1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/aio.h> 16 #include <linux/writeback.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 22 #include "f2fs.h" 23 #include "node.h" 24 #include "segment.h" 25 #include <trace/events/f2fs.h> 26 27 static void f2fs_read_end_io(struct bio *bio, int err) 28 { 29 struct bio_vec *bvec; 30 int i; 31 32 bio_for_each_segment_all(bvec, bio, i) { 33 struct page *page = bvec->bv_page; 34 35 if (!err) { 36 SetPageUptodate(page); 37 } else { 38 ClearPageUptodate(page); 39 SetPageError(page); 40 } 41 unlock_page(page); 42 } 43 bio_put(bio); 44 } 45 46 static void f2fs_write_end_io(struct bio *bio, int err) 47 { 48 struct f2fs_sb_info *sbi = bio->bi_private; 49 struct bio_vec *bvec; 50 int i; 51 52 bio_for_each_segment_all(bvec, bio, i) { 53 struct page *page = bvec->bv_page; 54 55 if (unlikely(err)) { 56 SetPageError(page); 57 set_bit(AS_EIO, &page->mapping->flags); 58 f2fs_stop_checkpoint(sbi); 59 } 60 end_page_writeback(page); 61 dec_page_count(sbi, F2FS_WRITEBACK); 62 } 63 64 if (sbi->wait_io) { 65 complete(sbi->wait_io); 66 sbi->wait_io = NULL; 67 } 68 69 if (!get_pages(sbi, F2FS_WRITEBACK) && 70 !list_empty(&sbi->cp_wait.task_list)) 71 wake_up(&sbi->cp_wait); 72 73 bio_put(bio); 74 } 75 76 /* 77 * Low-level block read/write IO operations. 78 */ 79 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 80 int npages, bool is_read) 81 { 82 struct bio *bio; 83 84 /* No failure on bio allocation */ 85 bio = bio_alloc(GFP_NOIO, npages); 86 87 bio->bi_bdev = sbi->sb->s_bdev; 88 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr); 89 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 90 bio->bi_private = sbi; 91 92 return bio; 93 } 94 95 static void __submit_merged_bio(struct f2fs_bio_info *io) 96 { 97 struct f2fs_io_info *fio = &io->fio; 98 int rw; 99 100 if (!io->bio) 101 return; 102 103 rw = fio->rw; 104 105 if (is_read_io(rw)) { 106 trace_f2fs_submit_read_bio(io->sbi->sb, rw, 107 fio->type, io->bio); 108 submit_bio(rw, io->bio); 109 } else { 110 trace_f2fs_submit_write_bio(io->sbi->sb, rw, 111 fio->type, io->bio); 112 /* 113 * META_FLUSH is only from the checkpoint procedure, and we 114 * should wait this metadata bio for FS consistency. 115 */ 116 if (fio->type == META_FLUSH) { 117 DECLARE_COMPLETION_ONSTACK(wait); 118 io->sbi->wait_io = &wait; 119 submit_bio(rw, io->bio); 120 wait_for_completion(&wait); 121 } else { 122 submit_bio(rw, io->bio); 123 } 124 } 125 126 io->bio = NULL; 127 } 128 129 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 130 enum page_type type, int rw) 131 { 132 enum page_type btype = PAGE_TYPE_OF_BIO(type); 133 struct f2fs_bio_info *io; 134 135 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 136 137 down_write(&io->io_rwsem); 138 139 /* change META to META_FLUSH in the checkpoint procedure */ 140 if (type >= META_FLUSH) { 141 io->fio.type = META_FLUSH; 142 if (test_opt(sbi, NOBARRIER)) 143 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO; 144 else 145 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO; 146 } 147 __submit_merged_bio(io); 148 up_write(&io->io_rwsem); 149 } 150 151 /* 152 * Fill the locked page with data located in the block address. 153 * Return unlocked page. 154 */ 155 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page, 156 block_t blk_addr, int rw) 157 { 158 struct bio *bio; 159 160 trace_f2fs_submit_page_bio(page, blk_addr, rw); 161 162 /* Allocate a new bio */ 163 bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw)); 164 165 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { 166 bio_put(bio); 167 f2fs_put_page(page, 1); 168 return -EFAULT; 169 } 170 171 submit_bio(rw, bio); 172 return 0; 173 } 174 175 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page, 176 block_t blk_addr, struct f2fs_io_info *fio) 177 { 178 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 179 struct f2fs_bio_info *io; 180 bool is_read = is_read_io(fio->rw); 181 182 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 183 184 verify_block_addr(sbi, blk_addr); 185 186 down_write(&io->io_rwsem); 187 188 if (!is_read) 189 inc_page_count(sbi, F2FS_WRITEBACK); 190 191 if (io->bio && (io->last_block_in_bio != blk_addr - 1 || 192 io->fio.rw != fio->rw)) 193 __submit_merged_bio(io); 194 alloc_new: 195 if (io->bio == NULL) { 196 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 197 198 io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read); 199 io->fio = *fio; 200 } 201 202 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) < 203 PAGE_CACHE_SIZE) { 204 __submit_merged_bio(io); 205 goto alloc_new; 206 } 207 208 io->last_block_in_bio = blk_addr; 209 210 up_write(&io->io_rwsem); 211 trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr); 212 } 213 214 /* 215 * Lock ordering for the change of data block address: 216 * ->data_page 217 * ->node_page 218 * update block addresses in the node page 219 */ 220 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr) 221 { 222 struct f2fs_node *rn; 223 __le32 *addr_array; 224 struct page *node_page = dn->node_page; 225 unsigned int ofs_in_node = dn->ofs_in_node; 226 227 f2fs_wait_on_page_writeback(node_page, NODE); 228 229 rn = F2FS_NODE(node_page); 230 231 /* Get physical address of data block */ 232 addr_array = blkaddr_in_node(rn); 233 addr_array[ofs_in_node] = cpu_to_le32(new_addr); 234 set_page_dirty(node_page); 235 } 236 237 int reserve_new_block(struct dnode_of_data *dn) 238 { 239 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 240 241 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 242 return -EPERM; 243 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1))) 244 return -ENOSPC; 245 246 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node); 247 248 __set_data_blkaddr(dn, NEW_ADDR); 249 dn->data_blkaddr = NEW_ADDR; 250 mark_inode_dirty(dn->inode); 251 sync_inode_page(dn); 252 return 0; 253 } 254 255 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 256 { 257 bool need_put = dn->inode_page ? false : true; 258 int err; 259 260 /* if inode_page exists, index should be zero */ 261 f2fs_bug_on(!need_put && index); 262 263 err = get_dnode_of_data(dn, index, ALLOC_NODE); 264 if (err) 265 return err; 266 267 if (dn->data_blkaddr == NULL_ADDR) 268 err = reserve_new_block(dn); 269 if (err || need_put) 270 f2fs_put_dnode(dn); 271 return err; 272 } 273 274 static int check_extent_cache(struct inode *inode, pgoff_t pgofs, 275 struct buffer_head *bh_result) 276 { 277 struct f2fs_inode_info *fi = F2FS_I(inode); 278 pgoff_t start_fofs, end_fofs; 279 block_t start_blkaddr; 280 281 if (is_inode_flag_set(fi, FI_NO_EXTENT)) 282 return 0; 283 284 read_lock(&fi->ext.ext_lock); 285 if (fi->ext.len == 0) { 286 read_unlock(&fi->ext.ext_lock); 287 return 0; 288 } 289 290 stat_inc_total_hit(inode->i_sb); 291 292 start_fofs = fi->ext.fofs; 293 end_fofs = fi->ext.fofs + fi->ext.len - 1; 294 start_blkaddr = fi->ext.blk_addr; 295 296 if (pgofs >= start_fofs && pgofs <= end_fofs) { 297 unsigned int blkbits = inode->i_sb->s_blocksize_bits; 298 size_t count; 299 300 clear_buffer_new(bh_result); 301 map_bh(bh_result, inode->i_sb, 302 start_blkaddr + pgofs - start_fofs); 303 count = end_fofs - pgofs + 1; 304 if (count < (UINT_MAX >> blkbits)) 305 bh_result->b_size = (count << blkbits); 306 else 307 bh_result->b_size = UINT_MAX; 308 309 stat_inc_read_hit(inode->i_sb); 310 read_unlock(&fi->ext.ext_lock); 311 return 1; 312 } 313 read_unlock(&fi->ext.ext_lock); 314 return 0; 315 } 316 317 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn) 318 { 319 struct f2fs_inode_info *fi = F2FS_I(dn->inode); 320 pgoff_t fofs, start_fofs, end_fofs; 321 block_t start_blkaddr, end_blkaddr; 322 int need_update = true; 323 324 f2fs_bug_on(blk_addr == NEW_ADDR); 325 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + 326 dn->ofs_in_node; 327 328 /* Update the page address in the parent node */ 329 __set_data_blkaddr(dn, blk_addr); 330 331 if (is_inode_flag_set(fi, FI_NO_EXTENT)) 332 return; 333 334 write_lock(&fi->ext.ext_lock); 335 336 start_fofs = fi->ext.fofs; 337 end_fofs = fi->ext.fofs + fi->ext.len - 1; 338 start_blkaddr = fi->ext.blk_addr; 339 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1; 340 341 /* Drop and initialize the matched extent */ 342 if (fi->ext.len == 1 && fofs == start_fofs) 343 fi->ext.len = 0; 344 345 /* Initial extent */ 346 if (fi->ext.len == 0) { 347 if (blk_addr != NULL_ADDR) { 348 fi->ext.fofs = fofs; 349 fi->ext.blk_addr = blk_addr; 350 fi->ext.len = 1; 351 } 352 goto end_update; 353 } 354 355 /* Front merge */ 356 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) { 357 fi->ext.fofs--; 358 fi->ext.blk_addr--; 359 fi->ext.len++; 360 goto end_update; 361 } 362 363 /* Back merge */ 364 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) { 365 fi->ext.len++; 366 goto end_update; 367 } 368 369 /* Split the existing extent */ 370 if (fi->ext.len > 1 && 371 fofs >= start_fofs && fofs <= end_fofs) { 372 if ((end_fofs - fofs) < (fi->ext.len >> 1)) { 373 fi->ext.len = fofs - start_fofs; 374 } else { 375 fi->ext.fofs = fofs + 1; 376 fi->ext.blk_addr = start_blkaddr + 377 fofs - start_fofs + 1; 378 fi->ext.len -= fofs - start_fofs + 1; 379 } 380 } else { 381 need_update = false; 382 } 383 384 /* Finally, if the extent is very fragmented, let's drop the cache. */ 385 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) { 386 fi->ext.len = 0; 387 set_inode_flag(fi, FI_NO_EXTENT); 388 need_update = true; 389 } 390 end_update: 391 write_unlock(&fi->ext.ext_lock); 392 if (need_update) 393 sync_inode_page(dn); 394 return; 395 } 396 397 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync) 398 { 399 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 400 struct address_space *mapping = inode->i_mapping; 401 struct dnode_of_data dn; 402 struct page *page; 403 int err; 404 405 page = find_get_page(mapping, index); 406 if (page && PageUptodate(page)) 407 return page; 408 f2fs_put_page(page, 0); 409 410 set_new_dnode(&dn, inode, NULL, NULL, 0); 411 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 412 if (err) 413 return ERR_PTR(err); 414 f2fs_put_dnode(&dn); 415 416 if (dn.data_blkaddr == NULL_ADDR) 417 return ERR_PTR(-ENOENT); 418 419 /* By fallocate(), there is no cached page, but with NEW_ADDR */ 420 if (unlikely(dn.data_blkaddr == NEW_ADDR)) 421 return ERR_PTR(-EINVAL); 422 423 page = grab_cache_page(mapping, index); 424 if (!page) 425 return ERR_PTR(-ENOMEM); 426 427 if (PageUptodate(page)) { 428 unlock_page(page); 429 return page; 430 } 431 432 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, 433 sync ? READ_SYNC : READA); 434 if (err) 435 return ERR_PTR(err); 436 437 if (sync) { 438 wait_on_page_locked(page); 439 if (unlikely(!PageUptodate(page))) { 440 f2fs_put_page(page, 0); 441 return ERR_PTR(-EIO); 442 } 443 } 444 return page; 445 } 446 447 /* 448 * If it tries to access a hole, return an error. 449 * Because, the callers, functions in dir.c and GC, should be able to know 450 * whether this page exists or not. 451 */ 452 struct page *get_lock_data_page(struct inode *inode, pgoff_t index) 453 { 454 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 455 struct address_space *mapping = inode->i_mapping; 456 struct dnode_of_data dn; 457 struct page *page; 458 int err; 459 460 repeat: 461 page = grab_cache_page(mapping, index); 462 if (!page) 463 return ERR_PTR(-ENOMEM); 464 465 set_new_dnode(&dn, inode, NULL, NULL, 0); 466 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 467 if (err) { 468 f2fs_put_page(page, 1); 469 return ERR_PTR(err); 470 } 471 f2fs_put_dnode(&dn); 472 473 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 474 f2fs_put_page(page, 1); 475 return ERR_PTR(-ENOENT); 476 } 477 478 if (PageUptodate(page)) 479 return page; 480 481 /* 482 * A new dentry page is allocated but not able to be written, since its 483 * new inode page couldn't be allocated due to -ENOSPC. 484 * In such the case, its blkaddr can be remained as NEW_ADDR. 485 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 486 */ 487 if (dn.data_blkaddr == NEW_ADDR) { 488 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 489 SetPageUptodate(page); 490 return page; 491 } 492 493 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, READ_SYNC); 494 if (err) 495 return ERR_PTR(err); 496 497 lock_page(page); 498 if (unlikely(!PageUptodate(page))) { 499 f2fs_put_page(page, 1); 500 return ERR_PTR(-EIO); 501 } 502 if (unlikely(page->mapping != mapping)) { 503 f2fs_put_page(page, 1); 504 goto repeat; 505 } 506 return page; 507 } 508 509 /* 510 * Caller ensures that this data page is never allocated. 511 * A new zero-filled data page is allocated in the page cache. 512 * 513 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 514 * f2fs_unlock_op(). 515 * Note that, ipage is set only by make_empty_dir. 516 */ 517 struct page *get_new_data_page(struct inode *inode, 518 struct page *ipage, pgoff_t index, bool new_i_size) 519 { 520 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 521 struct address_space *mapping = inode->i_mapping; 522 struct page *page; 523 struct dnode_of_data dn; 524 int err; 525 526 set_new_dnode(&dn, inode, ipage, NULL, 0); 527 err = f2fs_reserve_block(&dn, index); 528 if (err) 529 return ERR_PTR(err); 530 repeat: 531 page = grab_cache_page(mapping, index); 532 if (!page) { 533 err = -ENOMEM; 534 goto put_err; 535 } 536 537 if (PageUptodate(page)) 538 return page; 539 540 if (dn.data_blkaddr == NEW_ADDR) { 541 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 542 SetPageUptodate(page); 543 } else { 544 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, 545 READ_SYNC); 546 if (err) 547 goto put_err; 548 549 lock_page(page); 550 if (unlikely(!PageUptodate(page))) { 551 f2fs_put_page(page, 1); 552 err = -EIO; 553 goto put_err; 554 } 555 if (unlikely(page->mapping != mapping)) { 556 f2fs_put_page(page, 1); 557 goto repeat; 558 } 559 } 560 561 if (new_i_size && 562 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) { 563 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT)); 564 /* Only the directory inode sets new_i_size */ 565 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR); 566 } 567 return page; 568 569 put_err: 570 f2fs_put_dnode(&dn); 571 return ERR_PTR(err); 572 } 573 574 static int __allocate_data_block(struct dnode_of_data *dn) 575 { 576 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 577 struct f2fs_summary sum; 578 block_t new_blkaddr; 579 struct node_info ni; 580 int type; 581 582 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 583 return -EPERM; 584 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1))) 585 return -ENOSPC; 586 587 __set_data_blkaddr(dn, NEW_ADDR); 588 dn->data_blkaddr = NEW_ADDR; 589 590 get_node_info(sbi, dn->nid, &ni); 591 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 592 593 type = CURSEG_WARM_DATA; 594 595 allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type); 596 597 /* direct IO doesn't use extent cache to maximize the performance */ 598 set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT); 599 update_extent_cache(new_blkaddr, dn); 600 clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT); 601 602 dn->data_blkaddr = new_blkaddr; 603 return 0; 604 } 605 606 /* 607 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh. 608 * If original data blocks are allocated, then give them to blockdev. 609 * Otherwise, 610 * a. preallocate requested block addresses 611 * b. do not use extent cache for better performance 612 * c. give the block addresses to blockdev 613 */ 614 static int __get_data_block(struct inode *inode, sector_t iblock, 615 struct buffer_head *bh_result, int create, bool fiemap) 616 { 617 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 618 unsigned int blkbits = inode->i_sb->s_blocksize_bits; 619 unsigned maxblocks = bh_result->b_size >> blkbits; 620 struct dnode_of_data dn; 621 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA; 622 pgoff_t pgofs, end_offset; 623 int err = 0, ofs = 1; 624 bool allocated = false; 625 626 /* Get the page offset from the block offset(iblock) */ 627 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits)); 628 629 if (check_extent_cache(inode, pgofs, bh_result)) 630 goto out; 631 632 if (create) { 633 f2fs_balance_fs(sbi); 634 f2fs_lock_op(sbi); 635 } 636 637 /* When reading holes, we need its node page */ 638 set_new_dnode(&dn, inode, NULL, NULL, 0); 639 err = get_dnode_of_data(&dn, pgofs, mode); 640 if (err) { 641 if (err == -ENOENT) 642 err = 0; 643 goto unlock_out; 644 } 645 if (dn.data_blkaddr == NEW_ADDR && !fiemap) 646 goto put_out; 647 648 if (dn.data_blkaddr != NULL_ADDR) { 649 map_bh(bh_result, inode->i_sb, dn.data_blkaddr); 650 } else if (create) { 651 err = __allocate_data_block(&dn); 652 if (err) 653 goto put_out; 654 allocated = true; 655 map_bh(bh_result, inode->i_sb, dn.data_blkaddr); 656 } else { 657 goto put_out; 658 } 659 660 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 661 bh_result->b_size = (((size_t)1) << blkbits); 662 dn.ofs_in_node++; 663 pgofs++; 664 665 get_next: 666 if (dn.ofs_in_node >= end_offset) { 667 if (allocated) 668 sync_inode_page(&dn); 669 allocated = false; 670 f2fs_put_dnode(&dn); 671 672 set_new_dnode(&dn, inode, NULL, NULL, 0); 673 err = get_dnode_of_data(&dn, pgofs, mode); 674 if (err) { 675 if (err == -ENOENT) 676 err = 0; 677 goto unlock_out; 678 } 679 if (dn.data_blkaddr == NEW_ADDR && !fiemap) 680 goto put_out; 681 682 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 683 } 684 685 if (maxblocks > (bh_result->b_size >> blkbits)) { 686 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 687 if (blkaddr == NULL_ADDR && create) { 688 err = __allocate_data_block(&dn); 689 if (err) 690 goto sync_out; 691 allocated = true; 692 blkaddr = dn.data_blkaddr; 693 } 694 /* Give more consecutive addresses for the read ahead */ 695 if (blkaddr == (bh_result->b_blocknr + ofs)) { 696 ofs++; 697 dn.ofs_in_node++; 698 pgofs++; 699 bh_result->b_size += (((size_t)1) << blkbits); 700 goto get_next; 701 } 702 } 703 sync_out: 704 if (allocated) 705 sync_inode_page(&dn); 706 put_out: 707 f2fs_put_dnode(&dn); 708 unlock_out: 709 if (create) 710 f2fs_unlock_op(sbi); 711 out: 712 trace_f2fs_get_data_block(inode, iblock, bh_result, err); 713 return err; 714 } 715 716 static int get_data_block(struct inode *inode, sector_t iblock, 717 struct buffer_head *bh_result, int create) 718 { 719 return __get_data_block(inode, iblock, bh_result, create, false); 720 } 721 722 static int get_data_block_fiemap(struct inode *inode, sector_t iblock, 723 struct buffer_head *bh_result, int create) 724 { 725 return __get_data_block(inode, iblock, bh_result, create, true); 726 } 727 728 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 729 u64 start, u64 len) 730 { 731 return generic_block_fiemap(inode, fieinfo, 732 start, len, get_data_block_fiemap); 733 } 734 735 static int f2fs_read_data_page(struct file *file, struct page *page) 736 { 737 struct inode *inode = page->mapping->host; 738 int ret; 739 740 trace_f2fs_readpage(page, DATA); 741 742 /* If the file has inline data, try to read it directlly */ 743 if (f2fs_has_inline_data(inode)) 744 ret = f2fs_read_inline_data(inode, page); 745 else 746 ret = mpage_readpage(page, get_data_block); 747 748 return ret; 749 } 750 751 static int f2fs_read_data_pages(struct file *file, 752 struct address_space *mapping, 753 struct list_head *pages, unsigned nr_pages) 754 { 755 struct inode *inode = file->f_mapping->host; 756 757 /* If the file has inline data, skip readpages */ 758 if (f2fs_has_inline_data(inode)) 759 return 0; 760 761 return mpage_readpages(mapping, pages, nr_pages, get_data_block); 762 } 763 764 int do_write_data_page(struct page *page, struct f2fs_io_info *fio) 765 { 766 struct inode *inode = page->mapping->host; 767 block_t old_blkaddr, new_blkaddr; 768 struct dnode_of_data dn; 769 int err = 0; 770 771 set_new_dnode(&dn, inode, NULL, NULL, 0); 772 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 773 if (err) 774 return err; 775 776 old_blkaddr = dn.data_blkaddr; 777 778 /* This page is already truncated */ 779 if (old_blkaddr == NULL_ADDR) 780 goto out_writepage; 781 782 set_page_writeback(page); 783 784 /* 785 * If current allocation needs SSR, 786 * it had better in-place writes for updated data. 787 */ 788 if (unlikely(old_blkaddr != NEW_ADDR && 789 !is_cold_data(page) && 790 need_inplace_update(inode))) { 791 rewrite_data_page(page, old_blkaddr, fio); 792 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE); 793 } else { 794 write_data_page(page, &dn, &new_blkaddr, fio); 795 update_extent_cache(new_blkaddr, &dn); 796 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE); 797 } 798 out_writepage: 799 f2fs_put_dnode(&dn); 800 return err; 801 } 802 803 static int f2fs_write_data_page(struct page *page, 804 struct writeback_control *wbc) 805 { 806 struct inode *inode = page->mapping->host; 807 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 808 loff_t i_size = i_size_read(inode); 809 const pgoff_t end_index = ((unsigned long long) i_size) 810 >> PAGE_CACHE_SHIFT; 811 unsigned offset = 0; 812 bool need_balance_fs = false; 813 int err = 0; 814 struct f2fs_io_info fio = { 815 .type = DATA, 816 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 817 }; 818 819 trace_f2fs_writepage(page, DATA); 820 821 if (page->index < end_index) 822 goto write; 823 824 /* 825 * If the offset is out-of-range of file size, 826 * this page does not have to be written to disk. 827 */ 828 offset = i_size & (PAGE_CACHE_SIZE - 1); 829 if ((page->index >= end_index + 1) || !offset) 830 goto out; 831 832 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 833 write: 834 if (unlikely(sbi->por_doing)) 835 goto redirty_out; 836 837 /* Dentry blocks are controlled by checkpoint */ 838 if (S_ISDIR(inode->i_mode)) { 839 err = do_write_data_page(page, &fio); 840 goto done; 841 } 842 843 if (!wbc->for_reclaim) 844 need_balance_fs = true; 845 else if (has_not_enough_free_secs(sbi, 0)) 846 goto redirty_out; 847 848 f2fs_lock_op(sbi); 849 if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode)) 850 err = f2fs_write_inline_data(inode, page, offset); 851 else 852 err = do_write_data_page(page, &fio); 853 f2fs_unlock_op(sbi); 854 done: 855 if (err && err != -ENOENT) 856 goto redirty_out; 857 858 clear_cold_data(page); 859 out: 860 inode_dec_dirty_dents(inode); 861 unlock_page(page); 862 if (need_balance_fs) 863 f2fs_balance_fs(sbi); 864 if (wbc->for_reclaim) 865 f2fs_submit_merged_bio(sbi, DATA, WRITE); 866 return 0; 867 868 redirty_out: 869 redirty_page_for_writepage(wbc, page); 870 return AOP_WRITEPAGE_ACTIVATE; 871 } 872 873 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc, 874 void *data) 875 { 876 struct address_space *mapping = data; 877 int ret = mapping->a_ops->writepage(page, wbc); 878 mapping_set_error(mapping, ret); 879 return ret; 880 } 881 882 static int f2fs_write_data_pages(struct address_space *mapping, 883 struct writeback_control *wbc) 884 { 885 struct inode *inode = mapping->host; 886 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 887 bool locked = false; 888 int ret; 889 long diff; 890 891 trace_f2fs_writepages(mapping->host, wbc, DATA); 892 893 /* deal with chardevs and other special file */ 894 if (!mapping->a_ops->writepage) 895 return 0; 896 897 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 898 get_dirty_dents(inode) < nr_pages_to_skip(sbi, DATA) && 899 available_free_memory(sbi, DIRTY_DENTS)) 900 goto skip_write; 901 902 diff = nr_pages_to_write(sbi, DATA, wbc); 903 904 if (!S_ISDIR(inode->i_mode)) { 905 mutex_lock(&sbi->writepages); 906 locked = true; 907 } 908 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping); 909 if (locked) 910 mutex_unlock(&sbi->writepages); 911 912 f2fs_submit_merged_bio(sbi, DATA, WRITE); 913 914 remove_dirty_dir_inode(inode); 915 916 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 917 return ret; 918 919 skip_write: 920 wbc->pages_skipped += get_dirty_dents(inode); 921 return 0; 922 } 923 924 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 925 { 926 struct inode *inode = mapping->host; 927 928 if (to > inode->i_size) { 929 truncate_pagecache(inode, inode->i_size); 930 truncate_blocks(inode, inode->i_size); 931 } 932 } 933 934 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 935 loff_t pos, unsigned len, unsigned flags, 936 struct page **pagep, void **fsdata) 937 { 938 struct inode *inode = mapping->host; 939 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 940 struct page *page; 941 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; 942 struct dnode_of_data dn; 943 int err = 0; 944 945 trace_f2fs_write_begin(inode, pos, len, flags); 946 947 f2fs_balance_fs(sbi); 948 repeat: 949 err = f2fs_convert_inline_data(inode, pos + len); 950 if (err) 951 goto fail; 952 953 page = grab_cache_page_write_begin(mapping, index, flags); 954 if (!page) { 955 err = -ENOMEM; 956 goto fail; 957 } 958 959 /* to avoid latency during memory pressure */ 960 unlock_page(page); 961 962 *pagep = page; 963 964 if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA) 965 goto inline_data; 966 967 f2fs_lock_op(sbi); 968 set_new_dnode(&dn, inode, NULL, NULL, 0); 969 err = f2fs_reserve_block(&dn, index); 970 f2fs_unlock_op(sbi); 971 if (err) { 972 f2fs_put_page(page, 0); 973 goto fail; 974 } 975 inline_data: 976 lock_page(page); 977 if (unlikely(page->mapping != mapping)) { 978 f2fs_put_page(page, 1); 979 goto repeat; 980 } 981 982 f2fs_wait_on_page_writeback(page, DATA); 983 984 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) 985 return 0; 986 987 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { 988 unsigned start = pos & (PAGE_CACHE_SIZE - 1); 989 unsigned end = start + len; 990 991 /* Reading beyond i_size is simple: memset to zero */ 992 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); 993 goto out; 994 } 995 996 if (dn.data_blkaddr == NEW_ADDR) { 997 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 998 } else { 999 if (f2fs_has_inline_data(inode)) { 1000 err = f2fs_read_inline_data(inode, page); 1001 if (err) { 1002 page_cache_release(page); 1003 goto fail; 1004 } 1005 } else { 1006 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, 1007 READ_SYNC); 1008 if (err) 1009 goto fail; 1010 } 1011 1012 lock_page(page); 1013 if (unlikely(!PageUptodate(page))) { 1014 f2fs_put_page(page, 1); 1015 err = -EIO; 1016 goto fail; 1017 } 1018 if (unlikely(page->mapping != mapping)) { 1019 f2fs_put_page(page, 1); 1020 goto repeat; 1021 } 1022 } 1023 out: 1024 SetPageUptodate(page); 1025 clear_cold_data(page); 1026 return 0; 1027 fail: 1028 f2fs_write_failed(mapping, pos + len); 1029 return err; 1030 } 1031 1032 static int f2fs_write_end(struct file *file, 1033 struct address_space *mapping, 1034 loff_t pos, unsigned len, unsigned copied, 1035 struct page *page, void *fsdata) 1036 { 1037 struct inode *inode = page->mapping->host; 1038 1039 trace_f2fs_write_end(inode, pos, len, copied); 1040 1041 set_page_dirty(page); 1042 1043 if (pos + copied > i_size_read(inode)) { 1044 i_size_write(inode, pos + copied); 1045 mark_inode_dirty(inode); 1046 update_inode_page(inode); 1047 } 1048 1049 f2fs_put_page(page, 1); 1050 return copied; 1051 } 1052 1053 static int check_direct_IO(struct inode *inode, int rw, 1054 struct iov_iter *iter, loff_t offset) 1055 { 1056 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1057 1058 if (rw == READ) 1059 return 0; 1060 1061 if (offset & blocksize_mask) 1062 return -EINVAL; 1063 1064 if (iov_iter_alignment(iter) & blocksize_mask) 1065 return -EINVAL; 1066 1067 return 0; 1068 } 1069 1070 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb, 1071 struct iov_iter *iter, loff_t offset) 1072 { 1073 struct file *file = iocb->ki_filp; 1074 struct address_space *mapping = file->f_mapping; 1075 struct inode *inode = mapping->host; 1076 size_t count = iov_iter_count(iter); 1077 int err; 1078 1079 /* Let buffer I/O handle the inline data case. */ 1080 if (f2fs_has_inline_data(inode)) 1081 return 0; 1082 1083 if (check_direct_IO(inode, rw, iter, offset)) 1084 return 0; 1085 1086 /* clear fsync mark to recover these blocks */ 1087 fsync_mark_clear(F2FS_SB(inode->i_sb), inode->i_ino); 1088 1089 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1090 1091 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block); 1092 if (err < 0 && (rw & WRITE)) 1093 f2fs_write_failed(mapping, offset + count); 1094 1095 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1096 1097 return err; 1098 } 1099 1100 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset, 1101 unsigned int length) 1102 { 1103 struct inode *inode = page->mapping->host; 1104 if (PageDirty(page)) 1105 inode_dec_dirty_dents(inode); 1106 ClearPagePrivate(page); 1107 } 1108 1109 static int f2fs_release_data_page(struct page *page, gfp_t wait) 1110 { 1111 ClearPagePrivate(page); 1112 return 1; 1113 } 1114 1115 static int f2fs_set_data_page_dirty(struct page *page) 1116 { 1117 struct address_space *mapping = page->mapping; 1118 struct inode *inode = mapping->host; 1119 1120 trace_f2fs_set_page_dirty(page, DATA); 1121 1122 SetPageUptodate(page); 1123 mark_inode_dirty(inode); 1124 1125 if (!PageDirty(page)) { 1126 __set_page_dirty_nobuffers(page); 1127 set_dirty_dir_page(inode, page); 1128 return 1; 1129 } 1130 return 0; 1131 } 1132 1133 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 1134 { 1135 struct inode *inode = mapping->host; 1136 1137 if (f2fs_has_inline_data(inode)) 1138 return 0; 1139 1140 return generic_block_bmap(mapping, block, get_data_block); 1141 } 1142 1143 const struct address_space_operations f2fs_dblock_aops = { 1144 .readpage = f2fs_read_data_page, 1145 .readpages = f2fs_read_data_pages, 1146 .writepage = f2fs_write_data_page, 1147 .writepages = f2fs_write_data_pages, 1148 .write_begin = f2fs_write_begin, 1149 .write_end = f2fs_write_end, 1150 .set_page_dirty = f2fs_set_data_page_dirty, 1151 .invalidatepage = f2fs_invalidate_data_page, 1152 .releasepage = f2fs_release_data_page, 1153 .direct_IO = f2fs_direct_IO, 1154 .bmap = f2fs_bmap, 1155 }; 1156