xref: /openbmc/linux/fs/f2fs/data.c (revision 4f89e4b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define NUM_PREALLOC_POST_READ_CTXS	128
30 
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static mempool_t *bio_post_read_ctx_pool;
33 
34 static bool __is_cp_guaranteed(struct page *page)
35 {
36 	struct address_space *mapping = page->mapping;
37 	struct inode *inode;
38 	struct f2fs_sb_info *sbi;
39 
40 	if (!mapping)
41 		return false;
42 
43 	inode = mapping->host;
44 	sbi = F2FS_I_SB(inode);
45 
46 	if (inode->i_ino == F2FS_META_INO(sbi) ||
47 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
48 			S_ISDIR(inode->i_mode) ||
49 			(S_ISREG(inode->i_mode) &&
50 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
51 			is_cold_data(page))
52 		return true;
53 	return false;
54 }
55 
56 static enum count_type __read_io_type(struct page *page)
57 {
58 	struct address_space *mapping = page_file_mapping(page);
59 
60 	if (mapping) {
61 		struct inode *inode = mapping->host;
62 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
63 
64 		if (inode->i_ino == F2FS_META_INO(sbi))
65 			return F2FS_RD_META;
66 
67 		if (inode->i_ino == F2FS_NODE_INO(sbi))
68 			return F2FS_RD_NODE;
69 	}
70 	return F2FS_RD_DATA;
71 }
72 
73 /* postprocessing steps for read bios */
74 enum bio_post_read_step {
75 	STEP_INITIAL = 0,
76 	STEP_DECRYPT,
77 };
78 
79 struct bio_post_read_ctx {
80 	struct bio *bio;
81 	struct work_struct work;
82 	unsigned int cur_step;
83 	unsigned int enabled_steps;
84 };
85 
86 static void __read_end_io(struct bio *bio)
87 {
88 	struct page *page;
89 	struct bio_vec *bv;
90 	struct bvec_iter_all iter_all;
91 
92 	bio_for_each_segment_all(bv, bio, iter_all) {
93 		page = bv->bv_page;
94 
95 		/* PG_error was set if any post_read step failed */
96 		if (bio->bi_status || PageError(page)) {
97 			ClearPageUptodate(page);
98 			/* will re-read again later */
99 			ClearPageError(page);
100 		} else {
101 			SetPageUptodate(page);
102 		}
103 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
104 		unlock_page(page);
105 	}
106 	if (bio->bi_private)
107 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
108 	bio_put(bio);
109 }
110 
111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
112 
113 static void decrypt_work(struct work_struct *work)
114 {
115 	struct bio_post_read_ctx *ctx =
116 		container_of(work, struct bio_post_read_ctx, work);
117 
118 	fscrypt_decrypt_bio(ctx->bio);
119 
120 	bio_post_read_processing(ctx);
121 }
122 
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125 	switch (++ctx->cur_step) {
126 	case STEP_DECRYPT:
127 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
128 			INIT_WORK(&ctx->work, decrypt_work);
129 			fscrypt_enqueue_decrypt_work(&ctx->work);
130 			return;
131 		}
132 		ctx->cur_step++;
133 		/* fall-through */
134 	default:
135 		__read_end_io(ctx->bio);
136 	}
137 }
138 
139 static bool f2fs_bio_post_read_required(struct bio *bio)
140 {
141 	return bio->bi_private && !bio->bi_status;
142 }
143 
144 static void f2fs_read_end_io(struct bio *bio)
145 {
146 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
147 						FAULT_READ_IO)) {
148 		f2fs_show_injection_info(FAULT_READ_IO);
149 		bio->bi_status = BLK_STS_IOERR;
150 	}
151 
152 	if (f2fs_bio_post_read_required(bio)) {
153 		struct bio_post_read_ctx *ctx = bio->bi_private;
154 
155 		ctx->cur_step = STEP_INITIAL;
156 		bio_post_read_processing(ctx);
157 		return;
158 	}
159 
160 	__read_end_io(bio);
161 }
162 
163 static void f2fs_write_end_io(struct bio *bio)
164 {
165 	struct f2fs_sb_info *sbi = bio->bi_private;
166 	struct bio_vec *bvec;
167 	struct bvec_iter_all iter_all;
168 
169 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
170 		f2fs_show_injection_info(FAULT_WRITE_IO);
171 		bio->bi_status = BLK_STS_IOERR;
172 	}
173 
174 	bio_for_each_segment_all(bvec, bio, iter_all) {
175 		struct page *page = bvec->bv_page;
176 		enum count_type type = WB_DATA_TYPE(page);
177 
178 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
179 			set_page_private(page, (unsigned long)NULL);
180 			ClearPagePrivate(page);
181 			unlock_page(page);
182 			mempool_free(page, sbi->write_io_dummy);
183 
184 			if (unlikely(bio->bi_status))
185 				f2fs_stop_checkpoint(sbi, true);
186 			continue;
187 		}
188 
189 		fscrypt_finalize_bounce_page(&page);
190 
191 		if (unlikely(bio->bi_status)) {
192 			mapping_set_error(page->mapping, -EIO);
193 			if (type == F2FS_WB_CP_DATA)
194 				f2fs_stop_checkpoint(sbi, true);
195 		}
196 
197 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
198 					page->index != nid_of_node(page));
199 
200 		dec_page_count(sbi, type);
201 		if (f2fs_in_warm_node_list(sbi, page))
202 			f2fs_del_fsync_node_entry(sbi, page);
203 		clear_cold_data(page);
204 		end_page_writeback(page);
205 	}
206 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
207 				wq_has_sleeper(&sbi->cp_wait))
208 		wake_up(&sbi->cp_wait);
209 
210 	bio_put(bio);
211 }
212 
213 /*
214  * Return true, if pre_bio's bdev is same as its target device.
215  */
216 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
217 				block_t blk_addr, struct bio *bio)
218 {
219 	struct block_device *bdev = sbi->sb->s_bdev;
220 	int i;
221 
222 	if (f2fs_is_multi_device(sbi)) {
223 		for (i = 0; i < sbi->s_ndevs; i++) {
224 			if (FDEV(i).start_blk <= blk_addr &&
225 			    FDEV(i).end_blk >= blk_addr) {
226 				blk_addr -= FDEV(i).start_blk;
227 				bdev = FDEV(i).bdev;
228 				break;
229 			}
230 		}
231 	}
232 	if (bio) {
233 		bio_set_dev(bio, bdev);
234 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
235 	}
236 	return bdev;
237 }
238 
239 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
240 {
241 	int i;
242 
243 	if (!f2fs_is_multi_device(sbi))
244 		return 0;
245 
246 	for (i = 0; i < sbi->s_ndevs; i++)
247 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
248 			return i;
249 	return 0;
250 }
251 
252 static bool __same_bdev(struct f2fs_sb_info *sbi,
253 				block_t blk_addr, struct bio *bio)
254 {
255 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
256 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
257 }
258 
259 /*
260  * Low-level block read/write IO operations.
261  */
262 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
263 				struct writeback_control *wbc,
264 				int npages, bool is_read,
265 				enum page_type type, enum temp_type temp)
266 {
267 	struct bio *bio;
268 
269 	bio = f2fs_bio_alloc(sbi, npages, true);
270 
271 	f2fs_target_device(sbi, blk_addr, bio);
272 	if (is_read) {
273 		bio->bi_end_io = f2fs_read_end_io;
274 		bio->bi_private = NULL;
275 	} else {
276 		bio->bi_end_io = f2fs_write_end_io;
277 		bio->bi_private = sbi;
278 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
279 	}
280 	if (wbc)
281 		wbc_init_bio(wbc, bio);
282 
283 	return bio;
284 }
285 
286 static inline void __submit_bio(struct f2fs_sb_info *sbi,
287 				struct bio *bio, enum page_type type)
288 {
289 	if (!is_read_io(bio_op(bio))) {
290 		unsigned int start;
291 
292 		if (type != DATA && type != NODE)
293 			goto submit_io;
294 
295 		if (test_opt(sbi, LFS) && current->plug)
296 			blk_finish_plug(current->plug);
297 
298 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
299 		start %= F2FS_IO_SIZE(sbi);
300 
301 		if (start == 0)
302 			goto submit_io;
303 
304 		/* fill dummy pages */
305 		for (; start < F2FS_IO_SIZE(sbi); start++) {
306 			struct page *page =
307 				mempool_alloc(sbi->write_io_dummy,
308 					      GFP_NOIO | __GFP_NOFAIL);
309 			f2fs_bug_on(sbi, !page);
310 
311 			zero_user_segment(page, 0, PAGE_SIZE);
312 			SetPagePrivate(page);
313 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
314 			lock_page(page);
315 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
316 				f2fs_bug_on(sbi, 1);
317 		}
318 		/*
319 		 * In the NODE case, we lose next block address chain. So, we
320 		 * need to do checkpoint in f2fs_sync_file.
321 		 */
322 		if (type == NODE)
323 			set_sbi_flag(sbi, SBI_NEED_CP);
324 	}
325 submit_io:
326 	if (is_read_io(bio_op(bio)))
327 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
328 	else
329 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
330 	submit_bio(bio);
331 }
332 
333 static void __submit_merged_bio(struct f2fs_bio_info *io)
334 {
335 	struct f2fs_io_info *fio = &io->fio;
336 
337 	if (!io->bio)
338 		return;
339 
340 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
341 
342 	if (is_read_io(fio->op))
343 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
344 	else
345 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
346 
347 	__submit_bio(io->sbi, io->bio, fio->type);
348 	io->bio = NULL;
349 }
350 
351 static bool __has_merged_page(struct bio *bio, struct inode *inode,
352 						struct page *page, nid_t ino)
353 {
354 	struct bio_vec *bvec;
355 	struct page *target;
356 	struct bvec_iter_all iter_all;
357 
358 	if (!bio)
359 		return false;
360 
361 	if (!inode && !page && !ino)
362 		return true;
363 
364 	bio_for_each_segment_all(bvec, bio, iter_all) {
365 
366 		target = bvec->bv_page;
367 		if (fscrypt_is_bounce_page(target))
368 			target = fscrypt_pagecache_page(target);
369 
370 		if (inode && inode == target->mapping->host)
371 			return true;
372 		if (page && page == target)
373 			return true;
374 		if (ino && ino == ino_of_node(target))
375 			return true;
376 	}
377 
378 	return false;
379 }
380 
381 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
382 				enum page_type type, enum temp_type temp)
383 {
384 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
385 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
386 
387 	down_write(&io->io_rwsem);
388 
389 	/* change META to META_FLUSH in the checkpoint procedure */
390 	if (type >= META_FLUSH) {
391 		io->fio.type = META_FLUSH;
392 		io->fio.op = REQ_OP_WRITE;
393 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
394 		if (!test_opt(sbi, NOBARRIER))
395 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
396 	}
397 	__submit_merged_bio(io);
398 	up_write(&io->io_rwsem);
399 }
400 
401 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
402 				struct inode *inode, struct page *page,
403 				nid_t ino, enum page_type type, bool force)
404 {
405 	enum temp_type temp;
406 	bool ret = true;
407 
408 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
409 		if (!force)	{
410 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
411 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
412 
413 			down_read(&io->io_rwsem);
414 			ret = __has_merged_page(io->bio, inode, page, ino);
415 			up_read(&io->io_rwsem);
416 		}
417 		if (ret)
418 			__f2fs_submit_merged_write(sbi, type, temp);
419 
420 		/* TODO: use HOT temp only for meta pages now. */
421 		if (type >= META)
422 			break;
423 	}
424 }
425 
426 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
427 {
428 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
429 }
430 
431 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
432 				struct inode *inode, struct page *page,
433 				nid_t ino, enum page_type type)
434 {
435 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
436 }
437 
438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
439 {
440 	f2fs_submit_merged_write(sbi, DATA);
441 	f2fs_submit_merged_write(sbi, NODE);
442 	f2fs_submit_merged_write(sbi, META);
443 }
444 
445 /*
446  * Fill the locked page with data located in the block address.
447  * A caller needs to unlock the page on failure.
448  */
449 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
450 {
451 	struct bio *bio;
452 	struct page *page = fio->encrypted_page ?
453 			fio->encrypted_page : fio->page;
454 
455 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
456 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
457 			META_GENERIC : DATA_GENERIC_ENHANCE)))
458 		return -EFSCORRUPTED;
459 
460 	trace_f2fs_submit_page_bio(page, fio);
461 	f2fs_trace_ios(fio, 0);
462 
463 	/* Allocate a new bio */
464 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
465 				1, is_read_io(fio->op), fio->type, fio->temp);
466 
467 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
468 		bio_put(bio);
469 		return -EFAULT;
470 	}
471 
472 	if (fio->io_wbc && !is_read_io(fio->op))
473 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
474 
475 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
476 
477 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
478 			__read_io_type(page): WB_DATA_TYPE(fio->page));
479 
480 	__submit_bio(fio->sbi, bio, fio->type);
481 	return 0;
482 }
483 
484 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
485 {
486 	struct bio *bio = *fio->bio;
487 	struct page *page = fio->encrypted_page ?
488 			fio->encrypted_page : fio->page;
489 
490 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
491 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
492 		return -EFSCORRUPTED;
493 
494 	trace_f2fs_submit_page_bio(page, fio);
495 	f2fs_trace_ios(fio, 0);
496 
497 	if (bio && (*fio->last_block + 1 != fio->new_blkaddr ||
498 			!__same_bdev(fio->sbi, fio->new_blkaddr, bio))) {
499 		__submit_bio(fio->sbi, bio, fio->type);
500 		bio = NULL;
501 	}
502 alloc_new:
503 	if (!bio) {
504 		bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
505 				BIO_MAX_PAGES, false, fio->type, fio->temp);
506 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
507 	}
508 
509 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
510 		__submit_bio(fio->sbi, bio, fio->type);
511 		bio = NULL;
512 		goto alloc_new;
513 	}
514 
515 	if (fio->io_wbc)
516 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
517 
518 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
519 
520 	*fio->last_block = fio->new_blkaddr;
521 	*fio->bio = bio;
522 
523 	return 0;
524 }
525 
526 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio,
527 							struct page *page)
528 {
529 	if (!bio)
530 		return;
531 
532 	if (!__has_merged_page(*bio, NULL, page, 0))
533 		return;
534 
535 	__submit_bio(sbi, *bio, DATA);
536 	*bio = NULL;
537 }
538 
539 void f2fs_submit_page_write(struct f2fs_io_info *fio)
540 {
541 	struct f2fs_sb_info *sbi = fio->sbi;
542 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
543 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
544 	struct page *bio_page;
545 
546 	f2fs_bug_on(sbi, is_read_io(fio->op));
547 
548 	down_write(&io->io_rwsem);
549 next:
550 	if (fio->in_list) {
551 		spin_lock(&io->io_lock);
552 		if (list_empty(&io->io_list)) {
553 			spin_unlock(&io->io_lock);
554 			goto out;
555 		}
556 		fio = list_first_entry(&io->io_list,
557 						struct f2fs_io_info, list);
558 		list_del(&fio->list);
559 		spin_unlock(&io->io_lock);
560 	}
561 
562 	verify_fio_blkaddr(fio);
563 
564 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
565 
566 	/* set submitted = true as a return value */
567 	fio->submitted = true;
568 
569 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
570 
571 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
572 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
573 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
574 		__submit_merged_bio(io);
575 alloc_new:
576 	if (io->bio == NULL) {
577 		if ((fio->type == DATA || fio->type == NODE) &&
578 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
579 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
580 			fio->retry = true;
581 			goto skip;
582 		}
583 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
584 						BIO_MAX_PAGES, false,
585 						fio->type, fio->temp);
586 		io->fio = *fio;
587 	}
588 
589 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
590 		__submit_merged_bio(io);
591 		goto alloc_new;
592 	}
593 
594 	if (fio->io_wbc)
595 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
596 
597 	io->last_block_in_bio = fio->new_blkaddr;
598 	f2fs_trace_ios(fio, 0);
599 
600 	trace_f2fs_submit_page_write(fio->page, fio);
601 skip:
602 	if (fio->in_list)
603 		goto next;
604 out:
605 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
606 				f2fs_is_checkpoint_ready(sbi))
607 		__submit_merged_bio(io);
608 	up_write(&io->io_rwsem);
609 }
610 
611 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
612 					unsigned nr_pages, unsigned op_flag)
613 {
614 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
615 	struct bio *bio;
616 	struct bio_post_read_ctx *ctx;
617 	unsigned int post_read_steps = 0;
618 
619 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
620 	if (!bio)
621 		return ERR_PTR(-ENOMEM);
622 	f2fs_target_device(sbi, blkaddr, bio);
623 	bio->bi_end_io = f2fs_read_end_io;
624 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
625 
626 	if (f2fs_encrypted_file(inode))
627 		post_read_steps |= 1 << STEP_DECRYPT;
628 	if (post_read_steps) {
629 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
630 		if (!ctx) {
631 			bio_put(bio);
632 			return ERR_PTR(-ENOMEM);
633 		}
634 		ctx->bio = bio;
635 		ctx->enabled_steps = post_read_steps;
636 		bio->bi_private = ctx;
637 	}
638 
639 	return bio;
640 }
641 
642 /* This can handle encryption stuffs */
643 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
644 							block_t blkaddr)
645 {
646 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
647 	struct bio *bio;
648 
649 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
650 	if (IS_ERR(bio))
651 		return PTR_ERR(bio);
652 
653 	/* wait for GCed page writeback via META_MAPPING */
654 	f2fs_wait_on_block_writeback(inode, blkaddr);
655 
656 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
657 		bio_put(bio);
658 		return -EFAULT;
659 	}
660 	ClearPageError(page);
661 	inc_page_count(sbi, F2FS_RD_DATA);
662 	__submit_bio(sbi, bio, DATA);
663 	return 0;
664 }
665 
666 static void __set_data_blkaddr(struct dnode_of_data *dn)
667 {
668 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
669 	__le32 *addr_array;
670 	int base = 0;
671 
672 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
673 		base = get_extra_isize(dn->inode);
674 
675 	/* Get physical address of data block */
676 	addr_array = blkaddr_in_node(rn);
677 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
678 }
679 
680 /*
681  * Lock ordering for the change of data block address:
682  * ->data_page
683  *  ->node_page
684  *    update block addresses in the node page
685  */
686 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
687 {
688 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
689 	__set_data_blkaddr(dn);
690 	if (set_page_dirty(dn->node_page))
691 		dn->node_changed = true;
692 }
693 
694 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
695 {
696 	dn->data_blkaddr = blkaddr;
697 	f2fs_set_data_blkaddr(dn);
698 	f2fs_update_extent_cache(dn);
699 }
700 
701 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
702 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
703 {
704 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
705 	int err;
706 
707 	if (!count)
708 		return 0;
709 
710 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
711 		return -EPERM;
712 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
713 		return err;
714 
715 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
716 						dn->ofs_in_node, count);
717 
718 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
719 
720 	for (; count > 0; dn->ofs_in_node++) {
721 		block_t blkaddr = datablock_addr(dn->inode,
722 					dn->node_page, dn->ofs_in_node);
723 		if (blkaddr == NULL_ADDR) {
724 			dn->data_blkaddr = NEW_ADDR;
725 			__set_data_blkaddr(dn);
726 			count--;
727 		}
728 	}
729 
730 	if (set_page_dirty(dn->node_page))
731 		dn->node_changed = true;
732 	return 0;
733 }
734 
735 /* Should keep dn->ofs_in_node unchanged */
736 int f2fs_reserve_new_block(struct dnode_of_data *dn)
737 {
738 	unsigned int ofs_in_node = dn->ofs_in_node;
739 	int ret;
740 
741 	ret = f2fs_reserve_new_blocks(dn, 1);
742 	dn->ofs_in_node = ofs_in_node;
743 	return ret;
744 }
745 
746 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
747 {
748 	bool need_put = dn->inode_page ? false : true;
749 	int err;
750 
751 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
752 	if (err)
753 		return err;
754 
755 	if (dn->data_blkaddr == NULL_ADDR)
756 		err = f2fs_reserve_new_block(dn);
757 	if (err || need_put)
758 		f2fs_put_dnode(dn);
759 	return err;
760 }
761 
762 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
763 {
764 	struct extent_info ei  = {0,0,0};
765 	struct inode *inode = dn->inode;
766 
767 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
768 		dn->data_blkaddr = ei.blk + index - ei.fofs;
769 		return 0;
770 	}
771 
772 	return f2fs_reserve_block(dn, index);
773 }
774 
775 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
776 						int op_flags, bool for_write)
777 {
778 	struct address_space *mapping = inode->i_mapping;
779 	struct dnode_of_data dn;
780 	struct page *page;
781 	struct extent_info ei = {0,0,0};
782 	int err;
783 
784 	page = f2fs_grab_cache_page(mapping, index, for_write);
785 	if (!page)
786 		return ERR_PTR(-ENOMEM);
787 
788 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
789 		dn.data_blkaddr = ei.blk + index - ei.fofs;
790 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
791 						DATA_GENERIC_ENHANCE_READ)) {
792 			err = -EFSCORRUPTED;
793 			goto put_err;
794 		}
795 		goto got_it;
796 	}
797 
798 	set_new_dnode(&dn, inode, NULL, NULL, 0);
799 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
800 	if (err)
801 		goto put_err;
802 	f2fs_put_dnode(&dn);
803 
804 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
805 		err = -ENOENT;
806 		goto put_err;
807 	}
808 	if (dn.data_blkaddr != NEW_ADDR &&
809 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
810 						dn.data_blkaddr,
811 						DATA_GENERIC_ENHANCE)) {
812 		err = -EFSCORRUPTED;
813 		goto put_err;
814 	}
815 got_it:
816 	if (PageUptodate(page)) {
817 		unlock_page(page);
818 		return page;
819 	}
820 
821 	/*
822 	 * A new dentry page is allocated but not able to be written, since its
823 	 * new inode page couldn't be allocated due to -ENOSPC.
824 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
825 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
826 	 * f2fs_init_inode_metadata.
827 	 */
828 	if (dn.data_blkaddr == NEW_ADDR) {
829 		zero_user_segment(page, 0, PAGE_SIZE);
830 		if (!PageUptodate(page))
831 			SetPageUptodate(page);
832 		unlock_page(page);
833 		return page;
834 	}
835 
836 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
837 	if (err)
838 		goto put_err;
839 	return page;
840 
841 put_err:
842 	f2fs_put_page(page, 1);
843 	return ERR_PTR(err);
844 }
845 
846 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
847 {
848 	struct address_space *mapping = inode->i_mapping;
849 	struct page *page;
850 
851 	page = find_get_page(mapping, index);
852 	if (page && PageUptodate(page))
853 		return page;
854 	f2fs_put_page(page, 0);
855 
856 	page = f2fs_get_read_data_page(inode, index, 0, false);
857 	if (IS_ERR(page))
858 		return page;
859 
860 	if (PageUptodate(page))
861 		return page;
862 
863 	wait_on_page_locked(page);
864 	if (unlikely(!PageUptodate(page))) {
865 		f2fs_put_page(page, 0);
866 		return ERR_PTR(-EIO);
867 	}
868 	return page;
869 }
870 
871 /*
872  * If it tries to access a hole, return an error.
873  * Because, the callers, functions in dir.c and GC, should be able to know
874  * whether this page exists or not.
875  */
876 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
877 							bool for_write)
878 {
879 	struct address_space *mapping = inode->i_mapping;
880 	struct page *page;
881 repeat:
882 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
883 	if (IS_ERR(page))
884 		return page;
885 
886 	/* wait for read completion */
887 	lock_page(page);
888 	if (unlikely(page->mapping != mapping)) {
889 		f2fs_put_page(page, 1);
890 		goto repeat;
891 	}
892 	if (unlikely(!PageUptodate(page))) {
893 		f2fs_put_page(page, 1);
894 		return ERR_PTR(-EIO);
895 	}
896 	return page;
897 }
898 
899 /*
900  * Caller ensures that this data page is never allocated.
901  * A new zero-filled data page is allocated in the page cache.
902  *
903  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
904  * f2fs_unlock_op().
905  * Note that, ipage is set only by make_empty_dir, and if any error occur,
906  * ipage should be released by this function.
907  */
908 struct page *f2fs_get_new_data_page(struct inode *inode,
909 		struct page *ipage, pgoff_t index, bool new_i_size)
910 {
911 	struct address_space *mapping = inode->i_mapping;
912 	struct page *page;
913 	struct dnode_of_data dn;
914 	int err;
915 
916 	page = f2fs_grab_cache_page(mapping, index, true);
917 	if (!page) {
918 		/*
919 		 * before exiting, we should make sure ipage will be released
920 		 * if any error occur.
921 		 */
922 		f2fs_put_page(ipage, 1);
923 		return ERR_PTR(-ENOMEM);
924 	}
925 
926 	set_new_dnode(&dn, inode, ipage, NULL, 0);
927 	err = f2fs_reserve_block(&dn, index);
928 	if (err) {
929 		f2fs_put_page(page, 1);
930 		return ERR_PTR(err);
931 	}
932 	if (!ipage)
933 		f2fs_put_dnode(&dn);
934 
935 	if (PageUptodate(page))
936 		goto got_it;
937 
938 	if (dn.data_blkaddr == NEW_ADDR) {
939 		zero_user_segment(page, 0, PAGE_SIZE);
940 		if (!PageUptodate(page))
941 			SetPageUptodate(page);
942 	} else {
943 		f2fs_put_page(page, 1);
944 
945 		/* if ipage exists, blkaddr should be NEW_ADDR */
946 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
947 		page = f2fs_get_lock_data_page(inode, index, true);
948 		if (IS_ERR(page))
949 			return page;
950 	}
951 got_it:
952 	if (new_i_size && i_size_read(inode) <
953 				((loff_t)(index + 1) << PAGE_SHIFT))
954 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
955 	return page;
956 }
957 
958 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
959 {
960 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
961 	struct f2fs_summary sum;
962 	struct node_info ni;
963 	block_t old_blkaddr;
964 	blkcnt_t count = 1;
965 	int err;
966 
967 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
968 		return -EPERM;
969 
970 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
971 	if (err)
972 		return err;
973 
974 	dn->data_blkaddr = datablock_addr(dn->inode,
975 				dn->node_page, dn->ofs_in_node);
976 	if (dn->data_blkaddr != NULL_ADDR)
977 		goto alloc;
978 
979 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
980 		return err;
981 
982 alloc:
983 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
984 	old_blkaddr = dn->data_blkaddr;
985 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
986 					&sum, seg_type, NULL, false);
987 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
988 		invalidate_mapping_pages(META_MAPPING(sbi),
989 					old_blkaddr, old_blkaddr);
990 	f2fs_set_data_blkaddr(dn);
991 
992 	/*
993 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
994 	 * data from unwritten block via dio_read.
995 	 */
996 	return 0;
997 }
998 
999 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1000 {
1001 	struct inode *inode = file_inode(iocb->ki_filp);
1002 	struct f2fs_map_blocks map;
1003 	int flag;
1004 	int err = 0;
1005 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1006 
1007 	/* convert inline data for Direct I/O*/
1008 	if (direct_io) {
1009 		err = f2fs_convert_inline_inode(inode);
1010 		if (err)
1011 			return err;
1012 	}
1013 
1014 	if (direct_io && allow_outplace_dio(inode, iocb, from))
1015 		return 0;
1016 
1017 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1018 		return 0;
1019 
1020 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1021 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1022 	if (map.m_len > map.m_lblk)
1023 		map.m_len -= map.m_lblk;
1024 	else
1025 		map.m_len = 0;
1026 
1027 	map.m_next_pgofs = NULL;
1028 	map.m_next_extent = NULL;
1029 	map.m_seg_type = NO_CHECK_TYPE;
1030 	map.m_may_create = true;
1031 
1032 	if (direct_io) {
1033 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1034 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1035 					F2FS_GET_BLOCK_PRE_AIO :
1036 					F2FS_GET_BLOCK_PRE_DIO;
1037 		goto map_blocks;
1038 	}
1039 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1040 		err = f2fs_convert_inline_inode(inode);
1041 		if (err)
1042 			return err;
1043 	}
1044 	if (f2fs_has_inline_data(inode))
1045 		return err;
1046 
1047 	flag = F2FS_GET_BLOCK_PRE_AIO;
1048 
1049 map_blocks:
1050 	err = f2fs_map_blocks(inode, &map, 1, flag);
1051 	if (map.m_len > 0 && err == -ENOSPC) {
1052 		if (!direct_io)
1053 			set_inode_flag(inode, FI_NO_PREALLOC);
1054 		err = 0;
1055 	}
1056 	return err;
1057 }
1058 
1059 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1060 {
1061 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1062 		if (lock)
1063 			down_read(&sbi->node_change);
1064 		else
1065 			up_read(&sbi->node_change);
1066 	} else {
1067 		if (lock)
1068 			f2fs_lock_op(sbi);
1069 		else
1070 			f2fs_unlock_op(sbi);
1071 	}
1072 }
1073 
1074 /*
1075  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1076  * f2fs_map_blocks structure.
1077  * If original data blocks are allocated, then give them to blockdev.
1078  * Otherwise,
1079  *     a. preallocate requested block addresses
1080  *     b. do not use extent cache for better performance
1081  *     c. give the block addresses to blockdev
1082  */
1083 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1084 						int create, int flag)
1085 {
1086 	unsigned int maxblocks = map->m_len;
1087 	struct dnode_of_data dn;
1088 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1089 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1090 	pgoff_t pgofs, end_offset, end;
1091 	int err = 0, ofs = 1;
1092 	unsigned int ofs_in_node, last_ofs_in_node;
1093 	blkcnt_t prealloc;
1094 	struct extent_info ei = {0,0,0};
1095 	block_t blkaddr;
1096 	unsigned int start_pgofs;
1097 
1098 	if (!maxblocks)
1099 		return 0;
1100 
1101 	map->m_len = 0;
1102 	map->m_flags = 0;
1103 
1104 	/* it only supports block size == page size */
1105 	pgofs =	(pgoff_t)map->m_lblk;
1106 	end = pgofs + maxblocks;
1107 
1108 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1109 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1110 							map->m_may_create)
1111 			goto next_dnode;
1112 
1113 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1114 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1115 		map->m_flags = F2FS_MAP_MAPPED;
1116 		if (map->m_next_extent)
1117 			*map->m_next_extent = pgofs + map->m_len;
1118 
1119 		/* for hardware encryption, but to avoid potential issue in future */
1120 		if (flag == F2FS_GET_BLOCK_DIO)
1121 			f2fs_wait_on_block_writeback_range(inode,
1122 						map->m_pblk, map->m_len);
1123 		goto out;
1124 	}
1125 
1126 next_dnode:
1127 	if (map->m_may_create)
1128 		__do_map_lock(sbi, flag, true);
1129 
1130 	/* When reading holes, we need its node page */
1131 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1132 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1133 	if (err) {
1134 		if (flag == F2FS_GET_BLOCK_BMAP)
1135 			map->m_pblk = 0;
1136 		if (err == -ENOENT) {
1137 			err = 0;
1138 			if (map->m_next_pgofs)
1139 				*map->m_next_pgofs =
1140 					f2fs_get_next_page_offset(&dn, pgofs);
1141 			if (map->m_next_extent)
1142 				*map->m_next_extent =
1143 					f2fs_get_next_page_offset(&dn, pgofs);
1144 		}
1145 		goto unlock_out;
1146 	}
1147 
1148 	start_pgofs = pgofs;
1149 	prealloc = 0;
1150 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1151 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1152 
1153 next_block:
1154 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1155 
1156 	if (__is_valid_data_blkaddr(blkaddr) &&
1157 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1158 		err = -EFSCORRUPTED;
1159 		goto sync_out;
1160 	}
1161 
1162 	if (__is_valid_data_blkaddr(blkaddr)) {
1163 		/* use out-place-update for driect IO under LFS mode */
1164 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1165 							map->m_may_create) {
1166 			err = __allocate_data_block(&dn, map->m_seg_type);
1167 			if (!err) {
1168 				blkaddr = dn.data_blkaddr;
1169 				set_inode_flag(inode, FI_APPEND_WRITE);
1170 			}
1171 		}
1172 	} else {
1173 		if (create) {
1174 			if (unlikely(f2fs_cp_error(sbi))) {
1175 				err = -EIO;
1176 				goto sync_out;
1177 			}
1178 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1179 				if (blkaddr == NULL_ADDR) {
1180 					prealloc++;
1181 					last_ofs_in_node = dn.ofs_in_node;
1182 				}
1183 			} else {
1184 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1185 					flag != F2FS_GET_BLOCK_DIO);
1186 				err = __allocate_data_block(&dn,
1187 							map->m_seg_type);
1188 				if (!err)
1189 					set_inode_flag(inode, FI_APPEND_WRITE);
1190 			}
1191 			if (err)
1192 				goto sync_out;
1193 			map->m_flags |= F2FS_MAP_NEW;
1194 			blkaddr = dn.data_blkaddr;
1195 		} else {
1196 			if (flag == F2FS_GET_BLOCK_BMAP) {
1197 				map->m_pblk = 0;
1198 				goto sync_out;
1199 			}
1200 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1201 				goto sync_out;
1202 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1203 						blkaddr == NULL_ADDR) {
1204 				if (map->m_next_pgofs)
1205 					*map->m_next_pgofs = pgofs + 1;
1206 				goto sync_out;
1207 			}
1208 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1209 				/* for defragment case */
1210 				if (map->m_next_pgofs)
1211 					*map->m_next_pgofs = pgofs + 1;
1212 				goto sync_out;
1213 			}
1214 		}
1215 	}
1216 
1217 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1218 		goto skip;
1219 
1220 	if (map->m_len == 0) {
1221 		/* preallocated unwritten block should be mapped for fiemap. */
1222 		if (blkaddr == NEW_ADDR)
1223 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1224 		map->m_flags |= F2FS_MAP_MAPPED;
1225 
1226 		map->m_pblk = blkaddr;
1227 		map->m_len = 1;
1228 	} else if ((map->m_pblk != NEW_ADDR &&
1229 			blkaddr == (map->m_pblk + ofs)) ||
1230 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1231 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1232 		ofs++;
1233 		map->m_len++;
1234 	} else {
1235 		goto sync_out;
1236 	}
1237 
1238 skip:
1239 	dn.ofs_in_node++;
1240 	pgofs++;
1241 
1242 	/* preallocate blocks in batch for one dnode page */
1243 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1244 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1245 
1246 		dn.ofs_in_node = ofs_in_node;
1247 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1248 		if (err)
1249 			goto sync_out;
1250 
1251 		map->m_len += dn.ofs_in_node - ofs_in_node;
1252 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1253 			err = -ENOSPC;
1254 			goto sync_out;
1255 		}
1256 		dn.ofs_in_node = end_offset;
1257 	}
1258 
1259 	if (pgofs >= end)
1260 		goto sync_out;
1261 	else if (dn.ofs_in_node < end_offset)
1262 		goto next_block;
1263 
1264 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1265 		if (map->m_flags & F2FS_MAP_MAPPED) {
1266 			unsigned int ofs = start_pgofs - map->m_lblk;
1267 
1268 			f2fs_update_extent_cache_range(&dn,
1269 				start_pgofs, map->m_pblk + ofs,
1270 				map->m_len - ofs);
1271 		}
1272 	}
1273 
1274 	f2fs_put_dnode(&dn);
1275 
1276 	if (map->m_may_create) {
1277 		__do_map_lock(sbi, flag, false);
1278 		f2fs_balance_fs(sbi, dn.node_changed);
1279 	}
1280 	goto next_dnode;
1281 
1282 sync_out:
1283 
1284 	/* for hardware encryption, but to avoid potential issue in future */
1285 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1286 		f2fs_wait_on_block_writeback_range(inode,
1287 						map->m_pblk, map->m_len);
1288 
1289 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1290 		if (map->m_flags & F2FS_MAP_MAPPED) {
1291 			unsigned int ofs = start_pgofs - map->m_lblk;
1292 
1293 			f2fs_update_extent_cache_range(&dn,
1294 				start_pgofs, map->m_pblk + ofs,
1295 				map->m_len - ofs);
1296 		}
1297 		if (map->m_next_extent)
1298 			*map->m_next_extent = pgofs + 1;
1299 	}
1300 	f2fs_put_dnode(&dn);
1301 unlock_out:
1302 	if (map->m_may_create) {
1303 		__do_map_lock(sbi, flag, false);
1304 		f2fs_balance_fs(sbi, dn.node_changed);
1305 	}
1306 out:
1307 	trace_f2fs_map_blocks(inode, map, err);
1308 	return err;
1309 }
1310 
1311 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1312 {
1313 	struct f2fs_map_blocks map;
1314 	block_t last_lblk;
1315 	int err;
1316 
1317 	if (pos + len > i_size_read(inode))
1318 		return false;
1319 
1320 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1321 	map.m_next_pgofs = NULL;
1322 	map.m_next_extent = NULL;
1323 	map.m_seg_type = NO_CHECK_TYPE;
1324 	map.m_may_create = false;
1325 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1326 
1327 	while (map.m_lblk < last_lblk) {
1328 		map.m_len = last_lblk - map.m_lblk;
1329 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1330 		if (err || map.m_len == 0)
1331 			return false;
1332 		map.m_lblk += map.m_len;
1333 	}
1334 	return true;
1335 }
1336 
1337 static int __get_data_block(struct inode *inode, sector_t iblock,
1338 			struct buffer_head *bh, int create, int flag,
1339 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1340 {
1341 	struct f2fs_map_blocks map;
1342 	int err;
1343 
1344 	map.m_lblk = iblock;
1345 	map.m_len = bh->b_size >> inode->i_blkbits;
1346 	map.m_next_pgofs = next_pgofs;
1347 	map.m_next_extent = NULL;
1348 	map.m_seg_type = seg_type;
1349 	map.m_may_create = may_write;
1350 
1351 	err = f2fs_map_blocks(inode, &map, create, flag);
1352 	if (!err) {
1353 		map_bh(bh, inode->i_sb, map.m_pblk);
1354 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1355 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1356 	}
1357 	return err;
1358 }
1359 
1360 static int get_data_block(struct inode *inode, sector_t iblock,
1361 			struct buffer_head *bh_result, int create, int flag,
1362 			pgoff_t *next_pgofs)
1363 {
1364 	return __get_data_block(inode, iblock, bh_result, create,
1365 							flag, next_pgofs,
1366 							NO_CHECK_TYPE, create);
1367 }
1368 
1369 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1370 			struct buffer_head *bh_result, int create)
1371 {
1372 	return __get_data_block(inode, iblock, bh_result, create,
1373 				F2FS_GET_BLOCK_DIO, NULL,
1374 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1375 				true);
1376 }
1377 
1378 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1379 			struct buffer_head *bh_result, int create)
1380 {
1381 	return __get_data_block(inode, iblock, bh_result, create,
1382 				F2FS_GET_BLOCK_DIO, NULL,
1383 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1384 				false);
1385 }
1386 
1387 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1388 			struct buffer_head *bh_result, int create)
1389 {
1390 	/* Block number less than F2FS MAX BLOCKS */
1391 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1392 		return -EFBIG;
1393 
1394 	return __get_data_block(inode, iblock, bh_result, create,
1395 						F2FS_GET_BLOCK_BMAP, NULL,
1396 						NO_CHECK_TYPE, create);
1397 }
1398 
1399 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1400 {
1401 	return (offset >> inode->i_blkbits);
1402 }
1403 
1404 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1405 {
1406 	return (blk << inode->i_blkbits);
1407 }
1408 
1409 static int f2fs_xattr_fiemap(struct inode *inode,
1410 				struct fiemap_extent_info *fieinfo)
1411 {
1412 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1413 	struct page *page;
1414 	struct node_info ni;
1415 	__u64 phys = 0, len;
1416 	__u32 flags;
1417 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1418 	int err = 0;
1419 
1420 	if (f2fs_has_inline_xattr(inode)) {
1421 		int offset;
1422 
1423 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1424 						inode->i_ino, false);
1425 		if (!page)
1426 			return -ENOMEM;
1427 
1428 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1429 		if (err) {
1430 			f2fs_put_page(page, 1);
1431 			return err;
1432 		}
1433 
1434 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1435 		offset = offsetof(struct f2fs_inode, i_addr) +
1436 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1437 					get_inline_xattr_addrs(inode));
1438 
1439 		phys += offset;
1440 		len = inline_xattr_size(inode);
1441 
1442 		f2fs_put_page(page, 1);
1443 
1444 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1445 
1446 		if (!xnid)
1447 			flags |= FIEMAP_EXTENT_LAST;
1448 
1449 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1450 		if (err || err == 1)
1451 			return err;
1452 	}
1453 
1454 	if (xnid) {
1455 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1456 		if (!page)
1457 			return -ENOMEM;
1458 
1459 		err = f2fs_get_node_info(sbi, xnid, &ni);
1460 		if (err) {
1461 			f2fs_put_page(page, 1);
1462 			return err;
1463 		}
1464 
1465 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1466 		len = inode->i_sb->s_blocksize;
1467 
1468 		f2fs_put_page(page, 1);
1469 
1470 		flags = FIEMAP_EXTENT_LAST;
1471 	}
1472 
1473 	if (phys)
1474 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1475 
1476 	return (err < 0 ? err : 0);
1477 }
1478 
1479 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1480 		u64 start, u64 len)
1481 {
1482 	struct buffer_head map_bh;
1483 	sector_t start_blk, last_blk;
1484 	pgoff_t next_pgofs;
1485 	u64 logical = 0, phys = 0, size = 0;
1486 	u32 flags = 0;
1487 	int ret = 0;
1488 
1489 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1490 		ret = f2fs_precache_extents(inode);
1491 		if (ret)
1492 			return ret;
1493 	}
1494 
1495 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1496 	if (ret)
1497 		return ret;
1498 
1499 	inode_lock(inode);
1500 
1501 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1502 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1503 		goto out;
1504 	}
1505 
1506 	if (f2fs_has_inline_data(inode)) {
1507 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1508 		if (ret != -EAGAIN)
1509 			goto out;
1510 	}
1511 
1512 	if (logical_to_blk(inode, len) == 0)
1513 		len = blk_to_logical(inode, 1);
1514 
1515 	start_blk = logical_to_blk(inode, start);
1516 	last_blk = logical_to_blk(inode, start + len - 1);
1517 
1518 next:
1519 	memset(&map_bh, 0, sizeof(struct buffer_head));
1520 	map_bh.b_size = len;
1521 
1522 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1523 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1524 	if (ret)
1525 		goto out;
1526 
1527 	/* HOLE */
1528 	if (!buffer_mapped(&map_bh)) {
1529 		start_blk = next_pgofs;
1530 
1531 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1532 					F2FS_I_SB(inode)->max_file_blocks))
1533 			goto prep_next;
1534 
1535 		flags |= FIEMAP_EXTENT_LAST;
1536 	}
1537 
1538 	if (size) {
1539 		if (IS_ENCRYPTED(inode))
1540 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1541 
1542 		ret = fiemap_fill_next_extent(fieinfo, logical,
1543 				phys, size, flags);
1544 	}
1545 
1546 	if (start_blk > last_blk || ret)
1547 		goto out;
1548 
1549 	logical = blk_to_logical(inode, start_blk);
1550 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1551 	size = map_bh.b_size;
1552 	flags = 0;
1553 	if (buffer_unwritten(&map_bh))
1554 		flags = FIEMAP_EXTENT_UNWRITTEN;
1555 
1556 	start_blk += logical_to_blk(inode, size);
1557 
1558 prep_next:
1559 	cond_resched();
1560 	if (fatal_signal_pending(current))
1561 		ret = -EINTR;
1562 	else
1563 		goto next;
1564 out:
1565 	if (ret == 1)
1566 		ret = 0;
1567 
1568 	inode_unlock(inode);
1569 	return ret;
1570 }
1571 
1572 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1573 					unsigned nr_pages,
1574 					struct f2fs_map_blocks *map,
1575 					struct bio **bio_ret,
1576 					sector_t *last_block_in_bio,
1577 					bool is_readahead)
1578 {
1579 	struct bio *bio = *bio_ret;
1580 	const unsigned blkbits = inode->i_blkbits;
1581 	const unsigned blocksize = 1 << blkbits;
1582 	sector_t block_in_file;
1583 	sector_t last_block;
1584 	sector_t last_block_in_file;
1585 	sector_t block_nr;
1586 	int ret = 0;
1587 
1588 	block_in_file = (sector_t)page_index(page);
1589 	last_block = block_in_file + nr_pages;
1590 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1591 							blkbits;
1592 	if (last_block > last_block_in_file)
1593 		last_block = last_block_in_file;
1594 
1595 	/* just zeroing out page which is beyond EOF */
1596 	if (block_in_file >= last_block)
1597 		goto zero_out;
1598 	/*
1599 	 * Map blocks using the previous result first.
1600 	 */
1601 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1602 			block_in_file > map->m_lblk &&
1603 			block_in_file < (map->m_lblk + map->m_len))
1604 		goto got_it;
1605 
1606 	/*
1607 	 * Then do more f2fs_map_blocks() calls until we are
1608 	 * done with this page.
1609 	 */
1610 	map->m_lblk = block_in_file;
1611 	map->m_len = last_block - block_in_file;
1612 
1613 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1614 	if (ret)
1615 		goto out;
1616 got_it:
1617 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
1618 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
1619 		SetPageMappedToDisk(page);
1620 
1621 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
1622 					!cleancache_get_page(page))) {
1623 			SetPageUptodate(page);
1624 			goto confused;
1625 		}
1626 
1627 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1628 						DATA_GENERIC_ENHANCE_READ)) {
1629 			ret = -EFSCORRUPTED;
1630 			goto out;
1631 		}
1632 	} else {
1633 zero_out:
1634 		zero_user_segment(page, 0, PAGE_SIZE);
1635 		if (!PageUptodate(page))
1636 			SetPageUptodate(page);
1637 		unlock_page(page);
1638 		goto out;
1639 	}
1640 
1641 	/*
1642 	 * This page will go to BIO.  Do we need to send this
1643 	 * BIO off first?
1644 	 */
1645 	if (bio && (*last_block_in_bio != block_nr - 1 ||
1646 		!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1647 submit_and_realloc:
1648 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1649 		bio = NULL;
1650 	}
1651 	if (bio == NULL) {
1652 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1653 				is_readahead ? REQ_RAHEAD : 0);
1654 		if (IS_ERR(bio)) {
1655 			ret = PTR_ERR(bio);
1656 			bio = NULL;
1657 			goto out;
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * If the page is under writeback, we need to wait for
1663 	 * its completion to see the correct decrypted data.
1664 	 */
1665 	f2fs_wait_on_block_writeback(inode, block_nr);
1666 
1667 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1668 		goto submit_and_realloc;
1669 
1670 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1671 	ClearPageError(page);
1672 	*last_block_in_bio = block_nr;
1673 	goto out;
1674 confused:
1675 	if (bio) {
1676 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1677 		bio = NULL;
1678 	}
1679 	unlock_page(page);
1680 out:
1681 	*bio_ret = bio;
1682 	return ret;
1683 }
1684 
1685 /*
1686  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1687  * Major change was from block_size == page_size in f2fs by default.
1688  *
1689  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1690  * this function ever deviates from doing just read-ahead, it should either
1691  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1692  * from read-ahead.
1693  */
1694 static int f2fs_mpage_readpages(struct address_space *mapping,
1695 			struct list_head *pages, struct page *page,
1696 			unsigned nr_pages, bool is_readahead)
1697 {
1698 	struct bio *bio = NULL;
1699 	sector_t last_block_in_bio = 0;
1700 	struct inode *inode = mapping->host;
1701 	struct f2fs_map_blocks map;
1702 	int ret = 0;
1703 
1704 	map.m_pblk = 0;
1705 	map.m_lblk = 0;
1706 	map.m_len = 0;
1707 	map.m_flags = 0;
1708 	map.m_next_pgofs = NULL;
1709 	map.m_next_extent = NULL;
1710 	map.m_seg_type = NO_CHECK_TYPE;
1711 	map.m_may_create = false;
1712 
1713 	for (; nr_pages; nr_pages--) {
1714 		if (pages) {
1715 			page = list_last_entry(pages, struct page, lru);
1716 
1717 			prefetchw(&page->flags);
1718 			list_del(&page->lru);
1719 			if (add_to_page_cache_lru(page, mapping,
1720 						  page_index(page),
1721 						  readahead_gfp_mask(mapping)))
1722 				goto next_page;
1723 		}
1724 
1725 		ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1726 					&last_block_in_bio, is_readahead);
1727 		if (ret) {
1728 			SetPageError(page);
1729 			zero_user_segment(page, 0, PAGE_SIZE);
1730 			unlock_page(page);
1731 		}
1732 next_page:
1733 		if (pages)
1734 			put_page(page);
1735 	}
1736 	BUG_ON(pages && !list_empty(pages));
1737 	if (bio)
1738 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1739 	return pages ? 0 : ret;
1740 }
1741 
1742 static int f2fs_read_data_page(struct file *file, struct page *page)
1743 {
1744 	struct inode *inode = page_file_mapping(page)->host;
1745 	int ret = -EAGAIN;
1746 
1747 	trace_f2fs_readpage(page, DATA);
1748 
1749 	/* If the file has inline data, try to read it directly */
1750 	if (f2fs_has_inline_data(inode))
1751 		ret = f2fs_read_inline_data(inode, page);
1752 	if (ret == -EAGAIN)
1753 		ret = f2fs_mpage_readpages(page_file_mapping(page),
1754 						NULL, page, 1, false);
1755 	return ret;
1756 }
1757 
1758 static int f2fs_read_data_pages(struct file *file,
1759 			struct address_space *mapping,
1760 			struct list_head *pages, unsigned nr_pages)
1761 {
1762 	struct inode *inode = mapping->host;
1763 	struct page *page = list_last_entry(pages, struct page, lru);
1764 
1765 	trace_f2fs_readpages(inode, page, nr_pages);
1766 
1767 	/* If the file has inline data, skip readpages */
1768 	if (f2fs_has_inline_data(inode))
1769 		return 0;
1770 
1771 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1772 }
1773 
1774 static int encrypt_one_page(struct f2fs_io_info *fio)
1775 {
1776 	struct inode *inode = fio->page->mapping->host;
1777 	struct page *mpage;
1778 	gfp_t gfp_flags = GFP_NOFS;
1779 
1780 	if (!f2fs_encrypted_file(inode))
1781 		return 0;
1782 
1783 	/* wait for GCed page writeback via META_MAPPING */
1784 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1785 
1786 retry_encrypt:
1787 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1788 							       PAGE_SIZE, 0,
1789 							       gfp_flags);
1790 	if (IS_ERR(fio->encrypted_page)) {
1791 		/* flush pending IOs and wait for a while in the ENOMEM case */
1792 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1793 			f2fs_flush_merged_writes(fio->sbi);
1794 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1795 			gfp_flags |= __GFP_NOFAIL;
1796 			goto retry_encrypt;
1797 		}
1798 		return PTR_ERR(fio->encrypted_page);
1799 	}
1800 
1801 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1802 	if (mpage) {
1803 		if (PageUptodate(mpage))
1804 			memcpy(page_address(mpage),
1805 				page_address(fio->encrypted_page), PAGE_SIZE);
1806 		f2fs_put_page(mpage, 1);
1807 	}
1808 	return 0;
1809 }
1810 
1811 static inline bool check_inplace_update_policy(struct inode *inode,
1812 				struct f2fs_io_info *fio)
1813 {
1814 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1815 	unsigned int policy = SM_I(sbi)->ipu_policy;
1816 
1817 	if (policy & (0x1 << F2FS_IPU_FORCE))
1818 		return true;
1819 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1820 		return true;
1821 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1822 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1823 		return true;
1824 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1825 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1826 		return true;
1827 
1828 	/*
1829 	 * IPU for rewrite async pages
1830 	 */
1831 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1832 			fio && fio->op == REQ_OP_WRITE &&
1833 			!(fio->op_flags & REQ_SYNC) &&
1834 			!IS_ENCRYPTED(inode))
1835 		return true;
1836 
1837 	/* this is only set during fdatasync */
1838 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1839 			is_inode_flag_set(inode, FI_NEED_IPU))
1840 		return true;
1841 
1842 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1843 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1844 		return true;
1845 
1846 	return false;
1847 }
1848 
1849 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1850 {
1851 	if (f2fs_is_pinned_file(inode))
1852 		return true;
1853 
1854 	/* if this is cold file, we should overwrite to avoid fragmentation */
1855 	if (file_is_cold(inode))
1856 		return true;
1857 
1858 	return check_inplace_update_policy(inode, fio);
1859 }
1860 
1861 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1862 {
1863 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1864 
1865 	if (test_opt(sbi, LFS))
1866 		return true;
1867 	if (S_ISDIR(inode->i_mode))
1868 		return true;
1869 	if (IS_NOQUOTA(inode))
1870 		return true;
1871 	if (f2fs_is_atomic_file(inode))
1872 		return true;
1873 	if (fio) {
1874 		if (is_cold_data(fio->page))
1875 			return true;
1876 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1877 			return true;
1878 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1879 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1880 			return true;
1881 	}
1882 	return false;
1883 }
1884 
1885 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1886 {
1887 	struct inode *inode = fio->page->mapping->host;
1888 
1889 	if (f2fs_should_update_outplace(inode, fio))
1890 		return false;
1891 
1892 	return f2fs_should_update_inplace(inode, fio);
1893 }
1894 
1895 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1896 {
1897 	struct page *page = fio->page;
1898 	struct inode *inode = page->mapping->host;
1899 	struct dnode_of_data dn;
1900 	struct extent_info ei = {0,0,0};
1901 	struct node_info ni;
1902 	bool ipu_force = false;
1903 	int err = 0;
1904 
1905 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1906 	if (need_inplace_update(fio) &&
1907 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1908 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1909 
1910 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1911 						DATA_GENERIC_ENHANCE))
1912 			return -EFSCORRUPTED;
1913 
1914 		ipu_force = true;
1915 		fio->need_lock = LOCK_DONE;
1916 		goto got_it;
1917 	}
1918 
1919 	/* Deadlock due to between page->lock and f2fs_lock_op */
1920 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1921 		return -EAGAIN;
1922 
1923 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1924 	if (err)
1925 		goto out;
1926 
1927 	fio->old_blkaddr = dn.data_blkaddr;
1928 
1929 	/* This page is already truncated */
1930 	if (fio->old_blkaddr == NULL_ADDR) {
1931 		ClearPageUptodate(page);
1932 		clear_cold_data(page);
1933 		goto out_writepage;
1934 	}
1935 got_it:
1936 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1937 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1938 						DATA_GENERIC_ENHANCE)) {
1939 		err = -EFSCORRUPTED;
1940 		goto out_writepage;
1941 	}
1942 	/*
1943 	 * If current allocation needs SSR,
1944 	 * it had better in-place writes for updated data.
1945 	 */
1946 	if (ipu_force ||
1947 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
1948 					need_inplace_update(fio))) {
1949 		err = encrypt_one_page(fio);
1950 		if (err)
1951 			goto out_writepage;
1952 
1953 		set_page_writeback(page);
1954 		ClearPageError(page);
1955 		f2fs_put_dnode(&dn);
1956 		if (fio->need_lock == LOCK_REQ)
1957 			f2fs_unlock_op(fio->sbi);
1958 		err = f2fs_inplace_write_data(fio);
1959 		if (err) {
1960 			if (f2fs_encrypted_file(inode))
1961 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
1962 			if (PageWriteback(page))
1963 				end_page_writeback(page);
1964 		} else {
1965 			set_inode_flag(inode, FI_UPDATE_WRITE);
1966 		}
1967 		trace_f2fs_do_write_data_page(fio->page, IPU);
1968 		return err;
1969 	}
1970 
1971 	if (fio->need_lock == LOCK_RETRY) {
1972 		if (!f2fs_trylock_op(fio->sbi)) {
1973 			err = -EAGAIN;
1974 			goto out_writepage;
1975 		}
1976 		fio->need_lock = LOCK_REQ;
1977 	}
1978 
1979 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1980 	if (err)
1981 		goto out_writepage;
1982 
1983 	fio->version = ni.version;
1984 
1985 	err = encrypt_one_page(fio);
1986 	if (err)
1987 		goto out_writepage;
1988 
1989 	set_page_writeback(page);
1990 	ClearPageError(page);
1991 
1992 	/* LFS mode write path */
1993 	f2fs_outplace_write_data(&dn, fio);
1994 	trace_f2fs_do_write_data_page(page, OPU);
1995 	set_inode_flag(inode, FI_APPEND_WRITE);
1996 	if (page->index == 0)
1997 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1998 out_writepage:
1999 	f2fs_put_dnode(&dn);
2000 out:
2001 	if (fio->need_lock == LOCK_REQ)
2002 		f2fs_unlock_op(fio->sbi);
2003 	return err;
2004 }
2005 
2006 static int __write_data_page(struct page *page, bool *submitted,
2007 				struct bio **bio,
2008 				sector_t *last_block,
2009 				struct writeback_control *wbc,
2010 				enum iostat_type io_type)
2011 {
2012 	struct inode *inode = page->mapping->host;
2013 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2014 	loff_t i_size = i_size_read(inode);
2015 	const pgoff_t end_index = ((unsigned long long) i_size)
2016 							>> PAGE_SHIFT;
2017 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
2018 	unsigned offset = 0;
2019 	bool need_balance_fs = false;
2020 	int err = 0;
2021 	struct f2fs_io_info fio = {
2022 		.sbi = sbi,
2023 		.ino = inode->i_ino,
2024 		.type = DATA,
2025 		.op = REQ_OP_WRITE,
2026 		.op_flags = wbc_to_write_flags(wbc),
2027 		.old_blkaddr = NULL_ADDR,
2028 		.page = page,
2029 		.encrypted_page = NULL,
2030 		.submitted = false,
2031 		.need_lock = LOCK_RETRY,
2032 		.io_type = io_type,
2033 		.io_wbc = wbc,
2034 		.bio = bio,
2035 		.last_block = last_block,
2036 	};
2037 
2038 	trace_f2fs_writepage(page, DATA);
2039 
2040 	/* we should bypass data pages to proceed the kworkder jobs */
2041 	if (unlikely(f2fs_cp_error(sbi))) {
2042 		mapping_set_error(page->mapping, -EIO);
2043 		/*
2044 		 * don't drop any dirty dentry pages for keeping lastest
2045 		 * directory structure.
2046 		 */
2047 		if (S_ISDIR(inode->i_mode))
2048 			goto redirty_out;
2049 		goto out;
2050 	}
2051 
2052 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2053 		goto redirty_out;
2054 
2055 	if (page->index < end_index)
2056 		goto write;
2057 
2058 	/*
2059 	 * If the offset is out-of-range of file size,
2060 	 * this page does not have to be written to disk.
2061 	 */
2062 	offset = i_size & (PAGE_SIZE - 1);
2063 	if ((page->index >= end_index + 1) || !offset)
2064 		goto out;
2065 
2066 	zero_user_segment(page, offset, PAGE_SIZE);
2067 write:
2068 	if (f2fs_is_drop_cache(inode))
2069 		goto out;
2070 	/* we should not write 0'th page having journal header */
2071 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2072 			(!wbc->for_reclaim &&
2073 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2074 		goto redirty_out;
2075 
2076 	/* Dentry blocks are controlled by checkpoint */
2077 	if (S_ISDIR(inode->i_mode)) {
2078 		fio.need_lock = LOCK_DONE;
2079 		err = f2fs_do_write_data_page(&fio);
2080 		goto done;
2081 	}
2082 
2083 	if (!wbc->for_reclaim)
2084 		need_balance_fs = true;
2085 	else if (has_not_enough_free_secs(sbi, 0, 0))
2086 		goto redirty_out;
2087 	else
2088 		set_inode_flag(inode, FI_HOT_DATA);
2089 
2090 	err = -EAGAIN;
2091 	if (f2fs_has_inline_data(inode)) {
2092 		err = f2fs_write_inline_data(inode, page);
2093 		if (!err)
2094 			goto out;
2095 	}
2096 
2097 	if (err == -EAGAIN) {
2098 		err = f2fs_do_write_data_page(&fio);
2099 		if (err == -EAGAIN) {
2100 			fio.need_lock = LOCK_REQ;
2101 			err = f2fs_do_write_data_page(&fio);
2102 		}
2103 	}
2104 
2105 	if (err) {
2106 		file_set_keep_isize(inode);
2107 	} else {
2108 		down_write(&F2FS_I(inode)->i_sem);
2109 		if (F2FS_I(inode)->last_disk_size < psize)
2110 			F2FS_I(inode)->last_disk_size = psize;
2111 		up_write(&F2FS_I(inode)->i_sem);
2112 	}
2113 
2114 done:
2115 	if (err && err != -ENOENT)
2116 		goto redirty_out;
2117 
2118 out:
2119 	inode_dec_dirty_pages(inode);
2120 	if (err) {
2121 		ClearPageUptodate(page);
2122 		clear_cold_data(page);
2123 	}
2124 
2125 	if (wbc->for_reclaim) {
2126 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2127 		clear_inode_flag(inode, FI_HOT_DATA);
2128 		f2fs_remove_dirty_inode(inode);
2129 		submitted = NULL;
2130 	}
2131 
2132 	unlock_page(page);
2133 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2134 					!F2FS_I(inode)->cp_task) {
2135 		f2fs_submit_ipu_bio(sbi, bio, page);
2136 		f2fs_balance_fs(sbi, need_balance_fs);
2137 	}
2138 
2139 	if (unlikely(f2fs_cp_error(sbi))) {
2140 		f2fs_submit_ipu_bio(sbi, bio, page);
2141 		f2fs_submit_merged_write(sbi, DATA);
2142 		submitted = NULL;
2143 	}
2144 
2145 	if (submitted)
2146 		*submitted = fio.submitted;
2147 
2148 	return 0;
2149 
2150 redirty_out:
2151 	redirty_page_for_writepage(wbc, page);
2152 	/*
2153 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2154 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2155 	 * file_write_and_wait_range() will see EIO error, which is critical
2156 	 * to return value of fsync() followed by atomic_write failure to user.
2157 	 */
2158 	if (!err || wbc->for_reclaim)
2159 		return AOP_WRITEPAGE_ACTIVATE;
2160 	unlock_page(page);
2161 	return err;
2162 }
2163 
2164 static int f2fs_write_data_page(struct page *page,
2165 					struct writeback_control *wbc)
2166 {
2167 	return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2168 }
2169 
2170 /*
2171  * This function was copied from write_cche_pages from mm/page-writeback.c.
2172  * The major change is making write step of cold data page separately from
2173  * warm/hot data page.
2174  */
2175 static int f2fs_write_cache_pages(struct address_space *mapping,
2176 					struct writeback_control *wbc,
2177 					enum iostat_type io_type)
2178 {
2179 	int ret = 0;
2180 	int done = 0;
2181 	struct pagevec pvec;
2182 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2183 	struct bio *bio = NULL;
2184 	sector_t last_block;
2185 	int nr_pages;
2186 	pgoff_t uninitialized_var(writeback_index);
2187 	pgoff_t index;
2188 	pgoff_t end;		/* Inclusive */
2189 	pgoff_t done_index;
2190 	int cycled;
2191 	int range_whole = 0;
2192 	xa_mark_t tag;
2193 	int nwritten = 0;
2194 
2195 	pagevec_init(&pvec);
2196 
2197 	if (get_dirty_pages(mapping->host) <=
2198 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2199 		set_inode_flag(mapping->host, FI_HOT_DATA);
2200 	else
2201 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2202 
2203 	if (wbc->range_cyclic) {
2204 		writeback_index = mapping->writeback_index; /* prev offset */
2205 		index = writeback_index;
2206 		if (index == 0)
2207 			cycled = 1;
2208 		else
2209 			cycled = 0;
2210 		end = -1;
2211 	} else {
2212 		index = wbc->range_start >> PAGE_SHIFT;
2213 		end = wbc->range_end >> PAGE_SHIFT;
2214 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2215 			range_whole = 1;
2216 		cycled = 1; /* ignore range_cyclic tests */
2217 	}
2218 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2219 		tag = PAGECACHE_TAG_TOWRITE;
2220 	else
2221 		tag = PAGECACHE_TAG_DIRTY;
2222 retry:
2223 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2224 		tag_pages_for_writeback(mapping, index, end);
2225 	done_index = index;
2226 	while (!done && (index <= end)) {
2227 		int i;
2228 
2229 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2230 				tag);
2231 		if (nr_pages == 0)
2232 			break;
2233 
2234 		for (i = 0; i < nr_pages; i++) {
2235 			struct page *page = pvec.pages[i];
2236 			bool submitted = false;
2237 
2238 			/* give a priority to WB_SYNC threads */
2239 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2240 					wbc->sync_mode == WB_SYNC_NONE) {
2241 				done = 1;
2242 				break;
2243 			}
2244 
2245 			done_index = page->index;
2246 retry_write:
2247 			lock_page(page);
2248 
2249 			if (unlikely(page->mapping != mapping)) {
2250 continue_unlock:
2251 				unlock_page(page);
2252 				continue;
2253 			}
2254 
2255 			if (!PageDirty(page)) {
2256 				/* someone wrote it for us */
2257 				goto continue_unlock;
2258 			}
2259 
2260 			if (PageWriteback(page)) {
2261 				if (wbc->sync_mode != WB_SYNC_NONE) {
2262 					f2fs_wait_on_page_writeback(page,
2263 							DATA, true, true);
2264 					f2fs_submit_ipu_bio(sbi, &bio, page);
2265 				} else {
2266 					goto continue_unlock;
2267 				}
2268 			}
2269 
2270 			if (!clear_page_dirty_for_io(page))
2271 				goto continue_unlock;
2272 
2273 			ret = __write_data_page(page, &submitted, &bio,
2274 					&last_block, wbc, io_type);
2275 			if (unlikely(ret)) {
2276 				/*
2277 				 * keep nr_to_write, since vfs uses this to
2278 				 * get # of written pages.
2279 				 */
2280 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2281 					unlock_page(page);
2282 					ret = 0;
2283 					continue;
2284 				} else if (ret == -EAGAIN) {
2285 					ret = 0;
2286 					if (wbc->sync_mode == WB_SYNC_ALL) {
2287 						cond_resched();
2288 						congestion_wait(BLK_RW_ASYNC,
2289 									HZ/50);
2290 						goto retry_write;
2291 					}
2292 					continue;
2293 				}
2294 				done_index = page->index + 1;
2295 				done = 1;
2296 				break;
2297 			} else if (submitted) {
2298 				nwritten++;
2299 			}
2300 
2301 			if (--wbc->nr_to_write <= 0 &&
2302 					wbc->sync_mode == WB_SYNC_NONE) {
2303 				done = 1;
2304 				break;
2305 			}
2306 		}
2307 		pagevec_release(&pvec);
2308 		cond_resched();
2309 	}
2310 
2311 	if (!cycled && !done) {
2312 		cycled = 1;
2313 		index = 0;
2314 		end = writeback_index - 1;
2315 		goto retry;
2316 	}
2317 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2318 		mapping->writeback_index = done_index;
2319 
2320 	if (nwritten)
2321 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2322 								NULL, 0, DATA);
2323 	/* submit cached bio of IPU write */
2324 	if (bio)
2325 		__submit_bio(sbi, bio, DATA);
2326 
2327 	return ret;
2328 }
2329 
2330 static inline bool __should_serialize_io(struct inode *inode,
2331 					struct writeback_control *wbc)
2332 {
2333 	if (!S_ISREG(inode->i_mode))
2334 		return false;
2335 	if (IS_NOQUOTA(inode))
2336 		return false;
2337 	/* to avoid deadlock in path of data flush */
2338 	if (F2FS_I(inode)->cp_task)
2339 		return false;
2340 	if (wbc->sync_mode != WB_SYNC_ALL)
2341 		return true;
2342 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2343 		return true;
2344 	return false;
2345 }
2346 
2347 static int __f2fs_write_data_pages(struct address_space *mapping,
2348 						struct writeback_control *wbc,
2349 						enum iostat_type io_type)
2350 {
2351 	struct inode *inode = mapping->host;
2352 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2353 	struct blk_plug plug;
2354 	int ret;
2355 	bool locked = false;
2356 
2357 	/* deal with chardevs and other special file */
2358 	if (!mapping->a_ops->writepage)
2359 		return 0;
2360 
2361 	/* skip writing if there is no dirty page in this inode */
2362 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2363 		return 0;
2364 
2365 	/* during POR, we don't need to trigger writepage at all. */
2366 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2367 		goto skip_write;
2368 
2369 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2370 			wbc->sync_mode == WB_SYNC_NONE &&
2371 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2372 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2373 		goto skip_write;
2374 
2375 	/* skip writing during file defragment */
2376 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2377 		goto skip_write;
2378 
2379 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2380 
2381 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2382 	if (wbc->sync_mode == WB_SYNC_ALL)
2383 		atomic_inc(&sbi->wb_sync_req[DATA]);
2384 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2385 		goto skip_write;
2386 
2387 	if (__should_serialize_io(inode, wbc)) {
2388 		mutex_lock(&sbi->writepages);
2389 		locked = true;
2390 	}
2391 
2392 	blk_start_plug(&plug);
2393 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2394 	blk_finish_plug(&plug);
2395 
2396 	if (locked)
2397 		mutex_unlock(&sbi->writepages);
2398 
2399 	if (wbc->sync_mode == WB_SYNC_ALL)
2400 		atomic_dec(&sbi->wb_sync_req[DATA]);
2401 	/*
2402 	 * if some pages were truncated, we cannot guarantee its mapping->host
2403 	 * to detect pending bios.
2404 	 */
2405 
2406 	f2fs_remove_dirty_inode(inode);
2407 	return ret;
2408 
2409 skip_write:
2410 	wbc->pages_skipped += get_dirty_pages(inode);
2411 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2412 	return 0;
2413 }
2414 
2415 static int f2fs_write_data_pages(struct address_space *mapping,
2416 			    struct writeback_control *wbc)
2417 {
2418 	struct inode *inode = mapping->host;
2419 
2420 	return __f2fs_write_data_pages(mapping, wbc,
2421 			F2FS_I(inode)->cp_task == current ?
2422 			FS_CP_DATA_IO : FS_DATA_IO);
2423 }
2424 
2425 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2426 {
2427 	struct inode *inode = mapping->host;
2428 	loff_t i_size = i_size_read(inode);
2429 
2430 	if (to > i_size) {
2431 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2432 		down_write(&F2FS_I(inode)->i_mmap_sem);
2433 
2434 		truncate_pagecache(inode, i_size);
2435 		if (!IS_NOQUOTA(inode))
2436 			f2fs_truncate_blocks(inode, i_size, true);
2437 
2438 		up_write(&F2FS_I(inode)->i_mmap_sem);
2439 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2440 	}
2441 }
2442 
2443 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2444 			struct page *page, loff_t pos, unsigned len,
2445 			block_t *blk_addr, bool *node_changed)
2446 {
2447 	struct inode *inode = page->mapping->host;
2448 	pgoff_t index = page->index;
2449 	struct dnode_of_data dn;
2450 	struct page *ipage;
2451 	bool locked = false;
2452 	struct extent_info ei = {0,0,0};
2453 	int err = 0;
2454 	int flag;
2455 
2456 	/*
2457 	 * we already allocated all the blocks, so we don't need to get
2458 	 * the block addresses when there is no need to fill the page.
2459 	 */
2460 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2461 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2462 		return 0;
2463 
2464 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2465 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2466 		flag = F2FS_GET_BLOCK_DEFAULT;
2467 	else
2468 		flag = F2FS_GET_BLOCK_PRE_AIO;
2469 
2470 	if (f2fs_has_inline_data(inode) ||
2471 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2472 		__do_map_lock(sbi, flag, true);
2473 		locked = true;
2474 	}
2475 restart:
2476 	/* check inline_data */
2477 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2478 	if (IS_ERR(ipage)) {
2479 		err = PTR_ERR(ipage);
2480 		goto unlock_out;
2481 	}
2482 
2483 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2484 
2485 	if (f2fs_has_inline_data(inode)) {
2486 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2487 			f2fs_do_read_inline_data(page, ipage);
2488 			set_inode_flag(inode, FI_DATA_EXIST);
2489 			if (inode->i_nlink)
2490 				set_inline_node(ipage);
2491 		} else {
2492 			err = f2fs_convert_inline_page(&dn, page);
2493 			if (err)
2494 				goto out;
2495 			if (dn.data_blkaddr == NULL_ADDR)
2496 				err = f2fs_get_block(&dn, index);
2497 		}
2498 	} else if (locked) {
2499 		err = f2fs_get_block(&dn, index);
2500 	} else {
2501 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2502 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2503 		} else {
2504 			/* hole case */
2505 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2506 			if (err || dn.data_blkaddr == NULL_ADDR) {
2507 				f2fs_put_dnode(&dn);
2508 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2509 								true);
2510 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2511 				locked = true;
2512 				goto restart;
2513 			}
2514 		}
2515 	}
2516 
2517 	/* convert_inline_page can make node_changed */
2518 	*blk_addr = dn.data_blkaddr;
2519 	*node_changed = dn.node_changed;
2520 out:
2521 	f2fs_put_dnode(&dn);
2522 unlock_out:
2523 	if (locked)
2524 		__do_map_lock(sbi, flag, false);
2525 	return err;
2526 }
2527 
2528 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2529 		loff_t pos, unsigned len, unsigned flags,
2530 		struct page **pagep, void **fsdata)
2531 {
2532 	struct inode *inode = mapping->host;
2533 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534 	struct page *page = NULL;
2535 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2536 	bool need_balance = false, drop_atomic = false;
2537 	block_t blkaddr = NULL_ADDR;
2538 	int err = 0;
2539 
2540 	trace_f2fs_write_begin(inode, pos, len, flags);
2541 
2542 	err = f2fs_is_checkpoint_ready(sbi);
2543 	if (err)
2544 		goto fail;
2545 
2546 	if ((f2fs_is_atomic_file(inode) &&
2547 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2548 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2549 		err = -ENOMEM;
2550 		drop_atomic = true;
2551 		goto fail;
2552 	}
2553 
2554 	/*
2555 	 * We should check this at this moment to avoid deadlock on inode page
2556 	 * and #0 page. The locking rule for inline_data conversion should be:
2557 	 * lock_page(page #0) -> lock_page(inode_page)
2558 	 */
2559 	if (index != 0) {
2560 		err = f2fs_convert_inline_inode(inode);
2561 		if (err)
2562 			goto fail;
2563 	}
2564 repeat:
2565 	/*
2566 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2567 	 * wait_for_stable_page. Will wait that below with our IO control.
2568 	 */
2569 	page = f2fs_pagecache_get_page(mapping, index,
2570 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2571 	if (!page) {
2572 		err = -ENOMEM;
2573 		goto fail;
2574 	}
2575 
2576 	*pagep = page;
2577 
2578 	err = prepare_write_begin(sbi, page, pos, len,
2579 					&blkaddr, &need_balance);
2580 	if (err)
2581 		goto fail;
2582 
2583 	if (need_balance && !IS_NOQUOTA(inode) &&
2584 			has_not_enough_free_secs(sbi, 0, 0)) {
2585 		unlock_page(page);
2586 		f2fs_balance_fs(sbi, true);
2587 		lock_page(page);
2588 		if (page->mapping != mapping) {
2589 			/* The page got truncated from under us */
2590 			f2fs_put_page(page, 1);
2591 			goto repeat;
2592 		}
2593 	}
2594 
2595 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2596 
2597 	if (len == PAGE_SIZE || PageUptodate(page))
2598 		return 0;
2599 
2600 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2601 		zero_user_segment(page, len, PAGE_SIZE);
2602 		return 0;
2603 	}
2604 
2605 	if (blkaddr == NEW_ADDR) {
2606 		zero_user_segment(page, 0, PAGE_SIZE);
2607 		SetPageUptodate(page);
2608 	} else {
2609 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2610 				DATA_GENERIC_ENHANCE_READ)) {
2611 			err = -EFSCORRUPTED;
2612 			goto fail;
2613 		}
2614 		err = f2fs_submit_page_read(inode, page, blkaddr);
2615 		if (err)
2616 			goto fail;
2617 
2618 		lock_page(page);
2619 		if (unlikely(page->mapping != mapping)) {
2620 			f2fs_put_page(page, 1);
2621 			goto repeat;
2622 		}
2623 		if (unlikely(!PageUptodate(page))) {
2624 			err = -EIO;
2625 			goto fail;
2626 		}
2627 	}
2628 	return 0;
2629 
2630 fail:
2631 	f2fs_put_page(page, 1);
2632 	f2fs_write_failed(mapping, pos + len);
2633 	if (drop_atomic)
2634 		f2fs_drop_inmem_pages_all(sbi, false);
2635 	return err;
2636 }
2637 
2638 static int f2fs_write_end(struct file *file,
2639 			struct address_space *mapping,
2640 			loff_t pos, unsigned len, unsigned copied,
2641 			struct page *page, void *fsdata)
2642 {
2643 	struct inode *inode = page->mapping->host;
2644 
2645 	trace_f2fs_write_end(inode, pos, len, copied);
2646 
2647 	/*
2648 	 * This should be come from len == PAGE_SIZE, and we expect copied
2649 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2650 	 * let generic_perform_write() try to copy data again through copied=0.
2651 	 */
2652 	if (!PageUptodate(page)) {
2653 		if (unlikely(copied != len))
2654 			copied = 0;
2655 		else
2656 			SetPageUptodate(page);
2657 	}
2658 	if (!copied)
2659 		goto unlock_out;
2660 
2661 	set_page_dirty(page);
2662 
2663 	if (pos + copied > i_size_read(inode))
2664 		f2fs_i_size_write(inode, pos + copied);
2665 unlock_out:
2666 	f2fs_put_page(page, 1);
2667 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2668 	return copied;
2669 }
2670 
2671 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2672 			   loff_t offset)
2673 {
2674 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2675 	unsigned blkbits = i_blkbits;
2676 	unsigned blocksize_mask = (1 << blkbits) - 1;
2677 	unsigned long align = offset | iov_iter_alignment(iter);
2678 	struct block_device *bdev = inode->i_sb->s_bdev;
2679 
2680 	if (align & blocksize_mask) {
2681 		if (bdev)
2682 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2683 		blocksize_mask = (1 << blkbits) - 1;
2684 		if (align & blocksize_mask)
2685 			return -EINVAL;
2686 		return 1;
2687 	}
2688 	return 0;
2689 }
2690 
2691 static void f2fs_dio_end_io(struct bio *bio)
2692 {
2693 	struct f2fs_private_dio *dio = bio->bi_private;
2694 
2695 	dec_page_count(F2FS_I_SB(dio->inode),
2696 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2697 
2698 	bio->bi_private = dio->orig_private;
2699 	bio->bi_end_io = dio->orig_end_io;
2700 
2701 	kvfree(dio);
2702 
2703 	bio_endio(bio);
2704 }
2705 
2706 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2707 							loff_t file_offset)
2708 {
2709 	struct f2fs_private_dio *dio;
2710 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2711 
2712 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2713 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2714 	if (!dio)
2715 		goto out;
2716 
2717 	dio->inode = inode;
2718 	dio->orig_end_io = bio->bi_end_io;
2719 	dio->orig_private = bio->bi_private;
2720 	dio->write = write;
2721 
2722 	bio->bi_end_io = f2fs_dio_end_io;
2723 	bio->bi_private = dio;
2724 
2725 	inc_page_count(F2FS_I_SB(inode),
2726 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2727 
2728 	submit_bio(bio);
2729 	return;
2730 out:
2731 	bio->bi_status = BLK_STS_IOERR;
2732 	bio_endio(bio);
2733 }
2734 
2735 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2736 {
2737 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2738 	struct inode *inode = mapping->host;
2739 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740 	struct f2fs_inode_info *fi = F2FS_I(inode);
2741 	size_t count = iov_iter_count(iter);
2742 	loff_t offset = iocb->ki_pos;
2743 	int rw = iov_iter_rw(iter);
2744 	int err;
2745 	enum rw_hint hint = iocb->ki_hint;
2746 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2747 	bool do_opu;
2748 
2749 	err = check_direct_IO(inode, iter, offset);
2750 	if (err)
2751 		return err < 0 ? err : 0;
2752 
2753 	if (f2fs_force_buffered_io(inode, iocb, iter))
2754 		return 0;
2755 
2756 	do_opu = allow_outplace_dio(inode, iocb, iter);
2757 
2758 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2759 
2760 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2761 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2762 
2763 	if (iocb->ki_flags & IOCB_NOWAIT) {
2764 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2765 			iocb->ki_hint = hint;
2766 			err = -EAGAIN;
2767 			goto out;
2768 		}
2769 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2770 			up_read(&fi->i_gc_rwsem[rw]);
2771 			iocb->ki_hint = hint;
2772 			err = -EAGAIN;
2773 			goto out;
2774 		}
2775 	} else {
2776 		down_read(&fi->i_gc_rwsem[rw]);
2777 		if (do_opu)
2778 			down_read(&fi->i_gc_rwsem[READ]);
2779 	}
2780 
2781 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2782 			iter, rw == WRITE ? get_data_block_dio_write :
2783 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2784 			DIO_LOCKING | DIO_SKIP_HOLES);
2785 
2786 	if (do_opu)
2787 		up_read(&fi->i_gc_rwsem[READ]);
2788 
2789 	up_read(&fi->i_gc_rwsem[rw]);
2790 
2791 	if (rw == WRITE) {
2792 		if (whint_mode == WHINT_MODE_OFF)
2793 			iocb->ki_hint = hint;
2794 		if (err > 0) {
2795 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2796 									err);
2797 			if (!do_opu)
2798 				set_inode_flag(inode, FI_UPDATE_WRITE);
2799 		} else if (err < 0) {
2800 			f2fs_write_failed(mapping, offset + count);
2801 		}
2802 	}
2803 
2804 out:
2805 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2806 
2807 	return err;
2808 }
2809 
2810 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2811 							unsigned int length)
2812 {
2813 	struct inode *inode = page->mapping->host;
2814 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2815 
2816 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2817 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2818 		return;
2819 
2820 	if (PageDirty(page)) {
2821 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2822 			dec_page_count(sbi, F2FS_DIRTY_META);
2823 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2824 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2825 		} else {
2826 			inode_dec_dirty_pages(inode);
2827 			f2fs_remove_dirty_inode(inode);
2828 		}
2829 	}
2830 
2831 	clear_cold_data(page);
2832 
2833 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2834 		return f2fs_drop_inmem_page(inode, page);
2835 
2836 	f2fs_clear_page_private(page);
2837 }
2838 
2839 int f2fs_release_page(struct page *page, gfp_t wait)
2840 {
2841 	/* If this is dirty page, keep PagePrivate */
2842 	if (PageDirty(page))
2843 		return 0;
2844 
2845 	/* This is atomic written page, keep Private */
2846 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2847 		return 0;
2848 
2849 	clear_cold_data(page);
2850 	f2fs_clear_page_private(page);
2851 	return 1;
2852 }
2853 
2854 static int f2fs_set_data_page_dirty(struct page *page)
2855 {
2856 	struct inode *inode = page_file_mapping(page)->host;
2857 
2858 	trace_f2fs_set_page_dirty(page, DATA);
2859 
2860 	if (!PageUptodate(page))
2861 		SetPageUptodate(page);
2862 	if (PageSwapCache(page))
2863 		return __set_page_dirty_nobuffers(page);
2864 
2865 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2866 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2867 			f2fs_register_inmem_page(inode, page);
2868 			return 1;
2869 		}
2870 		/*
2871 		 * Previously, this page has been registered, we just
2872 		 * return here.
2873 		 */
2874 		return 0;
2875 	}
2876 
2877 	if (!PageDirty(page)) {
2878 		__set_page_dirty_nobuffers(page);
2879 		f2fs_update_dirty_page(inode, page);
2880 		return 1;
2881 	}
2882 	return 0;
2883 }
2884 
2885 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2886 {
2887 	struct inode *inode = mapping->host;
2888 
2889 	if (f2fs_has_inline_data(inode))
2890 		return 0;
2891 
2892 	/* make sure allocating whole blocks */
2893 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2894 		filemap_write_and_wait(mapping);
2895 
2896 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2897 }
2898 
2899 #ifdef CONFIG_MIGRATION
2900 #include <linux/migrate.h>
2901 
2902 int f2fs_migrate_page(struct address_space *mapping,
2903 		struct page *newpage, struct page *page, enum migrate_mode mode)
2904 {
2905 	int rc, extra_count;
2906 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2907 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2908 
2909 	BUG_ON(PageWriteback(page));
2910 
2911 	/* migrating an atomic written page is safe with the inmem_lock hold */
2912 	if (atomic_written) {
2913 		if (mode != MIGRATE_SYNC)
2914 			return -EBUSY;
2915 		if (!mutex_trylock(&fi->inmem_lock))
2916 			return -EAGAIN;
2917 	}
2918 
2919 	/* one extra reference was held for atomic_write page */
2920 	extra_count = atomic_written ? 1 : 0;
2921 	rc = migrate_page_move_mapping(mapping, newpage,
2922 				page, extra_count);
2923 	if (rc != MIGRATEPAGE_SUCCESS) {
2924 		if (atomic_written)
2925 			mutex_unlock(&fi->inmem_lock);
2926 		return rc;
2927 	}
2928 
2929 	if (atomic_written) {
2930 		struct inmem_pages *cur;
2931 		list_for_each_entry(cur, &fi->inmem_pages, list)
2932 			if (cur->page == page) {
2933 				cur->page = newpage;
2934 				break;
2935 			}
2936 		mutex_unlock(&fi->inmem_lock);
2937 		put_page(page);
2938 		get_page(newpage);
2939 	}
2940 
2941 	if (PagePrivate(page)) {
2942 		f2fs_set_page_private(newpage, page_private(page));
2943 		f2fs_clear_page_private(page);
2944 	}
2945 
2946 	if (mode != MIGRATE_SYNC_NO_COPY)
2947 		migrate_page_copy(newpage, page);
2948 	else
2949 		migrate_page_states(newpage, page);
2950 
2951 	return MIGRATEPAGE_SUCCESS;
2952 }
2953 #endif
2954 
2955 #ifdef CONFIG_SWAP
2956 /* Copied from generic_swapfile_activate() to check any holes */
2957 static int check_swap_activate(struct file *swap_file, unsigned int max)
2958 {
2959 	struct address_space *mapping = swap_file->f_mapping;
2960 	struct inode *inode = mapping->host;
2961 	unsigned blocks_per_page;
2962 	unsigned long page_no;
2963 	unsigned blkbits;
2964 	sector_t probe_block;
2965 	sector_t last_block;
2966 	sector_t lowest_block = -1;
2967 	sector_t highest_block = 0;
2968 
2969 	blkbits = inode->i_blkbits;
2970 	blocks_per_page = PAGE_SIZE >> blkbits;
2971 
2972 	/*
2973 	 * Map all the blocks into the extent list.  This code doesn't try
2974 	 * to be very smart.
2975 	 */
2976 	probe_block = 0;
2977 	page_no = 0;
2978 	last_block = i_size_read(inode) >> blkbits;
2979 	while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
2980 		unsigned block_in_page;
2981 		sector_t first_block;
2982 
2983 		cond_resched();
2984 
2985 		first_block = bmap(inode, probe_block);
2986 		if (first_block == 0)
2987 			goto bad_bmap;
2988 
2989 		/*
2990 		 * It must be PAGE_SIZE aligned on-disk
2991 		 */
2992 		if (first_block & (blocks_per_page - 1)) {
2993 			probe_block++;
2994 			goto reprobe;
2995 		}
2996 
2997 		for (block_in_page = 1; block_in_page < blocks_per_page;
2998 					block_in_page++) {
2999 			sector_t block;
3000 
3001 			block = bmap(inode, probe_block + block_in_page);
3002 			if (block == 0)
3003 				goto bad_bmap;
3004 			if (block != first_block + block_in_page) {
3005 				/* Discontiguity */
3006 				probe_block++;
3007 				goto reprobe;
3008 			}
3009 		}
3010 
3011 		first_block >>= (PAGE_SHIFT - blkbits);
3012 		if (page_no) {	/* exclude the header page */
3013 			if (first_block < lowest_block)
3014 				lowest_block = first_block;
3015 			if (first_block > highest_block)
3016 				highest_block = first_block;
3017 		}
3018 
3019 		page_no++;
3020 		probe_block += blocks_per_page;
3021 reprobe:
3022 		continue;
3023 	}
3024 	return 0;
3025 
3026 bad_bmap:
3027 	pr_err("swapon: swapfile has holes\n");
3028 	return -EINVAL;
3029 }
3030 
3031 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3032 				sector_t *span)
3033 {
3034 	struct inode *inode = file_inode(file);
3035 	int ret;
3036 
3037 	if (!S_ISREG(inode->i_mode))
3038 		return -EINVAL;
3039 
3040 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3041 		return -EROFS;
3042 
3043 	ret = f2fs_convert_inline_inode(inode);
3044 	if (ret)
3045 		return ret;
3046 
3047 	ret = check_swap_activate(file, sis->max);
3048 	if (ret)
3049 		return ret;
3050 
3051 	set_inode_flag(inode, FI_PIN_FILE);
3052 	f2fs_precache_extents(inode);
3053 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3054 	return 0;
3055 }
3056 
3057 static void f2fs_swap_deactivate(struct file *file)
3058 {
3059 	struct inode *inode = file_inode(file);
3060 
3061 	clear_inode_flag(inode, FI_PIN_FILE);
3062 }
3063 #else
3064 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3065 				sector_t *span)
3066 {
3067 	return -EOPNOTSUPP;
3068 }
3069 
3070 static void f2fs_swap_deactivate(struct file *file)
3071 {
3072 }
3073 #endif
3074 
3075 const struct address_space_operations f2fs_dblock_aops = {
3076 	.readpage	= f2fs_read_data_page,
3077 	.readpages	= f2fs_read_data_pages,
3078 	.writepage	= f2fs_write_data_page,
3079 	.writepages	= f2fs_write_data_pages,
3080 	.write_begin	= f2fs_write_begin,
3081 	.write_end	= f2fs_write_end,
3082 	.set_page_dirty	= f2fs_set_data_page_dirty,
3083 	.invalidatepage	= f2fs_invalidate_page,
3084 	.releasepage	= f2fs_release_page,
3085 	.direct_IO	= f2fs_direct_IO,
3086 	.bmap		= f2fs_bmap,
3087 	.swap_activate  = f2fs_swap_activate,
3088 	.swap_deactivate = f2fs_swap_deactivate,
3089 #ifdef CONFIG_MIGRATION
3090 	.migratepage    = f2fs_migrate_page,
3091 #endif
3092 };
3093 
3094 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3095 {
3096 	struct address_space *mapping = page_mapping(page);
3097 	unsigned long flags;
3098 
3099 	xa_lock_irqsave(&mapping->i_pages, flags);
3100 	__xa_clear_mark(&mapping->i_pages, page_index(page),
3101 						PAGECACHE_TAG_DIRTY);
3102 	xa_unlock_irqrestore(&mapping->i_pages, flags);
3103 }
3104 
3105 int __init f2fs_init_post_read_processing(void)
3106 {
3107 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
3108 	if (!bio_post_read_ctx_cache)
3109 		goto fail;
3110 	bio_post_read_ctx_pool =
3111 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3112 					 bio_post_read_ctx_cache);
3113 	if (!bio_post_read_ctx_pool)
3114 		goto fail_free_cache;
3115 	return 0;
3116 
3117 fail_free_cache:
3118 	kmem_cache_destroy(bio_post_read_ctx_cache);
3119 fail:
3120 	return -ENOMEM;
3121 }
3122 
3123 void __exit f2fs_destroy_post_read_processing(void)
3124 {
3125 	mempool_destroy(bio_post_read_ctx_pool);
3126 	kmem_cache_destroy(bio_post_read_ctx_cache);
3127 }
3128