1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 #include <linux/sched/signal.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 is_cold_data(page)) 49 return true; 50 return false; 51 } 52 53 static void f2fs_read_end_io(struct bio *bio) 54 { 55 struct bio_vec *bvec; 56 int i; 57 58 #ifdef CONFIG_F2FS_FAULT_INJECTION 59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) { 60 f2fs_show_injection_info(FAULT_IO); 61 bio->bi_status = BLK_STS_IOERR; 62 } 63 #endif 64 65 if (f2fs_bio_encrypted(bio)) { 66 if (bio->bi_status) { 67 fscrypt_release_ctx(bio->bi_private); 68 } else { 69 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 70 return; 71 } 72 } 73 74 bio_for_each_segment_all(bvec, bio, i) { 75 struct page *page = bvec->bv_page; 76 77 if (!bio->bi_status) { 78 if (!PageUptodate(page)) 79 SetPageUptodate(page); 80 } else { 81 ClearPageUptodate(page); 82 SetPageError(page); 83 } 84 unlock_page(page); 85 } 86 bio_put(bio); 87 } 88 89 static void f2fs_write_end_io(struct bio *bio) 90 { 91 struct f2fs_sb_info *sbi = bio->bi_private; 92 struct bio_vec *bvec; 93 int i; 94 95 bio_for_each_segment_all(bvec, bio, i) { 96 struct page *page = bvec->bv_page; 97 enum count_type type = WB_DATA_TYPE(page); 98 99 if (IS_DUMMY_WRITTEN_PAGE(page)) { 100 set_page_private(page, (unsigned long)NULL); 101 ClearPagePrivate(page); 102 unlock_page(page); 103 mempool_free(page, sbi->write_io_dummy); 104 105 if (unlikely(bio->bi_status)) 106 f2fs_stop_checkpoint(sbi, true); 107 continue; 108 } 109 110 fscrypt_pullback_bio_page(&page, true); 111 112 if (unlikely(bio->bi_status)) { 113 mapping_set_error(page->mapping, -EIO); 114 f2fs_stop_checkpoint(sbi, true); 115 } 116 dec_page_count(sbi, type); 117 clear_cold_data(page); 118 end_page_writeback(page); 119 } 120 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 121 wq_has_sleeper(&sbi->cp_wait)) 122 wake_up(&sbi->cp_wait); 123 124 bio_put(bio); 125 } 126 127 /* 128 * Return true, if pre_bio's bdev is same as its target device. 129 */ 130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 131 block_t blk_addr, struct bio *bio) 132 { 133 struct block_device *bdev = sbi->sb->s_bdev; 134 int i; 135 136 for (i = 0; i < sbi->s_ndevs; i++) { 137 if (FDEV(i).start_blk <= blk_addr && 138 FDEV(i).end_blk >= blk_addr) { 139 blk_addr -= FDEV(i).start_blk; 140 bdev = FDEV(i).bdev; 141 break; 142 } 143 } 144 if (bio) { 145 bio->bi_bdev = bdev; 146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 147 } 148 return bdev; 149 } 150 151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 152 { 153 int i; 154 155 for (i = 0; i < sbi->s_ndevs; i++) 156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 157 return i; 158 return 0; 159 } 160 161 static bool __same_bdev(struct f2fs_sb_info *sbi, 162 block_t blk_addr, struct bio *bio) 163 { 164 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev; 165 } 166 167 /* 168 * Low-level block read/write IO operations. 169 */ 170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 171 int npages, bool is_read) 172 { 173 struct bio *bio; 174 175 bio = f2fs_bio_alloc(npages); 176 177 f2fs_target_device(sbi, blk_addr, bio); 178 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 179 bio->bi_private = is_read ? NULL : sbi; 180 181 return bio; 182 } 183 184 static inline void __submit_bio(struct f2fs_sb_info *sbi, 185 struct bio *bio, enum page_type type) 186 { 187 if (!is_read_io(bio_op(bio))) { 188 unsigned int start; 189 190 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 191 current->plug && (type == DATA || type == NODE)) 192 blk_finish_plug(current->plug); 193 194 if (type != DATA && type != NODE) 195 goto submit_io; 196 197 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 198 start %= F2FS_IO_SIZE(sbi); 199 200 if (start == 0) 201 goto submit_io; 202 203 /* fill dummy pages */ 204 for (; start < F2FS_IO_SIZE(sbi); start++) { 205 struct page *page = 206 mempool_alloc(sbi->write_io_dummy, 207 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 208 f2fs_bug_on(sbi, !page); 209 210 SetPagePrivate(page); 211 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 212 lock_page(page); 213 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 214 f2fs_bug_on(sbi, 1); 215 } 216 /* 217 * In the NODE case, we lose next block address chain. So, we 218 * need to do checkpoint in f2fs_sync_file. 219 */ 220 if (type == NODE) 221 set_sbi_flag(sbi, SBI_NEED_CP); 222 } 223 submit_io: 224 if (is_read_io(bio_op(bio))) 225 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 226 else 227 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 228 submit_bio(bio); 229 } 230 231 static void __submit_merged_bio(struct f2fs_bio_info *io) 232 { 233 struct f2fs_io_info *fio = &io->fio; 234 235 if (!io->bio) 236 return; 237 238 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 239 240 if (is_read_io(fio->op)) 241 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 242 else 243 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 244 245 __submit_bio(io->sbi, io->bio, fio->type); 246 io->bio = NULL; 247 } 248 249 static bool __has_merged_page(struct f2fs_bio_info *io, 250 struct inode *inode, nid_t ino, pgoff_t idx) 251 { 252 struct bio_vec *bvec; 253 struct page *target; 254 int i; 255 256 if (!io->bio) 257 return false; 258 259 if (!inode && !ino) 260 return true; 261 262 bio_for_each_segment_all(bvec, io->bio, i) { 263 264 if (bvec->bv_page->mapping) 265 target = bvec->bv_page; 266 else 267 target = fscrypt_control_page(bvec->bv_page); 268 269 if (idx != target->index) 270 continue; 271 272 if (inode && inode == target->mapping->host) 273 return true; 274 if (ino && ino == ino_of_node(target)) 275 return true; 276 } 277 278 return false; 279 } 280 281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 282 nid_t ino, pgoff_t idx, enum page_type type) 283 { 284 enum page_type btype = PAGE_TYPE_OF_BIO(type); 285 enum temp_type temp; 286 struct f2fs_bio_info *io; 287 bool ret = false; 288 289 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 290 io = sbi->write_io[btype] + temp; 291 292 down_read(&io->io_rwsem); 293 ret = __has_merged_page(io, inode, ino, idx); 294 up_read(&io->io_rwsem); 295 296 /* TODO: use HOT temp only for meta pages now. */ 297 if (ret || btype == META) 298 break; 299 } 300 return ret; 301 } 302 303 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 304 enum page_type type, enum temp_type temp) 305 { 306 enum page_type btype = PAGE_TYPE_OF_BIO(type); 307 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 308 309 down_write(&io->io_rwsem); 310 311 /* change META to META_FLUSH in the checkpoint procedure */ 312 if (type >= META_FLUSH) { 313 io->fio.type = META_FLUSH; 314 io->fio.op = REQ_OP_WRITE; 315 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 316 if (!test_opt(sbi, NOBARRIER)) 317 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 318 } 319 __submit_merged_bio(io); 320 up_write(&io->io_rwsem); 321 } 322 323 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 324 struct inode *inode, nid_t ino, pgoff_t idx, 325 enum page_type type, bool force) 326 { 327 enum temp_type temp; 328 329 if (!force && !has_merged_page(sbi, inode, ino, idx, type)) 330 return; 331 332 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 333 334 __f2fs_submit_merged_write(sbi, type, temp); 335 336 /* TODO: use HOT temp only for meta pages now. */ 337 if (type >= META) 338 break; 339 } 340 } 341 342 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 343 { 344 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 345 } 346 347 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 348 struct inode *inode, nid_t ino, pgoff_t idx, 349 enum page_type type) 350 { 351 __submit_merged_write_cond(sbi, inode, ino, idx, type, false); 352 } 353 354 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 355 { 356 f2fs_submit_merged_write(sbi, DATA); 357 f2fs_submit_merged_write(sbi, NODE); 358 f2fs_submit_merged_write(sbi, META); 359 } 360 361 /* 362 * Fill the locked page with data located in the block address. 363 * A caller needs to unlock the page on failure. 364 */ 365 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 366 { 367 struct bio *bio; 368 struct page *page = fio->encrypted_page ? 369 fio->encrypted_page : fio->page; 370 371 trace_f2fs_submit_page_bio(page, fio); 372 f2fs_trace_ios(fio, 0); 373 374 /* Allocate a new bio */ 375 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 376 377 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 378 bio_put(bio); 379 return -EFAULT; 380 } 381 bio_set_op_attrs(bio, fio->op, fio->op_flags); 382 383 __submit_bio(fio->sbi, bio, fio->type); 384 385 if (!is_read_io(fio->op)) 386 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page)); 387 return 0; 388 } 389 390 int f2fs_submit_page_write(struct f2fs_io_info *fio) 391 { 392 struct f2fs_sb_info *sbi = fio->sbi; 393 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 394 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 395 struct page *bio_page; 396 int err = 0; 397 398 f2fs_bug_on(sbi, is_read_io(fio->op)); 399 400 down_write(&io->io_rwsem); 401 next: 402 if (fio->in_list) { 403 spin_lock(&io->io_lock); 404 if (list_empty(&io->io_list)) { 405 spin_unlock(&io->io_lock); 406 goto out_fail; 407 } 408 fio = list_first_entry(&io->io_list, 409 struct f2fs_io_info, list); 410 list_del(&fio->list); 411 spin_unlock(&io->io_lock); 412 } 413 414 if (fio->old_blkaddr != NEW_ADDR) 415 verify_block_addr(sbi, fio->old_blkaddr); 416 verify_block_addr(sbi, fio->new_blkaddr); 417 418 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 419 420 /* set submitted = 1 as a return value */ 421 fio->submitted = 1; 422 423 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 424 425 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 426 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 427 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 428 __submit_merged_bio(io); 429 alloc_new: 430 if (io->bio == NULL) { 431 if ((fio->type == DATA || fio->type == NODE) && 432 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 433 err = -EAGAIN; 434 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 435 goto out_fail; 436 } 437 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 438 BIO_MAX_PAGES, false); 439 io->fio = *fio; 440 } 441 442 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 443 __submit_merged_bio(io); 444 goto alloc_new; 445 } 446 447 io->last_block_in_bio = fio->new_blkaddr; 448 f2fs_trace_ios(fio, 0); 449 450 trace_f2fs_submit_page_write(fio->page, fio); 451 452 if (fio->in_list) 453 goto next; 454 out_fail: 455 up_write(&io->io_rwsem); 456 return err; 457 } 458 459 static void __set_data_blkaddr(struct dnode_of_data *dn) 460 { 461 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 462 __le32 *addr_array; 463 464 /* Get physical address of data block */ 465 addr_array = blkaddr_in_node(rn); 466 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 467 } 468 469 /* 470 * Lock ordering for the change of data block address: 471 * ->data_page 472 * ->node_page 473 * update block addresses in the node page 474 */ 475 void set_data_blkaddr(struct dnode_of_data *dn) 476 { 477 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 478 __set_data_blkaddr(dn); 479 if (set_page_dirty(dn->node_page)) 480 dn->node_changed = true; 481 } 482 483 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 484 { 485 dn->data_blkaddr = blkaddr; 486 set_data_blkaddr(dn); 487 f2fs_update_extent_cache(dn); 488 } 489 490 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 491 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 492 { 493 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 494 int err; 495 496 if (!count) 497 return 0; 498 499 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 500 return -EPERM; 501 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 502 return err; 503 504 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 505 dn->ofs_in_node, count); 506 507 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 508 509 for (; count > 0; dn->ofs_in_node++) { 510 block_t blkaddr = 511 datablock_addr(dn->node_page, dn->ofs_in_node); 512 if (blkaddr == NULL_ADDR) { 513 dn->data_blkaddr = NEW_ADDR; 514 __set_data_blkaddr(dn); 515 count--; 516 } 517 } 518 519 if (set_page_dirty(dn->node_page)) 520 dn->node_changed = true; 521 return 0; 522 } 523 524 /* Should keep dn->ofs_in_node unchanged */ 525 int reserve_new_block(struct dnode_of_data *dn) 526 { 527 unsigned int ofs_in_node = dn->ofs_in_node; 528 int ret; 529 530 ret = reserve_new_blocks(dn, 1); 531 dn->ofs_in_node = ofs_in_node; 532 return ret; 533 } 534 535 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 536 { 537 bool need_put = dn->inode_page ? false : true; 538 int err; 539 540 err = get_dnode_of_data(dn, index, ALLOC_NODE); 541 if (err) 542 return err; 543 544 if (dn->data_blkaddr == NULL_ADDR) 545 err = reserve_new_block(dn); 546 if (err || need_put) 547 f2fs_put_dnode(dn); 548 return err; 549 } 550 551 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 552 { 553 struct extent_info ei = {0,0,0}; 554 struct inode *inode = dn->inode; 555 556 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 557 dn->data_blkaddr = ei.blk + index - ei.fofs; 558 return 0; 559 } 560 561 return f2fs_reserve_block(dn, index); 562 } 563 564 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 565 int op_flags, bool for_write) 566 { 567 struct address_space *mapping = inode->i_mapping; 568 struct dnode_of_data dn; 569 struct page *page; 570 struct extent_info ei = {0,0,0}; 571 int err; 572 struct f2fs_io_info fio = { 573 .sbi = F2FS_I_SB(inode), 574 .type = DATA, 575 .op = REQ_OP_READ, 576 .op_flags = op_flags, 577 .encrypted_page = NULL, 578 }; 579 580 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 581 return read_mapping_page(mapping, index, NULL); 582 583 page = f2fs_grab_cache_page(mapping, index, for_write); 584 if (!page) 585 return ERR_PTR(-ENOMEM); 586 587 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 588 dn.data_blkaddr = ei.blk + index - ei.fofs; 589 goto got_it; 590 } 591 592 set_new_dnode(&dn, inode, NULL, NULL, 0); 593 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 594 if (err) 595 goto put_err; 596 f2fs_put_dnode(&dn); 597 598 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 599 err = -ENOENT; 600 goto put_err; 601 } 602 got_it: 603 if (PageUptodate(page)) { 604 unlock_page(page); 605 return page; 606 } 607 608 /* 609 * A new dentry page is allocated but not able to be written, since its 610 * new inode page couldn't be allocated due to -ENOSPC. 611 * In such the case, its blkaddr can be remained as NEW_ADDR. 612 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 613 */ 614 if (dn.data_blkaddr == NEW_ADDR) { 615 zero_user_segment(page, 0, PAGE_SIZE); 616 if (!PageUptodate(page)) 617 SetPageUptodate(page); 618 unlock_page(page); 619 return page; 620 } 621 622 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 623 fio.page = page; 624 err = f2fs_submit_page_bio(&fio); 625 if (err) 626 goto put_err; 627 return page; 628 629 put_err: 630 f2fs_put_page(page, 1); 631 return ERR_PTR(err); 632 } 633 634 struct page *find_data_page(struct inode *inode, pgoff_t index) 635 { 636 struct address_space *mapping = inode->i_mapping; 637 struct page *page; 638 639 page = find_get_page(mapping, index); 640 if (page && PageUptodate(page)) 641 return page; 642 f2fs_put_page(page, 0); 643 644 page = get_read_data_page(inode, index, 0, false); 645 if (IS_ERR(page)) 646 return page; 647 648 if (PageUptodate(page)) 649 return page; 650 651 wait_on_page_locked(page); 652 if (unlikely(!PageUptodate(page))) { 653 f2fs_put_page(page, 0); 654 return ERR_PTR(-EIO); 655 } 656 return page; 657 } 658 659 /* 660 * If it tries to access a hole, return an error. 661 * Because, the callers, functions in dir.c and GC, should be able to know 662 * whether this page exists or not. 663 */ 664 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 665 bool for_write) 666 { 667 struct address_space *mapping = inode->i_mapping; 668 struct page *page; 669 repeat: 670 page = get_read_data_page(inode, index, 0, for_write); 671 if (IS_ERR(page)) 672 return page; 673 674 /* wait for read completion */ 675 lock_page(page); 676 if (unlikely(page->mapping != mapping)) { 677 f2fs_put_page(page, 1); 678 goto repeat; 679 } 680 if (unlikely(!PageUptodate(page))) { 681 f2fs_put_page(page, 1); 682 return ERR_PTR(-EIO); 683 } 684 return page; 685 } 686 687 /* 688 * Caller ensures that this data page is never allocated. 689 * A new zero-filled data page is allocated in the page cache. 690 * 691 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 692 * f2fs_unlock_op(). 693 * Note that, ipage is set only by make_empty_dir, and if any error occur, 694 * ipage should be released by this function. 695 */ 696 struct page *get_new_data_page(struct inode *inode, 697 struct page *ipage, pgoff_t index, bool new_i_size) 698 { 699 struct address_space *mapping = inode->i_mapping; 700 struct page *page; 701 struct dnode_of_data dn; 702 int err; 703 704 page = f2fs_grab_cache_page(mapping, index, true); 705 if (!page) { 706 /* 707 * before exiting, we should make sure ipage will be released 708 * if any error occur. 709 */ 710 f2fs_put_page(ipage, 1); 711 return ERR_PTR(-ENOMEM); 712 } 713 714 set_new_dnode(&dn, inode, ipage, NULL, 0); 715 err = f2fs_reserve_block(&dn, index); 716 if (err) { 717 f2fs_put_page(page, 1); 718 return ERR_PTR(err); 719 } 720 if (!ipage) 721 f2fs_put_dnode(&dn); 722 723 if (PageUptodate(page)) 724 goto got_it; 725 726 if (dn.data_blkaddr == NEW_ADDR) { 727 zero_user_segment(page, 0, PAGE_SIZE); 728 if (!PageUptodate(page)) 729 SetPageUptodate(page); 730 } else { 731 f2fs_put_page(page, 1); 732 733 /* if ipage exists, blkaddr should be NEW_ADDR */ 734 f2fs_bug_on(F2FS_I_SB(inode), ipage); 735 page = get_lock_data_page(inode, index, true); 736 if (IS_ERR(page)) 737 return page; 738 } 739 got_it: 740 if (new_i_size && i_size_read(inode) < 741 ((loff_t)(index + 1) << PAGE_SHIFT)) 742 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 743 return page; 744 } 745 746 static int __allocate_data_block(struct dnode_of_data *dn) 747 { 748 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 749 struct f2fs_summary sum; 750 struct node_info ni; 751 pgoff_t fofs; 752 blkcnt_t count = 1; 753 int err; 754 755 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 756 return -EPERM; 757 758 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 759 if (dn->data_blkaddr == NEW_ADDR) 760 goto alloc; 761 762 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 763 return err; 764 765 alloc: 766 get_node_info(sbi, dn->nid, &ni); 767 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 768 769 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 770 &sum, CURSEG_WARM_DATA, NULL, false); 771 set_data_blkaddr(dn); 772 773 /* update i_size */ 774 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 775 dn->ofs_in_node; 776 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 777 f2fs_i_size_write(dn->inode, 778 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 779 return 0; 780 } 781 782 static inline bool __force_buffered_io(struct inode *inode, int rw) 783 { 784 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) || 785 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 786 F2FS_I_SB(inode)->s_ndevs); 787 } 788 789 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 790 { 791 struct inode *inode = file_inode(iocb->ki_filp); 792 struct f2fs_map_blocks map; 793 int err = 0; 794 795 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 796 return 0; 797 798 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 799 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 800 if (map.m_len > map.m_lblk) 801 map.m_len -= map.m_lblk; 802 else 803 map.m_len = 0; 804 805 map.m_next_pgofs = NULL; 806 807 if (iocb->ki_flags & IOCB_DIRECT) { 808 err = f2fs_convert_inline_inode(inode); 809 if (err) 810 return err; 811 return f2fs_map_blocks(inode, &map, 1, 812 __force_buffered_io(inode, WRITE) ? 813 F2FS_GET_BLOCK_PRE_AIO : 814 F2FS_GET_BLOCK_PRE_DIO); 815 } 816 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 817 err = f2fs_convert_inline_inode(inode); 818 if (err) 819 return err; 820 } 821 if (!f2fs_has_inline_data(inode)) 822 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 823 return err; 824 } 825 826 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 827 { 828 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 829 if (lock) 830 down_read(&sbi->node_change); 831 else 832 up_read(&sbi->node_change); 833 } else { 834 if (lock) 835 f2fs_lock_op(sbi); 836 else 837 f2fs_unlock_op(sbi); 838 } 839 } 840 841 /* 842 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 843 * f2fs_map_blocks structure. 844 * If original data blocks are allocated, then give them to blockdev. 845 * Otherwise, 846 * a. preallocate requested block addresses 847 * b. do not use extent cache for better performance 848 * c. give the block addresses to blockdev 849 */ 850 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 851 int create, int flag) 852 { 853 unsigned int maxblocks = map->m_len; 854 struct dnode_of_data dn; 855 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 856 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 857 pgoff_t pgofs, end_offset, end; 858 int err = 0, ofs = 1; 859 unsigned int ofs_in_node, last_ofs_in_node; 860 blkcnt_t prealloc; 861 struct extent_info ei = {0,0,0}; 862 block_t blkaddr; 863 864 if (!maxblocks) 865 return 0; 866 867 map->m_len = 0; 868 map->m_flags = 0; 869 870 /* it only supports block size == page size */ 871 pgofs = (pgoff_t)map->m_lblk; 872 end = pgofs + maxblocks; 873 874 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 875 map->m_pblk = ei.blk + pgofs - ei.fofs; 876 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 877 map->m_flags = F2FS_MAP_MAPPED; 878 goto out; 879 } 880 881 next_dnode: 882 if (create) 883 __do_map_lock(sbi, flag, true); 884 885 /* When reading holes, we need its node page */ 886 set_new_dnode(&dn, inode, NULL, NULL, 0); 887 err = get_dnode_of_data(&dn, pgofs, mode); 888 if (err) { 889 if (flag == F2FS_GET_BLOCK_BMAP) 890 map->m_pblk = 0; 891 if (err == -ENOENT) { 892 err = 0; 893 if (map->m_next_pgofs) 894 *map->m_next_pgofs = 895 get_next_page_offset(&dn, pgofs); 896 } 897 goto unlock_out; 898 } 899 900 prealloc = 0; 901 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 902 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 903 904 next_block: 905 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 906 907 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 908 if (create) { 909 if (unlikely(f2fs_cp_error(sbi))) { 910 err = -EIO; 911 goto sync_out; 912 } 913 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 914 if (blkaddr == NULL_ADDR) { 915 prealloc++; 916 last_ofs_in_node = dn.ofs_in_node; 917 } 918 } else { 919 err = __allocate_data_block(&dn); 920 if (!err) 921 set_inode_flag(inode, FI_APPEND_WRITE); 922 } 923 if (err) 924 goto sync_out; 925 map->m_flags |= F2FS_MAP_NEW; 926 blkaddr = dn.data_blkaddr; 927 } else { 928 if (flag == F2FS_GET_BLOCK_BMAP) { 929 map->m_pblk = 0; 930 goto sync_out; 931 } 932 if (flag == F2FS_GET_BLOCK_FIEMAP && 933 blkaddr == NULL_ADDR) { 934 if (map->m_next_pgofs) 935 *map->m_next_pgofs = pgofs + 1; 936 } 937 if (flag != F2FS_GET_BLOCK_FIEMAP || 938 blkaddr != NEW_ADDR) 939 goto sync_out; 940 } 941 } 942 943 if (flag == F2FS_GET_BLOCK_PRE_AIO) 944 goto skip; 945 946 if (map->m_len == 0) { 947 /* preallocated unwritten block should be mapped for fiemap. */ 948 if (blkaddr == NEW_ADDR) 949 map->m_flags |= F2FS_MAP_UNWRITTEN; 950 map->m_flags |= F2FS_MAP_MAPPED; 951 952 map->m_pblk = blkaddr; 953 map->m_len = 1; 954 } else if ((map->m_pblk != NEW_ADDR && 955 blkaddr == (map->m_pblk + ofs)) || 956 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 957 flag == F2FS_GET_BLOCK_PRE_DIO) { 958 ofs++; 959 map->m_len++; 960 } else { 961 goto sync_out; 962 } 963 964 skip: 965 dn.ofs_in_node++; 966 pgofs++; 967 968 /* preallocate blocks in batch for one dnode page */ 969 if (flag == F2FS_GET_BLOCK_PRE_AIO && 970 (pgofs == end || dn.ofs_in_node == end_offset)) { 971 972 dn.ofs_in_node = ofs_in_node; 973 err = reserve_new_blocks(&dn, prealloc); 974 if (err) 975 goto sync_out; 976 977 map->m_len += dn.ofs_in_node - ofs_in_node; 978 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 979 err = -ENOSPC; 980 goto sync_out; 981 } 982 dn.ofs_in_node = end_offset; 983 } 984 985 if (pgofs >= end) 986 goto sync_out; 987 else if (dn.ofs_in_node < end_offset) 988 goto next_block; 989 990 f2fs_put_dnode(&dn); 991 992 if (create) { 993 __do_map_lock(sbi, flag, false); 994 f2fs_balance_fs(sbi, dn.node_changed); 995 } 996 goto next_dnode; 997 998 sync_out: 999 f2fs_put_dnode(&dn); 1000 unlock_out: 1001 if (create) { 1002 __do_map_lock(sbi, flag, false); 1003 f2fs_balance_fs(sbi, dn.node_changed); 1004 } 1005 out: 1006 trace_f2fs_map_blocks(inode, map, err); 1007 return err; 1008 } 1009 1010 static int __get_data_block(struct inode *inode, sector_t iblock, 1011 struct buffer_head *bh, int create, int flag, 1012 pgoff_t *next_pgofs) 1013 { 1014 struct f2fs_map_blocks map; 1015 int err; 1016 1017 map.m_lblk = iblock; 1018 map.m_len = bh->b_size >> inode->i_blkbits; 1019 map.m_next_pgofs = next_pgofs; 1020 1021 err = f2fs_map_blocks(inode, &map, create, flag); 1022 if (!err) { 1023 map_bh(bh, inode->i_sb, map.m_pblk); 1024 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1025 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1026 } 1027 return err; 1028 } 1029 1030 static int get_data_block(struct inode *inode, sector_t iblock, 1031 struct buffer_head *bh_result, int create, int flag, 1032 pgoff_t *next_pgofs) 1033 { 1034 return __get_data_block(inode, iblock, bh_result, create, 1035 flag, next_pgofs); 1036 } 1037 1038 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1039 struct buffer_head *bh_result, int create) 1040 { 1041 return __get_data_block(inode, iblock, bh_result, create, 1042 F2FS_GET_BLOCK_DIO, NULL); 1043 } 1044 1045 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1046 struct buffer_head *bh_result, int create) 1047 { 1048 /* Block number less than F2FS MAX BLOCKS */ 1049 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1050 return -EFBIG; 1051 1052 return __get_data_block(inode, iblock, bh_result, create, 1053 F2FS_GET_BLOCK_BMAP, NULL); 1054 } 1055 1056 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1057 { 1058 return (offset >> inode->i_blkbits); 1059 } 1060 1061 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1062 { 1063 return (blk << inode->i_blkbits); 1064 } 1065 1066 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1067 u64 start, u64 len) 1068 { 1069 struct buffer_head map_bh; 1070 sector_t start_blk, last_blk; 1071 pgoff_t next_pgofs; 1072 u64 logical = 0, phys = 0, size = 0; 1073 u32 flags = 0; 1074 int ret = 0; 1075 1076 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 1077 if (ret) 1078 return ret; 1079 1080 if (f2fs_has_inline_data(inode)) { 1081 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1082 if (ret != -EAGAIN) 1083 return ret; 1084 } 1085 1086 inode_lock(inode); 1087 1088 if (logical_to_blk(inode, len) == 0) 1089 len = blk_to_logical(inode, 1); 1090 1091 start_blk = logical_to_blk(inode, start); 1092 last_blk = logical_to_blk(inode, start + len - 1); 1093 1094 next: 1095 memset(&map_bh, 0, sizeof(struct buffer_head)); 1096 map_bh.b_size = len; 1097 1098 ret = get_data_block(inode, start_blk, &map_bh, 0, 1099 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1100 if (ret) 1101 goto out; 1102 1103 /* HOLE */ 1104 if (!buffer_mapped(&map_bh)) { 1105 start_blk = next_pgofs; 1106 1107 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1108 F2FS_I_SB(inode)->max_file_blocks)) 1109 goto prep_next; 1110 1111 flags |= FIEMAP_EXTENT_LAST; 1112 } 1113 1114 if (size) { 1115 if (f2fs_encrypted_inode(inode)) 1116 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1117 1118 ret = fiemap_fill_next_extent(fieinfo, logical, 1119 phys, size, flags); 1120 } 1121 1122 if (start_blk > last_blk || ret) 1123 goto out; 1124 1125 logical = blk_to_logical(inode, start_blk); 1126 phys = blk_to_logical(inode, map_bh.b_blocknr); 1127 size = map_bh.b_size; 1128 flags = 0; 1129 if (buffer_unwritten(&map_bh)) 1130 flags = FIEMAP_EXTENT_UNWRITTEN; 1131 1132 start_blk += logical_to_blk(inode, size); 1133 1134 prep_next: 1135 cond_resched(); 1136 if (fatal_signal_pending(current)) 1137 ret = -EINTR; 1138 else 1139 goto next; 1140 out: 1141 if (ret == 1) 1142 ret = 0; 1143 1144 inode_unlock(inode); 1145 return ret; 1146 } 1147 1148 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 1149 unsigned nr_pages) 1150 { 1151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1152 struct fscrypt_ctx *ctx = NULL; 1153 struct bio *bio; 1154 1155 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1156 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 1157 if (IS_ERR(ctx)) 1158 return ERR_CAST(ctx); 1159 1160 /* wait the page to be moved by cleaning */ 1161 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1162 } 1163 1164 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 1165 if (!bio) { 1166 if (ctx) 1167 fscrypt_release_ctx(ctx); 1168 return ERR_PTR(-ENOMEM); 1169 } 1170 f2fs_target_device(sbi, blkaddr, bio); 1171 bio->bi_end_io = f2fs_read_end_io; 1172 bio->bi_private = ctx; 1173 1174 return bio; 1175 } 1176 1177 /* 1178 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1179 * Major change was from block_size == page_size in f2fs by default. 1180 */ 1181 static int f2fs_mpage_readpages(struct address_space *mapping, 1182 struct list_head *pages, struct page *page, 1183 unsigned nr_pages) 1184 { 1185 struct bio *bio = NULL; 1186 unsigned page_idx; 1187 sector_t last_block_in_bio = 0; 1188 struct inode *inode = mapping->host; 1189 const unsigned blkbits = inode->i_blkbits; 1190 const unsigned blocksize = 1 << blkbits; 1191 sector_t block_in_file; 1192 sector_t last_block; 1193 sector_t last_block_in_file; 1194 sector_t block_nr; 1195 struct f2fs_map_blocks map; 1196 1197 map.m_pblk = 0; 1198 map.m_lblk = 0; 1199 map.m_len = 0; 1200 map.m_flags = 0; 1201 map.m_next_pgofs = NULL; 1202 1203 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1204 1205 if (pages) { 1206 page = list_last_entry(pages, struct page, lru); 1207 1208 prefetchw(&page->flags); 1209 list_del(&page->lru); 1210 if (add_to_page_cache_lru(page, mapping, 1211 page->index, 1212 readahead_gfp_mask(mapping))) 1213 goto next_page; 1214 } 1215 1216 block_in_file = (sector_t)page->index; 1217 last_block = block_in_file + nr_pages; 1218 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1219 blkbits; 1220 if (last_block > last_block_in_file) 1221 last_block = last_block_in_file; 1222 1223 /* 1224 * Map blocks using the previous result first. 1225 */ 1226 if ((map.m_flags & F2FS_MAP_MAPPED) && 1227 block_in_file > map.m_lblk && 1228 block_in_file < (map.m_lblk + map.m_len)) 1229 goto got_it; 1230 1231 /* 1232 * Then do more f2fs_map_blocks() calls until we are 1233 * done with this page. 1234 */ 1235 map.m_flags = 0; 1236 1237 if (block_in_file < last_block) { 1238 map.m_lblk = block_in_file; 1239 map.m_len = last_block - block_in_file; 1240 1241 if (f2fs_map_blocks(inode, &map, 0, 1242 F2FS_GET_BLOCK_READ)) 1243 goto set_error_page; 1244 } 1245 got_it: 1246 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1247 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1248 SetPageMappedToDisk(page); 1249 1250 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1251 SetPageUptodate(page); 1252 goto confused; 1253 } 1254 } else { 1255 zero_user_segment(page, 0, PAGE_SIZE); 1256 if (!PageUptodate(page)) 1257 SetPageUptodate(page); 1258 unlock_page(page); 1259 goto next_page; 1260 } 1261 1262 /* 1263 * This page will go to BIO. Do we need to send this 1264 * BIO off first? 1265 */ 1266 if (bio && (last_block_in_bio != block_nr - 1 || 1267 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1268 submit_and_realloc: 1269 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1270 bio = NULL; 1271 } 1272 if (bio == NULL) { 1273 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1274 if (IS_ERR(bio)) { 1275 bio = NULL; 1276 goto set_error_page; 1277 } 1278 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1279 } 1280 1281 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1282 goto submit_and_realloc; 1283 1284 last_block_in_bio = block_nr; 1285 goto next_page; 1286 set_error_page: 1287 SetPageError(page); 1288 zero_user_segment(page, 0, PAGE_SIZE); 1289 unlock_page(page); 1290 goto next_page; 1291 confused: 1292 if (bio) { 1293 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1294 bio = NULL; 1295 } 1296 unlock_page(page); 1297 next_page: 1298 if (pages) 1299 put_page(page); 1300 } 1301 BUG_ON(pages && !list_empty(pages)); 1302 if (bio) 1303 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1304 return 0; 1305 } 1306 1307 static int f2fs_read_data_page(struct file *file, struct page *page) 1308 { 1309 struct inode *inode = page->mapping->host; 1310 int ret = -EAGAIN; 1311 1312 trace_f2fs_readpage(page, DATA); 1313 1314 /* If the file has inline data, try to read it directly */ 1315 if (f2fs_has_inline_data(inode)) 1316 ret = f2fs_read_inline_data(inode, page); 1317 if (ret == -EAGAIN) 1318 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1319 return ret; 1320 } 1321 1322 static int f2fs_read_data_pages(struct file *file, 1323 struct address_space *mapping, 1324 struct list_head *pages, unsigned nr_pages) 1325 { 1326 struct inode *inode = file->f_mapping->host; 1327 struct page *page = list_last_entry(pages, struct page, lru); 1328 1329 trace_f2fs_readpages(inode, page, nr_pages); 1330 1331 /* If the file has inline data, skip readpages */ 1332 if (f2fs_has_inline_data(inode)) 1333 return 0; 1334 1335 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1336 } 1337 1338 static int encrypt_one_page(struct f2fs_io_info *fio) 1339 { 1340 struct inode *inode = fio->page->mapping->host; 1341 gfp_t gfp_flags = GFP_NOFS; 1342 1343 if (!f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode)) 1344 return 0; 1345 1346 /* wait for GCed encrypted page writeback */ 1347 f2fs_wait_on_encrypted_page_writeback(fio->sbi, fio->old_blkaddr); 1348 1349 retry_encrypt: 1350 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1351 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1352 if (!IS_ERR(fio->encrypted_page)) 1353 return 0; 1354 1355 /* flush pending IOs and wait for a while in the ENOMEM case */ 1356 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1357 f2fs_flush_merged_writes(fio->sbi); 1358 congestion_wait(BLK_RW_ASYNC, HZ/50); 1359 gfp_flags |= __GFP_NOFAIL; 1360 goto retry_encrypt; 1361 } 1362 return PTR_ERR(fio->encrypted_page); 1363 } 1364 1365 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1366 { 1367 struct inode *inode = fio->page->mapping->host; 1368 1369 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 1370 return false; 1371 if (is_cold_data(fio->page)) 1372 return false; 1373 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1374 return false; 1375 1376 return need_inplace_update_policy(inode, fio); 1377 } 1378 1379 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio) 1380 { 1381 if (fio->old_blkaddr == NEW_ADDR) 1382 return false; 1383 if (fio->old_blkaddr == NULL_ADDR) 1384 return false; 1385 return true; 1386 } 1387 1388 int do_write_data_page(struct f2fs_io_info *fio) 1389 { 1390 struct page *page = fio->page; 1391 struct inode *inode = page->mapping->host; 1392 struct dnode_of_data dn; 1393 struct extent_info ei = {0,0,0}; 1394 bool ipu_force = false; 1395 int err = 0; 1396 1397 set_new_dnode(&dn, inode, NULL, NULL, 0); 1398 if (need_inplace_update(fio) && 1399 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1400 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1401 1402 if (valid_ipu_blkaddr(fio)) { 1403 ipu_force = true; 1404 fio->need_lock = LOCK_DONE; 1405 goto got_it; 1406 } 1407 } 1408 1409 /* Deadlock due to between page->lock and f2fs_lock_op */ 1410 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1411 return -EAGAIN; 1412 1413 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1414 if (err) 1415 goto out; 1416 1417 fio->old_blkaddr = dn.data_blkaddr; 1418 1419 /* This page is already truncated */ 1420 if (fio->old_blkaddr == NULL_ADDR) { 1421 ClearPageUptodate(page); 1422 goto out_writepage; 1423 } 1424 got_it: 1425 /* 1426 * If current allocation needs SSR, 1427 * it had better in-place writes for updated data. 1428 */ 1429 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) { 1430 err = encrypt_one_page(fio); 1431 if (err) 1432 goto out_writepage; 1433 1434 set_page_writeback(page); 1435 f2fs_put_dnode(&dn); 1436 if (fio->need_lock == LOCK_REQ) 1437 f2fs_unlock_op(fio->sbi); 1438 err = rewrite_data_page(fio); 1439 trace_f2fs_do_write_data_page(fio->page, IPU); 1440 set_inode_flag(inode, FI_UPDATE_WRITE); 1441 return err; 1442 } 1443 1444 if (fio->need_lock == LOCK_RETRY) { 1445 if (!f2fs_trylock_op(fio->sbi)) { 1446 err = -EAGAIN; 1447 goto out_writepage; 1448 } 1449 fio->need_lock = LOCK_REQ; 1450 } 1451 1452 err = encrypt_one_page(fio); 1453 if (err) 1454 goto out_writepage; 1455 1456 set_page_writeback(page); 1457 1458 /* LFS mode write path */ 1459 write_data_page(&dn, fio); 1460 trace_f2fs_do_write_data_page(page, OPU); 1461 set_inode_flag(inode, FI_APPEND_WRITE); 1462 if (page->index == 0) 1463 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1464 out_writepage: 1465 f2fs_put_dnode(&dn); 1466 out: 1467 if (fio->need_lock == LOCK_REQ) 1468 f2fs_unlock_op(fio->sbi); 1469 return err; 1470 } 1471 1472 static int __write_data_page(struct page *page, bool *submitted, 1473 struct writeback_control *wbc) 1474 { 1475 struct inode *inode = page->mapping->host; 1476 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1477 loff_t i_size = i_size_read(inode); 1478 const pgoff_t end_index = ((unsigned long long) i_size) 1479 >> PAGE_SHIFT; 1480 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1481 unsigned offset = 0; 1482 bool need_balance_fs = false; 1483 int err = 0; 1484 struct f2fs_io_info fio = { 1485 .sbi = sbi, 1486 .type = DATA, 1487 .op = REQ_OP_WRITE, 1488 .op_flags = wbc_to_write_flags(wbc), 1489 .old_blkaddr = NULL_ADDR, 1490 .page = page, 1491 .encrypted_page = NULL, 1492 .submitted = false, 1493 .need_lock = LOCK_RETRY, 1494 }; 1495 1496 trace_f2fs_writepage(page, DATA); 1497 1498 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1499 goto redirty_out; 1500 1501 if (page->index < end_index) 1502 goto write; 1503 1504 /* 1505 * If the offset is out-of-range of file size, 1506 * this page does not have to be written to disk. 1507 */ 1508 offset = i_size & (PAGE_SIZE - 1); 1509 if ((page->index >= end_index + 1) || !offset) 1510 goto out; 1511 1512 zero_user_segment(page, offset, PAGE_SIZE); 1513 write: 1514 if (f2fs_is_drop_cache(inode)) 1515 goto out; 1516 /* we should not write 0'th page having journal header */ 1517 if (f2fs_is_volatile_file(inode) && (!page->index || 1518 (!wbc->for_reclaim && 1519 available_free_memory(sbi, BASE_CHECK)))) 1520 goto redirty_out; 1521 1522 /* we should bypass data pages to proceed the kworkder jobs */ 1523 if (unlikely(f2fs_cp_error(sbi))) { 1524 mapping_set_error(page->mapping, -EIO); 1525 goto out; 1526 } 1527 1528 /* Dentry blocks are controlled by checkpoint */ 1529 if (S_ISDIR(inode->i_mode)) { 1530 fio.need_lock = LOCK_DONE; 1531 err = do_write_data_page(&fio); 1532 goto done; 1533 } 1534 1535 if (!wbc->for_reclaim) 1536 need_balance_fs = true; 1537 else if (has_not_enough_free_secs(sbi, 0, 0)) 1538 goto redirty_out; 1539 else 1540 set_inode_flag(inode, FI_HOT_DATA); 1541 1542 err = -EAGAIN; 1543 if (f2fs_has_inline_data(inode)) { 1544 err = f2fs_write_inline_data(inode, page); 1545 if (!err) 1546 goto out; 1547 } 1548 1549 if (err == -EAGAIN) { 1550 err = do_write_data_page(&fio); 1551 if (err == -EAGAIN) { 1552 fio.need_lock = LOCK_REQ; 1553 err = do_write_data_page(&fio); 1554 } 1555 } 1556 if (F2FS_I(inode)->last_disk_size < psize) 1557 F2FS_I(inode)->last_disk_size = psize; 1558 1559 done: 1560 if (err && err != -ENOENT) 1561 goto redirty_out; 1562 1563 out: 1564 inode_dec_dirty_pages(inode); 1565 if (err) 1566 ClearPageUptodate(page); 1567 1568 if (wbc->for_reclaim) { 1569 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA); 1570 clear_inode_flag(inode, FI_HOT_DATA); 1571 remove_dirty_inode(inode); 1572 submitted = NULL; 1573 } 1574 1575 unlock_page(page); 1576 if (!S_ISDIR(inode->i_mode)) 1577 f2fs_balance_fs(sbi, need_balance_fs); 1578 1579 if (unlikely(f2fs_cp_error(sbi))) { 1580 f2fs_submit_merged_write(sbi, DATA); 1581 submitted = NULL; 1582 } 1583 1584 if (submitted) 1585 *submitted = fio.submitted; 1586 1587 return 0; 1588 1589 redirty_out: 1590 redirty_page_for_writepage(wbc, page); 1591 if (!err) 1592 return AOP_WRITEPAGE_ACTIVATE; 1593 unlock_page(page); 1594 return err; 1595 } 1596 1597 static int f2fs_write_data_page(struct page *page, 1598 struct writeback_control *wbc) 1599 { 1600 return __write_data_page(page, NULL, wbc); 1601 } 1602 1603 /* 1604 * This function was copied from write_cche_pages from mm/page-writeback.c. 1605 * The major change is making write step of cold data page separately from 1606 * warm/hot data page. 1607 */ 1608 static int f2fs_write_cache_pages(struct address_space *mapping, 1609 struct writeback_control *wbc) 1610 { 1611 int ret = 0; 1612 int done = 0; 1613 struct pagevec pvec; 1614 int nr_pages; 1615 pgoff_t uninitialized_var(writeback_index); 1616 pgoff_t index; 1617 pgoff_t end; /* Inclusive */ 1618 pgoff_t done_index; 1619 pgoff_t last_idx = ULONG_MAX; 1620 int cycled; 1621 int range_whole = 0; 1622 int tag; 1623 1624 pagevec_init(&pvec, 0); 1625 1626 if (get_dirty_pages(mapping->host) <= 1627 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 1628 set_inode_flag(mapping->host, FI_HOT_DATA); 1629 else 1630 clear_inode_flag(mapping->host, FI_HOT_DATA); 1631 1632 if (wbc->range_cyclic) { 1633 writeback_index = mapping->writeback_index; /* prev offset */ 1634 index = writeback_index; 1635 if (index == 0) 1636 cycled = 1; 1637 else 1638 cycled = 0; 1639 end = -1; 1640 } else { 1641 index = wbc->range_start >> PAGE_SHIFT; 1642 end = wbc->range_end >> PAGE_SHIFT; 1643 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1644 range_whole = 1; 1645 cycled = 1; /* ignore range_cyclic tests */ 1646 } 1647 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1648 tag = PAGECACHE_TAG_TOWRITE; 1649 else 1650 tag = PAGECACHE_TAG_DIRTY; 1651 retry: 1652 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1653 tag_pages_for_writeback(mapping, index, end); 1654 done_index = index; 1655 while (!done && (index <= end)) { 1656 int i; 1657 1658 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1659 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1660 if (nr_pages == 0) 1661 break; 1662 1663 for (i = 0; i < nr_pages; i++) { 1664 struct page *page = pvec.pages[i]; 1665 bool submitted = false; 1666 1667 if (page->index > end) { 1668 done = 1; 1669 break; 1670 } 1671 1672 done_index = page->index; 1673 retry_write: 1674 lock_page(page); 1675 1676 if (unlikely(page->mapping != mapping)) { 1677 continue_unlock: 1678 unlock_page(page); 1679 continue; 1680 } 1681 1682 if (!PageDirty(page)) { 1683 /* someone wrote it for us */ 1684 goto continue_unlock; 1685 } 1686 1687 if (PageWriteback(page)) { 1688 if (wbc->sync_mode != WB_SYNC_NONE) 1689 f2fs_wait_on_page_writeback(page, 1690 DATA, true); 1691 else 1692 goto continue_unlock; 1693 } 1694 1695 BUG_ON(PageWriteback(page)); 1696 if (!clear_page_dirty_for_io(page)) 1697 goto continue_unlock; 1698 1699 ret = __write_data_page(page, &submitted, wbc); 1700 if (unlikely(ret)) { 1701 /* 1702 * keep nr_to_write, since vfs uses this to 1703 * get # of written pages. 1704 */ 1705 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1706 unlock_page(page); 1707 ret = 0; 1708 continue; 1709 } else if (ret == -EAGAIN) { 1710 ret = 0; 1711 if (wbc->sync_mode == WB_SYNC_ALL) { 1712 cond_resched(); 1713 congestion_wait(BLK_RW_ASYNC, 1714 HZ/50); 1715 goto retry_write; 1716 } 1717 continue; 1718 } 1719 done_index = page->index + 1; 1720 done = 1; 1721 break; 1722 } else if (submitted) { 1723 last_idx = page->index; 1724 } 1725 1726 /* give a priority to WB_SYNC threads */ 1727 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) || 1728 --wbc->nr_to_write <= 0) && 1729 wbc->sync_mode == WB_SYNC_NONE) { 1730 done = 1; 1731 break; 1732 } 1733 } 1734 pagevec_release(&pvec); 1735 cond_resched(); 1736 } 1737 1738 if (!cycled && !done) { 1739 cycled = 1; 1740 index = 0; 1741 end = writeback_index - 1; 1742 goto retry; 1743 } 1744 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1745 mapping->writeback_index = done_index; 1746 1747 if (last_idx != ULONG_MAX) 1748 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 1749 0, last_idx, DATA); 1750 1751 return ret; 1752 } 1753 1754 static int f2fs_write_data_pages(struct address_space *mapping, 1755 struct writeback_control *wbc) 1756 { 1757 struct inode *inode = mapping->host; 1758 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1759 struct blk_plug plug; 1760 int ret; 1761 1762 /* deal with chardevs and other special file */ 1763 if (!mapping->a_ops->writepage) 1764 return 0; 1765 1766 /* skip writing if there is no dirty page in this inode */ 1767 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1768 return 0; 1769 1770 /* during POR, we don't need to trigger writepage at all. */ 1771 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1772 goto skip_write; 1773 1774 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1775 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1776 available_free_memory(sbi, DIRTY_DENTS)) 1777 goto skip_write; 1778 1779 /* skip writing during file defragment */ 1780 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1781 goto skip_write; 1782 1783 trace_f2fs_writepages(mapping->host, wbc, DATA); 1784 1785 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 1786 if (wbc->sync_mode == WB_SYNC_ALL) 1787 atomic_inc(&sbi->wb_sync_req); 1788 else if (atomic_read(&sbi->wb_sync_req)) 1789 goto skip_write; 1790 1791 blk_start_plug(&plug); 1792 ret = f2fs_write_cache_pages(mapping, wbc); 1793 blk_finish_plug(&plug); 1794 1795 if (wbc->sync_mode == WB_SYNC_ALL) 1796 atomic_dec(&sbi->wb_sync_req); 1797 /* 1798 * if some pages were truncated, we cannot guarantee its mapping->host 1799 * to detect pending bios. 1800 */ 1801 1802 remove_dirty_inode(inode); 1803 return ret; 1804 1805 skip_write: 1806 wbc->pages_skipped += get_dirty_pages(inode); 1807 trace_f2fs_writepages(mapping->host, wbc, DATA); 1808 return 0; 1809 } 1810 1811 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1812 { 1813 struct inode *inode = mapping->host; 1814 loff_t i_size = i_size_read(inode); 1815 1816 if (to > i_size) { 1817 down_write(&F2FS_I(inode)->i_mmap_sem); 1818 truncate_pagecache(inode, i_size); 1819 truncate_blocks(inode, i_size, true); 1820 up_write(&F2FS_I(inode)->i_mmap_sem); 1821 } 1822 } 1823 1824 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1825 struct page *page, loff_t pos, unsigned len, 1826 block_t *blk_addr, bool *node_changed) 1827 { 1828 struct inode *inode = page->mapping->host; 1829 pgoff_t index = page->index; 1830 struct dnode_of_data dn; 1831 struct page *ipage; 1832 bool locked = false; 1833 struct extent_info ei = {0,0,0}; 1834 int err = 0; 1835 1836 /* 1837 * we already allocated all the blocks, so we don't need to get 1838 * the block addresses when there is no need to fill the page. 1839 */ 1840 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 1841 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 1842 return 0; 1843 1844 if (f2fs_has_inline_data(inode) || 1845 (pos & PAGE_MASK) >= i_size_read(inode)) { 1846 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 1847 locked = true; 1848 } 1849 restart: 1850 /* check inline_data */ 1851 ipage = get_node_page(sbi, inode->i_ino); 1852 if (IS_ERR(ipage)) { 1853 err = PTR_ERR(ipage); 1854 goto unlock_out; 1855 } 1856 1857 set_new_dnode(&dn, inode, ipage, ipage, 0); 1858 1859 if (f2fs_has_inline_data(inode)) { 1860 if (pos + len <= MAX_INLINE_DATA) { 1861 read_inline_data(page, ipage); 1862 set_inode_flag(inode, FI_DATA_EXIST); 1863 if (inode->i_nlink) 1864 set_inline_node(ipage); 1865 } else { 1866 err = f2fs_convert_inline_page(&dn, page); 1867 if (err) 1868 goto out; 1869 if (dn.data_blkaddr == NULL_ADDR) 1870 err = f2fs_get_block(&dn, index); 1871 } 1872 } else if (locked) { 1873 err = f2fs_get_block(&dn, index); 1874 } else { 1875 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1876 dn.data_blkaddr = ei.blk + index - ei.fofs; 1877 } else { 1878 /* hole case */ 1879 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1880 if (err || dn.data_blkaddr == NULL_ADDR) { 1881 f2fs_put_dnode(&dn); 1882 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 1883 true); 1884 locked = true; 1885 goto restart; 1886 } 1887 } 1888 } 1889 1890 /* convert_inline_page can make node_changed */ 1891 *blk_addr = dn.data_blkaddr; 1892 *node_changed = dn.node_changed; 1893 out: 1894 f2fs_put_dnode(&dn); 1895 unlock_out: 1896 if (locked) 1897 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 1898 return err; 1899 } 1900 1901 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1902 loff_t pos, unsigned len, unsigned flags, 1903 struct page **pagep, void **fsdata) 1904 { 1905 struct inode *inode = mapping->host; 1906 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1907 struct page *page = NULL; 1908 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1909 bool need_balance = false; 1910 block_t blkaddr = NULL_ADDR; 1911 int err = 0; 1912 1913 trace_f2fs_write_begin(inode, pos, len, flags); 1914 1915 /* 1916 * We should check this at this moment to avoid deadlock on inode page 1917 * and #0 page. The locking rule for inline_data conversion should be: 1918 * lock_page(page #0) -> lock_page(inode_page) 1919 */ 1920 if (index != 0) { 1921 err = f2fs_convert_inline_inode(inode); 1922 if (err) 1923 goto fail; 1924 } 1925 repeat: 1926 /* 1927 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 1928 * wait_for_stable_page. Will wait that below with our IO control. 1929 */ 1930 page = pagecache_get_page(mapping, index, 1931 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 1932 if (!page) { 1933 err = -ENOMEM; 1934 goto fail; 1935 } 1936 1937 *pagep = page; 1938 1939 err = prepare_write_begin(sbi, page, pos, len, 1940 &blkaddr, &need_balance); 1941 if (err) 1942 goto fail; 1943 1944 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1945 unlock_page(page); 1946 f2fs_balance_fs(sbi, true); 1947 lock_page(page); 1948 if (page->mapping != mapping) { 1949 /* The page got truncated from under us */ 1950 f2fs_put_page(page, 1); 1951 goto repeat; 1952 } 1953 } 1954 1955 f2fs_wait_on_page_writeback(page, DATA, false); 1956 1957 /* wait for GCed encrypted page writeback */ 1958 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1959 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1960 1961 if (len == PAGE_SIZE || PageUptodate(page)) 1962 return 0; 1963 1964 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 1965 zero_user_segment(page, len, PAGE_SIZE); 1966 return 0; 1967 } 1968 1969 if (blkaddr == NEW_ADDR) { 1970 zero_user_segment(page, 0, PAGE_SIZE); 1971 SetPageUptodate(page); 1972 } else { 1973 struct bio *bio; 1974 1975 bio = f2fs_grab_bio(inode, blkaddr, 1); 1976 if (IS_ERR(bio)) { 1977 err = PTR_ERR(bio); 1978 goto fail; 1979 } 1980 bio->bi_opf = REQ_OP_READ; 1981 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1982 bio_put(bio); 1983 err = -EFAULT; 1984 goto fail; 1985 } 1986 1987 __submit_bio(sbi, bio, DATA); 1988 1989 lock_page(page); 1990 if (unlikely(page->mapping != mapping)) { 1991 f2fs_put_page(page, 1); 1992 goto repeat; 1993 } 1994 if (unlikely(!PageUptodate(page))) { 1995 err = -EIO; 1996 goto fail; 1997 } 1998 } 1999 return 0; 2000 2001 fail: 2002 f2fs_put_page(page, 1); 2003 f2fs_write_failed(mapping, pos + len); 2004 return err; 2005 } 2006 2007 static int f2fs_write_end(struct file *file, 2008 struct address_space *mapping, 2009 loff_t pos, unsigned len, unsigned copied, 2010 struct page *page, void *fsdata) 2011 { 2012 struct inode *inode = page->mapping->host; 2013 2014 trace_f2fs_write_end(inode, pos, len, copied); 2015 2016 /* 2017 * This should be come from len == PAGE_SIZE, and we expect copied 2018 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2019 * let generic_perform_write() try to copy data again through copied=0. 2020 */ 2021 if (!PageUptodate(page)) { 2022 if (unlikely(copied != len)) 2023 copied = 0; 2024 else 2025 SetPageUptodate(page); 2026 } 2027 if (!copied) 2028 goto unlock_out; 2029 2030 set_page_dirty(page); 2031 2032 if (pos + copied > i_size_read(inode)) 2033 f2fs_i_size_write(inode, pos + copied); 2034 unlock_out: 2035 f2fs_put_page(page, 1); 2036 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2037 return copied; 2038 } 2039 2040 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2041 loff_t offset) 2042 { 2043 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 2044 2045 if (offset & blocksize_mask) 2046 return -EINVAL; 2047 2048 if (iov_iter_alignment(iter) & blocksize_mask) 2049 return -EINVAL; 2050 2051 return 0; 2052 } 2053 2054 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2055 { 2056 struct address_space *mapping = iocb->ki_filp->f_mapping; 2057 struct inode *inode = mapping->host; 2058 size_t count = iov_iter_count(iter); 2059 loff_t offset = iocb->ki_pos; 2060 int rw = iov_iter_rw(iter); 2061 int err; 2062 2063 err = check_direct_IO(inode, iter, offset); 2064 if (err) 2065 return err; 2066 2067 if (__force_buffered_io(inode, rw)) 2068 return 0; 2069 2070 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2071 2072 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 2073 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 2074 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 2075 2076 if (rw == WRITE) { 2077 if (err > 0) 2078 set_inode_flag(inode, FI_UPDATE_WRITE); 2079 else if (err < 0) 2080 f2fs_write_failed(mapping, offset + count); 2081 } 2082 2083 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2084 2085 return err; 2086 } 2087 2088 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2089 unsigned int length) 2090 { 2091 struct inode *inode = page->mapping->host; 2092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2093 2094 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2095 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2096 return; 2097 2098 if (PageDirty(page)) { 2099 if (inode->i_ino == F2FS_META_INO(sbi)) { 2100 dec_page_count(sbi, F2FS_DIRTY_META); 2101 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2102 dec_page_count(sbi, F2FS_DIRTY_NODES); 2103 } else { 2104 inode_dec_dirty_pages(inode); 2105 remove_dirty_inode(inode); 2106 } 2107 } 2108 2109 /* This is atomic written page, keep Private */ 2110 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2111 return drop_inmem_page(inode, page); 2112 2113 set_page_private(page, 0); 2114 ClearPagePrivate(page); 2115 } 2116 2117 int f2fs_release_page(struct page *page, gfp_t wait) 2118 { 2119 /* If this is dirty page, keep PagePrivate */ 2120 if (PageDirty(page)) 2121 return 0; 2122 2123 /* This is atomic written page, keep Private */ 2124 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2125 return 0; 2126 2127 set_page_private(page, 0); 2128 ClearPagePrivate(page); 2129 return 1; 2130 } 2131 2132 /* 2133 * This was copied from __set_page_dirty_buffers which gives higher performance 2134 * in very high speed storages. (e.g., pmem) 2135 */ 2136 void f2fs_set_page_dirty_nobuffers(struct page *page) 2137 { 2138 struct address_space *mapping = page->mapping; 2139 unsigned long flags; 2140 2141 if (unlikely(!mapping)) 2142 return; 2143 2144 spin_lock(&mapping->private_lock); 2145 lock_page_memcg(page); 2146 SetPageDirty(page); 2147 spin_unlock(&mapping->private_lock); 2148 2149 spin_lock_irqsave(&mapping->tree_lock, flags); 2150 WARN_ON_ONCE(!PageUptodate(page)); 2151 account_page_dirtied(page, mapping); 2152 radix_tree_tag_set(&mapping->page_tree, 2153 page_index(page), PAGECACHE_TAG_DIRTY); 2154 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2155 unlock_page_memcg(page); 2156 2157 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2158 return; 2159 } 2160 2161 static int f2fs_set_data_page_dirty(struct page *page) 2162 { 2163 struct address_space *mapping = page->mapping; 2164 struct inode *inode = mapping->host; 2165 2166 trace_f2fs_set_page_dirty(page, DATA); 2167 2168 if (!PageUptodate(page)) 2169 SetPageUptodate(page); 2170 2171 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2172 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2173 register_inmem_page(inode, page); 2174 return 1; 2175 } 2176 /* 2177 * Previously, this page has been registered, we just 2178 * return here. 2179 */ 2180 return 0; 2181 } 2182 2183 if (!PageDirty(page)) { 2184 f2fs_set_page_dirty_nobuffers(page); 2185 update_dirty_page(inode, page); 2186 return 1; 2187 } 2188 return 0; 2189 } 2190 2191 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2192 { 2193 struct inode *inode = mapping->host; 2194 2195 if (f2fs_has_inline_data(inode)) 2196 return 0; 2197 2198 /* make sure allocating whole blocks */ 2199 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2200 filemap_write_and_wait(mapping); 2201 2202 return generic_block_bmap(mapping, block, get_data_block_bmap); 2203 } 2204 2205 #ifdef CONFIG_MIGRATION 2206 #include <linux/migrate.h> 2207 2208 int f2fs_migrate_page(struct address_space *mapping, 2209 struct page *newpage, struct page *page, enum migrate_mode mode) 2210 { 2211 int rc, extra_count; 2212 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2213 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2214 2215 BUG_ON(PageWriteback(page)); 2216 2217 /* migrating an atomic written page is safe with the inmem_lock hold */ 2218 if (atomic_written) { 2219 if (mode != MIGRATE_SYNC) 2220 return -EBUSY; 2221 if (!mutex_trylock(&fi->inmem_lock)) 2222 return -EAGAIN; 2223 } 2224 2225 /* 2226 * A reference is expected if PagePrivate set when move mapping, 2227 * however F2FS breaks this for maintaining dirty page counts when 2228 * truncating pages. So here adjusting the 'extra_count' make it work. 2229 */ 2230 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2231 rc = migrate_page_move_mapping(mapping, newpage, 2232 page, NULL, mode, extra_count); 2233 if (rc != MIGRATEPAGE_SUCCESS) { 2234 if (atomic_written) 2235 mutex_unlock(&fi->inmem_lock); 2236 return rc; 2237 } 2238 2239 if (atomic_written) { 2240 struct inmem_pages *cur; 2241 list_for_each_entry(cur, &fi->inmem_pages, list) 2242 if (cur->page == page) { 2243 cur->page = newpage; 2244 break; 2245 } 2246 mutex_unlock(&fi->inmem_lock); 2247 put_page(page); 2248 get_page(newpage); 2249 } 2250 2251 if (PagePrivate(page)) 2252 SetPagePrivate(newpage); 2253 set_page_private(newpage, page_private(page)); 2254 2255 migrate_page_copy(newpage, page); 2256 2257 return MIGRATEPAGE_SUCCESS; 2258 } 2259 #endif 2260 2261 const struct address_space_operations f2fs_dblock_aops = { 2262 .readpage = f2fs_read_data_page, 2263 .readpages = f2fs_read_data_pages, 2264 .writepage = f2fs_write_data_page, 2265 .writepages = f2fs_write_data_pages, 2266 .write_begin = f2fs_write_begin, 2267 .write_end = f2fs_write_end, 2268 .set_page_dirty = f2fs_set_data_page_dirty, 2269 .invalidatepage = f2fs_invalidate_page, 2270 .releasepage = f2fs_release_page, 2271 .direct_IO = f2fs_direct_IO, 2272 .bmap = f2fs_bmap, 2273 #ifdef CONFIG_MIGRATION 2274 .migratepage = f2fs_migrate_page, 2275 #endif 2276 }; 2277