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3786 { 3787 struct inode *inode = folio->mapping->host; 3788 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3789 3790 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3791 (offset || length != folio_size(folio))) 3792 return; 3793 3794 if (folio_test_dirty(folio)) { 3795 if (inode->i_ino == F2FS_META_INO(sbi)) { 3796 dec_page_count(sbi, F2FS_DIRTY_META); 3797 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3798 dec_page_count(sbi, F2FS_DIRTY_NODES); 3799 } else { 3800 inode_dec_dirty_pages(inode); 3801 f2fs_remove_dirty_inode(inode); 3802 } 3803 } 3804 clear_page_private_all(&folio->page); 3805 } 3806 3807 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3808 { 3809 /* If this is dirty folio, keep private data */ 3810 if (folio_test_dirty(folio)) 3811 return false; 3812 3813 clear_page_private_all(&folio->page); 3814 return true; 3815 } 3816 3817 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3818 struct folio *folio) 3819 { 3820 struct inode *inode = mapping->host; 3821 3822 trace_f2fs_set_page_dirty(&folio->page, DATA); 3823 3824 if (!folio_test_uptodate(folio)) 3825 folio_mark_uptodate(folio); 3826 BUG_ON(folio_test_swapcache(folio)); 3827 3828 if (filemap_dirty_folio(mapping, folio)) { 3829 f2fs_update_dirty_folio(inode, folio); 3830 return true; 3831 } 3832 return false; 3833 } 3834 3835 3836 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3837 { 3838 #ifdef CONFIG_F2FS_FS_COMPRESSION 3839 struct dnode_of_data dn; 3840 sector_t start_idx, blknr = 0; 3841 int ret; 3842 3843 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3844 3845 set_new_dnode(&dn, inode, NULL, NULL, 0); 3846 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3847 if (ret) 3848 return 0; 3849 3850 if (dn.data_blkaddr != COMPRESS_ADDR) { 3851 dn.ofs_in_node += block - start_idx; 3852 blknr = f2fs_data_blkaddr(&dn); 3853 if (!__is_valid_data_blkaddr(blknr)) 3854 blknr = 0; 3855 } 3856 3857 f2fs_put_dnode(&dn); 3858 return blknr; 3859 #else 3860 return 0; 3861 #endif 3862 } 3863 3864 3865 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3866 { 3867 struct inode *inode = mapping->host; 3868 sector_t blknr = 0; 3869 3870 if (f2fs_has_inline_data(inode)) 3871 goto out; 3872 3873 /* make sure allocating whole blocks */ 3874 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3875 filemap_write_and_wait(mapping); 3876 3877 /* Block number less than F2FS MAX BLOCKS */ 3878 if (unlikely(block >= max_file_blocks(inode))) 3879 goto out; 3880 3881 if (f2fs_compressed_file(inode)) { 3882 blknr = f2fs_bmap_compress(inode, block); 3883 } else { 3884 struct f2fs_map_blocks map; 3885 3886 memset(&map, 0, sizeof(map)); 3887 map.m_lblk = block; 3888 map.m_len = 1; 3889 map.m_next_pgofs = NULL; 3890 map.m_seg_type = NO_CHECK_TYPE; 3891 3892 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3893 blknr = map.m_pblk; 3894 } 3895 out: 3896 trace_f2fs_bmap(inode, block, blknr); 3897 return blknr; 3898 } 3899 3900 #ifdef CONFIG_SWAP 3901 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3902 unsigned int blkcnt) 3903 { 3904 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3905 unsigned int blkofs; 3906 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3907 unsigned int secidx = start_blk / blk_per_sec; 3908 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3909 int ret = 0; 3910 3911 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3912 filemap_invalidate_lock(inode->i_mapping); 3913 3914 set_inode_flag(inode, FI_ALIGNED_WRITE); 3915 set_inode_flag(inode, FI_OPU_WRITE); 3916 3917 for (; secidx < end_sec; secidx++) { 3918 f2fs_down_write(&sbi->pin_sem); 3919 3920 f2fs_lock_op(sbi); 3921 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3922 f2fs_unlock_op(sbi); 3923 3924 set_inode_flag(inode, FI_SKIP_WRITES); 3925 3926 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3927 struct page *page; 3928 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3929 3930 page = f2fs_get_lock_data_page(inode, blkidx, true); 3931 if (IS_ERR(page)) { 3932 f2fs_up_write(&sbi->pin_sem); 3933 ret = PTR_ERR(page); 3934 goto done; 3935 } 3936 3937 set_page_dirty(page); 3938 f2fs_put_page(page, 1); 3939 } 3940 3941 clear_inode_flag(inode, FI_SKIP_WRITES); 3942 3943 ret = filemap_fdatawrite(inode->i_mapping); 3944 3945 f2fs_up_write(&sbi->pin_sem); 3946 3947 if (ret) 3948 break; 3949 } 3950 3951 done: 3952 clear_inode_flag(inode, FI_SKIP_WRITES); 3953 clear_inode_flag(inode, FI_OPU_WRITE); 3954 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3955 3956 filemap_invalidate_unlock(inode->i_mapping); 3957 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3958 3959 return ret; 3960 } 3961 3962 static int check_swap_activate(struct swap_info_struct *sis, 3963 struct file *swap_file, sector_t *span) 3964 { 3965 struct address_space *mapping = swap_file->f_mapping; 3966 struct inode *inode = mapping->host; 3967 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3968 sector_t cur_lblock; 3969 sector_t last_lblock; 3970 sector_t pblock; 3971 sector_t lowest_pblock = -1; 3972 sector_t highest_pblock = 0; 3973 int nr_extents = 0; 3974 unsigned long nr_pblocks; 3975 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3976 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3977 unsigned int not_aligned = 0; 3978 int ret = 0; 3979 3980 /* 3981 * Map all the blocks into the extent list. This code doesn't try 3982 * to be very smart. 3983 */ 3984 cur_lblock = 0; 3985 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3986 3987 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3988 struct f2fs_map_blocks map; 3989 retry: 3990 cond_resched(); 3991 3992 memset(&map, 0, sizeof(map)); 3993 map.m_lblk = cur_lblock; 3994 map.m_len = last_lblock - cur_lblock; 3995 map.m_next_pgofs = NULL; 3996 map.m_next_extent = NULL; 3997 map.m_seg_type = NO_CHECK_TYPE; 3998 map.m_may_create = false; 3999 4000 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 4001 if (ret) 4002 goto out; 4003 4004 /* hole */ 4005 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 4006 f2fs_err(sbi, "Swapfile has holes"); 4007 ret = -EINVAL; 4008 goto out; 4009 } 4010 4011 pblock = map.m_pblk; 4012 nr_pblocks = map.m_len; 4013 4014 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 4015 nr_pblocks & sec_blks_mask) { 4016 not_aligned++; 4017 4018 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 4019 if (cur_lblock + nr_pblocks > sis->max) 4020 nr_pblocks -= blks_per_sec; 4021 4022 if (!nr_pblocks) { 4023 /* this extent is last one */ 4024 nr_pblocks = map.m_len; 4025 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 4026 goto next; 4027 } 4028 4029 ret = f2fs_migrate_blocks(inode, cur_lblock, 4030 nr_pblocks); 4031 if (ret) 4032 goto out; 4033 goto retry; 4034 } 4035 next: 4036 if (cur_lblock + nr_pblocks >= sis->max) 4037 nr_pblocks = sis->max - cur_lblock; 4038 4039 if (cur_lblock) { /* exclude the header page */ 4040 if (pblock < lowest_pblock) 4041 lowest_pblock = pblock; 4042 if (pblock + nr_pblocks - 1 > highest_pblock) 4043 highest_pblock = pblock + nr_pblocks - 1; 4044 } 4045 4046 /* 4047 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4048 */ 4049 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4050 if (ret < 0) 4051 goto out; 4052 nr_extents += ret; 4053 cur_lblock += nr_pblocks; 4054 } 4055 ret = nr_extents; 4056 *span = 1 + highest_pblock - lowest_pblock; 4057 if (cur_lblock == 0) 4058 cur_lblock = 1; /* force Empty message */ 4059 sis->max = cur_lblock; 4060 sis->pages = cur_lblock - 1; 4061 sis->highest_bit = cur_lblock - 1; 4062 out: 4063 if (not_aligned) 4064 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 4065 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4066 return ret; 4067 } 4068 4069 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4070 sector_t *span) 4071 { 4072 struct inode *inode = file_inode(file); 4073 int ret; 4074 4075 if (!S_ISREG(inode->i_mode)) 4076 return -EINVAL; 4077 4078 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4079 return -EROFS; 4080 4081 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 4082 f2fs_err(F2FS_I_SB(inode), 4083 "Swapfile not supported in LFS mode"); 4084 return -EINVAL; 4085 } 4086 4087 ret = f2fs_convert_inline_inode(inode); 4088 if (ret) 4089 return ret; 4090 4091 if (!f2fs_disable_compressed_file(inode)) 4092 return -EINVAL; 4093 4094 f2fs_precache_extents(inode); 4095 4096 ret = check_swap_activate(sis, file, span); 4097 if (ret < 0) 4098 return ret; 4099 4100 stat_inc_swapfile_inode(inode); 4101 set_inode_flag(inode, FI_PIN_FILE); 4102 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4103 return ret; 4104 } 4105 4106 static void f2fs_swap_deactivate(struct file *file) 4107 { 4108 struct inode *inode = file_inode(file); 4109 4110 stat_dec_swapfile_inode(inode); 4111 clear_inode_flag(inode, FI_PIN_FILE); 4112 } 4113 #else 4114 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4115 sector_t *span) 4116 { 4117 return -EOPNOTSUPP; 4118 } 4119 4120 static void f2fs_swap_deactivate(struct file *file) 4121 { 4122 } 4123 #endif 4124 4125 const struct address_space_operations f2fs_dblock_aops = { 4126 .read_folio = f2fs_read_data_folio, 4127 .readahead = f2fs_readahead, 4128 .writepage = f2fs_write_data_page, 4129 .writepages = f2fs_write_data_pages, 4130 .write_begin = f2fs_write_begin, 4131 .write_end = f2fs_write_end, 4132 .dirty_folio = f2fs_dirty_data_folio, 4133 .migrate_folio = filemap_migrate_folio, 4134 .invalidate_folio = f2fs_invalidate_folio, 4135 .release_folio = f2fs_release_folio, 4136 .bmap = f2fs_bmap, 4137 .swap_activate = f2fs_swap_activate, 4138 .swap_deactivate = f2fs_swap_deactivate, 4139 }; 4140 4141 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4142 { 4143 struct address_space *mapping = page_mapping(page); 4144 unsigned long flags; 4145 4146 xa_lock_irqsave(&mapping->i_pages, flags); 4147 __xa_clear_mark(&mapping->i_pages, page_index(page), 4148 PAGECACHE_TAG_DIRTY); 4149 xa_unlock_irqrestore(&mapping->i_pages, flags); 4150 } 4151 4152 int __init f2fs_init_post_read_processing(void) 4153 { 4154 bio_post_read_ctx_cache = 4155 kmem_cache_create("f2fs_bio_post_read_ctx", 4156 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4157 if (!bio_post_read_ctx_cache) 4158 goto fail; 4159 bio_post_read_ctx_pool = 4160 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4161 bio_post_read_ctx_cache); 4162 if (!bio_post_read_ctx_pool) 4163 goto fail_free_cache; 4164 return 0; 4165 4166 fail_free_cache: 4167 kmem_cache_destroy(bio_post_read_ctx_cache); 4168 fail: 4169 return -ENOMEM; 4170 } 4171 4172 void f2fs_destroy_post_read_processing(void) 4173 { 4174 mempool_destroy(bio_post_read_ctx_pool); 4175 kmem_cache_destroy(bio_post_read_ctx_cache); 4176 } 4177 4178 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4179 { 4180 if (!f2fs_sb_has_encrypt(sbi) && 4181 !f2fs_sb_has_verity(sbi) && 4182 !f2fs_sb_has_compression(sbi)) 4183 return 0; 4184 4185 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4186 WQ_UNBOUND | WQ_HIGHPRI, 4187 num_online_cpus()); 4188 return sbi->post_read_wq ? 0 : -ENOMEM; 4189 } 4190 4191 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4192 { 4193 if (sbi->post_read_wq) 4194 destroy_workqueue(sbi->post_read_wq); 4195 } 4196 4197 int __init f2fs_init_bio_entry_cache(void) 4198 { 4199 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4200 sizeof(struct bio_entry)); 4201 return bio_entry_slab ? 0 : -ENOMEM; 4202 } 4203 4204 void f2fs_destroy_bio_entry_cache(void) 4205 { 4206 kmem_cache_destroy(bio_entry_slab); 4207 } 4208 4209 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4210 unsigned int flags, struct iomap *iomap, 4211 struct iomap *srcmap) 4212 { 4213 struct f2fs_map_blocks map = {}; 4214 pgoff_t next_pgofs = 0; 4215 int err; 4216 4217 map.m_lblk = bytes_to_blks(inode, offset); 4218 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4219 map.m_next_pgofs = &next_pgofs; 4220 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4221 if (flags & IOMAP_WRITE) 4222 map.m_may_create = true; 4223 4224 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4225 if (err) 4226 return err; 4227 4228 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4229 4230 /* 4231 * When inline encryption is enabled, sometimes I/O to an encrypted file 4232 * has to be broken up to guarantee DUN contiguity. Handle this by 4233 * limiting the length of the mapping returned. 4234 */ 4235 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4236 4237 /* 4238 * We should never see delalloc or compressed extents here based on 4239 * prior flushing and checks. 4240 */ 4241 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4242 return -EINVAL; 4243 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4244 return -EINVAL; 4245 4246 if (map.m_pblk != NULL_ADDR) { 4247 iomap->length = blks_to_bytes(inode, map.m_len); 4248 iomap->type = IOMAP_MAPPED; 4249 iomap->flags |= IOMAP_F_MERGED; 4250 iomap->bdev = map.m_bdev; 4251 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4252 } else { 4253 if (flags & IOMAP_WRITE) 4254 return -ENOTBLK; 4255 iomap->length = blks_to_bytes(inode, next_pgofs) - 4256 iomap->offset; 4257 iomap->type = IOMAP_HOLE; 4258 iomap->addr = IOMAP_NULL_ADDR; 4259 } 4260 4261 if (map.m_flags & F2FS_MAP_NEW) 4262 iomap->flags |= IOMAP_F_NEW; 4263 if ((inode->i_state & I_DIRTY_DATASYNC) || 4264 offset + length > i_size_read(inode)) 4265 iomap->flags |= IOMAP_F_DIRTY; 4266 4267 return 0; 4268 } 4269 4270 const struct iomap_ops f2fs_iomap_ops = { 4271 .iomap_begin = f2fs_iomap_begin, 4272 }; 4273