xref: /openbmc/linux/fs/f2fs/data.c (revision 53f9cd5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 	struct address_space *mapping = page->mapping;
56 	struct inode *inode;
57 	struct f2fs_sb_info *sbi;
58 
59 	if (!mapping)
60 		return false;
61 
62 	inode = mapping->host;
63 	sbi = F2FS_I_SB(inode);
64 
65 	if (inode->i_ino == F2FS_META_INO(sbi) ||
66 			inode->i_ino == F2FS_NODE_INO(sbi) ||
67 			S_ISDIR(inode->i_mode))
68 		return true;
69 
70 	if (f2fs_is_compressed_page(page))
71 		return false;
72 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
73 			page_private_gcing(page))
74 		return true;
75 	return false;
76 }
77 
78 static enum count_type __read_io_type(struct page *page)
79 {
80 	struct address_space *mapping = page_file_mapping(page);
81 
82 	if (mapping) {
83 		struct inode *inode = mapping->host;
84 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
85 
86 		if (inode->i_ino == F2FS_META_INO(sbi))
87 			return F2FS_RD_META;
88 
89 		if (inode->i_ino == F2FS_NODE_INO(sbi))
90 			return F2FS_RD_NODE;
91 	}
92 	return F2FS_RD_DATA;
93 }
94 
95 /* postprocessing steps for read bios */
96 enum bio_post_read_step {
97 #ifdef CONFIG_FS_ENCRYPTION
98 	STEP_DECRYPT	= 1 << 0,
99 #else
100 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
101 #endif
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 	STEP_DECOMPRESS	= 1 << 1,
104 #else
105 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
106 #endif
107 #ifdef CONFIG_FS_VERITY
108 	STEP_VERITY	= 1 << 2,
109 #else
110 	STEP_VERITY	= 0,	/* compile out the verity-related code */
111 #endif
112 };
113 
114 struct bio_post_read_ctx {
115 	struct bio *bio;
116 	struct f2fs_sb_info *sbi;
117 	struct work_struct work;
118 	unsigned int enabled_steps;
119 	block_t fs_blkaddr;
120 };
121 
122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
123 {
124 	struct bio_vec *bv;
125 	struct bvec_iter_all iter_all;
126 
127 	/*
128 	 * Update and unlock the bio's pagecache pages, and put the
129 	 * decompression context for any compressed pages.
130 	 */
131 	bio_for_each_segment_all(bv, bio, iter_all) {
132 		struct page *page = bv->bv_page;
133 
134 		if (f2fs_is_compressed_page(page)) {
135 			if (bio->bi_status)
136 				f2fs_end_read_compressed_page(page, true, 0,
137 							in_task);
138 			f2fs_put_page_dic(page, in_task);
139 			continue;
140 		}
141 
142 		/* PG_error was set if decryption or verity failed. */
143 		if (bio->bi_status || PageError(page)) {
144 			ClearPageUptodate(page);
145 			/* will re-read again later */
146 			ClearPageError(page);
147 		} else {
148 			SetPageUptodate(page);
149 		}
150 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 		unlock_page(page);
152 	}
153 
154 	if (bio->bi_private)
155 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 	bio_put(bio);
157 }
158 
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 	struct bio_post_read_ctx *ctx =
162 		container_of(work, struct bio_post_read_ctx, work);
163 	struct bio *bio = ctx->bio;
164 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165 
166 	/*
167 	 * fsverity_verify_bio() may call readahead() again, and while verity
168 	 * will be disabled for this, decryption and/or decompression may still
169 	 * be needed, resulting in another bio_post_read_ctx being allocated.
170 	 * So to prevent deadlocks we need to release the current ctx to the
171 	 * mempool first.  This assumes that verity is the last post-read step.
172 	 */
173 	mempool_free(ctx, bio_post_read_ctx_pool);
174 	bio->bi_private = NULL;
175 
176 	/*
177 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178 	 * as those were handled separately by f2fs_end_read_compressed_page().
179 	 */
180 	if (may_have_compressed_pages) {
181 		struct bio_vec *bv;
182 		struct bvec_iter_all iter_all;
183 
184 		bio_for_each_segment_all(bv, bio, iter_all) {
185 			struct page *page = bv->bv_page;
186 
187 			if (!f2fs_is_compressed_page(page) &&
188 			    !PageError(page) && !fsverity_verify_page(page))
189 				SetPageError(page);
190 		}
191 	} else {
192 		fsverity_verify_bio(bio);
193 	}
194 
195 	f2fs_finish_read_bio(bio, true);
196 }
197 
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
208 {
209 	struct bio_post_read_ctx *ctx = bio->bi_private;
210 
211 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 		INIT_WORK(&ctx->work, f2fs_verify_bio);
213 		fsverity_enqueue_verify_work(&ctx->work);
214 	} else {
215 		f2fs_finish_read_bio(bio, in_task);
216 	}
217 }
218 
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
229 		bool in_task)
230 {
231 	struct bio_vec *bv;
232 	struct bvec_iter_all iter_all;
233 	bool all_compressed = true;
234 	block_t blkaddr = ctx->fs_blkaddr;
235 
236 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
237 		struct page *page = bv->bv_page;
238 
239 		/* PG_error was set if decryption failed. */
240 		if (f2fs_is_compressed_page(page))
241 			f2fs_end_read_compressed_page(page, PageError(page),
242 						blkaddr, in_task);
243 		else
244 			all_compressed = false;
245 
246 		blkaddr++;
247 	}
248 
249 	/*
250 	 * Optimization: if all the bio's pages are compressed, then scheduling
251 	 * the per-bio verity work is unnecessary, as verity will be fully
252 	 * handled at the compression cluster level.
253 	 */
254 	if (all_compressed)
255 		ctx->enabled_steps &= ~STEP_VERITY;
256 }
257 
258 static void f2fs_post_read_work(struct work_struct *work)
259 {
260 	struct bio_post_read_ctx *ctx =
261 		container_of(work, struct bio_post_read_ctx, work);
262 
263 	if (ctx->enabled_steps & STEP_DECRYPT)
264 		fscrypt_decrypt_bio(ctx->bio);
265 
266 	if (ctx->enabled_steps & STEP_DECOMPRESS)
267 		f2fs_handle_step_decompress(ctx, true);
268 
269 	f2fs_verify_and_finish_bio(ctx->bio, true);
270 }
271 
272 static void f2fs_read_end_io(struct bio *bio)
273 {
274 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
275 	struct bio_post_read_ctx *ctx;
276 	bool intask = in_task();
277 
278 	iostat_update_and_unbind_ctx(bio, 0);
279 	ctx = bio->bi_private;
280 
281 	if (time_to_inject(sbi, FAULT_READ_IO)) {
282 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
283 		bio->bi_status = BLK_STS_IOERR;
284 	}
285 
286 	if (bio->bi_status) {
287 		f2fs_finish_read_bio(bio, intask);
288 		return;
289 	}
290 
291 	if (ctx) {
292 		unsigned int enabled_steps = ctx->enabled_steps &
293 					(STEP_DECRYPT | STEP_DECOMPRESS);
294 
295 		/*
296 		 * If we have only decompression step between decompression and
297 		 * decrypt, we don't need post processing for this.
298 		 */
299 		if (enabled_steps == STEP_DECOMPRESS &&
300 				!f2fs_low_mem_mode(sbi)) {
301 			f2fs_handle_step_decompress(ctx, intask);
302 		} else if (enabled_steps) {
303 			INIT_WORK(&ctx->work, f2fs_post_read_work);
304 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
305 			return;
306 		}
307 	}
308 
309 	f2fs_verify_and_finish_bio(bio, intask);
310 }
311 
312 static void f2fs_write_end_io(struct bio *bio)
313 {
314 	struct f2fs_sb_info *sbi;
315 	struct bio_vec *bvec;
316 	struct bvec_iter_all iter_all;
317 
318 	iostat_update_and_unbind_ctx(bio, 1);
319 	sbi = bio->bi_private;
320 
321 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
322 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
323 		bio->bi_status = BLK_STS_IOERR;
324 	}
325 
326 	bio_for_each_segment_all(bvec, bio, iter_all) {
327 		struct page *page = bvec->bv_page;
328 		enum count_type type = WB_DATA_TYPE(page);
329 
330 		if (page_private_dummy(page)) {
331 			clear_page_private_dummy(page);
332 			unlock_page(page);
333 			mempool_free(page, sbi->write_io_dummy);
334 
335 			if (unlikely(bio->bi_status))
336 				f2fs_stop_checkpoint(sbi, true);
337 			continue;
338 		}
339 
340 		fscrypt_finalize_bounce_page(&page);
341 
342 #ifdef CONFIG_F2FS_FS_COMPRESSION
343 		if (f2fs_is_compressed_page(page)) {
344 			f2fs_compress_write_end_io(bio, page);
345 			continue;
346 		}
347 #endif
348 
349 		if (unlikely(bio->bi_status)) {
350 			mapping_set_error(page->mapping, -EIO);
351 			if (type == F2FS_WB_CP_DATA)
352 				f2fs_stop_checkpoint(sbi, true);
353 		}
354 
355 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
356 					page->index != nid_of_node(page));
357 
358 		dec_page_count(sbi, type);
359 		if (f2fs_in_warm_node_list(sbi, page))
360 			f2fs_del_fsync_node_entry(sbi, page);
361 		clear_page_private_gcing(page);
362 		end_page_writeback(page);
363 	}
364 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
365 				wq_has_sleeper(&sbi->cp_wait))
366 		wake_up(&sbi->cp_wait);
367 
368 	bio_put(bio);
369 }
370 
371 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
372 		block_t blk_addr, sector_t *sector)
373 {
374 	struct block_device *bdev = sbi->sb->s_bdev;
375 	int i;
376 
377 	if (f2fs_is_multi_device(sbi)) {
378 		for (i = 0; i < sbi->s_ndevs; i++) {
379 			if (FDEV(i).start_blk <= blk_addr &&
380 			    FDEV(i).end_blk >= blk_addr) {
381 				blk_addr -= FDEV(i).start_blk;
382 				bdev = FDEV(i).bdev;
383 				break;
384 			}
385 		}
386 	}
387 
388 	if (sector)
389 		*sector = SECTOR_FROM_BLOCK(blk_addr);
390 	return bdev;
391 }
392 
393 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
394 {
395 	int i;
396 
397 	if (!f2fs_is_multi_device(sbi))
398 		return 0;
399 
400 	for (i = 0; i < sbi->s_ndevs; i++)
401 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
402 			return i;
403 	return 0;
404 }
405 
406 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
407 {
408 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
409 	unsigned int fua_flag, meta_flag, io_flag;
410 	blk_opf_t op_flags = 0;
411 
412 	if (fio->op != REQ_OP_WRITE)
413 		return 0;
414 	if (fio->type == DATA)
415 		io_flag = fio->sbi->data_io_flag;
416 	else if (fio->type == NODE)
417 		io_flag = fio->sbi->node_io_flag;
418 	else
419 		return 0;
420 
421 	fua_flag = io_flag & temp_mask;
422 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
423 
424 	/*
425 	 * data/node io flag bits per temp:
426 	 *      REQ_META     |      REQ_FUA      |
427 	 *    5 |    4 |   3 |    2 |    1 |   0 |
428 	 * Cold | Warm | Hot | Cold | Warm | Hot |
429 	 */
430 	if ((1 << fio->temp) & meta_flag)
431 		op_flags |= REQ_META;
432 	if ((1 << fio->temp) & fua_flag)
433 		op_flags |= REQ_FUA;
434 	return op_flags;
435 }
436 
437 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
438 {
439 	struct f2fs_sb_info *sbi = fio->sbi;
440 	struct block_device *bdev;
441 	sector_t sector;
442 	struct bio *bio;
443 
444 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
445 	bio = bio_alloc_bioset(bdev, npages,
446 				fio->op | fio->op_flags | f2fs_io_flags(fio),
447 				GFP_NOIO, &f2fs_bioset);
448 	bio->bi_iter.bi_sector = sector;
449 	if (is_read_io(fio->op)) {
450 		bio->bi_end_io = f2fs_read_end_io;
451 		bio->bi_private = NULL;
452 	} else {
453 		bio->bi_end_io = f2fs_write_end_io;
454 		bio->bi_private = sbi;
455 	}
456 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
457 
458 	if (fio->io_wbc)
459 		wbc_init_bio(fio->io_wbc, bio);
460 
461 	return bio;
462 }
463 
464 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
465 				  pgoff_t first_idx,
466 				  const struct f2fs_io_info *fio,
467 				  gfp_t gfp_mask)
468 {
469 	/*
470 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
471 	 * read/write raw data without encryption.
472 	 */
473 	if (!fio || !fio->encrypted_page)
474 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
475 }
476 
477 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
478 				     pgoff_t next_idx,
479 				     const struct f2fs_io_info *fio)
480 {
481 	/*
482 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
483 	 * read/write raw data without encryption.
484 	 */
485 	if (fio && fio->encrypted_page)
486 		return !bio_has_crypt_ctx(bio);
487 
488 	return fscrypt_mergeable_bio(bio, inode, next_idx);
489 }
490 
491 static inline void __submit_bio(struct f2fs_sb_info *sbi,
492 				struct bio *bio, enum page_type type)
493 {
494 	if (!is_read_io(bio_op(bio))) {
495 		unsigned int start;
496 
497 		if (type != DATA && type != NODE)
498 			goto submit_io;
499 
500 		if (f2fs_lfs_mode(sbi) && current->plug)
501 			blk_finish_plug(current->plug);
502 
503 		if (!F2FS_IO_ALIGNED(sbi))
504 			goto submit_io;
505 
506 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
507 		start %= F2FS_IO_SIZE(sbi);
508 
509 		if (start == 0)
510 			goto submit_io;
511 
512 		/* fill dummy pages */
513 		for (; start < F2FS_IO_SIZE(sbi); start++) {
514 			struct page *page =
515 				mempool_alloc(sbi->write_io_dummy,
516 					      GFP_NOIO | __GFP_NOFAIL);
517 			f2fs_bug_on(sbi, !page);
518 
519 			lock_page(page);
520 
521 			zero_user_segment(page, 0, PAGE_SIZE);
522 			set_page_private_dummy(page);
523 
524 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
525 				f2fs_bug_on(sbi, 1);
526 		}
527 		/*
528 		 * In the NODE case, we lose next block address chain. So, we
529 		 * need to do checkpoint in f2fs_sync_file.
530 		 */
531 		if (type == NODE)
532 			set_sbi_flag(sbi, SBI_NEED_CP);
533 	}
534 submit_io:
535 	if (is_read_io(bio_op(bio)))
536 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
537 	else
538 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
539 
540 	iostat_update_submit_ctx(bio, type);
541 	submit_bio(bio);
542 }
543 
544 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
545 				struct bio *bio, enum page_type type)
546 {
547 	__submit_bio(sbi, bio, type);
548 }
549 
550 static void __submit_merged_bio(struct f2fs_bio_info *io)
551 {
552 	struct f2fs_io_info *fio = &io->fio;
553 
554 	if (!io->bio)
555 		return;
556 
557 	if (is_read_io(fio->op))
558 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
559 	else
560 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
561 
562 	__submit_bio(io->sbi, io->bio, fio->type);
563 	io->bio = NULL;
564 }
565 
566 static bool __has_merged_page(struct bio *bio, struct inode *inode,
567 						struct page *page, nid_t ino)
568 {
569 	struct bio_vec *bvec;
570 	struct bvec_iter_all iter_all;
571 
572 	if (!bio)
573 		return false;
574 
575 	if (!inode && !page && !ino)
576 		return true;
577 
578 	bio_for_each_segment_all(bvec, bio, iter_all) {
579 		struct page *target = bvec->bv_page;
580 
581 		if (fscrypt_is_bounce_page(target)) {
582 			target = fscrypt_pagecache_page(target);
583 			if (IS_ERR(target))
584 				continue;
585 		}
586 		if (f2fs_is_compressed_page(target)) {
587 			target = f2fs_compress_control_page(target);
588 			if (IS_ERR(target))
589 				continue;
590 		}
591 
592 		if (inode && inode == target->mapping->host)
593 			return true;
594 		if (page && page == target)
595 			return true;
596 		if (ino && ino == ino_of_node(target))
597 			return true;
598 	}
599 
600 	return false;
601 }
602 
603 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
604 {
605 	int i;
606 
607 	for (i = 0; i < NR_PAGE_TYPE; i++) {
608 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
609 		int j;
610 
611 		sbi->write_io[i] = f2fs_kmalloc(sbi,
612 				array_size(n, sizeof(struct f2fs_bio_info)),
613 				GFP_KERNEL);
614 		if (!sbi->write_io[i])
615 			return -ENOMEM;
616 
617 		for (j = HOT; j < n; j++) {
618 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
619 			sbi->write_io[i][j].sbi = sbi;
620 			sbi->write_io[i][j].bio = NULL;
621 			spin_lock_init(&sbi->write_io[i][j].io_lock);
622 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
623 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
624 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
625 		}
626 	}
627 
628 	return 0;
629 }
630 
631 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
632 				enum page_type type, enum temp_type temp)
633 {
634 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
635 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
636 
637 	f2fs_down_write(&io->io_rwsem);
638 
639 	/* change META to META_FLUSH in the checkpoint procedure */
640 	if (type >= META_FLUSH) {
641 		io->fio.type = META_FLUSH;
642 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
643 		if (!test_opt(sbi, NOBARRIER))
644 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
645 	}
646 	__submit_merged_bio(io);
647 	f2fs_up_write(&io->io_rwsem);
648 }
649 
650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651 				struct inode *inode, struct page *page,
652 				nid_t ino, enum page_type type, bool force)
653 {
654 	enum temp_type temp;
655 	bool ret = true;
656 
657 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658 		if (!force)	{
659 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
660 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661 
662 			f2fs_down_read(&io->io_rwsem);
663 			ret = __has_merged_page(io->bio, inode, page, ino);
664 			f2fs_up_read(&io->io_rwsem);
665 		}
666 		if (ret)
667 			__f2fs_submit_merged_write(sbi, type, temp);
668 
669 		/* TODO: use HOT temp only for meta pages now. */
670 		if (type >= META)
671 			break;
672 	}
673 }
674 
675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679 
680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681 				struct inode *inode, struct page *page,
682 				nid_t ino, enum page_type type)
683 {
684 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686 
687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689 	f2fs_submit_merged_write(sbi, DATA);
690 	f2fs_submit_merged_write(sbi, NODE);
691 	f2fs_submit_merged_write(sbi, META);
692 }
693 
694 /*
695  * Fill the locked page with data located in the block address.
696  * A caller needs to unlock the page on failure.
697  */
698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700 	struct bio *bio;
701 	struct page *page = fio->encrypted_page ?
702 			fio->encrypted_page : fio->page;
703 
704 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
706 			META_GENERIC : DATA_GENERIC_ENHANCE)))
707 		return -EFSCORRUPTED;
708 
709 	trace_f2fs_submit_page_bio(page, fio);
710 
711 	/* Allocate a new bio */
712 	bio = __bio_alloc(fio, 1);
713 
714 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
715 			       fio->page->index, fio, GFP_NOIO);
716 
717 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
718 		bio_put(bio);
719 		return -EFAULT;
720 	}
721 
722 	if (fio->io_wbc && !is_read_io(fio->op))
723 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
724 
725 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
726 			__read_io_type(page): WB_DATA_TYPE(fio->page));
727 
728 	__submit_bio(fio->sbi, bio, fio->type);
729 	return 0;
730 }
731 
732 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
733 				block_t last_blkaddr, block_t cur_blkaddr)
734 {
735 	if (unlikely(sbi->max_io_bytes &&
736 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
737 		return false;
738 	if (last_blkaddr + 1 != cur_blkaddr)
739 		return false;
740 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
741 }
742 
743 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
744 						struct f2fs_io_info *fio)
745 {
746 	if (io->fio.op != fio->op)
747 		return false;
748 	return io->fio.op_flags == fio->op_flags;
749 }
750 
751 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
752 					struct f2fs_bio_info *io,
753 					struct f2fs_io_info *fio,
754 					block_t last_blkaddr,
755 					block_t cur_blkaddr)
756 {
757 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
758 		unsigned int filled_blocks =
759 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
760 		unsigned int io_size = F2FS_IO_SIZE(sbi);
761 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
762 
763 		/* IOs in bio is aligned and left space of vectors is not enough */
764 		if (!(filled_blocks % io_size) && left_vecs < io_size)
765 			return false;
766 	}
767 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
768 		return false;
769 	return io_type_is_mergeable(io, fio);
770 }
771 
772 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
773 				struct page *page, enum temp_type temp)
774 {
775 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
776 	struct bio_entry *be;
777 
778 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
779 	be->bio = bio;
780 	bio_get(bio);
781 
782 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
783 		f2fs_bug_on(sbi, 1);
784 
785 	f2fs_down_write(&io->bio_list_lock);
786 	list_add_tail(&be->list, &io->bio_list);
787 	f2fs_up_write(&io->bio_list_lock);
788 }
789 
790 static void del_bio_entry(struct bio_entry *be)
791 {
792 	list_del(&be->list);
793 	kmem_cache_free(bio_entry_slab, be);
794 }
795 
796 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
797 							struct page *page)
798 {
799 	struct f2fs_sb_info *sbi = fio->sbi;
800 	enum temp_type temp;
801 	bool found = false;
802 	int ret = -EAGAIN;
803 
804 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
805 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
806 		struct list_head *head = &io->bio_list;
807 		struct bio_entry *be;
808 
809 		f2fs_down_write(&io->bio_list_lock);
810 		list_for_each_entry(be, head, list) {
811 			if (be->bio != *bio)
812 				continue;
813 
814 			found = true;
815 
816 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
817 							    *fio->last_block,
818 							    fio->new_blkaddr));
819 			if (f2fs_crypt_mergeable_bio(*bio,
820 					fio->page->mapping->host,
821 					fio->page->index, fio) &&
822 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
823 					PAGE_SIZE) {
824 				ret = 0;
825 				break;
826 			}
827 
828 			/* page can't be merged into bio; submit the bio */
829 			del_bio_entry(be);
830 			__submit_bio(sbi, *bio, DATA);
831 			break;
832 		}
833 		f2fs_up_write(&io->bio_list_lock);
834 	}
835 
836 	if (ret) {
837 		bio_put(*bio);
838 		*bio = NULL;
839 	}
840 
841 	return ret;
842 }
843 
844 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
845 					struct bio **bio, struct page *page)
846 {
847 	enum temp_type temp;
848 	bool found = false;
849 	struct bio *target = bio ? *bio : NULL;
850 
851 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
852 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
853 		struct list_head *head = &io->bio_list;
854 		struct bio_entry *be;
855 
856 		if (list_empty(head))
857 			continue;
858 
859 		f2fs_down_read(&io->bio_list_lock);
860 		list_for_each_entry(be, head, list) {
861 			if (target)
862 				found = (target == be->bio);
863 			else
864 				found = __has_merged_page(be->bio, NULL,
865 								page, 0);
866 			if (found)
867 				break;
868 		}
869 		f2fs_up_read(&io->bio_list_lock);
870 
871 		if (!found)
872 			continue;
873 
874 		found = false;
875 
876 		f2fs_down_write(&io->bio_list_lock);
877 		list_for_each_entry(be, head, list) {
878 			if (target)
879 				found = (target == be->bio);
880 			else
881 				found = __has_merged_page(be->bio, NULL,
882 								page, 0);
883 			if (found) {
884 				target = be->bio;
885 				del_bio_entry(be);
886 				break;
887 			}
888 		}
889 		f2fs_up_write(&io->bio_list_lock);
890 	}
891 
892 	if (found)
893 		__submit_bio(sbi, target, DATA);
894 	if (bio && *bio) {
895 		bio_put(*bio);
896 		*bio = NULL;
897 	}
898 }
899 
900 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
901 {
902 	struct bio *bio = *fio->bio;
903 	struct page *page = fio->encrypted_page ?
904 			fio->encrypted_page : fio->page;
905 
906 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
907 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
908 		return -EFSCORRUPTED;
909 
910 	trace_f2fs_submit_page_bio(page, fio);
911 
912 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
913 						fio->new_blkaddr))
914 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
915 alloc_new:
916 	if (!bio) {
917 		bio = __bio_alloc(fio, BIO_MAX_VECS);
918 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
919 				       fio->page->index, fio, GFP_NOIO);
920 
921 		add_bio_entry(fio->sbi, bio, page, fio->temp);
922 	} else {
923 		if (add_ipu_page(fio, &bio, page))
924 			goto alloc_new;
925 	}
926 
927 	if (fio->io_wbc)
928 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
929 
930 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
931 
932 	*fio->last_block = fio->new_blkaddr;
933 	*fio->bio = bio;
934 
935 	return 0;
936 }
937 
938 void f2fs_submit_page_write(struct f2fs_io_info *fio)
939 {
940 	struct f2fs_sb_info *sbi = fio->sbi;
941 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
942 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
943 	struct page *bio_page;
944 
945 	f2fs_bug_on(sbi, is_read_io(fio->op));
946 
947 	f2fs_down_write(&io->io_rwsem);
948 next:
949 	if (fio->in_list) {
950 		spin_lock(&io->io_lock);
951 		if (list_empty(&io->io_list)) {
952 			spin_unlock(&io->io_lock);
953 			goto out;
954 		}
955 		fio = list_first_entry(&io->io_list,
956 						struct f2fs_io_info, list);
957 		list_del(&fio->list);
958 		spin_unlock(&io->io_lock);
959 	}
960 
961 	verify_fio_blkaddr(fio);
962 
963 	if (fio->encrypted_page)
964 		bio_page = fio->encrypted_page;
965 	else if (fio->compressed_page)
966 		bio_page = fio->compressed_page;
967 	else
968 		bio_page = fio->page;
969 
970 	/* set submitted = true as a return value */
971 	fio->submitted = true;
972 
973 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
974 
975 	if (io->bio &&
976 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
977 			      fio->new_blkaddr) ||
978 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
979 				       bio_page->index, fio)))
980 		__submit_merged_bio(io);
981 alloc_new:
982 	if (io->bio == NULL) {
983 		if (F2FS_IO_ALIGNED(sbi) &&
984 				(fio->type == DATA || fio->type == NODE) &&
985 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
986 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
987 			fio->retry = true;
988 			goto skip;
989 		}
990 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
991 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
992 				       bio_page->index, fio, GFP_NOIO);
993 		io->fio = *fio;
994 	}
995 
996 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
997 		__submit_merged_bio(io);
998 		goto alloc_new;
999 	}
1000 
1001 	if (fio->io_wbc)
1002 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1003 
1004 	io->last_block_in_bio = fio->new_blkaddr;
1005 
1006 	trace_f2fs_submit_page_write(fio->page, fio);
1007 skip:
1008 	if (fio->in_list)
1009 		goto next;
1010 out:
1011 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1012 				!f2fs_is_checkpoint_ready(sbi))
1013 		__submit_merged_bio(io);
1014 	f2fs_up_write(&io->io_rwsem);
1015 }
1016 
1017 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1018 				      unsigned nr_pages, blk_opf_t op_flag,
1019 				      pgoff_t first_idx, bool for_write)
1020 {
1021 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1022 	struct bio *bio;
1023 	struct bio_post_read_ctx *ctx = NULL;
1024 	unsigned int post_read_steps = 0;
1025 	sector_t sector;
1026 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1027 
1028 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1029 			       REQ_OP_READ | op_flag,
1030 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1031 	if (!bio)
1032 		return ERR_PTR(-ENOMEM);
1033 	bio->bi_iter.bi_sector = sector;
1034 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1035 	bio->bi_end_io = f2fs_read_end_io;
1036 
1037 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1038 		post_read_steps |= STEP_DECRYPT;
1039 
1040 	if (f2fs_need_verity(inode, first_idx))
1041 		post_read_steps |= STEP_VERITY;
1042 
1043 	/*
1044 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1045 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1046 	 * bio_post_read_ctx if the file is compressed, but the caller is
1047 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1048 	 */
1049 
1050 	if (post_read_steps || f2fs_compressed_file(inode)) {
1051 		/* Due to the mempool, this never fails. */
1052 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1053 		ctx->bio = bio;
1054 		ctx->sbi = sbi;
1055 		ctx->enabled_steps = post_read_steps;
1056 		ctx->fs_blkaddr = blkaddr;
1057 		bio->bi_private = ctx;
1058 	}
1059 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1060 
1061 	return bio;
1062 }
1063 
1064 /* This can handle encryption stuffs */
1065 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1066 				 block_t blkaddr, blk_opf_t op_flags,
1067 				 bool for_write)
1068 {
1069 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1070 	struct bio *bio;
1071 
1072 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1073 					page->index, for_write);
1074 	if (IS_ERR(bio))
1075 		return PTR_ERR(bio);
1076 
1077 	/* wait for GCed page writeback via META_MAPPING */
1078 	f2fs_wait_on_block_writeback(inode, blkaddr);
1079 
1080 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1081 		bio_put(bio);
1082 		return -EFAULT;
1083 	}
1084 	ClearPageError(page);
1085 	inc_page_count(sbi, F2FS_RD_DATA);
1086 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1087 	__submit_bio(sbi, bio, DATA);
1088 	return 0;
1089 }
1090 
1091 static void __set_data_blkaddr(struct dnode_of_data *dn)
1092 {
1093 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1094 	__le32 *addr_array;
1095 	int base = 0;
1096 
1097 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1098 		base = get_extra_isize(dn->inode);
1099 
1100 	/* Get physical address of data block */
1101 	addr_array = blkaddr_in_node(rn);
1102 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1103 }
1104 
1105 /*
1106  * Lock ordering for the change of data block address:
1107  * ->data_page
1108  *  ->node_page
1109  *    update block addresses in the node page
1110  */
1111 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1112 {
1113 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1114 	__set_data_blkaddr(dn);
1115 	if (set_page_dirty(dn->node_page))
1116 		dn->node_changed = true;
1117 }
1118 
1119 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1120 {
1121 	dn->data_blkaddr = blkaddr;
1122 	f2fs_set_data_blkaddr(dn);
1123 	f2fs_update_extent_cache(dn);
1124 }
1125 
1126 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1127 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1128 {
1129 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1130 	int err;
1131 
1132 	if (!count)
1133 		return 0;
1134 
1135 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1136 		return -EPERM;
1137 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1138 		return err;
1139 
1140 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1141 						dn->ofs_in_node, count);
1142 
1143 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1144 
1145 	for (; count > 0; dn->ofs_in_node++) {
1146 		block_t blkaddr = f2fs_data_blkaddr(dn);
1147 
1148 		if (blkaddr == NULL_ADDR) {
1149 			dn->data_blkaddr = NEW_ADDR;
1150 			__set_data_blkaddr(dn);
1151 			count--;
1152 		}
1153 	}
1154 
1155 	if (set_page_dirty(dn->node_page))
1156 		dn->node_changed = true;
1157 	return 0;
1158 }
1159 
1160 /* Should keep dn->ofs_in_node unchanged */
1161 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1162 {
1163 	unsigned int ofs_in_node = dn->ofs_in_node;
1164 	int ret;
1165 
1166 	ret = f2fs_reserve_new_blocks(dn, 1);
1167 	dn->ofs_in_node = ofs_in_node;
1168 	return ret;
1169 }
1170 
1171 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1172 {
1173 	bool need_put = dn->inode_page ? false : true;
1174 	int err;
1175 
1176 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1177 	if (err)
1178 		return err;
1179 
1180 	if (dn->data_blkaddr == NULL_ADDR)
1181 		err = f2fs_reserve_new_block(dn);
1182 	if (err || need_put)
1183 		f2fs_put_dnode(dn);
1184 	return err;
1185 }
1186 
1187 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1188 {
1189 	struct extent_info ei = {0, };
1190 	struct inode *inode = dn->inode;
1191 
1192 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1193 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1194 		return 0;
1195 	}
1196 
1197 	return f2fs_reserve_block(dn, index);
1198 }
1199 
1200 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1201 				     blk_opf_t op_flags, bool for_write)
1202 {
1203 	struct address_space *mapping = inode->i_mapping;
1204 	struct dnode_of_data dn;
1205 	struct page *page;
1206 	struct extent_info ei = {0, };
1207 	int err;
1208 
1209 	page = f2fs_grab_cache_page(mapping, index, for_write);
1210 	if (!page)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1214 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1215 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1216 						DATA_GENERIC_ENHANCE_READ)) {
1217 			err = -EFSCORRUPTED;
1218 			goto put_err;
1219 		}
1220 		goto got_it;
1221 	}
1222 
1223 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1224 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1225 	if (err)
1226 		goto put_err;
1227 	f2fs_put_dnode(&dn);
1228 
1229 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1230 		err = -ENOENT;
1231 		goto put_err;
1232 	}
1233 	if (dn.data_blkaddr != NEW_ADDR &&
1234 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1235 						dn.data_blkaddr,
1236 						DATA_GENERIC_ENHANCE)) {
1237 		err = -EFSCORRUPTED;
1238 		goto put_err;
1239 	}
1240 got_it:
1241 	if (PageUptodate(page)) {
1242 		unlock_page(page);
1243 		return page;
1244 	}
1245 
1246 	/*
1247 	 * A new dentry page is allocated but not able to be written, since its
1248 	 * new inode page couldn't be allocated due to -ENOSPC.
1249 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1250 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1251 	 * f2fs_init_inode_metadata.
1252 	 */
1253 	if (dn.data_blkaddr == NEW_ADDR) {
1254 		zero_user_segment(page, 0, PAGE_SIZE);
1255 		if (!PageUptodate(page))
1256 			SetPageUptodate(page);
1257 		unlock_page(page);
1258 		return page;
1259 	}
1260 
1261 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1262 						op_flags, for_write);
1263 	if (err)
1264 		goto put_err;
1265 	return page;
1266 
1267 put_err:
1268 	f2fs_put_page(page, 1);
1269 	return ERR_PTR(err);
1270 }
1271 
1272 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1273 {
1274 	struct address_space *mapping = inode->i_mapping;
1275 	struct page *page;
1276 
1277 	page = find_get_page(mapping, index);
1278 	if (page && PageUptodate(page))
1279 		return page;
1280 	f2fs_put_page(page, 0);
1281 
1282 	page = f2fs_get_read_data_page(inode, index, 0, false);
1283 	if (IS_ERR(page))
1284 		return page;
1285 
1286 	if (PageUptodate(page))
1287 		return page;
1288 
1289 	wait_on_page_locked(page);
1290 	if (unlikely(!PageUptodate(page))) {
1291 		f2fs_put_page(page, 0);
1292 		return ERR_PTR(-EIO);
1293 	}
1294 	return page;
1295 }
1296 
1297 /*
1298  * If it tries to access a hole, return an error.
1299  * Because, the callers, functions in dir.c and GC, should be able to know
1300  * whether this page exists or not.
1301  */
1302 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1303 							bool for_write)
1304 {
1305 	struct address_space *mapping = inode->i_mapping;
1306 	struct page *page;
1307 repeat:
1308 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1309 	if (IS_ERR(page))
1310 		return page;
1311 
1312 	/* wait for read completion */
1313 	lock_page(page);
1314 	if (unlikely(page->mapping != mapping)) {
1315 		f2fs_put_page(page, 1);
1316 		goto repeat;
1317 	}
1318 	if (unlikely(!PageUptodate(page))) {
1319 		f2fs_put_page(page, 1);
1320 		return ERR_PTR(-EIO);
1321 	}
1322 	return page;
1323 }
1324 
1325 /*
1326  * Caller ensures that this data page is never allocated.
1327  * A new zero-filled data page is allocated in the page cache.
1328  *
1329  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1330  * f2fs_unlock_op().
1331  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1332  * ipage should be released by this function.
1333  */
1334 struct page *f2fs_get_new_data_page(struct inode *inode,
1335 		struct page *ipage, pgoff_t index, bool new_i_size)
1336 {
1337 	struct address_space *mapping = inode->i_mapping;
1338 	struct page *page;
1339 	struct dnode_of_data dn;
1340 	int err;
1341 
1342 	page = f2fs_grab_cache_page(mapping, index, true);
1343 	if (!page) {
1344 		/*
1345 		 * before exiting, we should make sure ipage will be released
1346 		 * if any error occur.
1347 		 */
1348 		f2fs_put_page(ipage, 1);
1349 		return ERR_PTR(-ENOMEM);
1350 	}
1351 
1352 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1353 	err = f2fs_reserve_block(&dn, index);
1354 	if (err) {
1355 		f2fs_put_page(page, 1);
1356 		return ERR_PTR(err);
1357 	}
1358 	if (!ipage)
1359 		f2fs_put_dnode(&dn);
1360 
1361 	if (PageUptodate(page))
1362 		goto got_it;
1363 
1364 	if (dn.data_blkaddr == NEW_ADDR) {
1365 		zero_user_segment(page, 0, PAGE_SIZE);
1366 		if (!PageUptodate(page))
1367 			SetPageUptodate(page);
1368 	} else {
1369 		f2fs_put_page(page, 1);
1370 
1371 		/* if ipage exists, blkaddr should be NEW_ADDR */
1372 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1373 		page = f2fs_get_lock_data_page(inode, index, true);
1374 		if (IS_ERR(page))
1375 			return page;
1376 	}
1377 got_it:
1378 	if (new_i_size && i_size_read(inode) <
1379 				((loff_t)(index + 1) << PAGE_SHIFT))
1380 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1381 	return page;
1382 }
1383 
1384 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1385 {
1386 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1387 	struct f2fs_summary sum;
1388 	struct node_info ni;
1389 	block_t old_blkaddr;
1390 	blkcnt_t count = 1;
1391 	int err;
1392 
1393 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1394 		return -EPERM;
1395 
1396 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1397 	if (err)
1398 		return err;
1399 
1400 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1401 	if (dn->data_blkaddr != NULL_ADDR)
1402 		goto alloc;
1403 
1404 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1405 		return err;
1406 
1407 alloc:
1408 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1409 	old_blkaddr = dn->data_blkaddr;
1410 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1411 				&sum, seg_type, NULL);
1412 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1413 		invalidate_mapping_pages(META_MAPPING(sbi),
1414 					old_blkaddr, old_blkaddr);
1415 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1416 	}
1417 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1418 	return 0;
1419 }
1420 
1421 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1422 {
1423 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1424 		if (lock)
1425 			f2fs_down_read(&sbi->node_change);
1426 		else
1427 			f2fs_up_read(&sbi->node_change);
1428 	} else {
1429 		if (lock)
1430 			f2fs_lock_op(sbi);
1431 		else
1432 			f2fs_unlock_op(sbi);
1433 	}
1434 }
1435 
1436 /*
1437  * f2fs_map_blocks() tries to find or build mapping relationship which
1438  * maps continuous logical blocks to physical blocks, and return such
1439  * info via f2fs_map_blocks structure.
1440  */
1441 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1442 						int create, int flag)
1443 {
1444 	unsigned int maxblocks = map->m_len;
1445 	struct dnode_of_data dn;
1446 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1447 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1448 	pgoff_t pgofs, end_offset, end;
1449 	int err = 0, ofs = 1;
1450 	unsigned int ofs_in_node, last_ofs_in_node;
1451 	blkcnt_t prealloc;
1452 	struct extent_info ei = {0, };
1453 	block_t blkaddr;
1454 	unsigned int start_pgofs;
1455 	int bidx = 0;
1456 
1457 	if (!maxblocks)
1458 		return 0;
1459 
1460 	map->m_bdev = inode->i_sb->s_bdev;
1461 	map->m_multidev_dio =
1462 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1463 
1464 	map->m_len = 0;
1465 	map->m_flags = 0;
1466 
1467 	/* it only supports block size == page size */
1468 	pgofs =	(pgoff_t)map->m_lblk;
1469 	end = pgofs + maxblocks;
1470 
1471 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1472 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1473 							map->m_may_create)
1474 			goto next_dnode;
1475 
1476 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1477 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1478 		map->m_flags = F2FS_MAP_MAPPED;
1479 		if (map->m_next_extent)
1480 			*map->m_next_extent = pgofs + map->m_len;
1481 
1482 		/* for hardware encryption, but to avoid potential issue in future */
1483 		if (flag == F2FS_GET_BLOCK_DIO)
1484 			f2fs_wait_on_block_writeback_range(inode,
1485 						map->m_pblk, map->m_len);
1486 
1487 		if (map->m_multidev_dio) {
1488 			block_t blk_addr = map->m_pblk;
1489 
1490 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1491 
1492 			map->m_bdev = FDEV(bidx).bdev;
1493 			map->m_pblk -= FDEV(bidx).start_blk;
1494 			map->m_len = min(map->m_len,
1495 				FDEV(bidx).end_blk + 1 - map->m_pblk);
1496 
1497 			if (map->m_may_create)
1498 				f2fs_update_device_state(sbi, inode->i_ino,
1499 							blk_addr, map->m_len);
1500 		}
1501 		goto out;
1502 	}
1503 
1504 next_dnode:
1505 	if (map->m_may_create)
1506 		f2fs_do_map_lock(sbi, flag, true);
1507 
1508 	/* When reading holes, we need its node page */
1509 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1510 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1511 	if (err) {
1512 		if (flag == F2FS_GET_BLOCK_BMAP)
1513 			map->m_pblk = 0;
1514 
1515 		if (err == -ENOENT) {
1516 			/*
1517 			 * There is one exceptional case that read_node_page()
1518 			 * may return -ENOENT due to filesystem has been
1519 			 * shutdown or cp_error, so force to convert error
1520 			 * number to EIO for such case.
1521 			 */
1522 			if (map->m_may_create &&
1523 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1524 				f2fs_cp_error(sbi))) {
1525 				err = -EIO;
1526 				goto unlock_out;
1527 			}
1528 
1529 			err = 0;
1530 			if (map->m_next_pgofs)
1531 				*map->m_next_pgofs =
1532 					f2fs_get_next_page_offset(&dn, pgofs);
1533 			if (map->m_next_extent)
1534 				*map->m_next_extent =
1535 					f2fs_get_next_page_offset(&dn, pgofs);
1536 		}
1537 		goto unlock_out;
1538 	}
1539 
1540 	start_pgofs = pgofs;
1541 	prealloc = 0;
1542 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1543 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1544 
1545 next_block:
1546 	blkaddr = f2fs_data_blkaddr(&dn);
1547 
1548 	if (__is_valid_data_blkaddr(blkaddr) &&
1549 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1550 		err = -EFSCORRUPTED;
1551 		goto sync_out;
1552 	}
1553 
1554 	if (__is_valid_data_blkaddr(blkaddr)) {
1555 		/* use out-place-update for driect IO under LFS mode */
1556 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1557 							map->m_may_create) {
1558 			err = __allocate_data_block(&dn, map->m_seg_type);
1559 			if (err)
1560 				goto sync_out;
1561 			blkaddr = dn.data_blkaddr;
1562 			set_inode_flag(inode, FI_APPEND_WRITE);
1563 		}
1564 	} else {
1565 		if (create) {
1566 			if (unlikely(f2fs_cp_error(sbi))) {
1567 				err = -EIO;
1568 				goto sync_out;
1569 			}
1570 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1571 				if (blkaddr == NULL_ADDR) {
1572 					prealloc++;
1573 					last_ofs_in_node = dn.ofs_in_node;
1574 				}
1575 			} else {
1576 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1577 					flag != F2FS_GET_BLOCK_DIO);
1578 				err = __allocate_data_block(&dn,
1579 							map->m_seg_type);
1580 				if (!err) {
1581 					if (flag == F2FS_GET_BLOCK_PRE_DIO)
1582 						file_need_truncate(inode);
1583 					set_inode_flag(inode, FI_APPEND_WRITE);
1584 				}
1585 			}
1586 			if (err)
1587 				goto sync_out;
1588 			map->m_flags |= F2FS_MAP_NEW;
1589 			blkaddr = dn.data_blkaddr;
1590 		} else {
1591 			if (f2fs_compressed_file(inode) &&
1592 					f2fs_sanity_check_cluster(&dn) &&
1593 					(flag != F2FS_GET_BLOCK_FIEMAP ||
1594 					IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1595 				err = -EFSCORRUPTED;
1596 				goto sync_out;
1597 			}
1598 			if (flag == F2FS_GET_BLOCK_BMAP) {
1599 				map->m_pblk = 0;
1600 				goto sync_out;
1601 			}
1602 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1603 				goto sync_out;
1604 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1605 						blkaddr == NULL_ADDR) {
1606 				if (map->m_next_pgofs)
1607 					*map->m_next_pgofs = pgofs + 1;
1608 				goto sync_out;
1609 			}
1610 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1611 				/* for defragment case */
1612 				if (map->m_next_pgofs)
1613 					*map->m_next_pgofs = pgofs + 1;
1614 				goto sync_out;
1615 			}
1616 		}
1617 	}
1618 
1619 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1620 		goto skip;
1621 
1622 	if (map->m_multidev_dio)
1623 		bidx = f2fs_target_device_index(sbi, blkaddr);
1624 
1625 	if (map->m_len == 0) {
1626 		/* preallocated unwritten block should be mapped for fiemap. */
1627 		if (blkaddr == NEW_ADDR)
1628 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1629 		map->m_flags |= F2FS_MAP_MAPPED;
1630 
1631 		map->m_pblk = blkaddr;
1632 		map->m_len = 1;
1633 
1634 		if (map->m_multidev_dio)
1635 			map->m_bdev = FDEV(bidx).bdev;
1636 	} else if ((map->m_pblk != NEW_ADDR &&
1637 			blkaddr == (map->m_pblk + ofs)) ||
1638 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1639 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1640 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1641 			goto sync_out;
1642 		ofs++;
1643 		map->m_len++;
1644 	} else {
1645 		goto sync_out;
1646 	}
1647 
1648 skip:
1649 	dn.ofs_in_node++;
1650 	pgofs++;
1651 
1652 	/* preallocate blocks in batch for one dnode page */
1653 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1654 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1655 
1656 		dn.ofs_in_node = ofs_in_node;
1657 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1658 		if (err)
1659 			goto sync_out;
1660 
1661 		map->m_len += dn.ofs_in_node - ofs_in_node;
1662 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1663 			err = -ENOSPC;
1664 			goto sync_out;
1665 		}
1666 		dn.ofs_in_node = end_offset;
1667 	}
1668 
1669 	if (pgofs >= end)
1670 		goto sync_out;
1671 	else if (dn.ofs_in_node < end_offset)
1672 		goto next_block;
1673 
1674 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1675 		if (map->m_flags & F2FS_MAP_MAPPED) {
1676 			unsigned int ofs = start_pgofs - map->m_lblk;
1677 
1678 			f2fs_update_extent_cache_range(&dn,
1679 				start_pgofs, map->m_pblk + ofs,
1680 				map->m_len - ofs);
1681 		}
1682 	}
1683 
1684 	f2fs_put_dnode(&dn);
1685 
1686 	if (map->m_may_create) {
1687 		f2fs_do_map_lock(sbi, flag, false);
1688 		f2fs_balance_fs(sbi, dn.node_changed);
1689 	}
1690 	goto next_dnode;
1691 
1692 sync_out:
1693 
1694 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1695 		/*
1696 		 * for hardware encryption, but to avoid potential issue
1697 		 * in future
1698 		 */
1699 		f2fs_wait_on_block_writeback_range(inode,
1700 						map->m_pblk, map->m_len);
1701 
1702 		if (map->m_multidev_dio) {
1703 			block_t blk_addr = map->m_pblk;
1704 
1705 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1706 
1707 			map->m_bdev = FDEV(bidx).bdev;
1708 			map->m_pblk -= FDEV(bidx).start_blk;
1709 
1710 			if (map->m_may_create)
1711 				f2fs_update_device_state(sbi, inode->i_ino,
1712 							blk_addr, map->m_len);
1713 
1714 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1715 						FDEV(bidx).end_blk + 1);
1716 		}
1717 	}
1718 
1719 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1720 		if (map->m_flags & F2FS_MAP_MAPPED) {
1721 			unsigned int ofs = start_pgofs - map->m_lblk;
1722 
1723 			f2fs_update_extent_cache_range(&dn,
1724 				start_pgofs, map->m_pblk + ofs,
1725 				map->m_len - ofs);
1726 		}
1727 		if (map->m_next_extent)
1728 			*map->m_next_extent = pgofs + 1;
1729 	}
1730 	f2fs_put_dnode(&dn);
1731 unlock_out:
1732 	if (map->m_may_create) {
1733 		f2fs_do_map_lock(sbi, flag, false);
1734 		f2fs_balance_fs(sbi, dn.node_changed);
1735 	}
1736 out:
1737 	trace_f2fs_map_blocks(inode, map, create, flag, err);
1738 	return err;
1739 }
1740 
1741 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1742 {
1743 	struct f2fs_map_blocks map;
1744 	block_t last_lblk;
1745 	int err;
1746 
1747 	if (pos + len > i_size_read(inode))
1748 		return false;
1749 
1750 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1751 	map.m_next_pgofs = NULL;
1752 	map.m_next_extent = NULL;
1753 	map.m_seg_type = NO_CHECK_TYPE;
1754 	map.m_may_create = false;
1755 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1756 
1757 	while (map.m_lblk < last_lblk) {
1758 		map.m_len = last_lblk - map.m_lblk;
1759 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1760 		if (err || map.m_len == 0)
1761 			return false;
1762 		map.m_lblk += map.m_len;
1763 	}
1764 	return true;
1765 }
1766 
1767 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1768 {
1769 	return (bytes >> inode->i_blkbits);
1770 }
1771 
1772 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1773 {
1774 	return (blks << inode->i_blkbits);
1775 }
1776 
1777 static int f2fs_xattr_fiemap(struct inode *inode,
1778 				struct fiemap_extent_info *fieinfo)
1779 {
1780 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781 	struct page *page;
1782 	struct node_info ni;
1783 	__u64 phys = 0, len;
1784 	__u32 flags;
1785 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1786 	int err = 0;
1787 
1788 	if (f2fs_has_inline_xattr(inode)) {
1789 		int offset;
1790 
1791 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1792 						inode->i_ino, false);
1793 		if (!page)
1794 			return -ENOMEM;
1795 
1796 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1797 		if (err) {
1798 			f2fs_put_page(page, 1);
1799 			return err;
1800 		}
1801 
1802 		phys = blks_to_bytes(inode, ni.blk_addr);
1803 		offset = offsetof(struct f2fs_inode, i_addr) +
1804 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1805 					get_inline_xattr_addrs(inode));
1806 
1807 		phys += offset;
1808 		len = inline_xattr_size(inode);
1809 
1810 		f2fs_put_page(page, 1);
1811 
1812 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1813 
1814 		if (!xnid)
1815 			flags |= FIEMAP_EXTENT_LAST;
1816 
1817 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1818 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1819 		if (err || err == 1)
1820 			return err;
1821 	}
1822 
1823 	if (xnid) {
1824 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1825 		if (!page)
1826 			return -ENOMEM;
1827 
1828 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1829 		if (err) {
1830 			f2fs_put_page(page, 1);
1831 			return err;
1832 		}
1833 
1834 		phys = blks_to_bytes(inode, ni.blk_addr);
1835 		len = inode->i_sb->s_blocksize;
1836 
1837 		f2fs_put_page(page, 1);
1838 
1839 		flags = FIEMAP_EXTENT_LAST;
1840 	}
1841 
1842 	if (phys) {
1843 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1844 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1845 	}
1846 
1847 	return (err < 0 ? err : 0);
1848 }
1849 
1850 static loff_t max_inode_blocks(struct inode *inode)
1851 {
1852 	loff_t result = ADDRS_PER_INODE(inode);
1853 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1854 
1855 	/* two direct node blocks */
1856 	result += (leaf_count * 2);
1857 
1858 	/* two indirect node blocks */
1859 	leaf_count *= NIDS_PER_BLOCK;
1860 	result += (leaf_count * 2);
1861 
1862 	/* one double indirect node block */
1863 	leaf_count *= NIDS_PER_BLOCK;
1864 	result += leaf_count;
1865 
1866 	return result;
1867 }
1868 
1869 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1870 		u64 start, u64 len)
1871 {
1872 	struct f2fs_map_blocks map;
1873 	sector_t start_blk, last_blk;
1874 	pgoff_t next_pgofs;
1875 	u64 logical = 0, phys = 0, size = 0;
1876 	u32 flags = 0;
1877 	int ret = 0;
1878 	bool compr_cluster = false, compr_appended;
1879 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1880 	unsigned int count_in_cluster = 0;
1881 	loff_t maxbytes;
1882 
1883 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1884 		ret = f2fs_precache_extents(inode);
1885 		if (ret)
1886 			return ret;
1887 	}
1888 
1889 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1890 	if (ret)
1891 		return ret;
1892 
1893 	inode_lock(inode);
1894 
1895 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1896 	if (start > maxbytes) {
1897 		ret = -EFBIG;
1898 		goto out;
1899 	}
1900 
1901 	if (len > maxbytes || (maxbytes - len) < start)
1902 		len = maxbytes - start;
1903 
1904 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1905 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1906 		goto out;
1907 	}
1908 
1909 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1910 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1911 		if (ret != -EAGAIN)
1912 			goto out;
1913 	}
1914 
1915 	if (bytes_to_blks(inode, len) == 0)
1916 		len = blks_to_bytes(inode, 1);
1917 
1918 	start_blk = bytes_to_blks(inode, start);
1919 	last_blk = bytes_to_blks(inode, start + len - 1);
1920 
1921 next:
1922 	memset(&map, 0, sizeof(map));
1923 	map.m_lblk = start_blk;
1924 	map.m_len = bytes_to_blks(inode, len);
1925 	map.m_next_pgofs = &next_pgofs;
1926 	map.m_seg_type = NO_CHECK_TYPE;
1927 
1928 	if (compr_cluster) {
1929 		map.m_lblk += 1;
1930 		map.m_len = cluster_size - count_in_cluster;
1931 	}
1932 
1933 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1934 	if (ret)
1935 		goto out;
1936 
1937 	/* HOLE */
1938 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1939 		start_blk = next_pgofs;
1940 
1941 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1942 						max_inode_blocks(inode)))
1943 			goto prep_next;
1944 
1945 		flags |= FIEMAP_EXTENT_LAST;
1946 	}
1947 
1948 	compr_appended = false;
1949 	/* In a case of compressed cluster, append this to the last extent */
1950 	if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1951 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1952 		compr_appended = true;
1953 		goto skip_fill;
1954 	}
1955 
1956 	if (size) {
1957 		flags |= FIEMAP_EXTENT_MERGED;
1958 		if (IS_ENCRYPTED(inode))
1959 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1960 
1961 		ret = fiemap_fill_next_extent(fieinfo, logical,
1962 				phys, size, flags);
1963 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1964 		if (ret)
1965 			goto out;
1966 		size = 0;
1967 	}
1968 
1969 	if (start_blk > last_blk)
1970 		goto out;
1971 
1972 skip_fill:
1973 	if (map.m_pblk == COMPRESS_ADDR) {
1974 		compr_cluster = true;
1975 		count_in_cluster = 1;
1976 	} else if (compr_appended) {
1977 		unsigned int appended_blks = cluster_size -
1978 						count_in_cluster + 1;
1979 		size += blks_to_bytes(inode, appended_blks);
1980 		start_blk += appended_blks;
1981 		compr_cluster = false;
1982 	} else {
1983 		logical = blks_to_bytes(inode, start_blk);
1984 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
1985 			blks_to_bytes(inode, map.m_pblk) : 0;
1986 		size = blks_to_bytes(inode, map.m_len);
1987 		flags = 0;
1988 
1989 		if (compr_cluster) {
1990 			flags = FIEMAP_EXTENT_ENCODED;
1991 			count_in_cluster += map.m_len;
1992 			if (count_in_cluster == cluster_size) {
1993 				compr_cluster = false;
1994 				size += blks_to_bytes(inode, 1);
1995 			}
1996 		} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1997 			flags = FIEMAP_EXTENT_UNWRITTEN;
1998 		}
1999 
2000 		start_blk += bytes_to_blks(inode, size);
2001 	}
2002 
2003 prep_next:
2004 	cond_resched();
2005 	if (fatal_signal_pending(current))
2006 		ret = -EINTR;
2007 	else
2008 		goto next;
2009 out:
2010 	if (ret == 1)
2011 		ret = 0;
2012 
2013 	inode_unlock(inode);
2014 	return ret;
2015 }
2016 
2017 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2018 {
2019 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2020 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2021 		return inode->i_sb->s_maxbytes;
2022 
2023 	return i_size_read(inode);
2024 }
2025 
2026 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2027 					unsigned nr_pages,
2028 					struct f2fs_map_blocks *map,
2029 					struct bio **bio_ret,
2030 					sector_t *last_block_in_bio,
2031 					bool is_readahead)
2032 {
2033 	struct bio *bio = *bio_ret;
2034 	const unsigned blocksize = blks_to_bytes(inode, 1);
2035 	sector_t block_in_file;
2036 	sector_t last_block;
2037 	sector_t last_block_in_file;
2038 	sector_t block_nr;
2039 	int ret = 0;
2040 
2041 	block_in_file = (sector_t)page_index(page);
2042 	last_block = block_in_file + nr_pages;
2043 	last_block_in_file = bytes_to_blks(inode,
2044 			f2fs_readpage_limit(inode) + blocksize - 1);
2045 	if (last_block > last_block_in_file)
2046 		last_block = last_block_in_file;
2047 
2048 	/* just zeroing out page which is beyond EOF */
2049 	if (block_in_file >= last_block)
2050 		goto zero_out;
2051 	/*
2052 	 * Map blocks using the previous result first.
2053 	 */
2054 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2055 			block_in_file > map->m_lblk &&
2056 			block_in_file < (map->m_lblk + map->m_len))
2057 		goto got_it;
2058 
2059 	/*
2060 	 * Then do more f2fs_map_blocks() calls until we are
2061 	 * done with this page.
2062 	 */
2063 	map->m_lblk = block_in_file;
2064 	map->m_len = last_block - block_in_file;
2065 
2066 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2067 	if (ret)
2068 		goto out;
2069 got_it:
2070 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2071 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2072 		SetPageMappedToDisk(page);
2073 
2074 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2075 						DATA_GENERIC_ENHANCE_READ)) {
2076 			ret = -EFSCORRUPTED;
2077 			goto out;
2078 		}
2079 	} else {
2080 zero_out:
2081 		zero_user_segment(page, 0, PAGE_SIZE);
2082 		if (f2fs_need_verity(inode, page->index) &&
2083 		    !fsverity_verify_page(page)) {
2084 			ret = -EIO;
2085 			goto out;
2086 		}
2087 		if (!PageUptodate(page))
2088 			SetPageUptodate(page);
2089 		unlock_page(page);
2090 		goto out;
2091 	}
2092 
2093 	/*
2094 	 * This page will go to BIO.  Do we need to send this
2095 	 * BIO off first?
2096 	 */
2097 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2098 				       *last_block_in_bio, block_nr) ||
2099 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2100 submit_and_realloc:
2101 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2102 		bio = NULL;
2103 	}
2104 	if (bio == NULL) {
2105 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2106 				is_readahead ? REQ_RAHEAD : 0, page->index,
2107 				false);
2108 		if (IS_ERR(bio)) {
2109 			ret = PTR_ERR(bio);
2110 			bio = NULL;
2111 			goto out;
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * If the page is under writeback, we need to wait for
2117 	 * its completion to see the correct decrypted data.
2118 	 */
2119 	f2fs_wait_on_block_writeback(inode, block_nr);
2120 
2121 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2122 		goto submit_and_realloc;
2123 
2124 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2125 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2126 	ClearPageError(page);
2127 	*last_block_in_bio = block_nr;
2128 	goto out;
2129 out:
2130 	*bio_ret = bio;
2131 	return ret;
2132 }
2133 
2134 #ifdef CONFIG_F2FS_FS_COMPRESSION
2135 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2136 				unsigned nr_pages, sector_t *last_block_in_bio,
2137 				bool is_readahead, bool for_write)
2138 {
2139 	struct dnode_of_data dn;
2140 	struct inode *inode = cc->inode;
2141 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2142 	struct bio *bio = *bio_ret;
2143 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2144 	sector_t last_block_in_file;
2145 	const unsigned blocksize = blks_to_bytes(inode, 1);
2146 	struct decompress_io_ctx *dic = NULL;
2147 	struct extent_info ei = {0, };
2148 	bool from_dnode = true;
2149 	int i;
2150 	int ret = 0;
2151 
2152 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2153 
2154 	last_block_in_file = bytes_to_blks(inode,
2155 			f2fs_readpage_limit(inode) + blocksize - 1);
2156 
2157 	/* get rid of pages beyond EOF */
2158 	for (i = 0; i < cc->cluster_size; i++) {
2159 		struct page *page = cc->rpages[i];
2160 
2161 		if (!page)
2162 			continue;
2163 		if ((sector_t)page->index >= last_block_in_file) {
2164 			zero_user_segment(page, 0, PAGE_SIZE);
2165 			if (!PageUptodate(page))
2166 				SetPageUptodate(page);
2167 		} else if (!PageUptodate(page)) {
2168 			continue;
2169 		}
2170 		unlock_page(page);
2171 		if (for_write)
2172 			put_page(page);
2173 		cc->rpages[i] = NULL;
2174 		cc->nr_rpages--;
2175 	}
2176 
2177 	/* we are done since all pages are beyond EOF */
2178 	if (f2fs_cluster_is_empty(cc))
2179 		goto out;
2180 
2181 	if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2182 		from_dnode = false;
2183 
2184 	if (!from_dnode)
2185 		goto skip_reading_dnode;
2186 
2187 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2188 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2189 	if (ret)
2190 		goto out;
2191 
2192 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2193 
2194 skip_reading_dnode:
2195 	for (i = 1; i < cc->cluster_size; i++) {
2196 		block_t blkaddr;
2197 
2198 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2199 					dn.ofs_in_node + i) :
2200 					ei.blk + i - 1;
2201 
2202 		if (!__is_valid_data_blkaddr(blkaddr))
2203 			break;
2204 
2205 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2206 			ret = -EFAULT;
2207 			goto out_put_dnode;
2208 		}
2209 		cc->nr_cpages++;
2210 
2211 		if (!from_dnode && i >= ei.c_len)
2212 			break;
2213 	}
2214 
2215 	/* nothing to decompress */
2216 	if (cc->nr_cpages == 0) {
2217 		ret = 0;
2218 		goto out_put_dnode;
2219 	}
2220 
2221 	dic = f2fs_alloc_dic(cc);
2222 	if (IS_ERR(dic)) {
2223 		ret = PTR_ERR(dic);
2224 		goto out_put_dnode;
2225 	}
2226 
2227 	for (i = 0; i < cc->nr_cpages; i++) {
2228 		struct page *page = dic->cpages[i];
2229 		block_t blkaddr;
2230 		struct bio_post_read_ctx *ctx;
2231 
2232 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2233 					dn.ofs_in_node + i + 1) :
2234 					ei.blk + i;
2235 
2236 		f2fs_wait_on_block_writeback(inode, blkaddr);
2237 
2238 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2239 			if (atomic_dec_and_test(&dic->remaining_pages))
2240 				f2fs_decompress_cluster(dic, true);
2241 			continue;
2242 		}
2243 
2244 		if (bio && (!page_is_mergeable(sbi, bio,
2245 					*last_block_in_bio, blkaddr) ||
2246 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2247 submit_and_realloc:
2248 			__submit_bio(sbi, bio, DATA);
2249 			bio = NULL;
2250 		}
2251 
2252 		if (!bio) {
2253 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2254 					is_readahead ? REQ_RAHEAD : 0,
2255 					page->index, for_write);
2256 			if (IS_ERR(bio)) {
2257 				ret = PTR_ERR(bio);
2258 				f2fs_decompress_end_io(dic, ret, true);
2259 				f2fs_put_dnode(&dn);
2260 				*bio_ret = NULL;
2261 				return ret;
2262 			}
2263 		}
2264 
2265 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2266 			goto submit_and_realloc;
2267 
2268 		ctx = get_post_read_ctx(bio);
2269 		ctx->enabled_steps |= STEP_DECOMPRESS;
2270 		refcount_inc(&dic->refcnt);
2271 
2272 		inc_page_count(sbi, F2FS_RD_DATA);
2273 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2274 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2275 		ClearPageError(page);
2276 		*last_block_in_bio = blkaddr;
2277 	}
2278 
2279 	if (from_dnode)
2280 		f2fs_put_dnode(&dn);
2281 
2282 	*bio_ret = bio;
2283 	return 0;
2284 
2285 out_put_dnode:
2286 	if (from_dnode)
2287 		f2fs_put_dnode(&dn);
2288 out:
2289 	for (i = 0; i < cc->cluster_size; i++) {
2290 		if (cc->rpages[i]) {
2291 			ClearPageUptodate(cc->rpages[i]);
2292 			ClearPageError(cc->rpages[i]);
2293 			unlock_page(cc->rpages[i]);
2294 		}
2295 	}
2296 	*bio_ret = bio;
2297 	return ret;
2298 }
2299 #endif
2300 
2301 /*
2302  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2303  * Major change was from block_size == page_size in f2fs by default.
2304  */
2305 static int f2fs_mpage_readpages(struct inode *inode,
2306 		struct readahead_control *rac, struct page *page)
2307 {
2308 	struct bio *bio = NULL;
2309 	sector_t last_block_in_bio = 0;
2310 	struct f2fs_map_blocks map;
2311 #ifdef CONFIG_F2FS_FS_COMPRESSION
2312 	struct compress_ctx cc = {
2313 		.inode = inode,
2314 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2315 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2316 		.cluster_idx = NULL_CLUSTER,
2317 		.rpages = NULL,
2318 		.cpages = NULL,
2319 		.nr_rpages = 0,
2320 		.nr_cpages = 0,
2321 	};
2322 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2323 #endif
2324 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2325 	unsigned max_nr_pages = nr_pages;
2326 	int ret = 0;
2327 
2328 	map.m_pblk = 0;
2329 	map.m_lblk = 0;
2330 	map.m_len = 0;
2331 	map.m_flags = 0;
2332 	map.m_next_pgofs = NULL;
2333 	map.m_next_extent = NULL;
2334 	map.m_seg_type = NO_CHECK_TYPE;
2335 	map.m_may_create = false;
2336 
2337 	for (; nr_pages; nr_pages--) {
2338 		if (rac) {
2339 			page = readahead_page(rac);
2340 			prefetchw(&page->flags);
2341 		}
2342 
2343 #ifdef CONFIG_F2FS_FS_COMPRESSION
2344 		if (f2fs_compressed_file(inode)) {
2345 			/* there are remained comressed pages, submit them */
2346 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2347 				ret = f2fs_read_multi_pages(&cc, &bio,
2348 							max_nr_pages,
2349 							&last_block_in_bio,
2350 							rac != NULL, false);
2351 				f2fs_destroy_compress_ctx(&cc, false);
2352 				if (ret)
2353 					goto set_error_page;
2354 			}
2355 			if (cc.cluster_idx == NULL_CLUSTER) {
2356 				if (nc_cluster_idx ==
2357 					page->index >> cc.log_cluster_size) {
2358 					goto read_single_page;
2359 				}
2360 
2361 				ret = f2fs_is_compressed_cluster(inode, page->index);
2362 				if (ret < 0)
2363 					goto set_error_page;
2364 				else if (!ret) {
2365 					nc_cluster_idx =
2366 						page->index >> cc.log_cluster_size;
2367 					goto read_single_page;
2368 				}
2369 
2370 				nc_cluster_idx = NULL_CLUSTER;
2371 			}
2372 			ret = f2fs_init_compress_ctx(&cc);
2373 			if (ret)
2374 				goto set_error_page;
2375 
2376 			f2fs_compress_ctx_add_page(&cc, page);
2377 
2378 			goto next_page;
2379 		}
2380 read_single_page:
2381 #endif
2382 
2383 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2384 					&bio, &last_block_in_bio, rac);
2385 		if (ret) {
2386 #ifdef CONFIG_F2FS_FS_COMPRESSION
2387 set_error_page:
2388 #endif
2389 			SetPageError(page);
2390 			zero_user_segment(page, 0, PAGE_SIZE);
2391 			unlock_page(page);
2392 		}
2393 #ifdef CONFIG_F2FS_FS_COMPRESSION
2394 next_page:
2395 #endif
2396 		if (rac)
2397 			put_page(page);
2398 
2399 #ifdef CONFIG_F2FS_FS_COMPRESSION
2400 		if (f2fs_compressed_file(inode)) {
2401 			/* last page */
2402 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2403 				ret = f2fs_read_multi_pages(&cc, &bio,
2404 							max_nr_pages,
2405 							&last_block_in_bio,
2406 							rac != NULL, false);
2407 				f2fs_destroy_compress_ctx(&cc, false);
2408 			}
2409 		}
2410 #endif
2411 	}
2412 	if (bio)
2413 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2414 	return ret;
2415 }
2416 
2417 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2418 {
2419 	struct page *page = &folio->page;
2420 	struct inode *inode = page_file_mapping(page)->host;
2421 	int ret = -EAGAIN;
2422 
2423 	trace_f2fs_readpage(page, DATA);
2424 
2425 	if (!f2fs_is_compress_backend_ready(inode)) {
2426 		unlock_page(page);
2427 		return -EOPNOTSUPP;
2428 	}
2429 
2430 	/* If the file has inline data, try to read it directly */
2431 	if (f2fs_has_inline_data(inode))
2432 		ret = f2fs_read_inline_data(inode, page);
2433 	if (ret == -EAGAIN)
2434 		ret = f2fs_mpage_readpages(inode, NULL, page);
2435 	return ret;
2436 }
2437 
2438 static void f2fs_readahead(struct readahead_control *rac)
2439 {
2440 	struct inode *inode = rac->mapping->host;
2441 
2442 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2443 
2444 	if (!f2fs_is_compress_backend_ready(inode))
2445 		return;
2446 
2447 	/* If the file has inline data, skip readahead */
2448 	if (f2fs_has_inline_data(inode))
2449 		return;
2450 
2451 	f2fs_mpage_readpages(inode, rac, NULL);
2452 }
2453 
2454 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2455 {
2456 	struct inode *inode = fio->page->mapping->host;
2457 	struct page *mpage, *page;
2458 	gfp_t gfp_flags = GFP_NOFS;
2459 
2460 	if (!f2fs_encrypted_file(inode))
2461 		return 0;
2462 
2463 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2464 
2465 	/* wait for GCed page writeback via META_MAPPING */
2466 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2467 
2468 	if (fscrypt_inode_uses_inline_crypto(inode))
2469 		return 0;
2470 
2471 retry_encrypt:
2472 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2473 					PAGE_SIZE, 0, gfp_flags);
2474 	if (IS_ERR(fio->encrypted_page)) {
2475 		/* flush pending IOs and wait for a while in the ENOMEM case */
2476 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2477 			f2fs_flush_merged_writes(fio->sbi);
2478 			memalloc_retry_wait(GFP_NOFS);
2479 			gfp_flags |= __GFP_NOFAIL;
2480 			goto retry_encrypt;
2481 		}
2482 		return PTR_ERR(fio->encrypted_page);
2483 	}
2484 
2485 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2486 	if (mpage) {
2487 		if (PageUptodate(mpage))
2488 			memcpy(page_address(mpage),
2489 				page_address(fio->encrypted_page), PAGE_SIZE);
2490 		f2fs_put_page(mpage, 1);
2491 	}
2492 	return 0;
2493 }
2494 
2495 static inline bool check_inplace_update_policy(struct inode *inode,
2496 				struct f2fs_io_info *fio)
2497 {
2498 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2499 	unsigned int policy = SM_I(sbi)->ipu_policy;
2500 
2501 	if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2502 			is_inode_flag_set(inode, FI_OPU_WRITE))
2503 		return false;
2504 	if (policy & (0x1 << F2FS_IPU_FORCE))
2505 		return true;
2506 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2507 		return true;
2508 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2509 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2510 		return true;
2511 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2512 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2513 		return true;
2514 
2515 	/*
2516 	 * IPU for rewrite async pages
2517 	 */
2518 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2519 			fio && fio->op == REQ_OP_WRITE &&
2520 			!(fio->op_flags & REQ_SYNC) &&
2521 			!IS_ENCRYPTED(inode))
2522 		return true;
2523 
2524 	/* this is only set during fdatasync */
2525 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2526 			is_inode_flag_set(inode, FI_NEED_IPU))
2527 		return true;
2528 
2529 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2530 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2531 		return true;
2532 
2533 	return false;
2534 }
2535 
2536 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2537 {
2538 	/* swap file is migrating in aligned write mode */
2539 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2540 		return false;
2541 
2542 	if (f2fs_is_pinned_file(inode))
2543 		return true;
2544 
2545 	/* if this is cold file, we should overwrite to avoid fragmentation */
2546 	if (file_is_cold(inode))
2547 		return true;
2548 
2549 	return check_inplace_update_policy(inode, fio);
2550 }
2551 
2552 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2553 {
2554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2555 
2556 	/* The below cases were checked when setting it. */
2557 	if (f2fs_is_pinned_file(inode))
2558 		return false;
2559 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2560 		return true;
2561 	if (f2fs_lfs_mode(sbi))
2562 		return true;
2563 	if (S_ISDIR(inode->i_mode))
2564 		return true;
2565 	if (IS_NOQUOTA(inode))
2566 		return true;
2567 	if (f2fs_is_atomic_file(inode))
2568 		return true;
2569 
2570 	/* swap file is migrating in aligned write mode */
2571 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2572 		return true;
2573 
2574 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2575 		return true;
2576 
2577 	if (fio) {
2578 		if (page_private_gcing(fio->page))
2579 			return true;
2580 		if (page_private_dummy(fio->page))
2581 			return true;
2582 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2583 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2584 			return true;
2585 	}
2586 	return false;
2587 }
2588 
2589 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2590 {
2591 	struct inode *inode = fio->page->mapping->host;
2592 
2593 	if (f2fs_should_update_outplace(inode, fio))
2594 		return false;
2595 
2596 	return f2fs_should_update_inplace(inode, fio);
2597 }
2598 
2599 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2600 {
2601 	struct page *page = fio->page;
2602 	struct inode *inode = page->mapping->host;
2603 	struct dnode_of_data dn;
2604 	struct extent_info ei = {0, };
2605 	struct node_info ni;
2606 	bool ipu_force = false;
2607 	int err = 0;
2608 
2609 	/* Use COW inode to make dnode_of_data for atomic write */
2610 	if (f2fs_is_atomic_file(inode))
2611 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2612 	else
2613 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2614 
2615 	if (need_inplace_update(fio) &&
2616 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2617 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2618 
2619 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2620 						DATA_GENERIC_ENHANCE))
2621 			return -EFSCORRUPTED;
2622 
2623 		ipu_force = true;
2624 		fio->need_lock = LOCK_DONE;
2625 		goto got_it;
2626 	}
2627 
2628 	/* Deadlock due to between page->lock and f2fs_lock_op */
2629 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2630 		return -EAGAIN;
2631 
2632 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2633 	if (err)
2634 		goto out;
2635 
2636 	fio->old_blkaddr = dn.data_blkaddr;
2637 
2638 	/* This page is already truncated */
2639 	if (fio->old_blkaddr == NULL_ADDR) {
2640 		ClearPageUptodate(page);
2641 		clear_page_private_gcing(page);
2642 		goto out_writepage;
2643 	}
2644 got_it:
2645 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2646 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2647 						DATA_GENERIC_ENHANCE)) {
2648 		err = -EFSCORRUPTED;
2649 		goto out_writepage;
2650 	}
2651 
2652 	/*
2653 	 * If current allocation needs SSR,
2654 	 * it had better in-place writes for updated data.
2655 	 */
2656 	if (ipu_force ||
2657 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2658 					need_inplace_update(fio))) {
2659 		err = f2fs_encrypt_one_page(fio);
2660 		if (err)
2661 			goto out_writepage;
2662 
2663 		set_page_writeback(page);
2664 		ClearPageError(page);
2665 		f2fs_put_dnode(&dn);
2666 		if (fio->need_lock == LOCK_REQ)
2667 			f2fs_unlock_op(fio->sbi);
2668 		err = f2fs_inplace_write_data(fio);
2669 		if (err) {
2670 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2671 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2672 			if (PageWriteback(page))
2673 				end_page_writeback(page);
2674 		} else {
2675 			set_inode_flag(inode, FI_UPDATE_WRITE);
2676 		}
2677 		trace_f2fs_do_write_data_page(fio->page, IPU);
2678 		return err;
2679 	}
2680 
2681 	if (fio->need_lock == LOCK_RETRY) {
2682 		if (!f2fs_trylock_op(fio->sbi)) {
2683 			err = -EAGAIN;
2684 			goto out_writepage;
2685 		}
2686 		fio->need_lock = LOCK_REQ;
2687 	}
2688 
2689 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2690 	if (err)
2691 		goto out_writepage;
2692 
2693 	fio->version = ni.version;
2694 
2695 	err = f2fs_encrypt_one_page(fio);
2696 	if (err)
2697 		goto out_writepage;
2698 
2699 	set_page_writeback(page);
2700 	ClearPageError(page);
2701 
2702 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2703 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2704 
2705 	/* LFS mode write path */
2706 	f2fs_outplace_write_data(&dn, fio);
2707 	trace_f2fs_do_write_data_page(page, OPU);
2708 	set_inode_flag(inode, FI_APPEND_WRITE);
2709 	if (page->index == 0)
2710 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2711 out_writepage:
2712 	f2fs_put_dnode(&dn);
2713 out:
2714 	if (fio->need_lock == LOCK_REQ)
2715 		f2fs_unlock_op(fio->sbi);
2716 	return err;
2717 }
2718 
2719 int f2fs_write_single_data_page(struct page *page, int *submitted,
2720 				struct bio **bio,
2721 				sector_t *last_block,
2722 				struct writeback_control *wbc,
2723 				enum iostat_type io_type,
2724 				int compr_blocks,
2725 				bool allow_balance)
2726 {
2727 	struct inode *inode = page->mapping->host;
2728 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2729 	loff_t i_size = i_size_read(inode);
2730 	const pgoff_t end_index = ((unsigned long long)i_size)
2731 							>> PAGE_SHIFT;
2732 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2733 	unsigned offset = 0;
2734 	bool need_balance_fs = false;
2735 	int err = 0;
2736 	struct f2fs_io_info fio = {
2737 		.sbi = sbi,
2738 		.ino = inode->i_ino,
2739 		.type = DATA,
2740 		.op = REQ_OP_WRITE,
2741 		.op_flags = wbc_to_write_flags(wbc),
2742 		.old_blkaddr = NULL_ADDR,
2743 		.page = page,
2744 		.encrypted_page = NULL,
2745 		.submitted = false,
2746 		.compr_blocks = compr_blocks,
2747 		.need_lock = LOCK_RETRY,
2748 		.post_read = f2fs_post_read_required(inode),
2749 		.io_type = io_type,
2750 		.io_wbc = wbc,
2751 		.bio = bio,
2752 		.last_block = last_block,
2753 	};
2754 
2755 	trace_f2fs_writepage(page, DATA);
2756 
2757 	/* we should bypass data pages to proceed the kworkder jobs */
2758 	if (unlikely(f2fs_cp_error(sbi))) {
2759 		mapping_set_error(page->mapping, -EIO);
2760 		/*
2761 		 * don't drop any dirty dentry pages for keeping lastest
2762 		 * directory structure.
2763 		 */
2764 		if (S_ISDIR(inode->i_mode))
2765 			goto redirty_out;
2766 		goto out;
2767 	}
2768 
2769 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2770 		goto redirty_out;
2771 
2772 	if (page->index < end_index ||
2773 			f2fs_verity_in_progress(inode) ||
2774 			compr_blocks)
2775 		goto write;
2776 
2777 	/*
2778 	 * If the offset is out-of-range of file size,
2779 	 * this page does not have to be written to disk.
2780 	 */
2781 	offset = i_size & (PAGE_SIZE - 1);
2782 	if ((page->index >= end_index + 1) || !offset)
2783 		goto out;
2784 
2785 	zero_user_segment(page, offset, PAGE_SIZE);
2786 write:
2787 	if (f2fs_is_drop_cache(inode))
2788 		goto out;
2789 
2790 	/* Dentry/quota blocks are controlled by checkpoint */
2791 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2792 		/*
2793 		 * We need to wait for node_write to avoid block allocation during
2794 		 * checkpoint. This can only happen to quota writes which can cause
2795 		 * the below discard race condition.
2796 		 */
2797 		if (IS_NOQUOTA(inode))
2798 			f2fs_down_read(&sbi->node_write);
2799 
2800 		fio.need_lock = LOCK_DONE;
2801 		err = f2fs_do_write_data_page(&fio);
2802 
2803 		if (IS_NOQUOTA(inode))
2804 			f2fs_up_read(&sbi->node_write);
2805 
2806 		goto done;
2807 	}
2808 
2809 	if (!wbc->for_reclaim)
2810 		need_balance_fs = true;
2811 	else if (has_not_enough_free_secs(sbi, 0, 0))
2812 		goto redirty_out;
2813 	else
2814 		set_inode_flag(inode, FI_HOT_DATA);
2815 
2816 	err = -EAGAIN;
2817 	if (f2fs_has_inline_data(inode)) {
2818 		err = f2fs_write_inline_data(inode, page);
2819 		if (!err)
2820 			goto out;
2821 	}
2822 
2823 	if (err == -EAGAIN) {
2824 		err = f2fs_do_write_data_page(&fio);
2825 		if (err == -EAGAIN) {
2826 			fio.need_lock = LOCK_REQ;
2827 			err = f2fs_do_write_data_page(&fio);
2828 		}
2829 	}
2830 
2831 	if (err) {
2832 		file_set_keep_isize(inode);
2833 	} else {
2834 		spin_lock(&F2FS_I(inode)->i_size_lock);
2835 		if (F2FS_I(inode)->last_disk_size < psize)
2836 			F2FS_I(inode)->last_disk_size = psize;
2837 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2838 	}
2839 
2840 done:
2841 	if (err && err != -ENOENT)
2842 		goto redirty_out;
2843 
2844 out:
2845 	inode_dec_dirty_pages(inode);
2846 	if (err) {
2847 		ClearPageUptodate(page);
2848 		clear_page_private_gcing(page);
2849 	}
2850 
2851 	if (wbc->for_reclaim) {
2852 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2853 		clear_inode_flag(inode, FI_HOT_DATA);
2854 		f2fs_remove_dirty_inode(inode);
2855 		submitted = NULL;
2856 	}
2857 	unlock_page(page);
2858 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2859 			!F2FS_I(inode)->cp_task && allow_balance)
2860 		f2fs_balance_fs(sbi, need_balance_fs);
2861 
2862 	if (unlikely(f2fs_cp_error(sbi))) {
2863 		f2fs_submit_merged_write(sbi, DATA);
2864 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2865 		submitted = NULL;
2866 	}
2867 
2868 	if (submitted)
2869 		*submitted = fio.submitted ? 1 : 0;
2870 
2871 	return 0;
2872 
2873 redirty_out:
2874 	redirty_page_for_writepage(wbc, page);
2875 	/*
2876 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2877 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2878 	 * file_write_and_wait_range() will see EIO error, which is critical
2879 	 * to return value of fsync() followed by atomic_write failure to user.
2880 	 */
2881 	if (!err || wbc->for_reclaim)
2882 		return AOP_WRITEPAGE_ACTIVATE;
2883 	unlock_page(page);
2884 	return err;
2885 }
2886 
2887 static int f2fs_write_data_page(struct page *page,
2888 					struct writeback_control *wbc)
2889 {
2890 #ifdef CONFIG_F2FS_FS_COMPRESSION
2891 	struct inode *inode = page->mapping->host;
2892 
2893 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2894 		goto out;
2895 
2896 	if (f2fs_compressed_file(inode)) {
2897 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2898 			redirty_page_for_writepage(wbc, page);
2899 			return AOP_WRITEPAGE_ACTIVATE;
2900 		}
2901 	}
2902 out:
2903 #endif
2904 
2905 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2906 						wbc, FS_DATA_IO, 0, true);
2907 }
2908 
2909 /*
2910  * This function was copied from write_cche_pages from mm/page-writeback.c.
2911  * The major change is making write step of cold data page separately from
2912  * warm/hot data page.
2913  */
2914 static int f2fs_write_cache_pages(struct address_space *mapping,
2915 					struct writeback_control *wbc,
2916 					enum iostat_type io_type)
2917 {
2918 	int ret = 0;
2919 	int done = 0, retry = 0;
2920 	struct page *pages[F2FS_ONSTACK_PAGES];
2921 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2922 	struct bio *bio = NULL;
2923 	sector_t last_block;
2924 #ifdef CONFIG_F2FS_FS_COMPRESSION
2925 	struct inode *inode = mapping->host;
2926 	struct compress_ctx cc = {
2927 		.inode = inode,
2928 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2929 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2930 		.cluster_idx = NULL_CLUSTER,
2931 		.rpages = NULL,
2932 		.nr_rpages = 0,
2933 		.cpages = NULL,
2934 		.valid_nr_cpages = 0,
2935 		.rbuf = NULL,
2936 		.cbuf = NULL,
2937 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2938 		.private = NULL,
2939 	};
2940 #endif
2941 	int nr_pages;
2942 	pgoff_t index;
2943 	pgoff_t end;		/* Inclusive */
2944 	pgoff_t done_index;
2945 	int range_whole = 0;
2946 	xa_mark_t tag;
2947 	int nwritten = 0;
2948 	int submitted = 0;
2949 	int i;
2950 
2951 	if (get_dirty_pages(mapping->host) <=
2952 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2953 		set_inode_flag(mapping->host, FI_HOT_DATA);
2954 	else
2955 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2956 
2957 	if (wbc->range_cyclic) {
2958 		index = mapping->writeback_index; /* prev offset */
2959 		end = -1;
2960 	} else {
2961 		index = wbc->range_start >> PAGE_SHIFT;
2962 		end = wbc->range_end >> PAGE_SHIFT;
2963 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2964 			range_whole = 1;
2965 	}
2966 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2967 		tag = PAGECACHE_TAG_TOWRITE;
2968 	else
2969 		tag = PAGECACHE_TAG_DIRTY;
2970 retry:
2971 	retry = 0;
2972 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2973 		tag_pages_for_writeback(mapping, index, end);
2974 	done_index = index;
2975 	while (!done && !retry && (index <= end)) {
2976 		nr_pages = find_get_pages_range_tag(mapping, &index, end,
2977 				tag, F2FS_ONSTACK_PAGES, pages);
2978 		if (nr_pages == 0)
2979 			break;
2980 
2981 		for (i = 0; i < nr_pages; i++) {
2982 			struct page *page = pages[i];
2983 			bool need_readd;
2984 readd:
2985 			need_readd = false;
2986 #ifdef CONFIG_F2FS_FS_COMPRESSION
2987 			if (f2fs_compressed_file(inode)) {
2988 				void *fsdata = NULL;
2989 				struct page *pagep;
2990 				int ret2;
2991 
2992 				ret = f2fs_init_compress_ctx(&cc);
2993 				if (ret) {
2994 					done = 1;
2995 					break;
2996 				}
2997 
2998 				if (!f2fs_cluster_can_merge_page(&cc,
2999 								page->index)) {
3000 					ret = f2fs_write_multi_pages(&cc,
3001 						&submitted, wbc, io_type);
3002 					if (!ret)
3003 						need_readd = true;
3004 					goto result;
3005 				}
3006 
3007 				if (unlikely(f2fs_cp_error(sbi)))
3008 					goto lock_page;
3009 
3010 				if (!f2fs_cluster_is_empty(&cc))
3011 					goto lock_page;
3012 
3013 				if (f2fs_all_cluster_page_ready(&cc,
3014 					pages, i, nr_pages, true))
3015 					goto lock_page;
3016 
3017 				ret2 = f2fs_prepare_compress_overwrite(
3018 							inode, &pagep,
3019 							page->index, &fsdata);
3020 				if (ret2 < 0) {
3021 					ret = ret2;
3022 					done = 1;
3023 					break;
3024 				} else if (ret2 &&
3025 					(!f2fs_compress_write_end(inode,
3026 						fsdata, page->index, 1) ||
3027 					 !f2fs_all_cluster_page_ready(&cc,
3028 						pages, i, nr_pages, false))) {
3029 					retry = 1;
3030 					break;
3031 				}
3032 			}
3033 #endif
3034 			/* give a priority to WB_SYNC threads */
3035 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3036 					wbc->sync_mode == WB_SYNC_NONE) {
3037 				done = 1;
3038 				break;
3039 			}
3040 #ifdef CONFIG_F2FS_FS_COMPRESSION
3041 lock_page:
3042 #endif
3043 			done_index = page->index;
3044 retry_write:
3045 			lock_page(page);
3046 
3047 			if (unlikely(page->mapping != mapping)) {
3048 continue_unlock:
3049 				unlock_page(page);
3050 				continue;
3051 			}
3052 
3053 			if (!PageDirty(page)) {
3054 				/* someone wrote it for us */
3055 				goto continue_unlock;
3056 			}
3057 
3058 			if (PageWriteback(page)) {
3059 				if (wbc->sync_mode != WB_SYNC_NONE)
3060 					f2fs_wait_on_page_writeback(page,
3061 							DATA, true, true);
3062 				else
3063 					goto continue_unlock;
3064 			}
3065 
3066 			if (!clear_page_dirty_for_io(page))
3067 				goto continue_unlock;
3068 
3069 #ifdef CONFIG_F2FS_FS_COMPRESSION
3070 			if (f2fs_compressed_file(inode)) {
3071 				get_page(page);
3072 				f2fs_compress_ctx_add_page(&cc, page);
3073 				continue;
3074 			}
3075 #endif
3076 			ret = f2fs_write_single_data_page(page, &submitted,
3077 					&bio, &last_block, wbc, io_type,
3078 					0, true);
3079 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3080 				unlock_page(page);
3081 #ifdef CONFIG_F2FS_FS_COMPRESSION
3082 result:
3083 #endif
3084 			nwritten += submitted;
3085 			wbc->nr_to_write -= submitted;
3086 
3087 			if (unlikely(ret)) {
3088 				/*
3089 				 * keep nr_to_write, since vfs uses this to
3090 				 * get # of written pages.
3091 				 */
3092 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3093 					ret = 0;
3094 					goto next;
3095 				} else if (ret == -EAGAIN) {
3096 					ret = 0;
3097 					if (wbc->sync_mode == WB_SYNC_ALL) {
3098 						f2fs_io_schedule_timeout(
3099 							DEFAULT_IO_TIMEOUT);
3100 						goto retry_write;
3101 					}
3102 					goto next;
3103 				}
3104 				done_index = page->index + 1;
3105 				done = 1;
3106 				break;
3107 			}
3108 
3109 			if (wbc->nr_to_write <= 0 &&
3110 					wbc->sync_mode == WB_SYNC_NONE) {
3111 				done = 1;
3112 				break;
3113 			}
3114 next:
3115 			if (need_readd)
3116 				goto readd;
3117 		}
3118 		release_pages(pages, nr_pages);
3119 		cond_resched();
3120 	}
3121 #ifdef CONFIG_F2FS_FS_COMPRESSION
3122 	/* flush remained pages in compress cluster */
3123 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3124 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3125 		nwritten += submitted;
3126 		wbc->nr_to_write -= submitted;
3127 		if (ret) {
3128 			done = 1;
3129 			retry = 0;
3130 		}
3131 	}
3132 	if (f2fs_compressed_file(inode))
3133 		f2fs_destroy_compress_ctx(&cc, false);
3134 #endif
3135 	if (retry) {
3136 		index = 0;
3137 		end = -1;
3138 		goto retry;
3139 	}
3140 	if (wbc->range_cyclic && !done)
3141 		done_index = 0;
3142 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3143 		mapping->writeback_index = done_index;
3144 
3145 	if (nwritten)
3146 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3147 								NULL, 0, DATA);
3148 	/* submit cached bio of IPU write */
3149 	if (bio)
3150 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3151 
3152 	return ret;
3153 }
3154 
3155 static inline bool __should_serialize_io(struct inode *inode,
3156 					struct writeback_control *wbc)
3157 {
3158 	/* to avoid deadlock in path of data flush */
3159 	if (F2FS_I(inode)->cp_task)
3160 		return false;
3161 
3162 	if (!S_ISREG(inode->i_mode))
3163 		return false;
3164 	if (IS_NOQUOTA(inode))
3165 		return false;
3166 
3167 	if (f2fs_need_compress_data(inode))
3168 		return true;
3169 	if (wbc->sync_mode != WB_SYNC_ALL)
3170 		return true;
3171 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3172 		return true;
3173 	return false;
3174 }
3175 
3176 static int __f2fs_write_data_pages(struct address_space *mapping,
3177 						struct writeback_control *wbc,
3178 						enum iostat_type io_type)
3179 {
3180 	struct inode *inode = mapping->host;
3181 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3182 	struct blk_plug plug;
3183 	int ret;
3184 	bool locked = false;
3185 
3186 	/* deal with chardevs and other special file */
3187 	if (!mapping->a_ops->writepage)
3188 		return 0;
3189 
3190 	/* skip writing if there is no dirty page in this inode */
3191 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3192 		return 0;
3193 
3194 	/* during POR, we don't need to trigger writepage at all. */
3195 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3196 		goto skip_write;
3197 
3198 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3199 			wbc->sync_mode == WB_SYNC_NONE &&
3200 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3201 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3202 		goto skip_write;
3203 
3204 	/* skip writing in file defragment preparing stage */
3205 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3206 		goto skip_write;
3207 
3208 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3209 
3210 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3211 	if (wbc->sync_mode == WB_SYNC_ALL)
3212 		atomic_inc(&sbi->wb_sync_req[DATA]);
3213 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3214 		/* to avoid potential deadlock */
3215 		if (current->plug)
3216 			blk_finish_plug(current->plug);
3217 		goto skip_write;
3218 	}
3219 
3220 	if (__should_serialize_io(inode, wbc)) {
3221 		mutex_lock(&sbi->writepages);
3222 		locked = true;
3223 	}
3224 
3225 	blk_start_plug(&plug);
3226 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3227 	blk_finish_plug(&plug);
3228 
3229 	if (locked)
3230 		mutex_unlock(&sbi->writepages);
3231 
3232 	if (wbc->sync_mode == WB_SYNC_ALL)
3233 		atomic_dec(&sbi->wb_sync_req[DATA]);
3234 	/*
3235 	 * if some pages were truncated, we cannot guarantee its mapping->host
3236 	 * to detect pending bios.
3237 	 */
3238 
3239 	f2fs_remove_dirty_inode(inode);
3240 	return ret;
3241 
3242 skip_write:
3243 	wbc->pages_skipped += get_dirty_pages(inode);
3244 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3245 	return 0;
3246 }
3247 
3248 static int f2fs_write_data_pages(struct address_space *mapping,
3249 			    struct writeback_control *wbc)
3250 {
3251 	struct inode *inode = mapping->host;
3252 
3253 	return __f2fs_write_data_pages(mapping, wbc,
3254 			F2FS_I(inode)->cp_task == current ?
3255 			FS_CP_DATA_IO : FS_DATA_IO);
3256 }
3257 
3258 void f2fs_write_failed(struct inode *inode, loff_t to)
3259 {
3260 	loff_t i_size = i_size_read(inode);
3261 
3262 	if (IS_NOQUOTA(inode))
3263 		return;
3264 
3265 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3266 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3267 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3268 		filemap_invalidate_lock(inode->i_mapping);
3269 
3270 		truncate_pagecache(inode, i_size);
3271 		f2fs_truncate_blocks(inode, i_size, true);
3272 
3273 		filemap_invalidate_unlock(inode->i_mapping);
3274 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3275 	}
3276 }
3277 
3278 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3279 			struct page *page, loff_t pos, unsigned len,
3280 			block_t *blk_addr, bool *node_changed)
3281 {
3282 	struct inode *inode = page->mapping->host;
3283 	pgoff_t index = page->index;
3284 	struct dnode_of_data dn;
3285 	struct page *ipage;
3286 	bool locked = false;
3287 	struct extent_info ei = {0, };
3288 	int err = 0;
3289 	int flag;
3290 
3291 	/*
3292 	 * If a whole page is being written and we already preallocated all the
3293 	 * blocks, then there is no need to get a block address now.
3294 	 */
3295 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3296 		return 0;
3297 
3298 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3299 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3300 		flag = F2FS_GET_BLOCK_DEFAULT;
3301 	else
3302 		flag = F2FS_GET_BLOCK_PRE_AIO;
3303 
3304 	if (f2fs_has_inline_data(inode) ||
3305 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3306 		f2fs_do_map_lock(sbi, flag, true);
3307 		locked = true;
3308 	}
3309 
3310 restart:
3311 	/* check inline_data */
3312 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3313 	if (IS_ERR(ipage)) {
3314 		err = PTR_ERR(ipage);
3315 		goto unlock_out;
3316 	}
3317 
3318 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3319 
3320 	if (f2fs_has_inline_data(inode)) {
3321 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3322 			f2fs_do_read_inline_data(page, ipage);
3323 			set_inode_flag(inode, FI_DATA_EXIST);
3324 			if (inode->i_nlink)
3325 				set_page_private_inline(ipage);
3326 		} else {
3327 			err = f2fs_convert_inline_page(&dn, page);
3328 			if (err)
3329 				goto out;
3330 			if (dn.data_blkaddr == NULL_ADDR)
3331 				err = f2fs_get_block(&dn, index);
3332 		}
3333 	} else if (locked) {
3334 		err = f2fs_get_block(&dn, index);
3335 	} else {
3336 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3337 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3338 		} else {
3339 			/* hole case */
3340 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3341 			if (err || dn.data_blkaddr == NULL_ADDR) {
3342 				f2fs_put_dnode(&dn);
3343 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3344 								true);
3345 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3346 				locked = true;
3347 				goto restart;
3348 			}
3349 		}
3350 	}
3351 
3352 	/* convert_inline_page can make node_changed */
3353 	*blk_addr = dn.data_blkaddr;
3354 	*node_changed = dn.node_changed;
3355 out:
3356 	f2fs_put_dnode(&dn);
3357 unlock_out:
3358 	if (locked)
3359 		f2fs_do_map_lock(sbi, flag, false);
3360 	return err;
3361 }
3362 
3363 static int __find_data_block(struct inode *inode, pgoff_t index,
3364 				block_t *blk_addr)
3365 {
3366 	struct dnode_of_data dn;
3367 	struct page *ipage;
3368 	struct extent_info ei = {0, };
3369 	int err = 0;
3370 
3371 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3372 	if (IS_ERR(ipage))
3373 		return PTR_ERR(ipage);
3374 
3375 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3376 
3377 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3378 		dn.data_blkaddr = ei.blk + index - ei.fofs;
3379 	} else {
3380 		/* hole case */
3381 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3382 		if (err) {
3383 			dn.data_blkaddr = NULL_ADDR;
3384 			err = 0;
3385 		}
3386 	}
3387 	*blk_addr = dn.data_blkaddr;
3388 	f2fs_put_dnode(&dn);
3389 	return err;
3390 }
3391 
3392 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3393 				block_t *blk_addr, bool *node_changed)
3394 {
3395 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3396 	struct dnode_of_data dn;
3397 	struct page *ipage;
3398 	int err = 0;
3399 
3400 	f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
3401 
3402 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3403 	if (IS_ERR(ipage)) {
3404 		err = PTR_ERR(ipage);
3405 		goto unlock_out;
3406 	}
3407 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3408 
3409 	err = f2fs_get_block(&dn, index);
3410 
3411 	*blk_addr = dn.data_blkaddr;
3412 	*node_changed = dn.node_changed;
3413 	f2fs_put_dnode(&dn);
3414 
3415 unlock_out:
3416 	f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
3417 	return err;
3418 }
3419 
3420 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3421 			struct page *page, loff_t pos, unsigned int len,
3422 			block_t *blk_addr, bool *node_changed)
3423 {
3424 	struct inode *inode = page->mapping->host;
3425 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3426 	pgoff_t index = page->index;
3427 	int err = 0;
3428 	block_t ori_blk_addr = NULL_ADDR;
3429 
3430 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3431 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3432 		goto reserve_block;
3433 
3434 	/* Look for the block in COW inode first */
3435 	err = __find_data_block(cow_inode, index, blk_addr);
3436 	if (err)
3437 		return err;
3438 	else if (*blk_addr != NULL_ADDR)
3439 		return 0;
3440 
3441 	/* Look for the block in the original inode */
3442 	err = __find_data_block(inode, index, &ori_blk_addr);
3443 	if (err)
3444 		return err;
3445 
3446 reserve_block:
3447 	/* Finally, we should reserve a new block in COW inode for the update */
3448 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3449 	if (err)
3450 		return err;
3451 	inc_atomic_write_cnt(inode);
3452 
3453 	if (ori_blk_addr != NULL_ADDR)
3454 		*blk_addr = ori_blk_addr;
3455 	return 0;
3456 }
3457 
3458 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3459 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3460 {
3461 	struct inode *inode = mapping->host;
3462 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3463 	struct page *page = NULL;
3464 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3465 	bool need_balance = false;
3466 	block_t blkaddr = NULL_ADDR;
3467 	int err = 0;
3468 
3469 	trace_f2fs_write_begin(inode, pos, len);
3470 
3471 	if (!f2fs_is_checkpoint_ready(sbi)) {
3472 		err = -ENOSPC;
3473 		goto fail;
3474 	}
3475 
3476 	/*
3477 	 * We should check this at this moment to avoid deadlock on inode page
3478 	 * and #0 page. The locking rule for inline_data conversion should be:
3479 	 * lock_page(page #0) -> lock_page(inode_page)
3480 	 */
3481 	if (index != 0) {
3482 		err = f2fs_convert_inline_inode(inode);
3483 		if (err)
3484 			goto fail;
3485 	}
3486 
3487 #ifdef CONFIG_F2FS_FS_COMPRESSION
3488 	if (f2fs_compressed_file(inode)) {
3489 		int ret;
3490 
3491 		*fsdata = NULL;
3492 
3493 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3494 			goto repeat;
3495 
3496 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3497 							index, fsdata);
3498 		if (ret < 0) {
3499 			err = ret;
3500 			goto fail;
3501 		} else if (ret) {
3502 			return 0;
3503 		}
3504 	}
3505 #endif
3506 
3507 repeat:
3508 	/*
3509 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3510 	 * wait_for_stable_page. Will wait that below with our IO control.
3511 	 */
3512 	page = f2fs_pagecache_get_page(mapping, index,
3513 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3514 	if (!page) {
3515 		err = -ENOMEM;
3516 		goto fail;
3517 	}
3518 
3519 	/* TODO: cluster can be compressed due to race with .writepage */
3520 
3521 	*pagep = page;
3522 
3523 	if (f2fs_is_atomic_file(inode))
3524 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3525 					&blkaddr, &need_balance);
3526 	else
3527 		err = prepare_write_begin(sbi, page, pos, len,
3528 					&blkaddr, &need_balance);
3529 	if (err)
3530 		goto fail;
3531 
3532 	if (need_balance && !IS_NOQUOTA(inode) &&
3533 			has_not_enough_free_secs(sbi, 0, 0)) {
3534 		unlock_page(page);
3535 		f2fs_balance_fs(sbi, true);
3536 		lock_page(page);
3537 		if (page->mapping != mapping) {
3538 			/* The page got truncated from under us */
3539 			f2fs_put_page(page, 1);
3540 			goto repeat;
3541 		}
3542 	}
3543 
3544 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3545 
3546 	if (len == PAGE_SIZE || PageUptodate(page))
3547 		return 0;
3548 
3549 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3550 	    !f2fs_verity_in_progress(inode)) {
3551 		zero_user_segment(page, len, PAGE_SIZE);
3552 		return 0;
3553 	}
3554 
3555 	if (blkaddr == NEW_ADDR) {
3556 		zero_user_segment(page, 0, PAGE_SIZE);
3557 		SetPageUptodate(page);
3558 	} else {
3559 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3560 				DATA_GENERIC_ENHANCE_READ)) {
3561 			err = -EFSCORRUPTED;
3562 			goto fail;
3563 		}
3564 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3565 		if (err)
3566 			goto fail;
3567 
3568 		lock_page(page);
3569 		if (unlikely(page->mapping != mapping)) {
3570 			f2fs_put_page(page, 1);
3571 			goto repeat;
3572 		}
3573 		if (unlikely(!PageUptodate(page))) {
3574 			err = -EIO;
3575 			goto fail;
3576 		}
3577 	}
3578 	return 0;
3579 
3580 fail:
3581 	f2fs_put_page(page, 1);
3582 	f2fs_write_failed(inode, pos + len);
3583 	return err;
3584 }
3585 
3586 static int f2fs_write_end(struct file *file,
3587 			struct address_space *mapping,
3588 			loff_t pos, unsigned len, unsigned copied,
3589 			struct page *page, void *fsdata)
3590 {
3591 	struct inode *inode = page->mapping->host;
3592 
3593 	trace_f2fs_write_end(inode, pos, len, copied);
3594 
3595 	/*
3596 	 * This should be come from len == PAGE_SIZE, and we expect copied
3597 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3598 	 * let generic_perform_write() try to copy data again through copied=0.
3599 	 */
3600 	if (!PageUptodate(page)) {
3601 		if (unlikely(copied != len))
3602 			copied = 0;
3603 		else
3604 			SetPageUptodate(page);
3605 	}
3606 
3607 #ifdef CONFIG_F2FS_FS_COMPRESSION
3608 	/* overwrite compressed file */
3609 	if (f2fs_compressed_file(inode) && fsdata) {
3610 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3611 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3612 
3613 		if (pos + copied > i_size_read(inode) &&
3614 				!f2fs_verity_in_progress(inode))
3615 			f2fs_i_size_write(inode, pos + copied);
3616 		return copied;
3617 	}
3618 #endif
3619 
3620 	if (!copied)
3621 		goto unlock_out;
3622 
3623 	set_page_dirty(page);
3624 
3625 	if (pos + copied > i_size_read(inode) &&
3626 	    !f2fs_verity_in_progress(inode)) {
3627 		f2fs_i_size_write(inode, pos + copied);
3628 		if (f2fs_is_atomic_file(inode))
3629 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3630 					pos + copied);
3631 	}
3632 unlock_out:
3633 	f2fs_put_page(page, 1);
3634 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3635 	return copied;
3636 }
3637 
3638 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3639 {
3640 	struct inode *inode = folio->mapping->host;
3641 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3642 
3643 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3644 				(offset || length != folio_size(folio)))
3645 		return;
3646 
3647 	if (folio_test_dirty(folio)) {
3648 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3649 			dec_page_count(sbi, F2FS_DIRTY_META);
3650 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3651 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3652 		} else {
3653 			inode_dec_dirty_pages(inode);
3654 			f2fs_remove_dirty_inode(inode);
3655 		}
3656 	}
3657 
3658 	clear_page_private_gcing(&folio->page);
3659 
3660 	if (test_opt(sbi, COMPRESS_CACHE) &&
3661 			inode->i_ino == F2FS_COMPRESS_INO(sbi))
3662 		clear_page_private_data(&folio->page);
3663 
3664 	folio_detach_private(folio);
3665 }
3666 
3667 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3668 {
3669 	struct f2fs_sb_info *sbi;
3670 
3671 	/* If this is dirty folio, keep private data */
3672 	if (folio_test_dirty(folio))
3673 		return false;
3674 
3675 	sbi = F2FS_M_SB(folio->mapping);
3676 	if (test_opt(sbi, COMPRESS_CACHE)) {
3677 		struct inode *inode = folio->mapping->host;
3678 
3679 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3680 			clear_page_private_data(&folio->page);
3681 	}
3682 
3683 	clear_page_private_gcing(&folio->page);
3684 
3685 	folio_detach_private(folio);
3686 	return true;
3687 }
3688 
3689 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3690 		struct folio *folio)
3691 {
3692 	struct inode *inode = mapping->host;
3693 
3694 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3695 
3696 	if (!folio_test_uptodate(folio))
3697 		folio_mark_uptodate(folio);
3698 	BUG_ON(folio_test_swapcache(folio));
3699 
3700 	if (!folio_test_dirty(folio)) {
3701 		filemap_dirty_folio(mapping, folio);
3702 		f2fs_update_dirty_folio(inode, folio);
3703 		return true;
3704 	}
3705 	return false;
3706 }
3707 
3708 
3709 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3710 {
3711 #ifdef CONFIG_F2FS_FS_COMPRESSION
3712 	struct dnode_of_data dn;
3713 	sector_t start_idx, blknr = 0;
3714 	int ret;
3715 
3716 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3717 
3718 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3719 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3720 	if (ret)
3721 		return 0;
3722 
3723 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3724 		dn.ofs_in_node += block - start_idx;
3725 		blknr = f2fs_data_blkaddr(&dn);
3726 		if (!__is_valid_data_blkaddr(blknr))
3727 			blknr = 0;
3728 	}
3729 
3730 	f2fs_put_dnode(&dn);
3731 	return blknr;
3732 #else
3733 	return 0;
3734 #endif
3735 }
3736 
3737 
3738 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3739 {
3740 	struct inode *inode = mapping->host;
3741 	sector_t blknr = 0;
3742 
3743 	if (f2fs_has_inline_data(inode))
3744 		goto out;
3745 
3746 	/* make sure allocating whole blocks */
3747 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3748 		filemap_write_and_wait(mapping);
3749 
3750 	/* Block number less than F2FS MAX BLOCKS */
3751 	if (unlikely(block >= max_file_blocks(inode)))
3752 		goto out;
3753 
3754 	if (f2fs_compressed_file(inode)) {
3755 		blknr = f2fs_bmap_compress(inode, block);
3756 	} else {
3757 		struct f2fs_map_blocks map;
3758 
3759 		memset(&map, 0, sizeof(map));
3760 		map.m_lblk = block;
3761 		map.m_len = 1;
3762 		map.m_next_pgofs = NULL;
3763 		map.m_seg_type = NO_CHECK_TYPE;
3764 
3765 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3766 			blknr = map.m_pblk;
3767 	}
3768 out:
3769 	trace_f2fs_bmap(inode, block, blknr);
3770 	return blknr;
3771 }
3772 
3773 #ifdef CONFIG_SWAP
3774 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3775 							unsigned int blkcnt)
3776 {
3777 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3778 	unsigned int blkofs;
3779 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3780 	unsigned int secidx = start_blk / blk_per_sec;
3781 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3782 	int ret = 0;
3783 
3784 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3785 	filemap_invalidate_lock(inode->i_mapping);
3786 
3787 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3788 	set_inode_flag(inode, FI_OPU_WRITE);
3789 
3790 	for (; secidx < end_sec; secidx++) {
3791 		f2fs_down_write(&sbi->pin_sem);
3792 
3793 		f2fs_lock_op(sbi);
3794 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3795 		f2fs_unlock_op(sbi);
3796 
3797 		set_inode_flag(inode, FI_SKIP_WRITES);
3798 
3799 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3800 			struct page *page;
3801 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3802 
3803 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3804 			if (IS_ERR(page)) {
3805 				f2fs_up_write(&sbi->pin_sem);
3806 				ret = PTR_ERR(page);
3807 				goto done;
3808 			}
3809 
3810 			set_page_dirty(page);
3811 			f2fs_put_page(page, 1);
3812 		}
3813 
3814 		clear_inode_flag(inode, FI_SKIP_WRITES);
3815 
3816 		ret = filemap_fdatawrite(inode->i_mapping);
3817 
3818 		f2fs_up_write(&sbi->pin_sem);
3819 
3820 		if (ret)
3821 			break;
3822 	}
3823 
3824 done:
3825 	clear_inode_flag(inode, FI_SKIP_WRITES);
3826 	clear_inode_flag(inode, FI_OPU_WRITE);
3827 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3828 
3829 	filemap_invalidate_unlock(inode->i_mapping);
3830 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3831 
3832 	return ret;
3833 }
3834 
3835 static int check_swap_activate(struct swap_info_struct *sis,
3836 				struct file *swap_file, sector_t *span)
3837 {
3838 	struct address_space *mapping = swap_file->f_mapping;
3839 	struct inode *inode = mapping->host;
3840 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3841 	sector_t cur_lblock;
3842 	sector_t last_lblock;
3843 	sector_t pblock;
3844 	sector_t lowest_pblock = -1;
3845 	sector_t highest_pblock = 0;
3846 	int nr_extents = 0;
3847 	unsigned long nr_pblocks;
3848 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3849 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3850 	unsigned int not_aligned = 0;
3851 	int ret = 0;
3852 
3853 	/*
3854 	 * Map all the blocks into the extent list.  This code doesn't try
3855 	 * to be very smart.
3856 	 */
3857 	cur_lblock = 0;
3858 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3859 
3860 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3861 		struct f2fs_map_blocks map;
3862 retry:
3863 		cond_resched();
3864 
3865 		memset(&map, 0, sizeof(map));
3866 		map.m_lblk = cur_lblock;
3867 		map.m_len = last_lblock - cur_lblock;
3868 		map.m_next_pgofs = NULL;
3869 		map.m_next_extent = NULL;
3870 		map.m_seg_type = NO_CHECK_TYPE;
3871 		map.m_may_create = false;
3872 
3873 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3874 		if (ret)
3875 			goto out;
3876 
3877 		/* hole */
3878 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3879 			f2fs_err(sbi, "Swapfile has holes");
3880 			ret = -EINVAL;
3881 			goto out;
3882 		}
3883 
3884 		pblock = map.m_pblk;
3885 		nr_pblocks = map.m_len;
3886 
3887 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3888 				nr_pblocks & sec_blks_mask) {
3889 			not_aligned++;
3890 
3891 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3892 			if (cur_lblock + nr_pblocks > sis->max)
3893 				nr_pblocks -= blks_per_sec;
3894 
3895 			if (!nr_pblocks) {
3896 				/* this extent is last one */
3897 				nr_pblocks = map.m_len;
3898 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3899 				goto next;
3900 			}
3901 
3902 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3903 							nr_pblocks);
3904 			if (ret)
3905 				goto out;
3906 			goto retry;
3907 		}
3908 next:
3909 		if (cur_lblock + nr_pblocks >= sis->max)
3910 			nr_pblocks = sis->max - cur_lblock;
3911 
3912 		if (cur_lblock) {	/* exclude the header page */
3913 			if (pblock < lowest_pblock)
3914 				lowest_pblock = pblock;
3915 			if (pblock + nr_pblocks - 1 > highest_pblock)
3916 				highest_pblock = pblock + nr_pblocks - 1;
3917 		}
3918 
3919 		/*
3920 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3921 		 */
3922 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3923 		if (ret < 0)
3924 			goto out;
3925 		nr_extents += ret;
3926 		cur_lblock += nr_pblocks;
3927 	}
3928 	ret = nr_extents;
3929 	*span = 1 + highest_pblock - lowest_pblock;
3930 	if (cur_lblock == 0)
3931 		cur_lblock = 1;	/* force Empty message */
3932 	sis->max = cur_lblock;
3933 	sis->pages = cur_lblock - 1;
3934 	sis->highest_bit = cur_lblock - 1;
3935 out:
3936 	if (not_aligned)
3937 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3938 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
3939 	return ret;
3940 }
3941 
3942 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3943 				sector_t *span)
3944 {
3945 	struct inode *inode = file_inode(file);
3946 	int ret;
3947 
3948 	if (!S_ISREG(inode->i_mode))
3949 		return -EINVAL;
3950 
3951 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3952 		return -EROFS;
3953 
3954 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3955 		f2fs_err(F2FS_I_SB(inode),
3956 			"Swapfile not supported in LFS mode");
3957 		return -EINVAL;
3958 	}
3959 
3960 	ret = f2fs_convert_inline_inode(inode);
3961 	if (ret)
3962 		return ret;
3963 
3964 	if (!f2fs_disable_compressed_file(inode))
3965 		return -EINVAL;
3966 
3967 	f2fs_precache_extents(inode);
3968 
3969 	ret = check_swap_activate(sis, file, span);
3970 	if (ret < 0)
3971 		return ret;
3972 
3973 	set_inode_flag(inode, FI_PIN_FILE);
3974 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3975 	return ret;
3976 }
3977 
3978 static void f2fs_swap_deactivate(struct file *file)
3979 {
3980 	struct inode *inode = file_inode(file);
3981 
3982 	clear_inode_flag(inode, FI_PIN_FILE);
3983 }
3984 #else
3985 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3986 				sector_t *span)
3987 {
3988 	return -EOPNOTSUPP;
3989 }
3990 
3991 static void f2fs_swap_deactivate(struct file *file)
3992 {
3993 }
3994 #endif
3995 
3996 const struct address_space_operations f2fs_dblock_aops = {
3997 	.read_folio	= f2fs_read_data_folio,
3998 	.readahead	= f2fs_readahead,
3999 	.writepage	= f2fs_write_data_page,
4000 	.writepages	= f2fs_write_data_pages,
4001 	.write_begin	= f2fs_write_begin,
4002 	.write_end	= f2fs_write_end,
4003 	.dirty_folio	= f2fs_dirty_data_folio,
4004 	.migrate_folio	= filemap_migrate_folio,
4005 	.invalidate_folio = f2fs_invalidate_folio,
4006 	.release_folio	= f2fs_release_folio,
4007 	.direct_IO	= noop_direct_IO,
4008 	.bmap		= f2fs_bmap,
4009 	.swap_activate  = f2fs_swap_activate,
4010 	.swap_deactivate = f2fs_swap_deactivate,
4011 };
4012 
4013 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4014 {
4015 	struct address_space *mapping = page_mapping(page);
4016 	unsigned long flags;
4017 
4018 	xa_lock_irqsave(&mapping->i_pages, flags);
4019 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4020 						PAGECACHE_TAG_DIRTY);
4021 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4022 }
4023 
4024 int __init f2fs_init_post_read_processing(void)
4025 {
4026 	bio_post_read_ctx_cache =
4027 		kmem_cache_create("f2fs_bio_post_read_ctx",
4028 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4029 	if (!bio_post_read_ctx_cache)
4030 		goto fail;
4031 	bio_post_read_ctx_pool =
4032 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4033 					 bio_post_read_ctx_cache);
4034 	if (!bio_post_read_ctx_pool)
4035 		goto fail_free_cache;
4036 	return 0;
4037 
4038 fail_free_cache:
4039 	kmem_cache_destroy(bio_post_read_ctx_cache);
4040 fail:
4041 	return -ENOMEM;
4042 }
4043 
4044 void f2fs_destroy_post_read_processing(void)
4045 {
4046 	mempool_destroy(bio_post_read_ctx_pool);
4047 	kmem_cache_destroy(bio_post_read_ctx_cache);
4048 }
4049 
4050 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4051 {
4052 	if (!f2fs_sb_has_encrypt(sbi) &&
4053 		!f2fs_sb_has_verity(sbi) &&
4054 		!f2fs_sb_has_compression(sbi))
4055 		return 0;
4056 
4057 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4058 						 WQ_UNBOUND | WQ_HIGHPRI,
4059 						 num_online_cpus());
4060 	if (!sbi->post_read_wq)
4061 		return -ENOMEM;
4062 	return 0;
4063 }
4064 
4065 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4066 {
4067 	if (sbi->post_read_wq)
4068 		destroy_workqueue(sbi->post_read_wq);
4069 }
4070 
4071 int __init f2fs_init_bio_entry_cache(void)
4072 {
4073 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4074 			sizeof(struct bio_entry));
4075 	if (!bio_entry_slab)
4076 		return -ENOMEM;
4077 	return 0;
4078 }
4079 
4080 void f2fs_destroy_bio_entry_cache(void)
4081 {
4082 	kmem_cache_destroy(bio_entry_slab);
4083 }
4084 
4085 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4086 			    unsigned int flags, struct iomap *iomap,
4087 			    struct iomap *srcmap)
4088 {
4089 	struct f2fs_map_blocks map = {};
4090 	pgoff_t next_pgofs = 0;
4091 	int err;
4092 
4093 	map.m_lblk = bytes_to_blks(inode, offset);
4094 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4095 	map.m_next_pgofs = &next_pgofs;
4096 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4097 	if (flags & IOMAP_WRITE)
4098 		map.m_may_create = true;
4099 
4100 	err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4101 			      F2FS_GET_BLOCK_DIO);
4102 	if (err)
4103 		return err;
4104 
4105 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4106 
4107 	/*
4108 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4109 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4110 	 * limiting the length of the mapping returned.
4111 	 */
4112 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4113 
4114 	if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4115 		iomap->length = blks_to_bytes(inode, map.m_len);
4116 		if (map.m_flags & F2FS_MAP_MAPPED) {
4117 			iomap->type = IOMAP_MAPPED;
4118 			iomap->flags |= IOMAP_F_MERGED;
4119 		} else {
4120 			iomap->type = IOMAP_UNWRITTEN;
4121 		}
4122 		if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4123 			return -EINVAL;
4124 
4125 		iomap->bdev = map.m_bdev;
4126 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4127 	} else {
4128 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4129 				iomap->offset;
4130 		iomap->type = IOMAP_HOLE;
4131 		iomap->addr = IOMAP_NULL_ADDR;
4132 	}
4133 
4134 	if (map.m_flags & F2FS_MAP_NEW)
4135 		iomap->flags |= IOMAP_F_NEW;
4136 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4137 	    offset + length > i_size_read(inode))
4138 		iomap->flags |= IOMAP_F_DIRTY;
4139 
4140 	return 0;
4141 }
4142 
4143 const struct iomap_ops f2fs_iomap_ops = {
4144 	.iomap_begin	= f2fs_iomap_begin,
4145 };
4146