1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 #include <linux/sched/signal.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 is_cold_data(page)) 49 return true; 50 return false; 51 } 52 53 static void f2fs_read_end_io(struct bio *bio) 54 { 55 struct bio_vec *bvec; 56 int i; 57 58 #ifdef CONFIG_F2FS_FAULT_INJECTION 59 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) { 60 f2fs_show_injection_info(FAULT_IO); 61 bio->bi_status = BLK_STS_IOERR; 62 } 63 #endif 64 65 if (f2fs_bio_encrypted(bio)) { 66 if (bio->bi_status) { 67 fscrypt_release_ctx(bio->bi_private); 68 } else { 69 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 70 return; 71 } 72 } 73 74 bio_for_each_segment_all(bvec, bio, i) { 75 struct page *page = bvec->bv_page; 76 77 if (!bio->bi_status) { 78 if (!PageUptodate(page)) 79 SetPageUptodate(page); 80 } else { 81 ClearPageUptodate(page); 82 SetPageError(page); 83 } 84 unlock_page(page); 85 } 86 bio_put(bio); 87 } 88 89 static void f2fs_write_end_io(struct bio *bio) 90 { 91 struct f2fs_sb_info *sbi = bio->bi_private; 92 struct bio_vec *bvec; 93 int i; 94 95 bio_for_each_segment_all(bvec, bio, i) { 96 struct page *page = bvec->bv_page; 97 enum count_type type = WB_DATA_TYPE(page); 98 99 if (IS_DUMMY_WRITTEN_PAGE(page)) { 100 set_page_private(page, (unsigned long)NULL); 101 ClearPagePrivate(page); 102 unlock_page(page); 103 mempool_free(page, sbi->write_io_dummy); 104 105 if (unlikely(bio->bi_status)) 106 f2fs_stop_checkpoint(sbi, true); 107 continue; 108 } 109 110 fscrypt_pullback_bio_page(&page, true); 111 112 if (unlikely(bio->bi_status)) { 113 mapping_set_error(page->mapping, -EIO); 114 if (type == F2FS_WB_CP_DATA) 115 f2fs_stop_checkpoint(sbi, true); 116 } 117 118 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 119 page->index != nid_of_node(page)); 120 121 dec_page_count(sbi, type); 122 clear_cold_data(page); 123 end_page_writeback(page); 124 } 125 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 126 wq_has_sleeper(&sbi->cp_wait)) 127 wake_up(&sbi->cp_wait); 128 129 bio_put(bio); 130 } 131 132 /* 133 * Return true, if pre_bio's bdev is same as its target device. 134 */ 135 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 136 block_t blk_addr, struct bio *bio) 137 { 138 struct block_device *bdev = sbi->sb->s_bdev; 139 int i; 140 141 for (i = 0; i < sbi->s_ndevs; i++) { 142 if (FDEV(i).start_blk <= blk_addr && 143 FDEV(i).end_blk >= blk_addr) { 144 blk_addr -= FDEV(i).start_blk; 145 bdev = FDEV(i).bdev; 146 break; 147 } 148 } 149 if (bio) { 150 bio_set_dev(bio, bdev); 151 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 152 } 153 return bdev; 154 } 155 156 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 157 { 158 int i; 159 160 for (i = 0; i < sbi->s_ndevs; i++) 161 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 162 return i; 163 return 0; 164 } 165 166 static bool __same_bdev(struct f2fs_sb_info *sbi, 167 block_t blk_addr, struct bio *bio) 168 { 169 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 170 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 171 } 172 173 /* 174 * Low-level block read/write IO operations. 175 */ 176 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 177 struct writeback_control *wbc, 178 int npages, bool is_read, 179 enum page_type type, enum temp_type temp) 180 { 181 struct bio *bio; 182 183 bio = f2fs_bio_alloc(sbi, npages, true); 184 185 f2fs_target_device(sbi, blk_addr, bio); 186 if (is_read) { 187 bio->bi_end_io = f2fs_read_end_io; 188 bio->bi_private = NULL; 189 } else { 190 bio->bi_end_io = f2fs_write_end_io; 191 bio->bi_private = sbi; 192 bio->bi_write_hint = io_type_to_rw_hint(sbi, type, temp); 193 } 194 if (wbc) 195 wbc_init_bio(wbc, bio); 196 197 return bio; 198 } 199 200 static inline void __submit_bio(struct f2fs_sb_info *sbi, 201 struct bio *bio, enum page_type type) 202 { 203 if (!is_read_io(bio_op(bio))) { 204 unsigned int start; 205 206 if (type != DATA && type != NODE) 207 goto submit_io; 208 209 if (f2fs_sb_has_blkzoned(sbi->sb) && current->plug) 210 blk_finish_plug(current->plug); 211 212 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 213 start %= F2FS_IO_SIZE(sbi); 214 215 if (start == 0) 216 goto submit_io; 217 218 /* fill dummy pages */ 219 for (; start < F2FS_IO_SIZE(sbi); start++) { 220 struct page *page = 221 mempool_alloc(sbi->write_io_dummy, 222 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 223 f2fs_bug_on(sbi, !page); 224 225 SetPagePrivate(page); 226 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 227 lock_page(page); 228 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 229 f2fs_bug_on(sbi, 1); 230 } 231 /* 232 * In the NODE case, we lose next block address chain. So, we 233 * need to do checkpoint in f2fs_sync_file. 234 */ 235 if (type == NODE) 236 set_sbi_flag(sbi, SBI_NEED_CP); 237 } 238 submit_io: 239 if (is_read_io(bio_op(bio))) 240 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 241 else 242 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 243 submit_bio(bio); 244 } 245 246 static void __submit_merged_bio(struct f2fs_bio_info *io) 247 { 248 struct f2fs_io_info *fio = &io->fio; 249 250 if (!io->bio) 251 return; 252 253 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 254 255 if (is_read_io(fio->op)) 256 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 257 else 258 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 259 260 __submit_bio(io->sbi, io->bio, fio->type); 261 io->bio = NULL; 262 } 263 264 static bool __has_merged_page(struct f2fs_bio_info *io, 265 struct inode *inode, nid_t ino, pgoff_t idx) 266 { 267 struct bio_vec *bvec; 268 struct page *target; 269 int i; 270 271 if (!io->bio) 272 return false; 273 274 if (!inode && !ino) 275 return true; 276 277 bio_for_each_segment_all(bvec, io->bio, i) { 278 279 if (bvec->bv_page->mapping) 280 target = bvec->bv_page; 281 else 282 target = fscrypt_control_page(bvec->bv_page); 283 284 if (idx != target->index) 285 continue; 286 287 if (inode && inode == target->mapping->host) 288 return true; 289 if (ino && ino == ino_of_node(target)) 290 return true; 291 } 292 293 return false; 294 } 295 296 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 297 nid_t ino, pgoff_t idx, enum page_type type) 298 { 299 enum page_type btype = PAGE_TYPE_OF_BIO(type); 300 enum temp_type temp; 301 struct f2fs_bio_info *io; 302 bool ret = false; 303 304 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 305 io = sbi->write_io[btype] + temp; 306 307 down_read(&io->io_rwsem); 308 ret = __has_merged_page(io, inode, ino, idx); 309 up_read(&io->io_rwsem); 310 311 /* TODO: use HOT temp only for meta pages now. */ 312 if (ret || btype == META) 313 break; 314 } 315 return ret; 316 } 317 318 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 319 enum page_type type, enum temp_type temp) 320 { 321 enum page_type btype = PAGE_TYPE_OF_BIO(type); 322 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 323 324 down_write(&io->io_rwsem); 325 326 /* change META to META_FLUSH in the checkpoint procedure */ 327 if (type >= META_FLUSH) { 328 io->fio.type = META_FLUSH; 329 io->fio.op = REQ_OP_WRITE; 330 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 331 if (!test_opt(sbi, NOBARRIER)) 332 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 333 } 334 __submit_merged_bio(io); 335 up_write(&io->io_rwsem); 336 } 337 338 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 339 struct inode *inode, nid_t ino, pgoff_t idx, 340 enum page_type type, bool force) 341 { 342 enum temp_type temp; 343 344 if (!force && !has_merged_page(sbi, inode, ino, idx, type)) 345 return; 346 347 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 348 349 __f2fs_submit_merged_write(sbi, type, temp); 350 351 /* TODO: use HOT temp only for meta pages now. */ 352 if (type >= META) 353 break; 354 } 355 } 356 357 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 358 { 359 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 360 } 361 362 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 363 struct inode *inode, nid_t ino, pgoff_t idx, 364 enum page_type type) 365 { 366 __submit_merged_write_cond(sbi, inode, ino, idx, type, false); 367 } 368 369 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 370 { 371 f2fs_submit_merged_write(sbi, DATA); 372 f2fs_submit_merged_write(sbi, NODE); 373 f2fs_submit_merged_write(sbi, META); 374 } 375 376 /* 377 * Fill the locked page with data located in the block address. 378 * A caller needs to unlock the page on failure. 379 */ 380 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 381 { 382 struct bio *bio; 383 struct page *page = fio->encrypted_page ? 384 fio->encrypted_page : fio->page; 385 386 verify_block_addr(fio, fio->new_blkaddr); 387 trace_f2fs_submit_page_bio(page, fio); 388 f2fs_trace_ios(fio, 0); 389 390 /* Allocate a new bio */ 391 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 392 1, is_read_io(fio->op), fio->type, fio->temp); 393 394 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 395 bio_put(bio); 396 return -EFAULT; 397 } 398 bio_set_op_attrs(bio, fio->op, fio->op_flags); 399 400 __submit_bio(fio->sbi, bio, fio->type); 401 402 if (!is_read_io(fio->op)) 403 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page)); 404 return 0; 405 } 406 407 int f2fs_submit_page_write(struct f2fs_io_info *fio) 408 { 409 struct f2fs_sb_info *sbi = fio->sbi; 410 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 411 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 412 struct page *bio_page; 413 int err = 0; 414 415 f2fs_bug_on(sbi, is_read_io(fio->op)); 416 417 down_write(&io->io_rwsem); 418 next: 419 if (fio->in_list) { 420 spin_lock(&io->io_lock); 421 if (list_empty(&io->io_list)) { 422 spin_unlock(&io->io_lock); 423 goto out_fail; 424 } 425 fio = list_first_entry(&io->io_list, 426 struct f2fs_io_info, list); 427 list_del(&fio->list); 428 spin_unlock(&io->io_lock); 429 } 430 431 if (fio->old_blkaddr != NEW_ADDR) 432 verify_block_addr(fio, fio->old_blkaddr); 433 verify_block_addr(fio, fio->new_blkaddr); 434 435 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 436 437 /* set submitted = true as a return value */ 438 fio->submitted = true; 439 440 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 441 442 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 443 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 444 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 445 __submit_merged_bio(io); 446 alloc_new: 447 if (io->bio == NULL) { 448 if ((fio->type == DATA || fio->type == NODE) && 449 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 450 err = -EAGAIN; 451 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 452 goto out_fail; 453 } 454 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 455 BIO_MAX_PAGES, false, 456 fio->type, fio->temp); 457 io->fio = *fio; 458 } 459 460 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 461 __submit_merged_bio(io); 462 goto alloc_new; 463 } 464 465 if (fio->io_wbc) 466 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE); 467 468 io->last_block_in_bio = fio->new_blkaddr; 469 f2fs_trace_ios(fio, 0); 470 471 trace_f2fs_submit_page_write(fio->page, fio); 472 473 if (fio->in_list) 474 goto next; 475 out_fail: 476 up_write(&io->io_rwsem); 477 return err; 478 } 479 480 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 481 unsigned nr_pages) 482 { 483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 484 struct fscrypt_ctx *ctx = NULL; 485 struct bio *bio; 486 487 if (f2fs_encrypted_file(inode)) { 488 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 489 if (IS_ERR(ctx)) 490 return ERR_CAST(ctx); 491 492 /* wait the page to be moved by cleaning */ 493 f2fs_wait_on_block_writeback(sbi, blkaddr); 494 } 495 496 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 497 if (!bio) { 498 if (ctx) 499 fscrypt_release_ctx(ctx); 500 return ERR_PTR(-ENOMEM); 501 } 502 f2fs_target_device(sbi, blkaddr, bio); 503 bio->bi_end_io = f2fs_read_end_io; 504 bio->bi_private = ctx; 505 bio_set_op_attrs(bio, REQ_OP_READ, 0); 506 507 return bio; 508 } 509 510 /* This can handle encryption stuffs */ 511 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 512 block_t blkaddr) 513 { 514 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1); 515 516 if (IS_ERR(bio)) 517 return PTR_ERR(bio); 518 519 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 520 bio_put(bio); 521 return -EFAULT; 522 } 523 __submit_bio(F2FS_I_SB(inode), bio, DATA); 524 return 0; 525 } 526 527 static void __set_data_blkaddr(struct dnode_of_data *dn) 528 { 529 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 530 __le32 *addr_array; 531 int base = 0; 532 533 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 534 base = get_extra_isize(dn->inode); 535 536 /* Get physical address of data block */ 537 addr_array = blkaddr_in_node(rn); 538 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 539 } 540 541 /* 542 * Lock ordering for the change of data block address: 543 * ->data_page 544 * ->node_page 545 * update block addresses in the node page 546 */ 547 void set_data_blkaddr(struct dnode_of_data *dn) 548 { 549 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 550 __set_data_blkaddr(dn); 551 if (set_page_dirty(dn->node_page)) 552 dn->node_changed = true; 553 } 554 555 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 556 { 557 dn->data_blkaddr = blkaddr; 558 set_data_blkaddr(dn); 559 f2fs_update_extent_cache(dn); 560 } 561 562 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 563 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 564 { 565 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 566 int err; 567 568 if (!count) 569 return 0; 570 571 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 572 return -EPERM; 573 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 574 return err; 575 576 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 577 dn->ofs_in_node, count); 578 579 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 580 581 for (; count > 0; dn->ofs_in_node++) { 582 block_t blkaddr = datablock_addr(dn->inode, 583 dn->node_page, dn->ofs_in_node); 584 if (blkaddr == NULL_ADDR) { 585 dn->data_blkaddr = NEW_ADDR; 586 __set_data_blkaddr(dn); 587 count--; 588 } 589 } 590 591 if (set_page_dirty(dn->node_page)) 592 dn->node_changed = true; 593 return 0; 594 } 595 596 /* Should keep dn->ofs_in_node unchanged */ 597 int reserve_new_block(struct dnode_of_data *dn) 598 { 599 unsigned int ofs_in_node = dn->ofs_in_node; 600 int ret; 601 602 ret = reserve_new_blocks(dn, 1); 603 dn->ofs_in_node = ofs_in_node; 604 return ret; 605 } 606 607 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 608 { 609 bool need_put = dn->inode_page ? false : true; 610 int err; 611 612 err = get_dnode_of_data(dn, index, ALLOC_NODE); 613 if (err) 614 return err; 615 616 if (dn->data_blkaddr == NULL_ADDR) 617 err = reserve_new_block(dn); 618 if (err || need_put) 619 f2fs_put_dnode(dn); 620 return err; 621 } 622 623 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 624 { 625 struct extent_info ei = {0,0,0}; 626 struct inode *inode = dn->inode; 627 628 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 629 dn->data_blkaddr = ei.blk + index - ei.fofs; 630 return 0; 631 } 632 633 return f2fs_reserve_block(dn, index); 634 } 635 636 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 637 int op_flags, bool for_write) 638 { 639 struct address_space *mapping = inode->i_mapping; 640 struct dnode_of_data dn; 641 struct page *page; 642 struct extent_info ei = {0,0,0}; 643 int err; 644 645 page = f2fs_grab_cache_page(mapping, index, for_write); 646 if (!page) 647 return ERR_PTR(-ENOMEM); 648 649 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 650 dn.data_blkaddr = ei.blk + index - ei.fofs; 651 goto got_it; 652 } 653 654 set_new_dnode(&dn, inode, NULL, NULL, 0); 655 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 656 if (err) 657 goto put_err; 658 f2fs_put_dnode(&dn); 659 660 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 661 err = -ENOENT; 662 goto put_err; 663 } 664 got_it: 665 if (PageUptodate(page)) { 666 unlock_page(page); 667 return page; 668 } 669 670 /* 671 * A new dentry page is allocated but not able to be written, since its 672 * new inode page couldn't be allocated due to -ENOSPC. 673 * In such the case, its blkaddr can be remained as NEW_ADDR. 674 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 675 */ 676 if (dn.data_blkaddr == NEW_ADDR) { 677 zero_user_segment(page, 0, PAGE_SIZE); 678 if (!PageUptodate(page)) 679 SetPageUptodate(page); 680 unlock_page(page); 681 return page; 682 } 683 684 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 685 if (err) 686 goto put_err; 687 return page; 688 689 put_err: 690 f2fs_put_page(page, 1); 691 return ERR_PTR(err); 692 } 693 694 struct page *find_data_page(struct inode *inode, pgoff_t index) 695 { 696 struct address_space *mapping = inode->i_mapping; 697 struct page *page; 698 699 page = find_get_page(mapping, index); 700 if (page && PageUptodate(page)) 701 return page; 702 f2fs_put_page(page, 0); 703 704 page = get_read_data_page(inode, index, 0, false); 705 if (IS_ERR(page)) 706 return page; 707 708 if (PageUptodate(page)) 709 return page; 710 711 wait_on_page_locked(page); 712 if (unlikely(!PageUptodate(page))) { 713 f2fs_put_page(page, 0); 714 return ERR_PTR(-EIO); 715 } 716 return page; 717 } 718 719 /* 720 * If it tries to access a hole, return an error. 721 * Because, the callers, functions in dir.c and GC, should be able to know 722 * whether this page exists or not. 723 */ 724 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 725 bool for_write) 726 { 727 struct address_space *mapping = inode->i_mapping; 728 struct page *page; 729 repeat: 730 page = get_read_data_page(inode, index, 0, for_write); 731 if (IS_ERR(page)) 732 return page; 733 734 /* wait for read completion */ 735 lock_page(page); 736 if (unlikely(page->mapping != mapping)) { 737 f2fs_put_page(page, 1); 738 goto repeat; 739 } 740 if (unlikely(!PageUptodate(page))) { 741 f2fs_put_page(page, 1); 742 return ERR_PTR(-EIO); 743 } 744 return page; 745 } 746 747 /* 748 * Caller ensures that this data page is never allocated. 749 * A new zero-filled data page is allocated in the page cache. 750 * 751 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 752 * f2fs_unlock_op(). 753 * Note that, ipage is set only by make_empty_dir, and if any error occur, 754 * ipage should be released by this function. 755 */ 756 struct page *get_new_data_page(struct inode *inode, 757 struct page *ipage, pgoff_t index, bool new_i_size) 758 { 759 struct address_space *mapping = inode->i_mapping; 760 struct page *page; 761 struct dnode_of_data dn; 762 int err; 763 764 page = f2fs_grab_cache_page(mapping, index, true); 765 if (!page) { 766 /* 767 * before exiting, we should make sure ipage will be released 768 * if any error occur. 769 */ 770 f2fs_put_page(ipage, 1); 771 return ERR_PTR(-ENOMEM); 772 } 773 774 set_new_dnode(&dn, inode, ipage, NULL, 0); 775 err = f2fs_reserve_block(&dn, index); 776 if (err) { 777 f2fs_put_page(page, 1); 778 return ERR_PTR(err); 779 } 780 if (!ipage) 781 f2fs_put_dnode(&dn); 782 783 if (PageUptodate(page)) 784 goto got_it; 785 786 if (dn.data_blkaddr == NEW_ADDR) { 787 zero_user_segment(page, 0, PAGE_SIZE); 788 if (!PageUptodate(page)) 789 SetPageUptodate(page); 790 } else { 791 f2fs_put_page(page, 1); 792 793 /* if ipage exists, blkaddr should be NEW_ADDR */ 794 f2fs_bug_on(F2FS_I_SB(inode), ipage); 795 page = get_lock_data_page(inode, index, true); 796 if (IS_ERR(page)) 797 return page; 798 } 799 got_it: 800 if (new_i_size && i_size_read(inode) < 801 ((loff_t)(index + 1) << PAGE_SHIFT)) 802 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 803 return page; 804 } 805 806 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 807 { 808 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 809 struct f2fs_summary sum; 810 struct node_info ni; 811 pgoff_t fofs; 812 blkcnt_t count = 1; 813 int err; 814 815 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 816 return -EPERM; 817 818 dn->data_blkaddr = datablock_addr(dn->inode, 819 dn->node_page, dn->ofs_in_node); 820 if (dn->data_blkaddr == NEW_ADDR) 821 goto alloc; 822 823 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 824 return err; 825 826 alloc: 827 get_node_info(sbi, dn->nid, &ni); 828 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 829 830 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 831 &sum, seg_type, NULL, false); 832 set_data_blkaddr(dn); 833 834 /* update i_size */ 835 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 836 dn->ofs_in_node; 837 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 838 f2fs_i_size_write(dn->inode, 839 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 840 return 0; 841 } 842 843 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 844 { 845 struct inode *inode = file_inode(iocb->ki_filp); 846 struct f2fs_map_blocks map; 847 int flag; 848 int err = 0; 849 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 850 851 /* convert inline data for Direct I/O*/ 852 if (direct_io) { 853 err = f2fs_convert_inline_inode(inode); 854 if (err) 855 return err; 856 } 857 858 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 859 return 0; 860 861 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 862 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 863 if (map.m_len > map.m_lblk) 864 map.m_len -= map.m_lblk; 865 else 866 map.m_len = 0; 867 868 map.m_next_pgofs = NULL; 869 map.m_next_extent = NULL; 870 map.m_seg_type = NO_CHECK_TYPE; 871 872 if (direct_io) { 873 map.m_seg_type = rw_hint_to_seg_type(iocb->ki_hint); 874 flag = f2fs_force_buffered_io(inode, WRITE) ? 875 F2FS_GET_BLOCK_PRE_AIO : 876 F2FS_GET_BLOCK_PRE_DIO; 877 goto map_blocks; 878 } 879 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 880 err = f2fs_convert_inline_inode(inode); 881 if (err) 882 return err; 883 } 884 if (f2fs_has_inline_data(inode)) 885 return err; 886 887 flag = F2FS_GET_BLOCK_PRE_AIO; 888 889 map_blocks: 890 err = f2fs_map_blocks(inode, &map, 1, flag); 891 if (map.m_len > 0 && err == -ENOSPC) { 892 if (!direct_io) 893 set_inode_flag(inode, FI_NO_PREALLOC); 894 err = 0; 895 } 896 return err; 897 } 898 899 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 900 { 901 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 902 if (lock) 903 down_read(&sbi->node_change); 904 else 905 up_read(&sbi->node_change); 906 } else { 907 if (lock) 908 f2fs_lock_op(sbi); 909 else 910 f2fs_unlock_op(sbi); 911 } 912 } 913 914 /* 915 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 916 * f2fs_map_blocks structure. 917 * If original data blocks are allocated, then give them to blockdev. 918 * Otherwise, 919 * a. preallocate requested block addresses 920 * b. do not use extent cache for better performance 921 * c. give the block addresses to blockdev 922 */ 923 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 924 int create, int flag) 925 { 926 unsigned int maxblocks = map->m_len; 927 struct dnode_of_data dn; 928 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 929 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 930 pgoff_t pgofs, end_offset, end; 931 int err = 0, ofs = 1; 932 unsigned int ofs_in_node, last_ofs_in_node; 933 blkcnt_t prealloc; 934 struct extent_info ei = {0,0,0}; 935 block_t blkaddr; 936 unsigned int start_pgofs; 937 938 if (!maxblocks) 939 return 0; 940 941 map->m_len = 0; 942 map->m_flags = 0; 943 944 /* it only supports block size == page size */ 945 pgofs = (pgoff_t)map->m_lblk; 946 end = pgofs + maxblocks; 947 948 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 949 map->m_pblk = ei.blk + pgofs - ei.fofs; 950 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 951 map->m_flags = F2FS_MAP_MAPPED; 952 if (map->m_next_extent) 953 *map->m_next_extent = pgofs + map->m_len; 954 goto out; 955 } 956 957 next_dnode: 958 if (create) 959 __do_map_lock(sbi, flag, true); 960 961 /* When reading holes, we need its node page */ 962 set_new_dnode(&dn, inode, NULL, NULL, 0); 963 err = get_dnode_of_data(&dn, pgofs, mode); 964 if (err) { 965 if (flag == F2FS_GET_BLOCK_BMAP) 966 map->m_pblk = 0; 967 if (err == -ENOENT) { 968 err = 0; 969 if (map->m_next_pgofs) 970 *map->m_next_pgofs = 971 get_next_page_offset(&dn, pgofs); 972 if (map->m_next_extent) 973 *map->m_next_extent = 974 get_next_page_offset(&dn, pgofs); 975 } 976 goto unlock_out; 977 } 978 979 start_pgofs = pgofs; 980 prealloc = 0; 981 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 982 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 983 984 next_block: 985 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 986 987 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 988 if (create) { 989 if (unlikely(f2fs_cp_error(sbi))) { 990 err = -EIO; 991 goto sync_out; 992 } 993 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 994 if (blkaddr == NULL_ADDR) { 995 prealloc++; 996 last_ofs_in_node = dn.ofs_in_node; 997 } 998 } else { 999 err = __allocate_data_block(&dn, 1000 map->m_seg_type); 1001 if (!err) 1002 set_inode_flag(inode, FI_APPEND_WRITE); 1003 } 1004 if (err) 1005 goto sync_out; 1006 map->m_flags |= F2FS_MAP_NEW; 1007 blkaddr = dn.data_blkaddr; 1008 } else { 1009 if (flag == F2FS_GET_BLOCK_BMAP) { 1010 map->m_pblk = 0; 1011 goto sync_out; 1012 } 1013 if (flag == F2FS_GET_BLOCK_PRECACHE) 1014 goto sync_out; 1015 if (flag == F2FS_GET_BLOCK_FIEMAP && 1016 blkaddr == NULL_ADDR) { 1017 if (map->m_next_pgofs) 1018 *map->m_next_pgofs = pgofs + 1; 1019 goto sync_out; 1020 } 1021 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1022 /* for defragment case */ 1023 if (map->m_next_pgofs) 1024 *map->m_next_pgofs = pgofs + 1; 1025 goto sync_out; 1026 } 1027 } 1028 } 1029 1030 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1031 goto skip; 1032 1033 if (map->m_len == 0) { 1034 /* preallocated unwritten block should be mapped for fiemap. */ 1035 if (blkaddr == NEW_ADDR) 1036 map->m_flags |= F2FS_MAP_UNWRITTEN; 1037 map->m_flags |= F2FS_MAP_MAPPED; 1038 1039 map->m_pblk = blkaddr; 1040 map->m_len = 1; 1041 } else if ((map->m_pblk != NEW_ADDR && 1042 blkaddr == (map->m_pblk + ofs)) || 1043 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1044 flag == F2FS_GET_BLOCK_PRE_DIO) { 1045 ofs++; 1046 map->m_len++; 1047 } else { 1048 goto sync_out; 1049 } 1050 1051 skip: 1052 dn.ofs_in_node++; 1053 pgofs++; 1054 1055 /* preallocate blocks in batch for one dnode page */ 1056 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1057 (pgofs == end || dn.ofs_in_node == end_offset)) { 1058 1059 dn.ofs_in_node = ofs_in_node; 1060 err = reserve_new_blocks(&dn, prealloc); 1061 if (err) 1062 goto sync_out; 1063 1064 map->m_len += dn.ofs_in_node - ofs_in_node; 1065 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1066 err = -ENOSPC; 1067 goto sync_out; 1068 } 1069 dn.ofs_in_node = end_offset; 1070 } 1071 1072 if (pgofs >= end) 1073 goto sync_out; 1074 else if (dn.ofs_in_node < end_offset) 1075 goto next_block; 1076 1077 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1078 if (map->m_flags & F2FS_MAP_MAPPED) { 1079 unsigned int ofs = start_pgofs - map->m_lblk; 1080 1081 f2fs_update_extent_cache_range(&dn, 1082 start_pgofs, map->m_pblk + ofs, 1083 map->m_len - ofs); 1084 } 1085 } 1086 1087 f2fs_put_dnode(&dn); 1088 1089 if (create) { 1090 __do_map_lock(sbi, flag, false); 1091 f2fs_balance_fs(sbi, dn.node_changed); 1092 } 1093 goto next_dnode; 1094 1095 sync_out: 1096 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1097 if (map->m_flags & F2FS_MAP_MAPPED) { 1098 unsigned int ofs = start_pgofs - map->m_lblk; 1099 1100 f2fs_update_extent_cache_range(&dn, 1101 start_pgofs, map->m_pblk + ofs, 1102 map->m_len - ofs); 1103 } 1104 if (map->m_next_extent) 1105 *map->m_next_extent = pgofs + 1; 1106 } 1107 f2fs_put_dnode(&dn); 1108 unlock_out: 1109 if (create) { 1110 __do_map_lock(sbi, flag, false); 1111 f2fs_balance_fs(sbi, dn.node_changed); 1112 } 1113 out: 1114 trace_f2fs_map_blocks(inode, map, err); 1115 return err; 1116 } 1117 1118 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1119 { 1120 struct f2fs_map_blocks map; 1121 block_t last_lblk; 1122 int err; 1123 1124 if (pos + len > i_size_read(inode)) 1125 return false; 1126 1127 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1128 map.m_next_pgofs = NULL; 1129 map.m_next_extent = NULL; 1130 map.m_seg_type = NO_CHECK_TYPE; 1131 last_lblk = F2FS_BLK_ALIGN(pos + len); 1132 1133 while (map.m_lblk < last_lblk) { 1134 map.m_len = last_lblk - map.m_lblk; 1135 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1136 if (err || map.m_len == 0) 1137 return false; 1138 map.m_lblk += map.m_len; 1139 } 1140 return true; 1141 } 1142 1143 static int __get_data_block(struct inode *inode, sector_t iblock, 1144 struct buffer_head *bh, int create, int flag, 1145 pgoff_t *next_pgofs, int seg_type) 1146 { 1147 struct f2fs_map_blocks map; 1148 int err; 1149 1150 map.m_lblk = iblock; 1151 map.m_len = bh->b_size >> inode->i_blkbits; 1152 map.m_next_pgofs = next_pgofs; 1153 map.m_next_extent = NULL; 1154 map.m_seg_type = seg_type; 1155 1156 err = f2fs_map_blocks(inode, &map, create, flag); 1157 if (!err) { 1158 map_bh(bh, inode->i_sb, map.m_pblk); 1159 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1160 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1161 } 1162 return err; 1163 } 1164 1165 static int get_data_block(struct inode *inode, sector_t iblock, 1166 struct buffer_head *bh_result, int create, int flag, 1167 pgoff_t *next_pgofs) 1168 { 1169 return __get_data_block(inode, iblock, bh_result, create, 1170 flag, next_pgofs, 1171 NO_CHECK_TYPE); 1172 } 1173 1174 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1175 struct buffer_head *bh_result, int create) 1176 { 1177 return __get_data_block(inode, iblock, bh_result, create, 1178 F2FS_GET_BLOCK_DEFAULT, NULL, 1179 rw_hint_to_seg_type( 1180 inode->i_write_hint)); 1181 } 1182 1183 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1184 struct buffer_head *bh_result, int create) 1185 { 1186 /* Block number less than F2FS MAX BLOCKS */ 1187 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1188 return -EFBIG; 1189 1190 return __get_data_block(inode, iblock, bh_result, create, 1191 F2FS_GET_BLOCK_BMAP, NULL, 1192 NO_CHECK_TYPE); 1193 } 1194 1195 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1196 { 1197 return (offset >> inode->i_blkbits); 1198 } 1199 1200 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1201 { 1202 return (blk << inode->i_blkbits); 1203 } 1204 1205 static int f2fs_xattr_fiemap(struct inode *inode, 1206 struct fiemap_extent_info *fieinfo) 1207 { 1208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1209 struct page *page; 1210 struct node_info ni; 1211 __u64 phys = 0, len; 1212 __u32 flags; 1213 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1214 int err = 0; 1215 1216 if (f2fs_has_inline_xattr(inode)) { 1217 int offset; 1218 1219 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1220 inode->i_ino, false); 1221 if (!page) 1222 return -ENOMEM; 1223 1224 get_node_info(sbi, inode->i_ino, &ni); 1225 1226 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1227 offset = offsetof(struct f2fs_inode, i_addr) + 1228 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1229 get_inline_xattr_addrs(inode)); 1230 1231 phys += offset; 1232 len = inline_xattr_size(inode); 1233 1234 f2fs_put_page(page, 1); 1235 1236 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1237 1238 if (!xnid) 1239 flags |= FIEMAP_EXTENT_LAST; 1240 1241 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1242 if (err || err == 1) 1243 return err; 1244 } 1245 1246 if (xnid) { 1247 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1248 if (!page) 1249 return -ENOMEM; 1250 1251 get_node_info(sbi, xnid, &ni); 1252 1253 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1254 len = inode->i_sb->s_blocksize; 1255 1256 f2fs_put_page(page, 1); 1257 1258 flags = FIEMAP_EXTENT_LAST; 1259 } 1260 1261 if (phys) 1262 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1263 1264 return (err < 0 ? err : 0); 1265 } 1266 1267 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1268 u64 start, u64 len) 1269 { 1270 struct buffer_head map_bh; 1271 sector_t start_blk, last_blk; 1272 pgoff_t next_pgofs; 1273 u64 logical = 0, phys = 0, size = 0; 1274 u32 flags = 0; 1275 int ret = 0; 1276 1277 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1278 ret = f2fs_precache_extents(inode); 1279 if (ret) 1280 return ret; 1281 } 1282 1283 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1284 if (ret) 1285 return ret; 1286 1287 inode_lock(inode); 1288 1289 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1290 ret = f2fs_xattr_fiemap(inode, fieinfo); 1291 goto out; 1292 } 1293 1294 if (f2fs_has_inline_data(inode)) { 1295 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1296 if (ret != -EAGAIN) 1297 goto out; 1298 } 1299 1300 if (logical_to_blk(inode, len) == 0) 1301 len = blk_to_logical(inode, 1); 1302 1303 start_blk = logical_to_blk(inode, start); 1304 last_blk = logical_to_blk(inode, start + len - 1); 1305 1306 next: 1307 memset(&map_bh, 0, sizeof(struct buffer_head)); 1308 map_bh.b_size = len; 1309 1310 ret = get_data_block(inode, start_blk, &map_bh, 0, 1311 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1312 if (ret) 1313 goto out; 1314 1315 /* HOLE */ 1316 if (!buffer_mapped(&map_bh)) { 1317 start_blk = next_pgofs; 1318 1319 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1320 F2FS_I_SB(inode)->max_file_blocks)) 1321 goto prep_next; 1322 1323 flags |= FIEMAP_EXTENT_LAST; 1324 } 1325 1326 if (size) { 1327 if (f2fs_encrypted_inode(inode)) 1328 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1329 1330 ret = fiemap_fill_next_extent(fieinfo, logical, 1331 phys, size, flags); 1332 } 1333 1334 if (start_blk > last_blk || ret) 1335 goto out; 1336 1337 logical = blk_to_logical(inode, start_blk); 1338 phys = blk_to_logical(inode, map_bh.b_blocknr); 1339 size = map_bh.b_size; 1340 flags = 0; 1341 if (buffer_unwritten(&map_bh)) 1342 flags = FIEMAP_EXTENT_UNWRITTEN; 1343 1344 start_blk += logical_to_blk(inode, size); 1345 1346 prep_next: 1347 cond_resched(); 1348 if (fatal_signal_pending(current)) 1349 ret = -EINTR; 1350 else 1351 goto next; 1352 out: 1353 if (ret == 1) 1354 ret = 0; 1355 1356 inode_unlock(inode); 1357 return ret; 1358 } 1359 1360 /* 1361 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1362 * Major change was from block_size == page_size in f2fs by default. 1363 */ 1364 static int f2fs_mpage_readpages(struct address_space *mapping, 1365 struct list_head *pages, struct page *page, 1366 unsigned nr_pages) 1367 { 1368 struct bio *bio = NULL; 1369 sector_t last_block_in_bio = 0; 1370 struct inode *inode = mapping->host; 1371 const unsigned blkbits = inode->i_blkbits; 1372 const unsigned blocksize = 1 << blkbits; 1373 sector_t block_in_file; 1374 sector_t last_block; 1375 sector_t last_block_in_file; 1376 sector_t block_nr; 1377 struct f2fs_map_blocks map; 1378 1379 map.m_pblk = 0; 1380 map.m_lblk = 0; 1381 map.m_len = 0; 1382 map.m_flags = 0; 1383 map.m_next_pgofs = NULL; 1384 map.m_next_extent = NULL; 1385 map.m_seg_type = NO_CHECK_TYPE; 1386 1387 for (; nr_pages; nr_pages--) { 1388 if (pages) { 1389 page = list_last_entry(pages, struct page, lru); 1390 1391 prefetchw(&page->flags); 1392 list_del(&page->lru); 1393 if (add_to_page_cache_lru(page, mapping, 1394 page->index, 1395 readahead_gfp_mask(mapping))) 1396 goto next_page; 1397 } 1398 1399 block_in_file = (sector_t)page->index; 1400 last_block = block_in_file + nr_pages; 1401 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1402 blkbits; 1403 if (last_block > last_block_in_file) 1404 last_block = last_block_in_file; 1405 1406 /* 1407 * Map blocks using the previous result first. 1408 */ 1409 if ((map.m_flags & F2FS_MAP_MAPPED) && 1410 block_in_file > map.m_lblk && 1411 block_in_file < (map.m_lblk + map.m_len)) 1412 goto got_it; 1413 1414 /* 1415 * Then do more f2fs_map_blocks() calls until we are 1416 * done with this page. 1417 */ 1418 map.m_flags = 0; 1419 1420 if (block_in_file < last_block) { 1421 map.m_lblk = block_in_file; 1422 map.m_len = last_block - block_in_file; 1423 1424 if (f2fs_map_blocks(inode, &map, 0, 1425 F2FS_GET_BLOCK_DEFAULT)) 1426 goto set_error_page; 1427 } 1428 got_it: 1429 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1430 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1431 SetPageMappedToDisk(page); 1432 1433 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1434 SetPageUptodate(page); 1435 goto confused; 1436 } 1437 } else { 1438 zero_user_segment(page, 0, PAGE_SIZE); 1439 if (!PageUptodate(page)) 1440 SetPageUptodate(page); 1441 unlock_page(page); 1442 goto next_page; 1443 } 1444 1445 /* 1446 * This page will go to BIO. Do we need to send this 1447 * BIO off first? 1448 */ 1449 if (bio && (last_block_in_bio != block_nr - 1 || 1450 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1451 submit_and_realloc: 1452 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1453 bio = NULL; 1454 } 1455 if (bio == NULL) { 1456 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages); 1457 if (IS_ERR(bio)) { 1458 bio = NULL; 1459 goto set_error_page; 1460 } 1461 } 1462 1463 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1464 goto submit_and_realloc; 1465 1466 last_block_in_bio = block_nr; 1467 goto next_page; 1468 set_error_page: 1469 SetPageError(page); 1470 zero_user_segment(page, 0, PAGE_SIZE); 1471 unlock_page(page); 1472 goto next_page; 1473 confused: 1474 if (bio) { 1475 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1476 bio = NULL; 1477 } 1478 unlock_page(page); 1479 next_page: 1480 if (pages) 1481 put_page(page); 1482 } 1483 BUG_ON(pages && !list_empty(pages)); 1484 if (bio) 1485 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1486 return 0; 1487 } 1488 1489 static int f2fs_read_data_page(struct file *file, struct page *page) 1490 { 1491 struct inode *inode = page->mapping->host; 1492 int ret = -EAGAIN; 1493 1494 trace_f2fs_readpage(page, DATA); 1495 1496 /* If the file has inline data, try to read it directly */ 1497 if (f2fs_has_inline_data(inode)) 1498 ret = f2fs_read_inline_data(inode, page); 1499 if (ret == -EAGAIN) 1500 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1501 return ret; 1502 } 1503 1504 static int f2fs_read_data_pages(struct file *file, 1505 struct address_space *mapping, 1506 struct list_head *pages, unsigned nr_pages) 1507 { 1508 struct inode *inode = mapping->host; 1509 struct page *page = list_last_entry(pages, struct page, lru); 1510 1511 trace_f2fs_readpages(inode, page, nr_pages); 1512 1513 /* If the file has inline data, skip readpages */ 1514 if (f2fs_has_inline_data(inode)) 1515 return 0; 1516 1517 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1518 } 1519 1520 static int encrypt_one_page(struct f2fs_io_info *fio) 1521 { 1522 struct inode *inode = fio->page->mapping->host; 1523 gfp_t gfp_flags = GFP_NOFS; 1524 1525 if (!f2fs_encrypted_file(inode)) 1526 return 0; 1527 1528 /* wait for GCed encrypted page writeback */ 1529 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr); 1530 1531 retry_encrypt: 1532 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1533 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1534 if (!IS_ERR(fio->encrypted_page)) 1535 return 0; 1536 1537 /* flush pending IOs and wait for a while in the ENOMEM case */ 1538 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1539 f2fs_flush_merged_writes(fio->sbi); 1540 congestion_wait(BLK_RW_ASYNC, HZ/50); 1541 gfp_flags |= __GFP_NOFAIL; 1542 goto retry_encrypt; 1543 } 1544 return PTR_ERR(fio->encrypted_page); 1545 } 1546 1547 static inline bool check_inplace_update_policy(struct inode *inode, 1548 struct f2fs_io_info *fio) 1549 { 1550 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1551 unsigned int policy = SM_I(sbi)->ipu_policy; 1552 1553 if (policy & (0x1 << F2FS_IPU_FORCE)) 1554 return true; 1555 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 1556 return true; 1557 if (policy & (0x1 << F2FS_IPU_UTIL) && 1558 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1559 return true; 1560 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 1561 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1562 return true; 1563 1564 /* 1565 * IPU for rewrite async pages 1566 */ 1567 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1568 fio && fio->op == REQ_OP_WRITE && 1569 !(fio->op_flags & REQ_SYNC) && 1570 !f2fs_encrypted_inode(inode)) 1571 return true; 1572 1573 /* this is only set during fdatasync */ 1574 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1575 is_inode_flag_set(inode, FI_NEED_IPU)) 1576 return true; 1577 1578 return false; 1579 } 1580 1581 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1582 { 1583 if (f2fs_is_pinned_file(inode)) 1584 return true; 1585 1586 /* if this is cold file, we should overwrite to avoid fragmentation */ 1587 if (file_is_cold(inode)) 1588 return true; 1589 1590 return check_inplace_update_policy(inode, fio); 1591 } 1592 1593 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1594 { 1595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1596 1597 if (test_opt(sbi, LFS)) 1598 return true; 1599 if (S_ISDIR(inode->i_mode)) 1600 return true; 1601 if (f2fs_is_atomic_file(inode)) 1602 return true; 1603 if (fio) { 1604 if (is_cold_data(fio->page)) 1605 return true; 1606 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1607 return true; 1608 } 1609 return false; 1610 } 1611 1612 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1613 { 1614 struct inode *inode = fio->page->mapping->host; 1615 1616 if (should_update_outplace(inode, fio)) 1617 return false; 1618 1619 return should_update_inplace(inode, fio); 1620 } 1621 1622 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio) 1623 { 1624 if (fio->old_blkaddr == NEW_ADDR) 1625 return false; 1626 if (fio->old_blkaddr == NULL_ADDR) 1627 return false; 1628 return true; 1629 } 1630 1631 int do_write_data_page(struct f2fs_io_info *fio) 1632 { 1633 struct page *page = fio->page; 1634 struct inode *inode = page->mapping->host; 1635 struct dnode_of_data dn; 1636 struct extent_info ei = {0,0,0}; 1637 bool ipu_force = false; 1638 int err = 0; 1639 1640 set_new_dnode(&dn, inode, NULL, NULL, 0); 1641 if (need_inplace_update(fio) && 1642 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1643 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1644 1645 if (valid_ipu_blkaddr(fio)) { 1646 ipu_force = true; 1647 fio->need_lock = LOCK_DONE; 1648 goto got_it; 1649 } 1650 } 1651 1652 /* Deadlock due to between page->lock and f2fs_lock_op */ 1653 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1654 return -EAGAIN; 1655 1656 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1657 if (err) 1658 goto out; 1659 1660 fio->old_blkaddr = dn.data_blkaddr; 1661 1662 /* This page is already truncated */ 1663 if (fio->old_blkaddr == NULL_ADDR) { 1664 ClearPageUptodate(page); 1665 goto out_writepage; 1666 } 1667 got_it: 1668 /* 1669 * If current allocation needs SSR, 1670 * it had better in-place writes for updated data. 1671 */ 1672 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) { 1673 err = encrypt_one_page(fio); 1674 if (err) 1675 goto out_writepage; 1676 1677 set_page_writeback(page); 1678 f2fs_put_dnode(&dn); 1679 if (fio->need_lock == LOCK_REQ) 1680 f2fs_unlock_op(fio->sbi); 1681 err = rewrite_data_page(fio); 1682 trace_f2fs_do_write_data_page(fio->page, IPU); 1683 set_inode_flag(inode, FI_UPDATE_WRITE); 1684 return err; 1685 } 1686 1687 if (fio->need_lock == LOCK_RETRY) { 1688 if (!f2fs_trylock_op(fio->sbi)) { 1689 err = -EAGAIN; 1690 goto out_writepage; 1691 } 1692 fio->need_lock = LOCK_REQ; 1693 } 1694 1695 err = encrypt_one_page(fio); 1696 if (err) 1697 goto out_writepage; 1698 1699 set_page_writeback(page); 1700 1701 /* LFS mode write path */ 1702 write_data_page(&dn, fio); 1703 trace_f2fs_do_write_data_page(page, OPU); 1704 set_inode_flag(inode, FI_APPEND_WRITE); 1705 if (page->index == 0) 1706 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1707 out_writepage: 1708 f2fs_put_dnode(&dn); 1709 out: 1710 if (fio->need_lock == LOCK_REQ) 1711 f2fs_unlock_op(fio->sbi); 1712 return err; 1713 } 1714 1715 static int __write_data_page(struct page *page, bool *submitted, 1716 struct writeback_control *wbc, 1717 enum iostat_type io_type) 1718 { 1719 struct inode *inode = page->mapping->host; 1720 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1721 loff_t i_size = i_size_read(inode); 1722 const pgoff_t end_index = ((unsigned long long) i_size) 1723 >> PAGE_SHIFT; 1724 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1725 unsigned offset = 0; 1726 bool need_balance_fs = false; 1727 int err = 0; 1728 struct f2fs_io_info fio = { 1729 .sbi = sbi, 1730 .ino = inode->i_ino, 1731 .type = DATA, 1732 .op = REQ_OP_WRITE, 1733 .op_flags = wbc_to_write_flags(wbc), 1734 .old_blkaddr = NULL_ADDR, 1735 .page = page, 1736 .encrypted_page = NULL, 1737 .submitted = false, 1738 .need_lock = LOCK_RETRY, 1739 .io_type = io_type, 1740 .io_wbc = wbc, 1741 }; 1742 1743 trace_f2fs_writepage(page, DATA); 1744 1745 /* we should bypass data pages to proceed the kworkder jobs */ 1746 if (unlikely(f2fs_cp_error(sbi))) { 1747 mapping_set_error(page->mapping, -EIO); 1748 goto out; 1749 } 1750 1751 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1752 goto redirty_out; 1753 1754 if (page->index < end_index) 1755 goto write; 1756 1757 /* 1758 * If the offset is out-of-range of file size, 1759 * this page does not have to be written to disk. 1760 */ 1761 offset = i_size & (PAGE_SIZE - 1); 1762 if ((page->index >= end_index + 1) || !offset) 1763 goto out; 1764 1765 zero_user_segment(page, offset, PAGE_SIZE); 1766 write: 1767 if (f2fs_is_drop_cache(inode)) 1768 goto out; 1769 /* we should not write 0'th page having journal header */ 1770 if (f2fs_is_volatile_file(inode) && (!page->index || 1771 (!wbc->for_reclaim && 1772 available_free_memory(sbi, BASE_CHECK)))) 1773 goto redirty_out; 1774 1775 /* Dentry blocks are controlled by checkpoint */ 1776 if (S_ISDIR(inode->i_mode)) { 1777 fio.need_lock = LOCK_DONE; 1778 err = do_write_data_page(&fio); 1779 goto done; 1780 } 1781 1782 if (!wbc->for_reclaim) 1783 need_balance_fs = true; 1784 else if (has_not_enough_free_secs(sbi, 0, 0)) 1785 goto redirty_out; 1786 else 1787 set_inode_flag(inode, FI_HOT_DATA); 1788 1789 err = -EAGAIN; 1790 if (f2fs_has_inline_data(inode)) { 1791 err = f2fs_write_inline_data(inode, page); 1792 if (!err) 1793 goto out; 1794 } 1795 1796 if (err == -EAGAIN) { 1797 err = do_write_data_page(&fio); 1798 if (err == -EAGAIN) { 1799 fio.need_lock = LOCK_REQ; 1800 err = do_write_data_page(&fio); 1801 } 1802 } 1803 1804 if (err) { 1805 file_set_keep_isize(inode); 1806 } else { 1807 down_write(&F2FS_I(inode)->i_sem); 1808 if (F2FS_I(inode)->last_disk_size < psize) 1809 F2FS_I(inode)->last_disk_size = psize; 1810 up_write(&F2FS_I(inode)->i_sem); 1811 } 1812 1813 done: 1814 if (err && err != -ENOENT) 1815 goto redirty_out; 1816 1817 out: 1818 inode_dec_dirty_pages(inode); 1819 if (err) 1820 ClearPageUptodate(page); 1821 1822 if (wbc->for_reclaim) { 1823 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA); 1824 clear_inode_flag(inode, FI_HOT_DATA); 1825 remove_dirty_inode(inode); 1826 submitted = NULL; 1827 } 1828 1829 unlock_page(page); 1830 if (!S_ISDIR(inode->i_mode)) 1831 f2fs_balance_fs(sbi, need_balance_fs); 1832 1833 if (unlikely(f2fs_cp_error(sbi))) { 1834 f2fs_submit_merged_write(sbi, DATA); 1835 submitted = NULL; 1836 } 1837 1838 if (submitted) 1839 *submitted = fio.submitted; 1840 1841 return 0; 1842 1843 redirty_out: 1844 redirty_page_for_writepage(wbc, page); 1845 if (!err) 1846 return AOP_WRITEPAGE_ACTIVATE; 1847 unlock_page(page); 1848 return err; 1849 } 1850 1851 static int f2fs_write_data_page(struct page *page, 1852 struct writeback_control *wbc) 1853 { 1854 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 1855 } 1856 1857 /* 1858 * This function was copied from write_cche_pages from mm/page-writeback.c. 1859 * The major change is making write step of cold data page separately from 1860 * warm/hot data page. 1861 */ 1862 static int f2fs_write_cache_pages(struct address_space *mapping, 1863 struct writeback_control *wbc, 1864 enum iostat_type io_type) 1865 { 1866 int ret = 0; 1867 int done = 0; 1868 struct pagevec pvec; 1869 int nr_pages; 1870 pgoff_t uninitialized_var(writeback_index); 1871 pgoff_t index; 1872 pgoff_t end; /* Inclusive */ 1873 pgoff_t done_index; 1874 pgoff_t last_idx = ULONG_MAX; 1875 int cycled; 1876 int range_whole = 0; 1877 int tag; 1878 1879 pagevec_init(&pvec); 1880 1881 if (get_dirty_pages(mapping->host) <= 1882 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 1883 set_inode_flag(mapping->host, FI_HOT_DATA); 1884 else 1885 clear_inode_flag(mapping->host, FI_HOT_DATA); 1886 1887 if (wbc->range_cyclic) { 1888 writeback_index = mapping->writeback_index; /* prev offset */ 1889 index = writeback_index; 1890 if (index == 0) 1891 cycled = 1; 1892 else 1893 cycled = 0; 1894 end = -1; 1895 } else { 1896 index = wbc->range_start >> PAGE_SHIFT; 1897 end = wbc->range_end >> PAGE_SHIFT; 1898 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1899 range_whole = 1; 1900 cycled = 1; /* ignore range_cyclic tests */ 1901 } 1902 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1903 tag = PAGECACHE_TAG_TOWRITE; 1904 else 1905 tag = PAGECACHE_TAG_DIRTY; 1906 retry: 1907 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1908 tag_pages_for_writeback(mapping, index, end); 1909 done_index = index; 1910 while (!done && (index <= end)) { 1911 int i; 1912 1913 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 1914 tag); 1915 if (nr_pages == 0) 1916 break; 1917 1918 for (i = 0; i < nr_pages; i++) { 1919 struct page *page = pvec.pages[i]; 1920 bool submitted = false; 1921 1922 done_index = page->index; 1923 retry_write: 1924 lock_page(page); 1925 1926 if (unlikely(page->mapping != mapping)) { 1927 continue_unlock: 1928 unlock_page(page); 1929 continue; 1930 } 1931 1932 if (!PageDirty(page)) { 1933 /* someone wrote it for us */ 1934 goto continue_unlock; 1935 } 1936 1937 if (PageWriteback(page)) { 1938 if (wbc->sync_mode != WB_SYNC_NONE) 1939 f2fs_wait_on_page_writeback(page, 1940 DATA, true); 1941 else 1942 goto continue_unlock; 1943 } 1944 1945 BUG_ON(PageWriteback(page)); 1946 if (!clear_page_dirty_for_io(page)) 1947 goto continue_unlock; 1948 1949 ret = __write_data_page(page, &submitted, wbc, io_type); 1950 if (unlikely(ret)) { 1951 /* 1952 * keep nr_to_write, since vfs uses this to 1953 * get # of written pages. 1954 */ 1955 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1956 unlock_page(page); 1957 ret = 0; 1958 continue; 1959 } else if (ret == -EAGAIN) { 1960 ret = 0; 1961 if (wbc->sync_mode == WB_SYNC_ALL) { 1962 cond_resched(); 1963 congestion_wait(BLK_RW_ASYNC, 1964 HZ/50); 1965 goto retry_write; 1966 } 1967 continue; 1968 } 1969 done_index = page->index + 1; 1970 done = 1; 1971 break; 1972 } else if (submitted) { 1973 last_idx = page->index; 1974 } 1975 1976 /* give a priority to WB_SYNC threads */ 1977 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) || 1978 --wbc->nr_to_write <= 0) && 1979 wbc->sync_mode == WB_SYNC_NONE) { 1980 done = 1; 1981 break; 1982 } 1983 } 1984 pagevec_release(&pvec); 1985 cond_resched(); 1986 } 1987 1988 if (!cycled && !done) { 1989 cycled = 1; 1990 index = 0; 1991 end = writeback_index - 1; 1992 goto retry; 1993 } 1994 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1995 mapping->writeback_index = done_index; 1996 1997 if (last_idx != ULONG_MAX) 1998 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 1999 0, last_idx, DATA); 2000 2001 return ret; 2002 } 2003 2004 int __f2fs_write_data_pages(struct address_space *mapping, 2005 struct writeback_control *wbc, 2006 enum iostat_type io_type) 2007 { 2008 struct inode *inode = mapping->host; 2009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2010 struct blk_plug plug; 2011 int ret; 2012 2013 /* deal with chardevs and other special file */ 2014 if (!mapping->a_ops->writepage) 2015 return 0; 2016 2017 /* skip writing if there is no dirty page in this inode */ 2018 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2019 return 0; 2020 2021 /* during POR, we don't need to trigger writepage at all. */ 2022 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2023 goto skip_write; 2024 2025 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 2026 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2027 available_free_memory(sbi, DIRTY_DENTS)) 2028 goto skip_write; 2029 2030 /* skip writing during file defragment */ 2031 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2032 goto skip_write; 2033 2034 trace_f2fs_writepages(mapping->host, wbc, DATA); 2035 2036 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2037 if (wbc->sync_mode == WB_SYNC_ALL) 2038 atomic_inc(&sbi->wb_sync_req); 2039 else if (atomic_read(&sbi->wb_sync_req)) 2040 goto skip_write; 2041 2042 blk_start_plug(&plug); 2043 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2044 blk_finish_plug(&plug); 2045 2046 if (wbc->sync_mode == WB_SYNC_ALL) 2047 atomic_dec(&sbi->wb_sync_req); 2048 /* 2049 * if some pages were truncated, we cannot guarantee its mapping->host 2050 * to detect pending bios. 2051 */ 2052 2053 remove_dirty_inode(inode); 2054 return ret; 2055 2056 skip_write: 2057 wbc->pages_skipped += get_dirty_pages(inode); 2058 trace_f2fs_writepages(mapping->host, wbc, DATA); 2059 return 0; 2060 } 2061 2062 static int f2fs_write_data_pages(struct address_space *mapping, 2063 struct writeback_control *wbc) 2064 { 2065 struct inode *inode = mapping->host; 2066 2067 return __f2fs_write_data_pages(mapping, wbc, 2068 F2FS_I(inode)->cp_task == current ? 2069 FS_CP_DATA_IO : FS_DATA_IO); 2070 } 2071 2072 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2073 { 2074 struct inode *inode = mapping->host; 2075 loff_t i_size = i_size_read(inode); 2076 2077 if (to > i_size) { 2078 down_write(&F2FS_I(inode)->i_mmap_sem); 2079 truncate_pagecache(inode, i_size); 2080 truncate_blocks(inode, i_size, true); 2081 up_write(&F2FS_I(inode)->i_mmap_sem); 2082 } 2083 } 2084 2085 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2086 struct page *page, loff_t pos, unsigned len, 2087 block_t *blk_addr, bool *node_changed) 2088 { 2089 struct inode *inode = page->mapping->host; 2090 pgoff_t index = page->index; 2091 struct dnode_of_data dn; 2092 struct page *ipage; 2093 bool locked = false; 2094 struct extent_info ei = {0,0,0}; 2095 int err = 0; 2096 2097 /* 2098 * we already allocated all the blocks, so we don't need to get 2099 * the block addresses when there is no need to fill the page. 2100 */ 2101 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2102 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 2103 return 0; 2104 2105 if (f2fs_has_inline_data(inode) || 2106 (pos & PAGE_MASK) >= i_size_read(inode)) { 2107 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 2108 locked = true; 2109 } 2110 restart: 2111 /* check inline_data */ 2112 ipage = get_node_page(sbi, inode->i_ino); 2113 if (IS_ERR(ipage)) { 2114 err = PTR_ERR(ipage); 2115 goto unlock_out; 2116 } 2117 2118 set_new_dnode(&dn, inode, ipage, ipage, 0); 2119 2120 if (f2fs_has_inline_data(inode)) { 2121 if (pos + len <= MAX_INLINE_DATA(inode)) { 2122 read_inline_data(page, ipage); 2123 set_inode_flag(inode, FI_DATA_EXIST); 2124 if (inode->i_nlink) 2125 set_inline_node(ipage); 2126 } else { 2127 err = f2fs_convert_inline_page(&dn, page); 2128 if (err) 2129 goto out; 2130 if (dn.data_blkaddr == NULL_ADDR) 2131 err = f2fs_get_block(&dn, index); 2132 } 2133 } else if (locked) { 2134 err = f2fs_get_block(&dn, index); 2135 } else { 2136 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2137 dn.data_blkaddr = ei.blk + index - ei.fofs; 2138 } else { 2139 /* hole case */ 2140 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 2141 if (err || dn.data_blkaddr == NULL_ADDR) { 2142 f2fs_put_dnode(&dn); 2143 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2144 true); 2145 locked = true; 2146 goto restart; 2147 } 2148 } 2149 } 2150 2151 /* convert_inline_page can make node_changed */ 2152 *blk_addr = dn.data_blkaddr; 2153 *node_changed = dn.node_changed; 2154 out: 2155 f2fs_put_dnode(&dn); 2156 unlock_out: 2157 if (locked) 2158 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 2159 return err; 2160 } 2161 2162 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2163 loff_t pos, unsigned len, unsigned flags, 2164 struct page **pagep, void **fsdata) 2165 { 2166 struct inode *inode = mapping->host; 2167 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2168 struct page *page = NULL; 2169 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2170 bool need_balance = false, drop_atomic = false; 2171 block_t blkaddr = NULL_ADDR; 2172 int err = 0; 2173 2174 trace_f2fs_write_begin(inode, pos, len, flags); 2175 2176 if (f2fs_is_atomic_file(inode) && 2177 !available_free_memory(sbi, INMEM_PAGES)) { 2178 err = -ENOMEM; 2179 drop_atomic = true; 2180 goto fail; 2181 } 2182 2183 /* 2184 * We should check this at this moment to avoid deadlock on inode page 2185 * and #0 page. The locking rule for inline_data conversion should be: 2186 * lock_page(page #0) -> lock_page(inode_page) 2187 */ 2188 if (index != 0) { 2189 err = f2fs_convert_inline_inode(inode); 2190 if (err) 2191 goto fail; 2192 } 2193 repeat: 2194 /* 2195 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2196 * wait_for_stable_page. Will wait that below with our IO control. 2197 */ 2198 page = f2fs_pagecache_get_page(mapping, index, 2199 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2200 if (!page) { 2201 err = -ENOMEM; 2202 goto fail; 2203 } 2204 2205 *pagep = page; 2206 2207 err = prepare_write_begin(sbi, page, pos, len, 2208 &blkaddr, &need_balance); 2209 if (err) 2210 goto fail; 2211 2212 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 2213 unlock_page(page); 2214 f2fs_balance_fs(sbi, true); 2215 lock_page(page); 2216 if (page->mapping != mapping) { 2217 /* The page got truncated from under us */ 2218 f2fs_put_page(page, 1); 2219 goto repeat; 2220 } 2221 } 2222 2223 f2fs_wait_on_page_writeback(page, DATA, false); 2224 2225 /* wait for GCed encrypted page writeback */ 2226 if (f2fs_encrypted_file(inode)) 2227 f2fs_wait_on_block_writeback(sbi, blkaddr); 2228 2229 if (len == PAGE_SIZE || PageUptodate(page)) 2230 return 0; 2231 2232 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 2233 zero_user_segment(page, len, PAGE_SIZE); 2234 return 0; 2235 } 2236 2237 if (blkaddr == NEW_ADDR) { 2238 zero_user_segment(page, 0, PAGE_SIZE); 2239 SetPageUptodate(page); 2240 } else { 2241 err = f2fs_submit_page_read(inode, page, blkaddr); 2242 if (err) 2243 goto fail; 2244 2245 lock_page(page); 2246 if (unlikely(page->mapping != mapping)) { 2247 f2fs_put_page(page, 1); 2248 goto repeat; 2249 } 2250 if (unlikely(!PageUptodate(page))) { 2251 err = -EIO; 2252 goto fail; 2253 } 2254 } 2255 return 0; 2256 2257 fail: 2258 f2fs_put_page(page, 1); 2259 f2fs_write_failed(mapping, pos + len); 2260 if (drop_atomic) 2261 drop_inmem_pages_all(sbi); 2262 return err; 2263 } 2264 2265 static int f2fs_write_end(struct file *file, 2266 struct address_space *mapping, 2267 loff_t pos, unsigned len, unsigned copied, 2268 struct page *page, void *fsdata) 2269 { 2270 struct inode *inode = page->mapping->host; 2271 2272 trace_f2fs_write_end(inode, pos, len, copied); 2273 2274 /* 2275 * This should be come from len == PAGE_SIZE, and we expect copied 2276 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2277 * let generic_perform_write() try to copy data again through copied=0. 2278 */ 2279 if (!PageUptodate(page)) { 2280 if (unlikely(copied != len)) 2281 copied = 0; 2282 else 2283 SetPageUptodate(page); 2284 } 2285 if (!copied) 2286 goto unlock_out; 2287 2288 set_page_dirty(page); 2289 2290 if (pos + copied > i_size_read(inode)) 2291 f2fs_i_size_write(inode, pos + copied); 2292 unlock_out: 2293 f2fs_put_page(page, 1); 2294 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2295 return copied; 2296 } 2297 2298 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2299 loff_t offset) 2300 { 2301 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 2302 2303 if (offset & blocksize_mask) 2304 return -EINVAL; 2305 2306 if (iov_iter_alignment(iter) & blocksize_mask) 2307 return -EINVAL; 2308 2309 return 0; 2310 } 2311 2312 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2313 { 2314 struct address_space *mapping = iocb->ki_filp->f_mapping; 2315 struct inode *inode = mapping->host; 2316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2317 size_t count = iov_iter_count(iter); 2318 loff_t offset = iocb->ki_pos; 2319 int rw = iov_iter_rw(iter); 2320 int err; 2321 enum rw_hint hint = iocb->ki_hint; 2322 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2323 2324 err = check_direct_IO(inode, iter, offset); 2325 if (err) 2326 return err; 2327 2328 if (f2fs_force_buffered_io(inode, rw)) 2329 return 0; 2330 2331 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2332 2333 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2334 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2335 2336 if (!down_read_trylock(&F2FS_I(inode)->dio_rwsem[rw])) { 2337 if (iocb->ki_flags & IOCB_NOWAIT) { 2338 iocb->ki_hint = hint; 2339 err = -EAGAIN; 2340 goto out; 2341 } 2342 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 2343 } 2344 2345 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 2346 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 2347 2348 if (rw == WRITE) { 2349 if (whint_mode == WHINT_MODE_OFF) 2350 iocb->ki_hint = hint; 2351 if (err > 0) { 2352 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2353 err); 2354 set_inode_flag(inode, FI_UPDATE_WRITE); 2355 } else if (err < 0) { 2356 f2fs_write_failed(mapping, offset + count); 2357 } 2358 } 2359 2360 out: 2361 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2362 2363 return err; 2364 } 2365 2366 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2367 unsigned int length) 2368 { 2369 struct inode *inode = page->mapping->host; 2370 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2371 2372 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2373 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2374 return; 2375 2376 if (PageDirty(page)) { 2377 if (inode->i_ino == F2FS_META_INO(sbi)) { 2378 dec_page_count(sbi, F2FS_DIRTY_META); 2379 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2380 dec_page_count(sbi, F2FS_DIRTY_NODES); 2381 } else { 2382 inode_dec_dirty_pages(inode); 2383 remove_dirty_inode(inode); 2384 } 2385 } 2386 2387 /* This is atomic written page, keep Private */ 2388 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2389 return drop_inmem_page(inode, page); 2390 2391 set_page_private(page, 0); 2392 ClearPagePrivate(page); 2393 } 2394 2395 int f2fs_release_page(struct page *page, gfp_t wait) 2396 { 2397 /* If this is dirty page, keep PagePrivate */ 2398 if (PageDirty(page)) 2399 return 0; 2400 2401 /* This is atomic written page, keep Private */ 2402 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2403 return 0; 2404 2405 set_page_private(page, 0); 2406 ClearPagePrivate(page); 2407 return 1; 2408 } 2409 2410 /* 2411 * This was copied from __set_page_dirty_buffers which gives higher performance 2412 * in very high speed storages. (e.g., pmem) 2413 */ 2414 void f2fs_set_page_dirty_nobuffers(struct page *page) 2415 { 2416 struct address_space *mapping = page->mapping; 2417 unsigned long flags; 2418 2419 if (unlikely(!mapping)) 2420 return; 2421 2422 spin_lock(&mapping->private_lock); 2423 lock_page_memcg(page); 2424 SetPageDirty(page); 2425 spin_unlock(&mapping->private_lock); 2426 2427 xa_lock_irqsave(&mapping->i_pages, flags); 2428 WARN_ON_ONCE(!PageUptodate(page)); 2429 account_page_dirtied(page, mapping); 2430 radix_tree_tag_set(&mapping->i_pages, 2431 page_index(page), PAGECACHE_TAG_DIRTY); 2432 xa_unlock_irqrestore(&mapping->i_pages, flags); 2433 unlock_page_memcg(page); 2434 2435 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2436 return; 2437 } 2438 2439 static int f2fs_set_data_page_dirty(struct page *page) 2440 { 2441 struct address_space *mapping = page->mapping; 2442 struct inode *inode = mapping->host; 2443 2444 trace_f2fs_set_page_dirty(page, DATA); 2445 2446 if (!PageUptodate(page)) 2447 SetPageUptodate(page); 2448 2449 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2450 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2451 register_inmem_page(inode, page); 2452 return 1; 2453 } 2454 /* 2455 * Previously, this page has been registered, we just 2456 * return here. 2457 */ 2458 return 0; 2459 } 2460 2461 if (!PageDirty(page)) { 2462 f2fs_set_page_dirty_nobuffers(page); 2463 update_dirty_page(inode, page); 2464 return 1; 2465 } 2466 return 0; 2467 } 2468 2469 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2470 { 2471 struct inode *inode = mapping->host; 2472 2473 if (f2fs_has_inline_data(inode)) 2474 return 0; 2475 2476 /* make sure allocating whole blocks */ 2477 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2478 filemap_write_and_wait(mapping); 2479 2480 return generic_block_bmap(mapping, block, get_data_block_bmap); 2481 } 2482 2483 #ifdef CONFIG_MIGRATION 2484 #include <linux/migrate.h> 2485 2486 int f2fs_migrate_page(struct address_space *mapping, 2487 struct page *newpage, struct page *page, enum migrate_mode mode) 2488 { 2489 int rc, extra_count; 2490 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2491 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2492 2493 BUG_ON(PageWriteback(page)); 2494 2495 /* migrating an atomic written page is safe with the inmem_lock hold */ 2496 if (atomic_written) { 2497 if (mode != MIGRATE_SYNC) 2498 return -EBUSY; 2499 if (!mutex_trylock(&fi->inmem_lock)) 2500 return -EAGAIN; 2501 } 2502 2503 /* 2504 * A reference is expected if PagePrivate set when move mapping, 2505 * however F2FS breaks this for maintaining dirty page counts when 2506 * truncating pages. So here adjusting the 'extra_count' make it work. 2507 */ 2508 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2509 rc = migrate_page_move_mapping(mapping, newpage, 2510 page, NULL, mode, extra_count); 2511 if (rc != MIGRATEPAGE_SUCCESS) { 2512 if (atomic_written) 2513 mutex_unlock(&fi->inmem_lock); 2514 return rc; 2515 } 2516 2517 if (atomic_written) { 2518 struct inmem_pages *cur; 2519 list_for_each_entry(cur, &fi->inmem_pages, list) 2520 if (cur->page == page) { 2521 cur->page = newpage; 2522 break; 2523 } 2524 mutex_unlock(&fi->inmem_lock); 2525 put_page(page); 2526 get_page(newpage); 2527 } 2528 2529 if (PagePrivate(page)) 2530 SetPagePrivate(newpage); 2531 set_page_private(newpage, page_private(page)); 2532 2533 if (mode != MIGRATE_SYNC_NO_COPY) 2534 migrate_page_copy(newpage, page); 2535 else 2536 migrate_page_states(newpage, page); 2537 2538 return MIGRATEPAGE_SUCCESS; 2539 } 2540 #endif 2541 2542 const struct address_space_operations f2fs_dblock_aops = { 2543 .readpage = f2fs_read_data_page, 2544 .readpages = f2fs_read_data_pages, 2545 .writepage = f2fs_write_data_page, 2546 .writepages = f2fs_write_data_pages, 2547 .write_begin = f2fs_write_begin, 2548 .write_end = f2fs_write_end, 2549 .set_page_dirty = f2fs_set_data_page_dirty, 2550 .invalidatepage = f2fs_invalidate_page, 2551 .releasepage = f2fs_release_page, 2552 .direct_IO = f2fs_direct_IO, 2553 .bmap = f2fs_bmap, 2554 #ifdef CONFIG_MIGRATION 2555 .migratepage = f2fs_migrate_page, 2556 #endif 2557 }; 2558