1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 #include <linux/sched/signal.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "trace.h" 31 #include <trace/events/f2fs.h> 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 is_cold_data(page)) 49 return true; 50 return false; 51 } 52 53 static void f2fs_read_end_io(struct bio *bio) 54 { 55 struct bio_vec *bvec; 56 int i; 57 58 #ifdef CONFIG_F2FS_FAULT_INJECTION 59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) { 60 f2fs_show_injection_info(FAULT_IO); 61 bio->bi_status = BLK_STS_IOERR; 62 } 63 #endif 64 65 if (f2fs_bio_encrypted(bio)) { 66 if (bio->bi_status) { 67 fscrypt_release_ctx(bio->bi_private); 68 } else { 69 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 70 return; 71 } 72 } 73 74 bio_for_each_segment_all(bvec, bio, i) { 75 struct page *page = bvec->bv_page; 76 77 if (!bio->bi_status) { 78 if (!PageUptodate(page)) 79 SetPageUptodate(page); 80 } else { 81 ClearPageUptodate(page); 82 SetPageError(page); 83 } 84 unlock_page(page); 85 } 86 bio_put(bio); 87 } 88 89 static void f2fs_write_end_io(struct bio *bio) 90 { 91 struct f2fs_sb_info *sbi = bio->bi_private; 92 struct bio_vec *bvec; 93 int i; 94 95 bio_for_each_segment_all(bvec, bio, i) { 96 struct page *page = bvec->bv_page; 97 enum count_type type = WB_DATA_TYPE(page); 98 99 if (IS_DUMMY_WRITTEN_PAGE(page)) { 100 set_page_private(page, (unsigned long)NULL); 101 ClearPagePrivate(page); 102 unlock_page(page); 103 mempool_free(page, sbi->write_io_dummy); 104 105 if (unlikely(bio->bi_status)) 106 f2fs_stop_checkpoint(sbi, true); 107 continue; 108 } 109 110 fscrypt_pullback_bio_page(&page, true); 111 112 if (unlikely(bio->bi_status)) { 113 mapping_set_error(page->mapping, -EIO); 114 f2fs_stop_checkpoint(sbi, true); 115 } 116 dec_page_count(sbi, type); 117 clear_cold_data(page); 118 end_page_writeback(page); 119 } 120 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 121 wq_has_sleeper(&sbi->cp_wait)) 122 wake_up(&sbi->cp_wait); 123 124 bio_put(bio); 125 } 126 127 /* 128 * Return true, if pre_bio's bdev is same as its target device. 129 */ 130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 131 block_t blk_addr, struct bio *bio) 132 { 133 struct block_device *bdev = sbi->sb->s_bdev; 134 int i; 135 136 for (i = 0; i < sbi->s_ndevs; i++) { 137 if (FDEV(i).start_blk <= blk_addr && 138 FDEV(i).end_blk >= blk_addr) { 139 blk_addr -= FDEV(i).start_blk; 140 bdev = FDEV(i).bdev; 141 break; 142 } 143 } 144 if (bio) { 145 bio_set_dev(bio, bdev); 146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 147 } 148 return bdev; 149 } 150 151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 152 { 153 int i; 154 155 for (i = 0; i < sbi->s_ndevs; i++) 156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 157 return i; 158 return 0; 159 } 160 161 static bool __same_bdev(struct f2fs_sb_info *sbi, 162 block_t blk_addr, struct bio *bio) 163 { 164 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 165 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 166 } 167 168 /* 169 * Low-level block read/write IO operations. 170 */ 171 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 172 int npages, bool is_read) 173 { 174 struct bio *bio; 175 176 bio = f2fs_bio_alloc(sbi, npages, true); 177 178 f2fs_target_device(sbi, blk_addr, bio); 179 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 180 bio->bi_private = is_read ? NULL : sbi; 181 182 return bio; 183 } 184 185 static inline void __submit_bio(struct f2fs_sb_info *sbi, 186 struct bio *bio, enum page_type type) 187 { 188 if (!is_read_io(bio_op(bio))) { 189 unsigned int start; 190 191 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 192 current->plug && (type == DATA || type == NODE)) 193 blk_finish_plug(current->plug); 194 195 if (type != DATA && type != NODE) 196 goto submit_io; 197 198 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 199 start %= F2FS_IO_SIZE(sbi); 200 201 if (start == 0) 202 goto submit_io; 203 204 /* fill dummy pages */ 205 for (; start < F2FS_IO_SIZE(sbi); start++) { 206 struct page *page = 207 mempool_alloc(sbi->write_io_dummy, 208 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 209 f2fs_bug_on(sbi, !page); 210 211 SetPagePrivate(page); 212 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 213 lock_page(page); 214 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 215 f2fs_bug_on(sbi, 1); 216 } 217 /* 218 * In the NODE case, we lose next block address chain. So, we 219 * need to do checkpoint in f2fs_sync_file. 220 */ 221 if (type == NODE) 222 set_sbi_flag(sbi, SBI_NEED_CP); 223 } 224 submit_io: 225 if (is_read_io(bio_op(bio))) 226 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 227 else 228 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 229 submit_bio(bio); 230 } 231 232 static void __submit_merged_bio(struct f2fs_bio_info *io) 233 { 234 struct f2fs_io_info *fio = &io->fio; 235 236 if (!io->bio) 237 return; 238 239 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 240 241 if (is_read_io(fio->op)) 242 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 243 else 244 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 245 246 __submit_bio(io->sbi, io->bio, fio->type); 247 io->bio = NULL; 248 } 249 250 static bool __has_merged_page(struct f2fs_bio_info *io, 251 struct inode *inode, nid_t ino, pgoff_t idx) 252 { 253 struct bio_vec *bvec; 254 struct page *target; 255 int i; 256 257 if (!io->bio) 258 return false; 259 260 if (!inode && !ino) 261 return true; 262 263 bio_for_each_segment_all(bvec, io->bio, i) { 264 265 if (bvec->bv_page->mapping) 266 target = bvec->bv_page; 267 else 268 target = fscrypt_control_page(bvec->bv_page); 269 270 if (idx != target->index) 271 continue; 272 273 if (inode && inode == target->mapping->host) 274 return true; 275 if (ino && ino == ino_of_node(target)) 276 return true; 277 } 278 279 return false; 280 } 281 282 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 283 nid_t ino, pgoff_t idx, enum page_type type) 284 { 285 enum page_type btype = PAGE_TYPE_OF_BIO(type); 286 enum temp_type temp; 287 struct f2fs_bio_info *io; 288 bool ret = false; 289 290 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 291 io = sbi->write_io[btype] + temp; 292 293 down_read(&io->io_rwsem); 294 ret = __has_merged_page(io, inode, ino, idx); 295 up_read(&io->io_rwsem); 296 297 /* TODO: use HOT temp only for meta pages now. */ 298 if (ret || btype == META) 299 break; 300 } 301 return ret; 302 } 303 304 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 305 enum page_type type, enum temp_type temp) 306 { 307 enum page_type btype = PAGE_TYPE_OF_BIO(type); 308 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 309 310 down_write(&io->io_rwsem); 311 312 /* change META to META_FLUSH in the checkpoint procedure */ 313 if (type >= META_FLUSH) { 314 io->fio.type = META_FLUSH; 315 io->fio.op = REQ_OP_WRITE; 316 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 317 if (!test_opt(sbi, NOBARRIER)) 318 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 319 } 320 __submit_merged_bio(io); 321 up_write(&io->io_rwsem); 322 } 323 324 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 325 struct inode *inode, nid_t ino, pgoff_t idx, 326 enum page_type type, bool force) 327 { 328 enum temp_type temp; 329 330 if (!force && !has_merged_page(sbi, inode, ino, idx, type)) 331 return; 332 333 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 334 335 __f2fs_submit_merged_write(sbi, type, temp); 336 337 /* TODO: use HOT temp only for meta pages now. */ 338 if (type >= META) 339 break; 340 } 341 } 342 343 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 344 { 345 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 346 } 347 348 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 349 struct inode *inode, nid_t ino, pgoff_t idx, 350 enum page_type type) 351 { 352 __submit_merged_write_cond(sbi, inode, ino, idx, type, false); 353 } 354 355 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 356 { 357 f2fs_submit_merged_write(sbi, DATA); 358 f2fs_submit_merged_write(sbi, NODE); 359 f2fs_submit_merged_write(sbi, META); 360 } 361 362 /* 363 * Fill the locked page with data located in the block address. 364 * A caller needs to unlock the page on failure. 365 */ 366 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 367 { 368 struct bio *bio; 369 struct page *page = fio->encrypted_page ? 370 fio->encrypted_page : fio->page; 371 372 trace_f2fs_submit_page_bio(page, fio); 373 f2fs_trace_ios(fio, 0); 374 375 /* Allocate a new bio */ 376 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 377 378 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 379 bio_put(bio); 380 return -EFAULT; 381 } 382 bio_set_op_attrs(bio, fio->op, fio->op_flags); 383 384 __submit_bio(fio->sbi, bio, fio->type); 385 386 if (!is_read_io(fio->op)) 387 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page)); 388 return 0; 389 } 390 391 int f2fs_submit_page_write(struct f2fs_io_info *fio) 392 { 393 struct f2fs_sb_info *sbi = fio->sbi; 394 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 395 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 396 struct page *bio_page; 397 int err = 0; 398 399 f2fs_bug_on(sbi, is_read_io(fio->op)); 400 401 down_write(&io->io_rwsem); 402 next: 403 if (fio->in_list) { 404 spin_lock(&io->io_lock); 405 if (list_empty(&io->io_list)) { 406 spin_unlock(&io->io_lock); 407 goto out_fail; 408 } 409 fio = list_first_entry(&io->io_list, 410 struct f2fs_io_info, list); 411 list_del(&fio->list); 412 spin_unlock(&io->io_lock); 413 } 414 415 if (fio->old_blkaddr != NEW_ADDR) 416 verify_block_addr(sbi, fio->old_blkaddr); 417 verify_block_addr(sbi, fio->new_blkaddr); 418 419 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 420 421 /* set submitted = true as a return value */ 422 fio->submitted = true; 423 424 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 425 426 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 427 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 428 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 429 __submit_merged_bio(io); 430 alloc_new: 431 if (io->bio == NULL) { 432 if ((fio->type == DATA || fio->type == NODE) && 433 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 434 err = -EAGAIN; 435 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 436 goto out_fail; 437 } 438 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 439 BIO_MAX_PAGES, false); 440 io->fio = *fio; 441 } 442 443 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 444 __submit_merged_bio(io); 445 goto alloc_new; 446 } 447 448 io->last_block_in_bio = fio->new_blkaddr; 449 f2fs_trace_ios(fio, 0); 450 451 trace_f2fs_submit_page_write(fio->page, fio); 452 453 if (fio->in_list) 454 goto next; 455 out_fail: 456 up_write(&io->io_rwsem); 457 return err; 458 } 459 460 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 461 unsigned nr_pages) 462 { 463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 464 struct fscrypt_ctx *ctx = NULL; 465 struct bio *bio; 466 467 if (f2fs_encrypted_file(inode)) { 468 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 469 if (IS_ERR(ctx)) 470 return ERR_CAST(ctx); 471 472 /* wait the page to be moved by cleaning */ 473 f2fs_wait_on_block_writeback(sbi, blkaddr); 474 } 475 476 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 477 if (!bio) { 478 if (ctx) 479 fscrypt_release_ctx(ctx); 480 return ERR_PTR(-ENOMEM); 481 } 482 f2fs_target_device(sbi, blkaddr, bio); 483 bio->bi_end_io = f2fs_read_end_io; 484 bio->bi_private = ctx; 485 bio_set_op_attrs(bio, REQ_OP_READ, 0); 486 487 return bio; 488 } 489 490 /* This can handle encryption stuffs */ 491 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 492 block_t blkaddr) 493 { 494 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1); 495 496 if (IS_ERR(bio)) 497 return PTR_ERR(bio); 498 499 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 500 bio_put(bio); 501 return -EFAULT; 502 } 503 __submit_bio(F2FS_I_SB(inode), bio, DATA); 504 return 0; 505 } 506 507 static void __set_data_blkaddr(struct dnode_of_data *dn) 508 { 509 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 510 __le32 *addr_array; 511 int base = 0; 512 513 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 514 base = get_extra_isize(dn->inode); 515 516 /* Get physical address of data block */ 517 addr_array = blkaddr_in_node(rn); 518 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 519 } 520 521 /* 522 * Lock ordering for the change of data block address: 523 * ->data_page 524 * ->node_page 525 * update block addresses in the node page 526 */ 527 void set_data_blkaddr(struct dnode_of_data *dn) 528 { 529 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 530 __set_data_blkaddr(dn); 531 if (set_page_dirty(dn->node_page)) 532 dn->node_changed = true; 533 } 534 535 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 536 { 537 dn->data_blkaddr = blkaddr; 538 set_data_blkaddr(dn); 539 f2fs_update_extent_cache(dn); 540 } 541 542 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 543 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 544 { 545 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 546 int err; 547 548 if (!count) 549 return 0; 550 551 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 552 return -EPERM; 553 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 554 return err; 555 556 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 557 dn->ofs_in_node, count); 558 559 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 560 561 for (; count > 0; dn->ofs_in_node++) { 562 block_t blkaddr = datablock_addr(dn->inode, 563 dn->node_page, dn->ofs_in_node); 564 if (blkaddr == NULL_ADDR) { 565 dn->data_blkaddr = NEW_ADDR; 566 __set_data_blkaddr(dn); 567 count--; 568 } 569 } 570 571 if (set_page_dirty(dn->node_page)) 572 dn->node_changed = true; 573 return 0; 574 } 575 576 /* Should keep dn->ofs_in_node unchanged */ 577 int reserve_new_block(struct dnode_of_data *dn) 578 { 579 unsigned int ofs_in_node = dn->ofs_in_node; 580 int ret; 581 582 ret = reserve_new_blocks(dn, 1); 583 dn->ofs_in_node = ofs_in_node; 584 return ret; 585 } 586 587 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 588 { 589 bool need_put = dn->inode_page ? false : true; 590 int err; 591 592 err = get_dnode_of_data(dn, index, ALLOC_NODE); 593 if (err) 594 return err; 595 596 if (dn->data_blkaddr == NULL_ADDR) 597 err = reserve_new_block(dn); 598 if (err || need_put) 599 f2fs_put_dnode(dn); 600 return err; 601 } 602 603 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 604 { 605 struct extent_info ei = {0,0,0}; 606 struct inode *inode = dn->inode; 607 608 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 609 dn->data_blkaddr = ei.blk + index - ei.fofs; 610 return 0; 611 } 612 613 return f2fs_reserve_block(dn, index); 614 } 615 616 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 617 int op_flags, bool for_write) 618 { 619 struct address_space *mapping = inode->i_mapping; 620 struct dnode_of_data dn; 621 struct page *page; 622 struct extent_info ei = {0,0,0}; 623 int err; 624 625 page = f2fs_grab_cache_page(mapping, index, for_write); 626 if (!page) 627 return ERR_PTR(-ENOMEM); 628 629 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 630 dn.data_blkaddr = ei.blk + index - ei.fofs; 631 goto got_it; 632 } 633 634 set_new_dnode(&dn, inode, NULL, NULL, 0); 635 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 636 if (err) 637 goto put_err; 638 f2fs_put_dnode(&dn); 639 640 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 641 err = -ENOENT; 642 goto put_err; 643 } 644 got_it: 645 if (PageUptodate(page)) { 646 unlock_page(page); 647 return page; 648 } 649 650 /* 651 * A new dentry page is allocated but not able to be written, since its 652 * new inode page couldn't be allocated due to -ENOSPC. 653 * In such the case, its blkaddr can be remained as NEW_ADDR. 654 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 655 */ 656 if (dn.data_blkaddr == NEW_ADDR) { 657 zero_user_segment(page, 0, PAGE_SIZE); 658 if (!PageUptodate(page)) 659 SetPageUptodate(page); 660 unlock_page(page); 661 return page; 662 } 663 664 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 665 if (err) 666 goto put_err; 667 return page; 668 669 put_err: 670 f2fs_put_page(page, 1); 671 return ERR_PTR(err); 672 } 673 674 struct page *find_data_page(struct inode *inode, pgoff_t index) 675 { 676 struct address_space *mapping = inode->i_mapping; 677 struct page *page; 678 679 page = find_get_page(mapping, index); 680 if (page && PageUptodate(page)) 681 return page; 682 f2fs_put_page(page, 0); 683 684 page = get_read_data_page(inode, index, 0, false); 685 if (IS_ERR(page)) 686 return page; 687 688 if (PageUptodate(page)) 689 return page; 690 691 wait_on_page_locked(page); 692 if (unlikely(!PageUptodate(page))) { 693 f2fs_put_page(page, 0); 694 return ERR_PTR(-EIO); 695 } 696 return page; 697 } 698 699 /* 700 * If it tries to access a hole, return an error. 701 * Because, the callers, functions in dir.c and GC, should be able to know 702 * whether this page exists or not. 703 */ 704 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 705 bool for_write) 706 { 707 struct address_space *mapping = inode->i_mapping; 708 struct page *page; 709 repeat: 710 page = get_read_data_page(inode, index, 0, for_write); 711 if (IS_ERR(page)) 712 return page; 713 714 /* wait for read completion */ 715 lock_page(page); 716 if (unlikely(page->mapping != mapping)) { 717 f2fs_put_page(page, 1); 718 goto repeat; 719 } 720 if (unlikely(!PageUptodate(page))) { 721 f2fs_put_page(page, 1); 722 return ERR_PTR(-EIO); 723 } 724 return page; 725 } 726 727 /* 728 * Caller ensures that this data page is never allocated. 729 * A new zero-filled data page is allocated in the page cache. 730 * 731 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 732 * f2fs_unlock_op(). 733 * Note that, ipage is set only by make_empty_dir, and if any error occur, 734 * ipage should be released by this function. 735 */ 736 struct page *get_new_data_page(struct inode *inode, 737 struct page *ipage, pgoff_t index, bool new_i_size) 738 { 739 struct address_space *mapping = inode->i_mapping; 740 struct page *page; 741 struct dnode_of_data dn; 742 int err; 743 744 page = f2fs_grab_cache_page(mapping, index, true); 745 if (!page) { 746 /* 747 * before exiting, we should make sure ipage will be released 748 * if any error occur. 749 */ 750 f2fs_put_page(ipage, 1); 751 return ERR_PTR(-ENOMEM); 752 } 753 754 set_new_dnode(&dn, inode, ipage, NULL, 0); 755 err = f2fs_reserve_block(&dn, index); 756 if (err) { 757 f2fs_put_page(page, 1); 758 return ERR_PTR(err); 759 } 760 if (!ipage) 761 f2fs_put_dnode(&dn); 762 763 if (PageUptodate(page)) 764 goto got_it; 765 766 if (dn.data_blkaddr == NEW_ADDR) { 767 zero_user_segment(page, 0, PAGE_SIZE); 768 if (!PageUptodate(page)) 769 SetPageUptodate(page); 770 } else { 771 f2fs_put_page(page, 1); 772 773 /* if ipage exists, blkaddr should be NEW_ADDR */ 774 f2fs_bug_on(F2FS_I_SB(inode), ipage); 775 page = get_lock_data_page(inode, index, true); 776 if (IS_ERR(page)) 777 return page; 778 } 779 got_it: 780 if (new_i_size && i_size_read(inode) < 781 ((loff_t)(index + 1) << PAGE_SHIFT)) 782 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 783 return page; 784 } 785 786 static int __allocate_data_block(struct dnode_of_data *dn) 787 { 788 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 789 struct f2fs_summary sum; 790 struct node_info ni; 791 pgoff_t fofs; 792 blkcnt_t count = 1; 793 int err; 794 795 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 796 return -EPERM; 797 798 dn->data_blkaddr = datablock_addr(dn->inode, 799 dn->node_page, dn->ofs_in_node); 800 if (dn->data_blkaddr == NEW_ADDR) 801 goto alloc; 802 803 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 804 return err; 805 806 alloc: 807 get_node_info(sbi, dn->nid, &ni); 808 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 809 810 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 811 &sum, CURSEG_WARM_DATA, NULL, false); 812 set_data_blkaddr(dn); 813 814 /* update i_size */ 815 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 816 dn->ofs_in_node; 817 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 818 f2fs_i_size_write(dn->inode, 819 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 820 return 0; 821 } 822 823 static inline bool __force_buffered_io(struct inode *inode, int rw) 824 { 825 return (f2fs_encrypted_file(inode) || 826 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 827 F2FS_I_SB(inode)->s_ndevs); 828 } 829 830 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 831 { 832 struct inode *inode = file_inode(iocb->ki_filp); 833 struct f2fs_map_blocks map; 834 int err = 0; 835 836 /* convert inline data for Direct I/O*/ 837 if (iocb->ki_flags & IOCB_DIRECT) { 838 err = f2fs_convert_inline_inode(inode); 839 if (err) 840 return err; 841 } 842 843 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 844 return 0; 845 846 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 847 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 848 if (map.m_len > map.m_lblk) 849 map.m_len -= map.m_lblk; 850 else 851 map.m_len = 0; 852 853 map.m_next_pgofs = NULL; 854 855 if (iocb->ki_flags & IOCB_DIRECT) 856 return f2fs_map_blocks(inode, &map, 1, 857 __force_buffered_io(inode, WRITE) ? 858 F2FS_GET_BLOCK_PRE_AIO : 859 F2FS_GET_BLOCK_PRE_DIO); 860 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 861 err = f2fs_convert_inline_inode(inode); 862 if (err) 863 return err; 864 } 865 if (!f2fs_has_inline_data(inode)) 866 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 867 return err; 868 } 869 870 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 871 { 872 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 873 if (lock) 874 down_read(&sbi->node_change); 875 else 876 up_read(&sbi->node_change); 877 } else { 878 if (lock) 879 f2fs_lock_op(sbi); 880 else 881 f2fs_unlock_op(sbi); 882 } 883 } 884 885 /* 886 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 887 * f2fs_map_blocks structure. 888 * If original data blocks are allocated, then give them to blockdev. 889 * Otherwise, 890 * a. preallocate requested block addresses 891 * b. do not use extent cache for better performance 892 * c. give the block addresses to blockdev 893 */ 894 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 895 int create, int flag) 896 { 897 unsigned int maxblocks = map->m_len; 898 struct dnode_of_data dn; 899 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 900 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 901 pgoff_t pgofs, end_offset, end; 902 int err = 0, ofs = 1; 903 unsigned int ofs_in_node, last_ofs_in_node; 904 blkcnt_t prealloc; 905 struct extent_info ei = {0,0,0}; 906 block_t blkaddr; 907 908 if (!maxblocks) 909 return 0; 910 911 map->m_len = 0; 912 map->m_flags = 0; 913 914 /* it only supports block size == page size */ 915 pgofs = (pgoff_t)map->m_lblk; 916 end = pgofs + maxblocks; 917 918 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 919 map->m_pblk = ei.blk + pgofs - ei.fofs; 920 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 921 map->m_flags = F2FS_MAP_MAPPED; 922 goto out; 923 } 924 925 next_dnode: 926 if (create) 927 __do_map_lock(sbi, flag, true); 928 929 /* When reading holes, we need its node page */ 930 set_new_dnode(&dn, inode, NULL, NULL, 0); 931 err = get_dnode_of_data(&dn, pgofs, mode); 932 if (err) { 933 if (flag == F2FS_GET_BLOCK_BMAP) 934 map->m_pblk = 0; 935 if (err == -ENOENT) { 936 err = 0; 937 if (map->m_next_pgofs) 938 *map->m_next_pgofs = 939 get_next_page_offset(&dn, pgofs); 940 } 941 goto unlock_out; 942 } 943 944 prealloc = 0; 945 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 946 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 947 948 next_block: 949 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 950 951 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 952 if (create) { 953 if (unlikely(f2fs_cp_error(sbi))) { 954 err = -EIO; 955 goto sync_out; 956 } 957 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 958 if (blkaddr == NULL_ADDR) { 959 prealloc++; 960 last_ofs_in_node = dn.ofs_in_node; 961 } 962 } else { 963 err = __allocate_data_block(&dn); 964 if (!err) 965 set_inode_flag(inode, FI_APPEND_WRITE); 966 } 967 if (err) 968 goto sync_out; 969 map->m_flags |= F2FS_MAP_NEW; 970 blkaddr = dn.data_blkaddr; 971 } else { 972 if (flag == F2FS_GET_BLOCK_BMAP) { 973 map->m_pblk = 0; 974 goto sync_out; 975 } 976 if (flag == F2FS_GET_BLOCK_FIEMAP && 977 blkaddr == NULL_ADDR) { 978 if (map->m_next_pgofs) 979 *map->m_next_pgofs = pgofs + 1; 980 } 981 if (flag != F2FS_GET_BLOCK_FIEMAP || 982 blkaddr != NEW_ADDR) 983 goto sync_out; 984 } 985 } 986 987 if (flag == F2FS_GET_BLOCK_PRE_AIO) 988 goto skip; 989 990 if (map->m_len == 0) { 991 /* preallocated unwritten block should be mapped for fiemap. */ 992 if (blkaddr == NEW_ADDR) 993 map->m_flags |= F2FS_MAP_UNWRITTEN; 994 map->m_flags |= F2FS_MAP_MAPPED; 995 996 map->m_pblk = blkaddr; 997 map->m_len = 1; 998 } else if ((map->m_pblk != NEW_ADDR && 999 blkaddr == (map->m_pblk + ofs)) || 1000 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1001 flag == F2FS_GET_BLOCK_PRE_DIO) { 1002 ofs++; 1003 map->m_len++; 1004 } else { 1005 goto sync_out; 1006 } 1007 1008 skip: 1009 dn.ofs_in_node++; 1010 pgofs++; 1011 1012 /* preallocate blocks in batch for one dnode page */ 1013 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1014 (pgofs == end || dn.ofs_in_node == end_offset)) { 1015 1016 dn.ofs_in_node = ofs_in_node; 1017 err = reserve_new_blocks(&dn, prealloc); 1018 if (err) 1019 goto sync_out; 1020 1021 map->m_len += dn.ofs_in_node - ofs_in_node; 1022 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1023 err = -ENOSPC; 1024 goto sync_out; 1025 } 1026 dn.ofs_in_node = end_offset; 1027 } 1028 1029 if (pgofs >= end) 1030 goto sync_out; 1031 else if (dn.ofs_in_node < end_offset) 1032 goto next_block; 1033 1034 f2fs_put_dnode(&dn); 1035 1036 if (create) { 1037 __do_map_lock(sbi, flag, false); 1038 f2fs_balance_fs(sbi, dn.node_changed); 1039 } 1040 goto next_dnode; 1041 1042 sync_out: 1043 f2fs_put_dnode(&dn); 1044 unlock_out: 1045 if (create) { 1046 __do_map_lock(sbi, flag, false); 1047 f2fs_balance_fs(sbi, dn.node_changed); 1048 } 1049 out: 1050 trace_f2fs_map_blocks(inode, map, err); 1051 return err; 1052 } 1053 1054 static int __get_data_block(struct inode *inode, sector_t iblock, 1055 struct buffer_head *bh, int create, int flag, 1056 pgoff_t *next_pgofs) 1057 { 1058 struct f2fs_map_blocks map; 1059 int err; 1060 1061 map.m_lblk = iblock; 1062 map.m_len = bh->b_size >> inode->i_blkbits; 1063 map.m_next_pgofs = next_pgofs; 1064 1065 err = f2fs_map_blocks(inode, &map, create, flag); 1066 if (!err) { 1067 map_bh(bh, inode->i_sb, map.m_pblk); 1068 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1069 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1070 } 1071 return err; 1072 } 1073 1074 static int get_data_block(struct inode *inode, sector_t iblock, 1075 struct buffer_head *bh_result, int create, int flag, 1076 pgoff_t *next_pgofs) 1077 { 1078 return __get_data_block(inode, iblock, bh_result, create, 1079 flag, next_pgofs); 1080 } 1081 1082 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1083 struct buffer_head *bh_result, int create) 1084 { 1085 return __get_data_block(inode, iblock, bh_result, create, 1086 F2FS_GET_BLOCK_DEFAULT, NULL); 1087 } 1088 1089 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1090 struct buffer_head *bh_result, int create) 1091 { 1092 /* Block number less than F2FS MAX BLOCKS */ 1093 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1094 return -EFBIG; 1095 1096 return __get_data_block(inode, iblock, bh_result, create, 1097 F2FS_GET_BLOCK_BMAP, NULL); 1098 } 1099 1100 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1101 { 1102 return (offset >> inode->i_blkbits); 1103 } 1104 1105 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1106 { 1107 return (blk << inode->i_blkbits); 1108 } 1109 1110 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1111 u64 start, u64 len) 1112 { 1113 struct buffer_head map_bh; 1114 sector_t start_blk, last_blk; 1115 pgoff_t next_pgofs; 1116 u64 logical = 0, phys = 0, size = 0; 1117 u32 flags = 0; 1118 int ret = 0; 1119 1120 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 1121 if (ret) 1122 return ret; 1123 1124 if (f2fs_has_inline_data(inode)) { 1125 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1126 if (ret != -EAGAIN) 1127 return ret; 1128 } 1129 1130 inode_lock(inode); 1131 1132 if (logical_to_blk(inode, len) == 0) 1133 len = blk_to_logical(inode, 1); 1134 1135 start_blk = logical_to_blk(inode, start); 1136 last_blk = logical_to_blk(inode, start + len - 1); 1137 1138 next: 1139 memset(&map_bh, 0, sizeof(struct buffer_head)); 1140 map_bh.b_size = len; 1141 1142 ret = get_data_block(inode, start_blk, &map_bh, 0, 1143 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1144 if (ret) 1145 goto out; 1146 1147 /* HOLE */ 1148 if (!buffer_mapped(&map_bh)) { 1149 start_blk = next_pgofs; 1150 1151 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1152 F2FS_I_SB(inode)->max_file_blocks)) 1153 goto prep_next; 1154 1155 flags |= FIEMAP_EXTENT_LAST; 1156 } 1157 1158 if (size) { 1159 if (f2fs_encrypted_inode(inode)) 1160 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1161 1162 ret = fiemap_fill_next_extent(fieinfo, logical, 1163 phys, size, flags); 1164 } 1165 1166 if (start_blk > last_blk || ret) 1167 goto out; 1168 1169 logical = blk_to_logical(inode, start_blk); 1170 phys = blk_to_logical(inode, map_bh.b_blocknr); 1171 size = map_bh.b_size; 1172 flags = 0; 1173 if (buffer_unwritten(&map_bh)) 1174 flags = FIEMAP_EXTENT_UNWRITTEN; 1175 1176 start_blk += logical_to_blk(inode, size); 1177 1178 prep_next: 1179 cond_resched(); 1180 if (fatal_signal_pending(current)) 1181 ret = -EINTR; 1182 else 1183 goto next; 1184 out: 1185 if (ret == 1) 1186 ret = 0; 1187 1188 inode_unlock(inode); 1189 return ret; 1190 } 1191 1192 /* 1193 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1194 * Major change was from block_size == page_size in f2fs by default. 1195 */ 1196 static int f2fs_mpage_readpages(struct address_space *mapping, 1197 struct list_head *pages, struct page *page, 1198 unsigned nr_pages) 1199 { 1200 struct bio *bio = NULL; 1201 unsigned page_idx; 1202 sector_t last_block_in_bio = 0; 1203 struct inode *inode = mapping->host; 1204 const unsigned blkbits = inode->i_blkbits; 1205 const unsigned blocksize = 1 << blkbits; 1206 sector_t block_in_file; 1207 sector_t last_block; 1208 sector_t last_block_in_file; 1209 sector_t block_nr; 1210 struct f2fs_map_blocks map; 1211 1212 map.m_pblk = 0; 1213 map.m_lblk = 0; 1214 map.m_len = 0; 1215 map.m_flags = 0; 1216 map.m_next_pgofs = NULL; 1217 1218 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1219 1220 if (pages) { 1221 page = list_last_entry(pages, struct page, lru); 1222 1223 prefetchw(&page->flags); 1224 list_del(&page->lru); 1225 if (add_to_page_cache_lru(page, mapping, 1226 page->index, 1227 readahead_gfp_mask(mapping))) 1228 goto next_page; 1229 } 1230 1231 block_in_file = (sector_t)page->index; 1232 last_block = block_in_file + nr_pages; 1233 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1234 blkbits; 1235 if (last_block > last_block_in_file) 1236 last_block = last_block_in_file; 1237 1238 /* 1239 * Map blocks using the previous result first. 1240 */ 1241 if ((map.m_flags & F2FS_MAP_MAPPED) && 1242 block_in_file > map.m_lblk && 1243 block_in_file < (map.m_lblk + map.m_len)) 1244 goto got_it; 1245 1246 /* 1247 * Then do more f2fs_map_blocks() calls until we are 1248 * done with this page. 1249 */ 1250 map.m_flags = 0; 1251 1252 if (block_in_file < last_block) { 1253 map.m_lblk = block_in_file; 1254 map.m_len = last_block - block_in_file; 1255 1256 if (f2fs_map_blocks(inode, &map, 0, 1257 F2FS_GET_BLOCK_DEFAULT)) 1258 goto set_error_page; 1259 } 1260 got_it: 1261 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1262 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1263 SetPageMappedToDisk(page); 1264 1265 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1266 SetPageUptodate(page); 1267 goto confused; 1268 } 1269 } else { 1270 zero_user_segment(page, 0, PAGE_SIZE); 1271 if (!PageUptodate(page)) 1272 SetPageUptodate(page); 1273 unlock_page(page); 1274 goto next_page; 1275 } 1276 1277 /* 1278 * This page will go to BIO. Do we need to send this 1279 * BIO off first? 1280 */ 1281 if (bio && (last_block_in_bio != block_nr - 1 || 1282 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1283 submit_and_realloc: 1284 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1285 bio = NULL; 1286 } 1287 if (bio == NULL) { 1288 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages); 1289 if (IS_ERR(bio)) { 1290 bio = NULL; 1291 goto set_error_page; 1292 } 1293 } 1294 1295 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1296 goto submit_and_realloc; 1297 1298 last_block_in_bio = block_nr; 1299 goto next_page; 1300 set_error_page: 1301 SetPageError(page); 1302 zero_user_segment(page, 0, PAGE_SIZE); 1303 unlock_page(page); 1304 goto next_page; 1305 confused: 1306 if (bio) { 1307 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1308 bio = NULL; 1309 } 1310 unlock_page(page); 1311 next_page: 1312 if (pages) 1313 put_page(page); 1314 } 1315 BUG_ON(pages && !list_empty(pages)); 1316 if (bio) 1317 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1318 return 0; 1319 } 1320 1321 static int f2fs_read_data_page(struct file *file, struct page *page) 1322 { 1323 struct inode *inode = page->mapping->host; 1324 int ret = -EAGAIN; 1325 1326 trace_f2fs_readpage(page, DATA); 1327 1328 /* If the file has inline data, try to read it directly */ 1329 if (f2fs_has_inline_data(inode)) 1330 ret = f2fs_read_inline_data(inode, page); 1331 if (ret == -EAGAIN) 1332 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1333 return ret; 1334 } 1335 1336 static int f2fs_read_data_pages(struct file *file, 1337 struct address_space *mapping, 1338 struct list_head *pages, unsigned nr_pages) 1339 { 1340 struct inode *inode = mapping->host; 1341 struct page *page = list_last_entry(pages, struct page, lru); 1342 1343 trace_f2fs_readpages(inode, page, nr_pages); 1344 1345 /* If the file has inline data, skip readpages */ 1346 if (f2fs_has_inline_data(inode)) 1347 return 0; 1348 1349 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1350 } 1351 1352 static int encrypt_one_page(struct f2fs_io_info *fio) 1353 { 1354 struct inode *inode = fio->page->mapping->host; 1355 gfp_t gfp_flags = GFP_NOFS; 1356 1357 if (!f2fs_encrypted_file(inode)) 1358 return 0; 1359 1360 /* wait for GCed encrypted page writeback */ 1361 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr); 1362 1363 retry_encrypt: 1364 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1365 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1366 if (!IS_ERR(fio->encrypted_page)) 1367 return 0; 1368 1369 /* flush pending IOs and wait for a while in the ENOMEM case */ 1370 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1371 f2fs_flush_merged_writes(fio->sbi); 1372 congestion_wait(BLK_RW_ASYNC, HZ/50); 1373 gfp_flags |= __GFP_NOFAIL; 1374 goto retry_encrypt; 1375 } 1376 return PTR_ERR(fio->encrypted_page); 1377 } 1378 1379 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1380 { 1381 struct inode *inode = fio->page->mapping->host; 1382 1383 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 1384 return false; 1385 if (is_cold_data(fio->page)) 1386 return false; 1387 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1388 return false; 1389 1390 return need_inplace_update_policy(inode, fio); 1391 } 1392 1393 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio) 1394 { 1395 if (fio->old_blkaddr == NEW_ADDR) 1396 return false; 1397 if (fio->old_blkaddr == NULL_ADDR) 1398 return false; 1399 return true; 1400 } 1401 1402 int do_write_data_page(struct f2fs_io_info *fio) 1403 { 1404 struct page *page = fio->page; 1405 struct inode *inode = page->mapping->host; 1406 struct dnode_of_data dn; 1407 struct extent_info ei = {0,0,0}; 1408 bool ipu_force = false; 1409 int err = 0; 1410 1411 set_new_dnode(&dn, inode, NULL, NULL, 0); 1412 if (need_inplace_update(fio) && 1413 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1414 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1415 1416 if (valid_ipu_blkaddr(fio)) { 1417 ipu_force = true; 1418 fio->need_lock = LOCK_DONE; 1419 goto got_it; 1420 } 1421 } 1422 1423 /* Deadlock due to between page->lock and f2fs_lock_op */ 1424 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1425 return -EAGAIN; 1426 1427 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1428 if (err) 1429 goto out; 1430 1431 fio->old_blkaddr = dn.data_blkaddr; 1432 1433 /* This page is already truncated */ 1434 if (fio->old_blkaddr == NULL_ADDR) { 1435 ClearPageUptodate(page); 1436 goto out_writepage; 1437 } 1438 got_it: 1439 /* 1440 * If current allocation needs SSR, 1441 * it had better in-place writes for updated data. 1442 */ 1443 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) { 1444 err = encrypt_one_page(fio); 1445 if (err) 1446 goto out_writepage; 1447 1448 set_page_writeback(page); 1449 f2fs_put_dnode(&dn); 1450 if (fio->need_lock == LOCK_REQ) 1451 f2fs_unlock_op(fio->sbi); 1452 err = rewrite_data_page(fio); 1453 trace_f2fs_do_write_data_page(fio->page, IPU); 1454 set_inode_flag(inode, FI_UPDATE_WRITE); 1455 return err; 1456 } 1457 1458 if (fio->need_lock == LOCK_RETRY) { 1459 if (!f2fs_trylock_op(fio->sbi)) { 1460 err = -EAGAIN; 1461 goto out_writepage; 1462 } 1463 fio->need_lock = LOCK_REQ; 1464 } 1465 1466 err = encrypt_one_page(fio); 1467 if (err) 1468 goto out_writepage; 1469 1470 set_page_writeback(page); 1471 1472 /* LFS mode write path */ 1473 write_data_page(&dn, fio); 1474 trace_f2fs_do_write_data_page(page, OPU); 1475 set_inode_flag(inode, FI_APPEND_WRITE); 1476 if (page->index == 0) 1477 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1478 out_writepage: 1479 f2fs_put_dnode(&dn); 1480 out: 1481 if (fio->need_lock == LOCK_REQ) 1482 f2fs_unlock_op(fio->sbi); 1483 return err; 1484 } 1485 1486 static int __write_data_page(struct page *page, bool *submitted, 1487 struct writeback_control *wbc, 1488 enum iostat_type io_type) 1489 { 1490 struct inode *inode = page->mapping->host; 1491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1492 loff_t i_size = i_size_read(inode); 1493 const pgoff_t end_index = ((unsigned long long) i_size) 1494 >> PAGE_SHIFT; 1495 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1496 unsigned offset = 0; 1497 bool need_balance_fs = false; 1498 int err = 0; 1499 struct f2fs_io_info fio = { 1500 .sbi = sbi, 1501 .ino = inode->i_ino, 1502 .type = DATA, 1503 .op = REQ_OP_WRITE, 1504 .op_flags = wbc_to_write_flags(wbc), 1505 .old_blkaddr = NULL_ADDR, 1506 .page = page, 1507 .encrypted_page = NULL, 1508 .submitted = false, 1509 .need_lock = LOCK_RETRY, 1510 .io_type = io_type, 1511 }; 1512 1513 trace_f2fs_writepage(page, DATA); 1514 1515 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1516 goto redirty_out; 1517 1518 if (page->index < end_index) 1519 goto write; 1520 1521 /* 1522 * If the offset is out-of-range of file size, 1523 * this page does not have to be written to disk. 1524 */ 1525 offset = i_size & (PAGE_SIZE - 1); 1526 if ((page->index >= end_index + 1) || !offset) 1527 goto out; 1528 1529 zero_user_segment(page, offset, PAGE_SIZE); 1530 write: 1531 if (f2fs_is_drop_cache(inode)) 1532 goto out; 1533 /* we should not write 0'th page having journal header */ 1534 if (f2fs_is_volatile_file(inode) && (!page->index || 1535 (!wbc->for_reclaim && 1536 available_free_memory(sbi, BASE_CHECK)))) 1537 goto redirty_out; 1538 1539 /* we should bypass data pages to proceed the kworkder jobs */ 1540 if (unlikely(f2fs_cp_error(sbi))) { 1541 mapping_set_error(page->mapping, -EIO); 1542 goto out; 1543 } 1544 1545 /* Dentry blocks are controlled by checkpoint */ 1546 if (S_ISDIR(inode->i_mode)) { 1547 fio.need_lock = LOCK_DONE; 1548 err = do_write_data_page(&fio); 1549 goto done; 1550 } 1551 1552 if (!wbc->for_reclaim) 1553 need_balance_fs = true; 1554 else if (has_not_enough_free_secs(sbi, 0, 0)) 1555 goto redirty_out; 1556 else 1557 set_inode_flag(inode, FI_HOT_DATA); 1558 1559 err = -EAGAIN; 1560 if (f2fs_has_inline_data(inode)) { 1561 err = f2fs_write_inline_data(inode, page); 1562 if (!err) 1563 goto out; 1564 } 1565 1566 if (err == -EAGAIN) { 1567 err = do_write_data_page(&fio); 1568 if (err == -EAGAIN) { 1569 fio.need_lock = LOCK_REQ; 1570 err = do_write_data_page(&fio); 1571 } 1572 } 1573 1574 down_write(&F2FS_I(inode)->i_sem); 1575 if (F2FS_I(inode)->last_disk_size < psize) 1576 F2FS_I(inode)->last_disk_size = psize; 1577 up_write(&F2FS_I(inode)->i_sem); 1578 1579 done: 1580 if (err && err != -ENOENT) 1581 goto redirty_out; 1582 1583 out: 1584 inode_dec_dirty_pages(inode); 1585 if (err) 1586 ClearPageUptodate(page); 1587 1588 if (wbc->for_reclaim) { 1589 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA); 1590 clear_inode_flag(inode, FI_HOT_DATA); 1591 remove_dirty_inode(inode); 1592 submitted = NULL; 1593 } 1594 1595 unlock_page(page); 1596 if (!S_ISDIR(inode->i_mode)) 1597 f2fs_balance_fs(sbi, need_balance_fs); 1598 1599 if (unlikely(f2fs_cp_error(sbi))) { 1600 f2fs_submit_merged_write(sbi, DATA); 1601 submitted = NULL; 1602 } 1603 1604 if (submitted) 1605 *submitted = fio.submitted; 1606 1607 return 0; 1608 1609 redirty_out: 1610 redirty_page_for_writepage(wbc, page); 1611 if (!err) 1612 return AOP_WRITEPAGE_ACTIVATE; 1613 unlock_page(page); 1614 return err; 1615 } 1616 1617 static int f2fs_write_data_page(struct page *page, 1618 struct writeback_control *wbc) 1619 { 1620 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 1621 } 1622 1623 /* 1624 * This function was copied from write_cche_pages from mm/page-writeback.c. 1625 * The major change is making write step of cold data page separately from 1626 * warm/hot data page. 1627 */ 1628 static int f2fs_write_cache_pages(struct address_space *mapping, 1629 struct writeback_control *wbc, 1630 enum iostat_type io_type) 1631 { 1632 int ret = 0; 1633 int done = 0; 1634 struct pagevec pvec; 1635 int nr_pages; 1636 pgoff_t uninitialized_var(writeback_index); 1637 pgoff_t index; 1638 pgoff_t end; /* Inclusive */ 1639 pgoff_t done_index; 1640 pgoff_t last_idx = ULONG_MAX; 1641 int cycled; 1642 int range_whole = 0; 1643 int tag; 1644 1645 pagevec_init(&pvec); 1646 1647 if (get_dirty_pages(mapping->host) <= 1648 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 1649 set_inode_flag(mapping->host, FI_HOT_DATA); 1650 else 1651 clear_inode_flag(mapping->host, FI_HOT_DATA); 1652 1653 if (wbc->range_cyclic) { 1654 writeback_index = mapping->writeback_index; /* prev offset */ 1655 index = writeback_index; 1656 if (index == 0) 1657 cycled = 1; 1658 else 1659 cycled = 0; 1660 end = -1; 1661 } else { 1662 index = wbc->range_start >> PAGE_SHIFT; 1663 end = wbc->range_end >> PAGE_SHIFT; 1664 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1665 range_whole = 1; 1666 cycled = 1; /* ignore range_cyclic tests */ 1667 } 1668 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1669 tag = PAGECACHE_TAG_TOWRITE; 1670 else 1671 tag = PAGECACHE_TAG_DIRTY; 1672 retry: 1673 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1674 tag_pages_for_writeback(mapping, index, end); 1675 done_index = index; 1676 while (!done && (index <= end)) { 1677 int i; 1678 1679 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 1680 tag); 1681 if (nr_pages == 0) 1682 break; 1683 1684 for (i = 0; i < nr_pages; i++) { 1685 struct page *page = pvec.pages[i]; 1686 bool submitted = false; 1687 1688 done_index = page->index; 1689 retry_write: 1690 lock_page(page); 1691 1692 if (unlikely(page->mapping != mapping)) { 1693 continue_unlock: 1694 unlock_page(page); 1695 continue; 1696 } 1697 1698 if (!PageDirty(page)) { 1699 /* someone wrote it for us */ 1700 goto continue_unlock; 1701 } 1702 1703 if (PageWriteback(page)) { 1704 if (wbc->sync_mode != WB_SYNC_NONE) 1705 f2fs_wait_on_page_writeback(page, 1706 DATA, true); 1707 else 1708 goto continue_unlock; 1709 } 1710 1711 BUG_ON(PageWriteback(page)); 1712 if (!clear_page_dirty_for_io(page)) 1713 goto continue_unlock; 1714 1715 ret = __write_data_page(page, &submitted, wbc, io_type); 1716 if (unlikely(ret)) { 1717 /* 1718 * keep nr_to_write, since vfs uses this to 1719 * get # of written pages. 1720 */ 1721 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1722 unlock_page(page); 1723 ret = 0; 1724 continue; 1725 } else if (ret == -EAGAIN) { 1726 ret = 0; 1727 if (wbc->sync_mode == WB_SYNC_ALL) { 1728 cond_resched(); 1729 congestion_wait(BLK_RW_ASYNC, 1730 HZ/50); 1731 goto retry_write; 1732 } 1733 continue; 1734 } 1735 done_index = page->index + 1; 1736 done = 1; 1737 break; 1738 } else if (submitted) { 1739 last_idx = page->index; 1740 } 1741 1742 /* give a priority to WB_SYNC threads */ 1743 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) || 1744 --wbc->nr_to_write <= 0) && 1745 wbc->sync_mode == WB_SYNC_NONE) { 1746 done = 1; 1747 break; 1748 } 1749 } 1750 pagevec_release(&pvec); 1751 cond_resched(); 1752 } 1753 1754 if (!cycled && !done) { 1755 cycled = 1; 1756 index = 0; 1757 end = writeback_index - 1; 1758 goto retry; 1759 } 1760 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1761 mapping->writeback_index = done_index; 1762 1763 if (last_idx != ULONG_MAX) 1764 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 1765 0, last_idx, DATA); 1766 1767 return ret; 1768 } 1769 1770 int __f2fs_write_data_pages(struct address_space *mapping, 1771 struct writeback_control *wbc, 1772 enum iostat_type io_type) 1773 { 1774 struct inode *inode = mapping->host; 1775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1776 struct blk_plug plug; 1777 int ret; 1778 1779 /* deal with chardevs and other special file */ 1780 if (!mapping->a_ops->writepage) 1781 return 0; 1782 1783 /* skip writing if there is no dirty page in this inode */ 1784 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1785 return 0; 1786 1787 /* during POR, we don't need to trigger writepage at all. */ 1788 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1789 goto skip_write; 1790 1791 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1792 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1793 available_free_memory(sbi, DIRTY_DENTS)) 1794 goto skip_write; 1795 1796 /* skip writing during file defragment */ 1797 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1798 goto skip_write; 1799 1800 trace_f2fs_writepages(mapping->host, wbc, DATA); 1801 1802 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 1803 if (wbc->sync_mode == WB_SYNC_ALL) 1804 atomic_inc(&sbi->wb_sync_req); 1805 else if (atomic_read(&sbi->wb_sync_req)) 1806 goto skip_write; 1807 1808 blk_start_plug(&plug); 1809 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 1810 blk_finish_plug(&plug); 1811 1812 if (wbc->sync_mode == WB_SYNC_ALL) 1813 atomic_dec(&sbi->wb_sync_req); 1814 /* 1815 * if some pages were truncated, we cannot guarantee its mapping->host 1816 * to detect pending bios. 1817 */ 1818 1819 remove_dirty_inode(inode); 1820 return ret; 1821 1822 skip_write: 1823 wbc->pages_skipped += get_dirty_pages(inode); 1824 trace_f2fs_writepages(mapping->host, wbc, DATA); 1825 return 0; 1826 } 1827 1828 static int f2fs_write_data_pages(struct address_space *mapping, 1829 struct writeback_control *wbc) 1830 { 1831 struct inode *inode = mapping->host; 1832 1833 return __f2fs_write_data_pages(mapping, wbc, 1834 F2FS_I(inode)->cp_task == current ? 1835 FS_CP_DATA_IO : FS_DATA_IO); 1836 } 1837 1838 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1839 { 1840 struct inode *inode = mapping->host; 1841 loff_t i_size = i_size_read(inode); 1842 1843 if (to > i_size) { 1844 down_write(&F2FS_I(inode)->i_mmap_sem); 1845 truncate_pagecache(inode, i_size); 1846 truncate_blocks(inode, i_size, true); 1847 up_write(&F2FS_I(inode)->i_mmap_sem); 1848 } 1849 } 1850 1851 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1852 struct page *page, loff_t pos, unsigned len, 1853 block_t *blk_addr, bool *node_changed) 1854 { 1855 struct inode *inode = page->mapping->host; 1856 pgoff_t index = page->index; 1857 struct dnode_of_data dn; 1858 struct page *ipage; 1859 bool locked = false; 1860 struct extent_info ei = {0,0,0}; 1861 int err = 0; 1862 1863 /* 1864 * we already allocated all the blocks, so we don't need to get 1865 * the block addresses when there is no need to fill the page. 1866 */ 1867 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 1868 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 1869 return 0; 1870 1871 if (f2fs_has_inline_data(inode) || 1872 (pos & PAGE_MASK) >= i_size_read(inode)) { 1873 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 1874 locked = true; 1875 } 1876 restart: 1877 /* check inline_data */ 1878 ipage = get_node_page(sbi, inode->i_ino); 1879 if (IS_ERR(ipage)) { 1880 err = PTR_ERR(ipage); 1881 goto unlock_out; 1882 } 1883 1884 set_new_dnode(&dn, inode, ipage, ipage, 0); 1885 1886 if (f2fs_has_inline_data(inode)) { 1887 if (pos + len <= MAX_INLINE_DATA(inode)) { 1888 read_inline_data(page, ipage); 1889 set_inode_flag(inode, FI_DATA_EXIST); 1890 if (inode->i_nlink) 1891 set_inline_node(ipage); 1892 } else { 1893 err = f2fs_convert_inline_page(&dn, page); 1894 if (err) 1895 goto out; 1896 if (dn.data_blkaddr == NULL_ADDR) 1897 err = f2fs_get_block(&dn, index); 1898 } 1899 } else if (locked) { 1900 err = f2fs_get_block(&dn, index); 1901 } else { 1902 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1903 dn.data_blkaddr = ei.blk + index - ei.fofs; 1904 } else { 1905 /* hole case */ 1906 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1907 if (err || dn.data_blkaddr == NULL_ADDR) { 1908 f2fs_put_dnode(&dn); 1909 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 1910 true); 1911 locked = true; 1912 goto restart; 1913 } 1914 } 1915 } 1916 1917 /* convert_inline_page can make node_changed */ 1918 *blk_addr = dn.data_blkaddr; 1919 *node_changed = dn.node_changed; 1920 out: 1921 f2fs_put_dnode(&dn); 1922 unlock_out: 1923 if (locked) 1924 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 1925 return err; 1926 } 1927 1928 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1929 loff_t pos, unsigned len, unsigned flags, 1930 struct page **pagep, void **fsdata) 1931 { 1932 struct inode *inode = mapping->host; 1933 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1934 struct page *page = NULL; 1935 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1936 bool need_balance = false; 1937 block_t blkaddr = NULL_ADDR; 1938 int err = 0; 1939 1940 trace_f2fs_write_begin(inode, pos, len, flags); 1941 1942 if (f2fs_is_atomic_file(inode) && 1943 !available_free_memory(sbi, INMEM_PAGES)) { 1944 err = -ENOMEM; 1945 goto fail; 1946 } 1947 1948 /* 1949 * We should check this at this moment to avoid deadlock on inode page 1950 * and #0 page. The locking rule for inline_data conversion should be: 1951 * lock_page(page #0) -> lock_page(inode_page) 1952 */ 1953 if (index != 0) { 1954 err = f2fs_convert_inline_inode(inode); 1955 if (err) 1956 goto fail; 1957 } 1958 repeat: 1959 /* 1960 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 1961 * wait_for_stable_page. Will wait that below with our IO control. 1962 */ 1963 page = f2fs_pagecache_get_page(mapping, index, 1964 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 1965 if (!page) { 1966 err = -ENOMEM; 1967 goto fail; 1968 } 1969 1970 *pagep = page; 1971 1972 err = prepare_write_begin(sbi, page, pos, len, 1973 &blkaddr, &need_balance); 1974 if (err) 1975 goto fail; 1976 1977 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1978 unlock_page(page); 1979 f2fs_balance_fs(sbi, true); 1980 lock_page(page); 1981 if (page->mapping != mapping) { 1982 /* The page got truncated from under us */ 1983 f2fs_put_page(page, 1); 1984 goto repeat; 1985 } 1986 } 1987 1988 f2fs_wait_on_page_writeback(page, DATA, false); 1989 1990 /* wait for GCed encrypted page writeback */ 1991 if (f2fs_encrypted_file(inode)) 1992 f2fs_wait_on_block_writeback(sbi, blkaddr); 1993 1994 if (len == PAGE_SIZE || PageUptodate(page)) 1995 return 0; 1996 1997 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 1998 zero_user_segment(page, len, PAGE_SIZE); 1999 return 0; 2000 } 2001 2002 if (blkaddr == NEW_ADDR) { 2003 zero_user_segment(page, 0, PAGE_SIZE); 2004 SetPageUptodate(page); 2005 } else { 2006 err = f2fs_submit_page_read(inode, page, blkaddr); 2007 if (err) 2008 goto fail; 2009 2010 lock_page(page); 2011 if (unlikely(page->mapping != mapping)) { 2012 f2fs_put_page(page, 1); 2013 goto repeat; 2014 } 2015 if (unlikely(!PageUptodate(page))) { 2016 err = -EIO; 2017 goto fail; 2018 } 2019 } 2020 return 0; 2021 2022 fail: 2023 f2fs_put_page(page, 1); 2024 f2fs_write_failed(mapping, pos + len); 2025 if (f2fs_is_atomic_file(inode)) 2026 drop_inmem_pages_all(sbi); 2027 return err; 2028 } 2029 2030 static int f2fs_write_end(struct file *file, 2031 struct address_space *mapping, 2032 loff_t pos, unsigned len, unsigned copied, 2033 struct page *page, void *fsdata) 2034 { 2035 struct inode *inode = page->mapping->host; 2036 2037 trace_f2fs_write_end(inode, pos, len, copied); 2038 2039 /* 2040 * This should be come from len == PAGE_SIZE, and we expect copied 2041 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2042 * let generic_perform_write() try to copy data again through copied=0. 2043 */ 2044 if (!PageUptodate(page)) { 2045 if (unlikely(copied != len)) 2046 copied = 0; 2047 else 2048 SetPageUptodate(page); 2049 } 2050 if (!copied) 2051 goto unlock_out; 2052 2053 set_page_dirty(page); 2054 2055 if (pos + copied > i_size_read(inode)) 2056 f2fs_i_size_write(inode, pos + copied); 2057 unlock_out: 2058 f2fs_put_page(page, 1); 2059 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2060 return copied; 2061 } 2062 2063 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2064 loff_t offset) 2065 { 2066 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 2067 2068 if (offset & blocksize_mask) 2069 return -EINVAL; 2070 2071 if (iov_iter_alignment(iter) & blocksize_mask) 2072 return -EINVAL; 2073 2074 return 0; 2075 } 2076 2077 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2078 { 2079 struct address_space *mapping = iocb->ki_filp->f_mapping; 2080 struct inode *inode = mapping->host; 2081 size_t count = iov_iter_count(iter); 2082 loff_t offset = iocb->ki_pos; 2083 int rw = iov_iter_rw(iter); 2084 int err; 2085 2086 err = check_direct_IO(inode, iter, offset); 2087 if (err) 2088 return err; 2089 2090 if (__force_buffered_io(inode, rw)) 2091 return 0; 2092 2093 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2094 2095 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 2096 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 2097 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 2098 2099 if (rw == WRITE) { 2100 if (err > 0) { 2101 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2102 err); 2103 set_inode_flag(inode, FI_UPDATE_WRITE); 2104 } else if (err < 0) { 2105 f2fs_write_failed(mapping, offset + count); 2106 } 2107 } 2108 2109 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2110 2111 return err; 2112 } 2113 2114 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2115 unsigned int length) 2116 { 2117 struct inode *inode = page->mapping->host; 2118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2119 2120 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2121 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2122 return; 2123 2124 if (PageDirty(page)) { 2125 if (inode->i_ino == F2FS_META_INO(sbi)) { 2126 dec_page_count(sbi, F2FS_DIRTY_META); 2127 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2128 dec_page_count(sbi, F2FS_DIRTY_NODES); 2129 } else { 2130 inode_dec_dirty_pages(inode); 2131 remove_dirty_inode(inode); 2132 } 2133 } 2134 2135 /* This is atomic written page, keep Private */ 2136 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2137 return drop_inmem_page(inode, page); 2138 2139 set_page_private(page, 0); 2140 ClearPagePrivate(page); 2141 } 2142 2143 int f2fs_release_page(struct page *page, gfp_t wait) 2144 { 2145 /* If this is dirty page, keep PagePrivate */ 2146 if (PageDirty(page)) 2147 return 0; 2148 2149 /* This is atomic written page, keep Private */ 2150 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2151 return 0; 2152 2153 set_page_private(page, 0); 2154 ClearPagePrivate(page); 2155 return 1; 2156 } 2157 2158 /* 2159 * This was copied from __set_page_dirty_buffers which gives higher performance 2160 * in very high speed storages. (e.g., pmem) 2161 */ 2162 void f2fs_set_page_dirty_nobuffers(struct page *page) 2163 { 2164 struct address_space *mapping = page->mapping; 2165 unsigned long flags; 2166 2167 if (unlikely(!mapping)) 2168 return; 2169 2170 spin_lock(&mapping->private_lock); 2171 lock_page_memcg(page); 2172 SetPageDirty(page); 2173 spin_unlock(&mapping->private_lock); 2174 2175 spin_lock_irqsave(&mapping->tree_lock, flags); 2176 WARN_ON_ONCE(!PageUptodate(page)); 2177 account_page_dirtied(page, mapping); 2178 radix_tree_tag_set(&mapping->page_tree, 2179 page_index(page), PAGECACHE_TAG_DIRTY); 2180 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2181 unlock_page_memcg(page); 2182 2183 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2184 return; 2185 } 2186 2187 static int f2fs_set_data_page_dirty(struct page *page) 2188 { 2189 struct address_space *mapping = page->mapping; 2190 struct inode *inode = mapping->host; 2191 2192 trace_f2fs_set_page_dirty(page, DATA); 2193 2194 if (!PageUptodate(page)) 2195 SetPageUptodate(page); 2196 2197 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2198 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2199 register_inmem_page(inode, page); 2200 return 1; 2201 } 2202 /* 2203 * Previously, this page has been registered, we just 2204 * return here. 2205 */ 2206 return 0; 2207 } 2208 2209 if (!PageDirty(page)) { 2210 f2fs_set_page_dirty_nobuffers(page); 2211 update_dirty_page(inode, page); 2212 return 1; 2213 } 2214 return 0; 2215 } 2216 2217 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2218 { 2219 struct inode *inode = mapping->host; 2220 2221 if (f2fs_has_inline_data(inode)) 2222 return 0; 2223 2224 /* make sure allocating whole blocks */ 2225 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2226 filemap_write_and_wait(mapping); 2227 2228 return generic_block_bmap(mapping, block, get_data_block_bmap); 2229 } 2230 2231 #ifdef CONFIG_MIGRATION 2232 #include <linux/migrate.h> 2233 2234 int f2fs_migrate_page(struct address_space *mapping, 2235 struct page *newpage, struct page *page, enum migrate_mode mode) 2236 { 2237 int rc, extra_count; 2238 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2239 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2240 2241 BUG_ON(PageWriteback(page)); 2242 2243 /* migrating an atomic written page is safe with the inmem_lock hold */ 2244 if (atomic_written) { 2245 if (mode != MIGRATE_SYNC) 2246 return -EBUSY; 2247 if (!mutex_trylock(&fi->inmem_lock)) 2248 return -EAGAIN; 2249 } 2250 2251 /* 2252 * A reference is expected if PagePrivate set when move mapping, 2253 * however F2FS breaks this for maintaining dirty page counts when 2254 * truncating pages. So here adjusting the 'extra_count' make it work. 2255 */ 2256 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2257 rc = migrate_page_move_mapping(mapping, newpage, 2258 page, NULL, mode, extra_count); 2259 if (rc != MIGRATEPAGE_SUCCESS) { 2260 if (atomic_written) 2261 mutex_unlock(&fi->inmem_lock); 2262 return rc; 2263 } 2264 2265 if (atomic_written) { 2266 struct inmem_pages *cur; 2267 list_for_each_entry(cur, &fi->inmem_pages, list) 2268 if (cur->page == page) { 2269 cur->page = newpage; 2270 break; 2271 } 2272 mutex_unlock(&fi->inmem_lock); 2273 put_page(page); 2274 get_page(newpage); 2275 } 2276 2277 if (PagePrivate(page)) 2278 SetPagePrivate(newpage); 2279 set_page_private(newpage, page_private(page)); 2280 2281 if (mode != MIGRATE_SYNC_NO_COPY) 2282 migrate_page_copy(newpage, page); 2283 else 2284 migrate_page_states(newpage, page); 2285 2286 return MIGRATEPAGE_SUCCESS; 2287 } 2288 #endif 2289 2290 const struct address_space_operations f2fs_dblock_aops = { 2291 .readpage = f2fs_read_data_page, 2292 .readpages = f2fs_read_data_pages, 2293 .writepage = f2fs_write_data_page, 2294 .writepages = f2fs_write_data_pages, 2295 .write_begin = f2fs_write_begin, 2296 .write_end = f2fs_write_end, 2297 .set_page_dirty = f2fs_set_data_page_dirty, 2298 .invalidatepage = f2fs_invalidate_page, 2299 .releasepage = f2fs_release_page, 2300 .direct_IO = f2fs_direct_IO, 2301 .bmap = f2fs_bmap, 2302 #ifdef CONFIG_MIGRATION 2303 .migratepage = f2fs_migrate_page, 2304 #endif 2305 }; 2306