xref: /openbmc/linux/fs/f2fs/data.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS);
44 }
45 
46 void f2fs_destroy_bioset(void)
47 {
48 	bioset_exit(&f2fs_bioset);
49 }
50 
51 bool f2fs_is_cp_guaranteed(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct inode *inode;
55 	struct f2fs_sb_info *sbi;
56 
57 	if (!mapping)
58 		return false;
59 
60 	inode = mapping->host;
61 	sbi = F2FS_I_SB(inode);
62 
63 	if (inode->i_ino == F2FS_META_INO(sbi) ||
64 			inode->i_ino == F2FS_NODE_INO(sbi) ||
65 			S_ISDIR(inode->i_mode))
66 		return true;
67 
68 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69 			page_private_gcing(page))
70 		return true;
71 	return false;
72 }
73 
74 static enum count_type __read_io_type(struct page *page)
75 {
76 	struct address_space *mapping = page_file_mapping(page);
77 
78 	if (mapping) {
79 		struct inode *inode = mapping->host;
80 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81 
82 		if (inode->i_ino == F2FS_META_INO(sbi))
83 			return F2FS_RD_META;
84 
85 		if (inode->i_ino == F2FS_NODE_INO(sbi))
86 			return F2FS_RD_NODE;
87 	}
88 	return F2FS_RD_DATA;
89 }
90 
91 /* postprocessing steps for read bios */
92 enum bio_post_read_step {
93 #ifdef CONFIG_FS_ENCRYPTION
94 	STEP_DECRYPT	= BIT(0),
95 #else
96 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
97 #endif
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 	STEP_DECOMPRESS	= BIT(1),
100 #else
101 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
102 #endif
103 #ifdef CONFIG_FS_VERITY
104 	STEP_VERITY	= BIT(2),
105 #else
106 	STEP_VERITY	= 0,	/* compile out the verity-related code */
107 #endif
108 };
109 
110 struct bio_post_read_ctx {
111 	struct bio *bio;
112 	struct f2fs_sb_info *sbi;
113 	struct work_struct work;
114 	unsigned int enabled_steps;
115 	/*
116 	 * decompression_attempted keeps track of whether
117 	 * f2fs_end_read_compressed_page() has been called on the pages in the
118 	 * bio that belong to a compressed cluster yet.
119 	 */
120 	bool decompression_attempted;
121 	block_t fs_blkaddr;
122 };
123 
124 /*
125  * Update and unlock a bio's pages, and free the bio.
126  *
127  * This marks pages up-to-date only if there was no error in the bio (I/O error,
128  * decryption error, or verity error), as indicated by bio->bi_status.
129  *
130  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131  * aren't marked up-to-date here, as decompression is done on a per-compression-
132  * cluster basis rather than a per-bio basis.  Instead, we only must do two
133  * things for each compressed page here: call f2fs_end_read_compressed_page()
134  * with failed=true if an error occurred before it would have normally gotten
135  * called (i.e., I/O error or decryption error, but *not* verity error), and
136  * release the bio's reference to the decompress_io_ctx of the page's cluster.
137  */
138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139 {
140 	struct bio_vec *bv;
141 	struct bvec_iter_all iter_all;
142 	struct bio_post_read_ctx *ctx = bio->bi_private;
143 
144 	bio_for_each_segment_all(bv, bio, iter_all) {
145 		struct page *page = bv->bv_page;
146 
147 		if (f2fs_is_compressed_page(page)) {
148 			if (ctx && !ctx->decompression_attempted)
149 				f2fs_end_read_compressed_page(page, true, 0,
150 							in_task);
151 			f2fs_put_page_dic(page, in_task);
152 			continue;
153 		}
154 
155 		if (bio->bi_status)
156 			ClearPageUptodate(page);
157 		else
158 			SetPageUptodate(page);
159 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160 		unlock_page(page);
161 	}
162 
163 	if (ctx)
164 		mempool_free(ctx, bio_post_read_ctx_pool);
165 	bio_put(bio);
166 }
167 
168 static void f2fs_verify_bio(struct work_struct *work)
169 {
170 	struct bio_post_read_ctx *ctx =
171 		container_of(work, struct bio_post_read_ctx, work);
172 	struct bio *bio = ctx->bio;
173 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174 
175 	/*
176 	 * fsverity_verify_bio() may call readahead() again, and while verity
177 	 * will be disabled for this, decryption and/or decompression may still
178 	 * be needed, resulting in another bio_post_read_ctx being allocated.
179 	 * So to prevent deadlocks we need to release the current ctx to the
180 	 * mempool first.  This assumes that verity is the last post-read step.
181 	 */
182 	mempool_free(ctx, bio_post_read_ctx_pool);
183 	bio->bi_private = NULL;
184 
185 	/*
186 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187 	 * as those were handled separately by f2fs_end_read_compressed_page().
188 	 */
189 	if (may_have_compressed_pages) {
190 		struct bio_vec *bv;
191 		struct bvec_iter_all iter_all;
192 
193 		bio_for_each_segment_all(bv, bio, iter_all) {
194 			struct page *page = bv->bv_page;
195 
196 			if (!f2fs_is_compressed_page(page) &&
197 			    !fsverity_verify_page(page)) {
198 				bio->bi_status = BLK_STS_IOERR;
199 				break;
200 			}
201 		}
202 	} else {
203 		fsverity_verify_bio(bio);
204 	}
205 
206 	f2fs_finish_read_bio(bio, true);
207 }
208 
209 /*
210  * If the bio's data needs to be verified with fs-verity, then enqueue the
211  * verity work for the bio.  Otherwise finish the bio now.
212  *
213  * Note that to avoid deadlocks, the verity work can't be done on the
214  * decryption/decompression workqueue.  This is because verifying the data pages
215  * can involve reading verity metadata pages from the file, and these verity
216  * metadata pages may be encrypted and/or compressed.
217  */
218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219 {
220 	struct bio_post_read_ctx *ctx = bio->bi_private;
221 
222 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223 		INIT_WORK(&ctx->work, f2fs_verify_bio);
224 		fsverity_enqueue_verify_work(&ctx->work);
225 	} else {
226 		f2fs_finish_read_bio(bio, in_task);
227 	}
228 }
229 
230 /*
231  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232  * remaining page was read by @ctx->bio.
233  *
234  * Note that a bio may span clusters (even a mix of compressed and uncompressed
235  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236  * that the bio includes at least one compressed page.  The actual decompression
237  * is done on a per-cluster basis, not a per-bio basis.
238  */
239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240 		bool in_task)
241 {
242 	struct bio_vec *bv;
243 	struct bvec_iter_all iter_all;
244 	bool all_compressed = true;
245 	block_t blkaddr = ctx->fs_blkaddr;
246 
247 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248 		struct page *page = bv->bv_page;
249 
250 		if (f2fs_is_compressed_page(page))
251 			f2fs_end_read_compressed_page(page, false, blkaddr,
252 						      in_task);
253 		else
254 			all_compressed = false;
255 
256 		blkaddr++;
257 	}
258 
259 	ctx->decompression_attempted = true;
260 
261 	/*
262 	 * Optimization: if all the bio's pages are compressed, then scheduling
263 	 * the per-bio verity work is unnecessary, as verity will be fully
264 	 * handled at the compression cluster level.
265 	 */
266 	if (all_compressed)
267 		ctx->enabled_steps &= ~STEP_VERITY;
268 }
269 
270 static void f2fs_post_read_work(struct work_struct *work)
271 {
272 	struct bio_post_read_ctx *ctx =
273 		container_of(work, struct bio_post_read_ctx, work);
274 	struct bio *bio = ctx->bio;
275 
276 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277 		f2fs_finish_read_bio(bio, true);
278 		return;
279 	}
280 
281 	if (ctx->enabled_steps & STEP_DECOMPRESS)
282 		f2fs_handle_step_decompress(ctx, true);
283 
284 	f2fs_verify_and_finish_bio(bio, true);
285 }
286 
287 static void f2fs_read_end_io(struct bio *bio)
288 {
289 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290 	struct bio_post_read_ctx *ctx;
291 	bool intask = in_task();
292 
293 	iostat_update_and_unbind_ctx(bio);
294 	ctx = bio->bi_private;
295 
296 	if (time_to_inject(sbi, FAULT_READ_IO))
297 		bio->bi_status = BLK_STS_IOERR;
298 
299 	if (bio->bi_status) {
300 		f2fs_finish_read_bio(bio, intask);
301 		return;
302 	}
303 
304 	if (ctx) {
305 		unsigned int enabled_steps = ctx->enabled_steps &
306 					(STEP_DECRYPT | STEP_DECOMPRESS);
307 
308 		/*
309 		 * If we have only decompression step between decompression and
310 		 * decrypt, we don't need post processing for this.
311 		 */
312 		if (enabled_steps == STEP_DECOMPRESS &&
313 				!f2fs_low_mem_mode(sbi)) {
314 			f2fs_handle_step_decompress(ctx, intask);
315 		} else if (enabled_steps) {
316 			INIT_WORK(&ctx->work, f2fs_post_read_work);
317 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318 			return;
319 		}
320 	}
321 
322 	f2fs_verify_and_finish_bio(bio, intask);
323 }
324 
325 static void f2fs_write_end_io(struct bio *bio)
326 {
327 	struct f2fs_sb_info *sbi;
328 	struct bio_vec *bvec;
329 	struct bvec_iter_all iter_all;
330 
331 	iostat_update_and_unbind_ctx(bio);
332 	sbi = bio->bi_private;
333 
334 	if (time_to_inject(sbi, FAULT_WRITE_IO))
335 		bio->bi_status = BLK_STS_IOERR;
336 
337 	bio_for_each_segment_all(bvec, bio, iter_all) {
338 		struct page *page = bvec->bv_page;
339 		enum count_type type = WB_DATA_TYPE(page, false);
340 
341 		fscrypt_finalize_bounce_page(&page);
342 
343 #ifdef CONFIG_F2FS_FS_COMPRESSION
344 		if (f2fs_is_compressed_page(page)) {
345 			f2fs_compress_write_end_io(bio, page);
346 			continue;
347 		}
348 #endif
349 
350 		if (unlikely(bio->bi_status)) {
351 			mapping_set_error(page->mapping, -EIO);
352 			if (type == F2FS_WB_CP_DATA)
353 				f2fs_stop_checkpoint(sbi, true,
354 						STOP_CP_REASON_WRITE_FAIL);
355 		}
356 
357 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358 					page->index != nid_of_node(page));
359 
360 		dec_page_count(sbi, type);
361 		if (f2fs_in_warm_node_list(sbi, page))
362 			f2fs_del_fsync_node_entry(sbi, page);
363 		clear_page_private_gcing(page);
364 		end_page_writeback(page);
365 	}
366 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 				wq_has_sleeper(&sbi->cp_wait))
368 		wake_up(&sbi->cp_wait);
369 
370 	bio_put(bio);
371 }
372 
373 #ifdef CONFIG_BLK_DEV_ZONED
374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377 
378 	bio->bi_private = io->bi_private;
379 	complete(&io->zone_wait);
380 	f2fs_write_end_io(bio);
381 }
382 #endif
383 
384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 		block_t blk_addr, sector_t *sector)
386 {
387 	struct block_device *bdev = sbi->sb->s_bdev;
388 	int i;
389 
390 	if (f2fs_is_multi_device(sbi)) {
391 		for (i = 0; i < sbi->s_ndevs; i++) {
392 			if (FDEV(i).start_blk <= blk_addr &&
393 			    FDEV(i).end_blk >= blk_addr) {
394 				blk_addr -= FDEV(i).start_blk;
395 				bdev = FDEV(i).bdev;
396 				break;
397 			}
398 		}
399 	}
400 
401 	if (sector)
402 		*sector = SECTOR_FROM_BLOCK(blk_addr);
403 	return bdev;
404 }
405 
406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 	int i;
409 
410 	if (!f2fs_is_multi_device(sbi))
411 		return 0;
412 
413 	for (i = 0; i < sbi->s_ndevs; i++)
414 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 			return i;
416 	return 0;
417 }
418 
419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 	unsigned int fua_flag, meta_flag, io_flag;
423 	blk_opf_t op_flags = 0;
424 
425 	if (fio->op != REQ_OP_WRITE)
426 		return 0;
427 	if (fio->type == DATA)
428 		io_flag = fio->sbi->data_io_flag;
429 	else if (fio->type == NODE)
430 		io_flag = fio->sbi->node_io_flag;
431 	else
432 		return 0;
433 
434 	fua_flag = io_flag & temp_mask;
435 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436 
437 	/*
438 	 * data/node io flag bits per temp:
439 	 *      REQ_META     |      REQ_FUA      |
440 	 *    5 |    4 |   3 |    2 |    1 |   0 |
441 	 * Cold | Warm | Hot | Cold | Warm | Hot |
442 	 */
443 	if (BIT(fio->temp) & meta_flag)
444 		op_flags |= REQ_META;
445 	if (BIT(fio->temp) & fua_flag)
446 		op_flags |= REQ_FUA;
447 	return op_flags;
448 }
449 
450 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451 {
452 	struct f2fs_sb_info *sbi = fio->sbi;
453 	struct block_device *bdev;
454 	sector_t sector;
455 	struct bio *bio;
456 
457 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
458 	bio = bio_alloc_bioset(bdev, npages,
459 				fio->op | fio->op_flags | f2fs_io_flags(fio),
460 				GFP_NOIO, &f2fs_bioset);
461 	bio->bi_iter.bi_sector = sector;
462 	if (is_read_io(fio->op)) {
463 		bio->bi_end_io = f2fs_read_end_io;
464 		bio->bi_private = NULL;
465 	} else {
466 		bio->bi_end_io = f2fs_write_end_io;
467 		bio->bi_private = sbi;
468 	}
469 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
470 
471 	if (fio->io_wbc)
472 		wbc_init_bio(fio->io_wbc, bio);
473 
474 	return bio;
475 }
476 
477 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
478 				  pgoff_t first_idx,
479 				  const struct f2fs_io_info *fio,
480 				  gfp_t gfp_mask)
481 {
482 	/*
483 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
484 	 * read/write raw data without encryption.
485 	 */
486 	if (!fio || !fio->encrypted_page)
487 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
488 }
489 
490 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
491 				     pgoff_t next_idx,
492 				     const struct f2fs_io_info *fio)
493 {
494 	/*
495 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
496 	 * read/write raw data without encryption.
497 	 */
498 	if (fio && fio->encrypted_page)
499 		return !bio_has_crypt_ctx(bio);
500 
501 	return fscrypt_mergeable_bio(bio, inode, next_idx);
502 }
503 
504 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
505 				 enum page_type type)
506 {
507 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
508 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
509 
510 	iostat_update_submit_ctx(bio, type);
511 	submit_bio(bio);
512 }
513 
514 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
515 				  enum page_type type)
516 {
517 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
518 
519 	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
520 		blk_finish_plug(current->plug);
521 
522 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523 	iostat_update_submit_ctx(bio, type);
524 	submit_bio(bio);
525 }
526 
527 static void __submit_merged_bio(struct f2fs_bio_info *io)
528 {
529 	struct f2fs_io_info *fio = &io->fio;
530 
531 	if (!io->bio)
532 		return;
533 
534 	if (is_read_io(fio->op)) {
535 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
536 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
537 	} else {
538 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
539 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
540 	}
541 	io->bio = NULL;
542 }
543 
544 static bool __has_merged_page(struct bio *bio, struct inode *inode,
545 						struct page *page, nid_t ino)
546 {
547 	struct bio_vec *bvec;
548 	struct bvec_iter_all iter_all;
549 
550 	if (!bio)
551 		return false;
552 
553 	if (!inode && !page && !ino)
554 		return true;
555 
556 	bio_for_each_segment_all(bvec, bio, iter_all) {
557 		struct page *target = bvec->bv_page;
558 
559 		if (fscrypt_is_bounce_page(target)) {
560 			target = fscrypt_pagecache_page(target);
561 			if (IS_ERR(target))
562 				continue;
563 		}
564 		if (f2fs_is_compressed_page(target)) {
565 			target = f2fs_compress_control_page(target);
566 			if (IS_ERR(target))
567 				continue;
568 		}
569 
570 		if (inode && inode == target->mapping->host)
571 			return true;
572 		if (page && page == target)
573 			return true;
574 		if (ino && ino == ino_of_node(target))
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582 {
583 	int i;
584 
585 	for (i = 0; i < NR_PAGE_TYPE; i++) {
586 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 		int j;
588 
589 		sbi->write_io[i] = f2fs_kmalloc(sbi,
590 				array_size(n, sizeof(struct f2fs_bio_info)),
591 				GFP_KERNEL);
592 		if (!sbi->write_io[i])
593 			return -ENOMEM;
594 
595 		for (j = HOT; j < n; j++) {
596 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
597 			sbi->write_io[i][j].sbi = sbi;
598 			sbi->write_io[i][j].bio = NULL;
599 			spin_lock_init(&sbi->write_io[i][j].io_lock);
600 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
601 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
602 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
603 #ifdef CONFIG_BLK_DEV_ZONED
604 			init_completion(&sbi->write_io[i][j].zone_wait);
605 			sbi->write_io[i][j].zone_pending_bio = NULL;
606 			sbi->write_io[i][j].bi_private = NULL;
607 #endif
608 		}
609 	}
610 
611 	return 0;
612 }
613 
614 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
615 				enum page_type type, enum temp_type temp)
616 {
617 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
618 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
619 
620 	f2fs_down_write(&io->io_rwsem);
621 
622 	if (!io->bio)
623 		goto unlock_out;
624 
625 	/* change META to META_FLUSH in the checkpoint procedure */
626 	if (type >= META_FLUSH) {
627 		io->fio.type = META_FLUSH;
628 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
629 		if (!test_opt(sbi, NOBARRIER))
630 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
631 	}
632 	__submit_merged_bio(io);
633 unlock_out:
634 	f2fs_up_write(&io->io_rwsem);
635 }
636 
637 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 				struct inode *inode, struct page *page,
639 				nid_t ino, enum page_type type, bool force)
640 {
641 	enum temp_type temp;
642 	bool ret = true;
643 
644 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
645 		if (!force)	{
646 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
647 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
648 
649 			f2fs_down_read(&io->io_rwsem);
650 			ret = __has_merged_page(io->bio, inode, page, ino);
651 			f2fs_up_read(&io->io_rwsem);
652 		}
653 		if (ret)
654 			__f2fs_submit_merged_write(sbi, type, temp);
655 
656 		/* TODO: use HOT temp only for meta pages now. */
657 		if (type >= META)
658 			break;
659 	}
660 }
661 
662 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
663 {
664 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
665 }
666 
667 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
668 				struct inode *inode, struct page *page,
669 				nid_t ino, enum page_type type)
670 {
671 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
672 }
673 
674 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
675 {
676 	f2fs_submit_merged_write(sbi, DATA);
677 	f2fs_submit_merged_write(sbi, NODE);
678 	f2fs_submit_merged_write(sbi, META);
679 }
680 
681 /*
682  * Fill the locked page with data located in the block address.
683  * A caller needs to unlock the page on failure.
684  */
685 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
686 {
687 	struct bio *bio;
688 	struct page *page = fio->encrypted_page ?
689 			fio->encrypted_page : fio->page;
690 
691 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
692 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
693 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
694 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
695 		return -EFSCORRUPTED;
696 	}
697 
698 	trace_f2fs_submit_page_bio(page, fio);
699 
700 	/* Allocate a new bio */
701 	bio = __bio_alloc(fio, 1);
702 
703 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
704 			       fio->page->index, fio, GFP_NOIO);
705 
706 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
707 		bio_put(bio);
708 		return -EFAULT;
709 	}
710 
711 	if (fio->io_wbc && !is_read_io(fio->op))
712 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
713 
714 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
715 			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
716 
717 	if (is_read_io(bio_op(bio)))
718 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
719 	else
720 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
721 	return 0;
722 }
723 
724 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
725 				block_t last_blkaddr, block_t cur_blkaddr)
726 {
727 	if (unlikely(sbi->max_io_bytes &&
728 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
729 		return false;
730 	if (last_blkaddr + 1 != cur_blkaddr)
731 		return false;
732 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
733 }
734 
735 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
736 						struct f2fs_io_info *fio)
737 {
738 	if (io->fio.op != fio->op)
739 		return false;
740 	return io->fio.op_flags == fio->op_flags;
741 }
742 
743 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
744 					struct f2fs_bio_info *io,
745 					struct f2fs_io_info *fio,
746 					block_t last_blkaddr,
747 					block_t cur_blkaddr)
748 {
749 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
750 		return false;
751 	return io_type_is_mergeable(io, fio);
752 }
753 
754 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
755 				struct page *page, enum temp_type temp)
756 {
757 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
758 	struct bio_entry *be;
759 
760 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
761 	be->bio = bio;
762 	bio_get(bio);
763 
764 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
765 		f2fs_bug_on(sbi, 1);
766 
767 	f2fs_down_write(&io->bio_list_lock);
768 	list_add_tail(&be->list, &io->bio_list);
769 	f2fs_up_write(&io->bio_list_lock);
770 }
771 
772 static void del_bio_entry(struct bio_entry *be)
773 {
774 	list_del(&be->list);
775 	kmem_cache_free(bio_entry_slab, be);
776 }
777 
778 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
779 							struct page *page)
780 {
781 	struct f2fs_sb_info *sbi = fio->sbi;
782 	enum temp_type temp;
783 	bool found = false;
784 	int ret = -EAGAIN;
785 
786 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
787 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
788 		struct list_head *head = &io->bio_list;
789 		struct bio_entry *be;
790 
791 		f2fs_down_write(&io->bio_list_lock);
792 		list_for_each_entry(be, head, list) {
793 			if (be->bio != *bio)
794 				continue;
795 
796 			found = true;
797 
798 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
799 							    *fio->last_block,
800 							    fio->new_blkaddr));
801 			if (f2fs_crypt_mergeable_bio(*bio,
802 					fio->page->mapping->host,
803 					fio->page->index, fio) &&
804 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
805 					PAGE_SIZE) {
806 				ret = 0;
807 				break;
808 			}
809 
810 			/* page can't be merged into bio; submit the bio */
811 			del_bio_entry(be);
812 			f2fs_submit_write_bio(sbi, *bio, DATA);
813 			break;
814 		}
815 		f2fs_up_write(&io->bio_list_lock);
816 	}
817 
818 	if (ret) {
819 		bio_put(*bio);
820 		*bio = NULL;
821 	}
822 
823 	return ret;
824 }
825 
826 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
827 					struct bio **bio, struct page *page)
828 {
829 	enum temp_type temp;
830 	bool found = false;
831 	struct bio *target = bio ? *bio : NULL;
832 
833 	f2fs_bug_on(sbi, !target && !page);
834 
835 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 		struct list_head *head = &io->bio_list;
838 		struct bio_entry *be;
839 
840 		if (list_empty(head))
841 			continue;
842 
843 		f2fs_down_read(&io->bio_list_lock);
844 		list_for_each_entry(be, head, list) {
845 			if (target)
846 				found = (target == be->bio);
847 			else
848 				found = __has_merged_page(be->bio, NULL,
849 								page, 0);
850 			if (found)
851 				break;
852 		}
853 		f2fs_up_read(&io->bio_list_lock);
854 
855 		if (!found)
856 			continue;
857 
858 		found = false;
859 
860 		f2fs_down_write(&io->bio_list_lock);
861 		list_for_each_entry(be, head, list) {
862 			if (target)
863 				found = (target == be->bio);
864 			else
865 				found = __has_merged_page(be->bio, NULL,
866 								page, 0);
867 			if (found) {
868 				target = be->bio;
869 				del_bio_entry(be);
870 				break;
871 			}
872 		}
873 		f2fs_up_write(&io->bio_list_lock);
874 	}
875 
876 	if (found)
877 		f2fs_submit_write_bio(sbi, target, DATA);
878 	if (bio && *bio) {
879 		bio_put(*bio);
880 		*bio = NULL;
881 	}
882 }
883 
884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
885 {
886 	struct bio *bio = *fio->bio;
887 	struct page *page = fio->encrypted_page ?
888 			fio->encrypted_page : fio->page;
889 
890 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
892 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
893 		return -EFSCORRUPTED;
894 	}
895 
896 	trace_f2fs_submit_page_bio(page, fio);
897 
898 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899 						fio->new_blkaddr))
900 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 alloc_new:
902 	if (!bio) {
903 		bio = __bio_alloc(fio, BIO_MAX_VECS);
904 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
905 				       fio->page->index, fio, GFP_NOIO);
906 
907 		add_bio_entry(fio->sbi, bio, page, fio->temp);
908 	} else {
909 		if (add_ipu_page(fio, &bio, page))
910 			goto alloc_new;
911 	}
912 
913 	if (fio->io_wbc)
914 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
915 
916 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
917 
918 	*fio->last_block = fio->new_blkaddr;
919 	*fio->bio = bio;
920 
921 	return 0;
922 }
923 
924 #ifdef CONFIG_BLK_DEV_ZONED
925 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927 	int devi = 0;
928 
929 	if (f2fs_is_multi_device(sbi)) {
930 		devi = f2fs_target_device_index(sbi, blkaddr);
931 		if (blkaddr < FDEV(devi).start_blk ||
932 		    blkaddr > FDEV(devi).end_blk) {
933 			f2fs_err(sbi, "Invalid block %x", blkaddr);
934 			return false;
935 		}
936 		blkaddr -= FDEV(devi).start_blk;
937 	}
938 	return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
939 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
940 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
941 }
942 #endif
943 
944 void f2fs_submit_page_write(struct f2fs_io_info *fio)
945 {
946 	struct f2fs_sb_info *sbi = fio->sbi;
947 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
948 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
949 	struct page *bio_page;
950 	enum count_type type;
951 
952 	f2fs_bug_on(sbi, is_read_io(fio->op));
953 
954 	f2fs_down_write(&io->io_rwsem);
955 next:
956 #ifdef CONFIG_BLK_DEV_ZONED
957 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
958 		wait_for_completion_io(&io->zone_wait);
959 		bio_put(io->zone_pending_bio);
960 		io->zone_pending_bio = NULL;
961 		io->bi_private = NULL;
962 	}
963 #endif
964 
965 	if (fio->in_list) {
966 		spin_lock(&io->io_lock);
967 		if (list_empty(&io->io_list)) {
968 			spin_unlock(&io->io_lock);
969 			goto out;
970 		}
971 		fio = list_first_entry(&io->io_list,
972 						struct f2fs_io_info, list);
973 		list_del(&fio->list);
974 		spin_unlock(&io->io_lock);
975 	}
976 
977 	verify_fio_blkaddr(fio);
978 
979 	if (fio->encrypted_page)
980 		bio_page = fio->encrypted_page;
981 	else if (fio->compressed_page)
982 		bio_page = fio->compressed_page;
983 	else
984 		bio_page = fio->page;
985 
986 	/* set submitted = true as a return value */
987 	fio->submitted = 1;
988 
989 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
990 	inc_page_count(sbi, type);
991 
992 	if (io->bio &&
993 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
994 			      fio->new_blkaddr) ||
995 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
996 				       bio_page->index, fio)))
997 		__submit_merged_bio(io);
998 alloc_new:
999 	if (io->bio == NULL) {
1000 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1001 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1002 				       bio_page->index, fio, GFP_NOIO);
1003 		io->fio = *fio;
1004 	}
1005 
1006 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1007 		__submit_merged_bio(io);
1008 		goto alloc_new;
1009 	}
1010 
1011 	if (fio->io_wbc)
1012 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1013 
1014 	io->last_block_in_bio = fio->new_blkaddr;
1015 
1016 	trace_f2fs_submit_page_write(fio->page, fio);
1017 #ifdef CONFIG_BLK_DEV_ZONED
1018 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1019 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1020 		bio_get(io->bio);
1021 		reinit_completion(&io->zone_wait);
1022 		io->bi_private = io->bio->bi_private;
1023 		io->bio->bi_private = io;
1024 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1025 		io->zone_pending_bio = io->bio;
1026 		__submit_merged_bio(io);
1027 	}
1028 #endif
1029 	if (fio->in_list)
1030 		goto next;
1031 out:
1032 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1033 				!f2fs_is_checkpoint_ready(sbi))
1034 		__submit_merged_bio(io);
1035 	f2fs_up_write(&io->io_rwsem);
1036 }
1037 
1038 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1039 				      unsigned nr_pages, blk_opf_t op_flag,
1040 				      pgoff_t first_idx, bool for_write)
1041 {
1042 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1043 	struct bio *bio;
1044 	struct bio_post_read_ctx *ctx = NULL;
1045 	unsigned int post_read_steps = 0;
1046 	sector_t sector;
1047 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1048 
1049 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1050 			       REQ_OP_READ | op_flag,
1051 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1052 	if (!bio)
1053 		return ERR_PTR(-ENOMEM);
1054 	bio->bi_iter.bi_sector = sector;
1055 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1056 	bio->bi_end_io = f2fs_read_end_io;
1057 
1058 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1059 		post_read_steps |= STEP_DECRYPT;
1060 
1061 	if (f2fs_need_verity(inode, first_idx))
1062 		post_read_steps |= STEP_VERITY;
1063 
1064 	/*
1065 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1066 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1067 	 * bio_post_read_ctx if the file is compressed, but the caller is
1068 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1069 	 */
1070 
1071 	if (post_read_steps || f2fs_compressed_file(inode)) {
1072 		/* Due to the mempool, this never fails. */
1073 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1074 		ctx->bio = bio;
1075 		ctx->sbi = sbi;
1076 		ctx->enabled_steps = post_read_steps;
1077 		ctx->fs_blkaddr = blkaddr;
1078 		ctx->decompression_attempted = false;
1079 		bio->bi_private = ctx;
1080 	}
1081 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1082 
1083 	return bio;
1084 }
1085 
1086 /* This can handle encryption stuffs */
1087 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1088 				 block_t blkaddr, blk_opf_t op_flags,
1089 				 bool for_write)
1090 {
1091 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 	struct bio *bio;
1093 
1094 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1095 					page->index, for_write);
1096 	if (IS_ERR(bio))
1097 		return PTR_ERR(bio);
1098 
1099 	/* wait for GCed page writeback via META_MAPPING */
1100 	f2fs_wait_on_block_writeback(inode, blkaddr);
1101 
1102 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1103 		iostat_update_and_unbind_ctx(bio);
1104 		if (bio->bi_private)
1105 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1106 		bio_put(bio);
1107 		return -EFAULT;
1108 	}
1109 	inc_page_count(sbi, F2FS_RD_DATA);
1110 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1111 	f2fs_submit_read_bio(sbi, bio, DATA);
1112 	return 0;
1113 }
1114 
1115 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1116 {
1117 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1118 
1119 	dn->data_blkaddr = blkaddr;
1120 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1121 }
1122 
1123 /*
1124  * Lock ordering for the change of data block address:
1125  * ->data_page
1126  *  ->node_page
1127  *    update block addresses in the node page
1128  */
1129 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1130 {
1131 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1132 	__set_data_blkaddr(dn, blkaddr);
1133 	if (set_page_dirty(dn->node_page))
1134 		dn->node_changed = true;
1135 }
1136 
1137 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1138 {
1139 	f2fs_set_data_blkaddr(dn, blkaddr);
1140 	f2fs_update_read_extent_cache(dn);
1141 }
1142 
1143 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1144 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1145 {
1146 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1147 	int err;
1148 
1149 	if (!count)
1150 		return 0;
1151 
1152 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1153 		return -EPERM;
1154 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1155 	if (unlikely(err))
1156 		return err;
1157 
1158 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1159 						dn->ofs_in_node, count);
1160 
1161 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1162 
1163 	for (; count > 0; dn->ofs_in_node++) {
1164 		block_t blkaddr = f2fs_data_blkaddr(dn);
1165 
1166 		if (blkaddr == NULL_ADDR) {
1167 			__set_data_blkaddr(dn, NEW_ADDR);
1168 			count--;
1169 		}
1170 	}
1171 
1172 	if (set_page_dirty(dn->node_page))
1173 		dn->node_changed = true;
1174 	return 0;
1175 }
1176 
1177 /* Should keep dn->ofs_in_node unchanged */
1178 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1179 {
1180 	unsigned int ofs_in_node = dn->ofs_in_node;
1181 	int ret;
1182 
1183 	ret = f2fs_reserve_new_blocks(dn, 1);
1184 	dn->ofs_in_node = ofs_in_node;
1185 	return ret;
1186 }
1187 
1188 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1189 {
1190 	bool need_put = dn->inode_page ? false : true;
1191 	int err;
1192 
1193 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1194 	if (err)
1195 		return err;
1196 
1197 	if (dn->data_blkaddr == NULL_ADDR)
1198 		err = f2fs_reserve_new_block(dn);
1199 	if (err || need_put)
1200 		f2fs_put_dnode(dn);
1201 	return err;
1202 }
1203 
1204 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1205 				     blk_opf_t op_flags, bool for_write,
1206 				     pgoff_t *next_pgofs)
1207 {
1208 	struct address_space *mapping = inode->i_mapping;
1209 	struct dnode_of_data dn;
1210 	struct page *page;
1211 	int err;
1212 
1213 	page = f2fs_grab_cache_page(mapping, index, for_write);
1214 	if (!page)
1215 		return ERR_PTR(-ENOMEM);
1216 
1217 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1218 						&dn.data_blkaddr)) {
1219 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1220 						DATA_GENERIC_ENHANCE_READ)) {
1221 			err = -EFSCORRUPTED;
1222 			f2fs_handle_error(F2FS_I_SB(inode),
1223 						ERROR_INVALID_BLKADDR);
1224 			goto put_err;
1225 		}
1226 		goto got_it;
1227 	}
1228 
1229 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1230 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1231 	if (err) {
1232 		if (err == -ENOENT && next_pgofs)
1233 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1234 		goto put_err;
1235 	}
1236 	f2fs_put_dnode(&dn);
1237 
1238 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1239 		err = -ENOENT;
1240 		if (next_pgofs)
1241 			*next_pgofs = index + 1;
1242 		goto put_err;
1243 	}
1244 	if (dn.data_blkaddr != NEW_ADDR &&
1245 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1246 						dn.data_blkaddr,
1247 						DATA_GENERIC_ENHANCE)) {
1248 		err = -EFSCORRUPTED;
1249 		f2fs_handle_error(F2FS_I_SB(inode),
1250 					ERROR_INVALID_BLKADDR);
1251 		goto put_err;
1252 	}
1253 got_it:
1254 	if (PageUptodate(page)) {
1255 		unlock_page(page);
1256 		return page;
1257 	}
1258 
1259 	/*
1260 	 * A new dentry page is allocated but not able to be written, since its
1261 	 * new inode page couldn't be allocated due to -ENOSPC.
1262 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1263 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1264 	 * f2fs_init_inode_metadata.
1265 	 */
1266 	if (dn.data_blkaddr == NEW_ADDR) {
1267 		zero_user_segment(page, 0, PAGE_SIZE);
1268 		if (!PageUptodate(page))
1269 			SetPageUptodate(page);
1270 		unlock_page(page);
1271 		return page;
1272 	}
1273 
1274 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1275 						op_flags, for_write);
1276 	if (err)
1277 		goto put_err;
1278 	return page;
1279 
1280 put_err:
1281 	f2fs_put_page(page, 1);
1282 	return ERR_PTR(err);
1283 }
1284 
1285 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1286 					pgoff_t *next_pgofs)
1287 {
1288 	struct address_space *mapping = inode->i_mapping;
1289 	struct page *page;
1290 
1291 	page = find_get_page(mapping, index);
1292 	if (page && PageUptodate(page))
1293 		return page;
1294 	f2fs_put_page(page, 0);
1295 
1296 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1297 	if (IS_ERR(page))
1298 		return page;
1299 
1300 	if (PageUptodate(page))
1301 		return page;
1302 
1303 	wait_on_page_locked(page);
1304 	if (unlikely(!PageUptodate(page))) {
1305 		f2fs_put_page(page, 0);
1306 		return ERR_PTR(-EIO);
1307 	}
1308 	return page;
1309 }
1310 
1311 /*
1312  * If it tries to access a hole, return an error.
1313  * Because, the callers, functions in dir.c and GC, should be able to know
1314  * whether this page exists or not.
1315  */
1316 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1317 							bool for_write)
1318 {
1319 	struct address_space *mapping = inode->i_mapping;
1320 	struct page *page;
1321 
1322 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1323 	if (IS_ERR(page))
1324 		return page;
1325 
1326 	/* wait for read completion */
1327 	lock_page(page);
1328 	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1329 		f2fs_put_page(page, 1);
1330 		return ERR_PTR(-EIO);
1331 	}
1332 	return page;
1333 }
1334 
1335 /*
1336  * Caller ensures that this data page is never allocated.
1337  * A new zero-filled data page is allocated in the page cache.
1338  *
1339  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1340  * f2fs_unlock_op().
1341  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1342  * ipage should be released by this function.
1343  */
1344 struct page *f2fs_get_new_data_page(struct inode *inode,
1345 		struct page *ipage, pgoff_t index, bool new_i_size)
1346 {
1347 	struct address_space *mapping = inode->i_mapping;
1348 	struct page *page;
1349 	struct dnode_of_data dn;
1350 	int err;
1351 
1352 	page = f2fs_grab_cache_page(mapping, index, true);
1353 	if (!page) {
1354 		/*
1355 		 * before exiting, we should make sure ipage will be released
1356 		 * if any error occur.
1357 		 */
1358 		f2fs_put_page(ipage, 1);
1359 		return ERR_PTR(-ENOMEM);
1360 	}
1361 
1362 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1363 	err = f2fs_reserve_block(&dn, index);
1364 	if (err) {
1365 		f2fs_put_page(page, 1);
1366 		return ERR_PTR(err);
1367 	}
1368 	if (!ipage)
1369 		f2fs_put_dnode(&dn);
1370 
1371 	if (PageUptodate(page))
1372 		goto got_it;
1373 
1374 	if (dn.data_blkaddr == NEW_ADDR) {
1375 		zero_user_segment(page, 0, PAGE_SIZE);
1376 		if (!PageUptodate(page))
1377 			SetPageUptodate(page);
1378 	} else {
1379 		f2fs_put_page(page, 1);
1380 
1381 		/* if ipage exists, blkaddr should be NEW_ADDR */
1382 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1383 		page = f2fs_get_lock_data_page(inode, index, true);
1384 		if (IS_ERR(page))
1385 			return page;
1386 	}
1387 got_it:
1388 	if (new_i_size && i_size_read(inode) <
1389 				((loff_t)(index + 1) << PAGE_SHIFT))
1390 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1391 	return page;
1392 }
1393 
1394 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1397 	struct f2fs_summary sum;
1398 	struct node_info ni;
1399 	block_t old_blkaddr;
1400 	blkcnt_t count = 1;
1401 	int err;
1402 
1403 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1404 		return -EPERM;
1405 
1406 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1407 	if (err)
1408 		return err;
1409 
1410 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1411 	if (dn->data_blkaddr == NULL_ADDR) {
1412 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1413 		if (unlikely(err))
1414 			return err;
1415 	}
1416 
1417 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1418 	old_blkaddr = dn->data_blkaddr;
1419 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1420 				&sum, seg_type, NULL);
1421 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1422 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1423 
1424 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1425 	return 0;
1426 }
1427 
1428 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1429 {
1430 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1431 		f2fs_down_read(&sbi->node_change);
1432 	else
1433 		f2fs_lock_op(sbi);
1434 }
1435 
1436 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1437 {
1438 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1439 		f2fs_up_read(&sbi->node_change);
1440 	else
1441 		f2fs_unlock_op(sbi);
1442 }
1443 
1444 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1445 {
1446 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1447 	int err = 0;
1448 
1449 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1450 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1451 						&dn->data_blkaddr))
1452 		err = f2fs_reserve_block(dn, index);
1453 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1454 
1455 	return err;
1456 }
1457 
1458 static int f2fs_map_no_dnode(struct inode *inode,
1459 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1460 		pgoff_t pgoff)
1461 {
1462 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1463 
1464 	/*
1465 	 * There is one exceptional case that read_node_page() may return
1466 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1467 	 * -EIO in that case.
1468 	 */
1469 	if (map->m_may_create &&
1470 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1471 		return -EIO;
1472 
1473 	if (map->m_next_pgofs)
1474 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1475 	if (map->m_next_extent)
1476 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1477 	return 0;
1478 }
1479 
1480 static bool f2fs_map_blocks_cached(struct inode *inode,
1481 		struct f2fs_map_blocks *map, int flag)
1482 {
1483 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1484 	unsigned int maxblocks = map->m_len;
1485 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1486 	struct extent_info ei = {};
1487 
1488 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1489 		return false;
1490 
1491 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1492 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1493 	map->m_flags = F2FS_MAP_MAPPED;
1494 	if (map->m_next_extent)
1495 		*map->m_next_extent = pgoff + map->m_len;
1496 
1497 	/* for hardware encryption, but to avoid potential issue in future */
1498 	if (flag == F2FS_GET_BLOCK_DIO)
1499 		f2fs_wait_on_block_writeback_range(inode,
1500 					map->m_pblk, map->m_len);
1501 
1502 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1503 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1504 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1505 
1506 		map->m_bdev = dev->bdev;
1507 		map->m_pblk -= dev->start_blk;
1508 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1509 	} else {
1510 		map->m_bdev = inode->i_sb->s_bdev;
1511 	}
1512 	return true;
1513 }
1514 
1515 /*
1516  * f2fs_map_blocks() tries to find or build mapping relationship which
1517  * maps continuous logical blocks to physical blocks, and return such
1518  * info via f2fs_map_blocks structure.
1519  */
1520 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1521 {
1522 	unsigned int maxblocks = map->m_len;
1523 	struct dnode_of_data dn;
1524 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1525 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1526 	pgoff_t pgofs, end_offset, end;
1527 	int err = 0, ofs = 1;
1528 	unsigned int ofs_in_node, last_ofs_in_node;
1529 	blkcnt_t prealloc;
1530 	block_t blkaddr;
1531 	unsigned int start_pgofs;
1532 	int bidx = 0;
1533 	bool is_hole;
1534 
1535 	if (!maxblocks)
1536 		return 0;
1537 
1538 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1539 		goto out;
1540 
1541 	map->m_bdev = inode->i_sb->s_bdev;
1542 	map->m_multidev_dio =
1543 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1544 
1545 	map->m_len = 0;
1546 	map->m_flags = 0;
1547 
1548 	/* it only supports block size == page size */
1549 	pgofs =	(pgoff_t)map->m_lblk;
1550 	end = pgofs + maxblocks;
1551 
1552 next_dnode:
1553 	if (map->m_may_create)
1554 		f2fs_map_lock(sbi, flag);
1555 
1556 	/* When reading holes, we need its node page */
1557 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1558 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1559 	if (err) {
1560 		if (flag == F2FS_GET_BLOCK_BMAP)
1561 			map->m_pblk = 0;
1562 		if (err == -ENOENT)
1563 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1564 		goto unlock_out;
1565 	}
1566 
1567 	start_pgofs = pgofs;
1568 	prealloc = 0;
1569 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1570 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1571 
1572 next_block:
1573 	blkaddr = f2fs_data_blkaddr(&dn);
1574 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1575 	if (!is_hole &&
1576 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1577 		err = -EFSCORRUPTED;
1578 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1579 		goto sync_out;
1580 	}
1581 
1582 	/* use out-place-update for direct IO under LFS mode */
1583 	if (map->m_may_create &&
1584 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1585 		if (unlikely(f2fs_cp_error(sbi))) {
1586 			err = -EIO;
1587 			goto sync_out;
1588 		}
1589 
1590 		switch (flag) {
1591 		case F2FS_GET_BLOCK_PRE_AIO:
1592 			if (blkaddr == NULL_ADDR) {
1593 				prealloc++;
1594 				last_ofs_in_node = dn.ofs_in_node;
1595 			}
1596 			break;
1597 		case F2FS_GET_BLOCK_PRE_DIO:
1598 		case F2FS_GET_BLOCK_DIO:
1599 			err = __allocate_data_block(&dn, map->m_seg_type);
1600 			if (err)
1601 				goto sync_out;
1602 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1603 				file_need_truncate(inode);
1604 			set_inode_flag(inode, FI_APPEND_WRITE);
1605 			break;
1606 		default:
1607 			WARN_ON_ONCE(1);
1608 			err = -EIO;
1609 			goto sync_out;
1610 		}
1611 
1612 		blkaddr = dn.data_blkaddr;
1613 		if (is_hole)
1614 			map->m_flags |= F2FS_MAP_NEW;
1615 	} else if (is_hole) {
1616 		if (f2fs_compressed_file(inode) &&
1617 		    f2fs_sanity_check_cluster(&dn)) {
1618 			err = -EFSCORRUPTED;
1619 			f2fs_handle_error(sbi,
1620 					ERROR_CORRUPTED_CLUSTER);
1621 			goto sync_out;
1622 		}
1623 
1624 		switch (flag) {
1625 		case F2FS_GET_BLOCK_PRECACHE:
1626 			goto sync_out;
1627 		case F2FS_GET_BLOCK_BMAP:
1628 			map->m_pblk = 0;
1629 			goto sync_out;
1630 		case F2FS_GET_BLOCK_FIEMAP:
1631 			if (blkaddr == NULL_ADDR) {
1632 				if (map->m_next_pgofs)
1633 					*map->m_next_pgofs = pgofs + 1;
1634 				goto sync_out;
1635 			}
1636 			break;
1637 		default:
1638 			/* for defragment case */
1639 			if (map->m_next_pgofs)
1640 				*map->m_next_pgofs = pgofs + 1;
1641 			goto sync_out;
1642 		}
1643 	}
1644 
1645 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1646 		goto skip;
1647 
1648 	if (map->m_multidev_dio)
1649 		bidx = f2fs_target_device_index(sbi, blkaddr);
1650 
1651 	if (map->m_len == 0) {
1652 		/* reserved delalloc block should be mapped for fiemap. */
1653 		if (blkaddr == NEW_ADDR)
1654 			map->m_flags |= F2FS_MAP_DELALLOC;
1655 		map->m_flags |= F2FS_MAP_MAPPED;
1656 
1657 		map->m_pblk = blkaddr;
1658 		map->m_len = 1;
1659 
1660 		if (map->m_multidev_dio)
1661 			map->m_bdev = FDEV(bidx).bdev;
1662 	} else if ((map->m_pblk != NEW_ADDR &&
1663 			blkaddr == (map->m_pblk + ofs)) ||
1664 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1665 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1666 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1667 			goto sync_out;
1668 		ofs++;
1669 		map->m_len++;
1670 	} else {
1671 		goto sync_out;
1672 	}
1673 
1674 skip:
1675 	dn.ofs_in_node++;
1676 	pgofs++;
1677 
1678 	/* preallocate blocks in batch for one dnode page */
1679 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1680 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1681 
1682 		dn.ofs_in_node = ofs_in_node;
1683 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1684 		if (err)
1685 			goto sync_out;
1686 
1687 		map->m_len += dn.ofs_in_node - ofs_in_node;
1688 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1689 			err = -ENOSPC;
1690 			goto sync_out;
1691 		}
1692 		dn.ofs_in_node = end_offset;
1693 	}
1694 
1695 	if (pgofs >= end)
1696 		goto sync_out;
1697 	else if (dn.ofs_in_node < end_offset)
1698 		goto next_block;
1699 
1700 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1701 		if (map->m_flags & F2FS_MAP_MAPPED) {
1702 			unsigned int ofs = start_pgofs - map->m_lblk;
1703 
1704 			f2fs_update_read_extent_cache_range(&dn,
1705 				start_pgofs, map->m_pblk + ofs,
1706 				map->m_len - ofs);
1707 		}
1708 	}
1709 
1710 	f2fs_put_dnode(&dn);
1711 
1712 	if (map->m_may_create) {
1713 		f2fs_map_unlock(sbi, flag);
1714 		f2fs_balance_fs(sbi, dn.node_changed);
1715 	}
1716 	goto next_dnode;
1717 
1718 sync_out:
1719 
1720 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1721 		/*
1722 		 * for hardware encryption, but to avoid potential issue
1723 		 * in future
1724 		 */
1725 		f2fs_wait_on_block_writeback_range(inode,
1726 						map->m_pblk, map->m_len);
1727 
1728 		if (map->m_multidev_dio) {
1729 			block_t blk_addr = map->m_pblk;
1730 
1731 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1732 
1733 			map->m_bdev = FDEV(bidx).bdev;
1734 			map->m_pblk -= FDEV(bidx).start_blk;
1735 
1736 			if (map->m_may_create)
1737 				f2fs_update_device_state(sbi, inode->i_ino,
1738 							blk_addr, map->m_len);
1739 
1740 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1741 						FDEV(bidx).end_blk + 1);
1742 		}
1743 	}
1744 
1745 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1746 		if (map->m_flags & F2FS_MAP_MAPPED) {
1747 			unsigned int ofs = start_pgofs - map->m_lblk;
1748 
1749 			f2fs_update_read_extent_cache_range(&dn,
1750 				start_pgofs, map->m_pblk + ofs,
1751 				map->m_len - ofs);
1752 		}
1753 		if (map->m_next_extent)
1754 			*map->m_next_extent = pgofs + 1;
1755 	}
1756 	f2fs_put_dnode(&dn);
1757 unlock_out:
1758 	if (map->m_may_create) {
1759 		f2fs_map_unlock(sbi, flag);
1760 		f2fs_balance_fs(sbi, dn.node_changed);
1761 	}
1762 out:
1763 	trace_f2fs_map_blocks(inode, map, flag, err);
1764 	return err;
1765 }
1766 
1767 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1768 {
1769 	struct f2fs_map_blocks map;
1770 	block_t last_lblk;
1771 	int err;
1772 
1773 	if (pos + len > i_size_read(inode))
1774 		return false;
1775 
1776 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1777 	map.m_next_pgofs = NULL;
1778 	map.m_next_extent = NULL;
1779 	map.m_seg_type = NO_CHECK_TYPE;
1780 	map.m_may_create = false;
1781 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1782 
1783 	while (map.m_lblk < last_lblk) {
1784 		map.m_len = last_lblk - map.m_lblk;
1785 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1786 		if (err || map.m_len == 0)
1787 			return false;
1788 		map.m_lblk += map.m_len;
1789 	}
1790 	return true;
1791 }
1792 
1793 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1794 {
1795 	return (bytes >> inode->i_blkbits);
1796 }
1797 
1798 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1799 {
1800 	return (blks << inode->i_blkbits);
1801 }
1802 
1803 static int f2fs_xattr_fiemap(struct inode *inode,
1804 				struct fiemap_extent_info *fieinfo)
1805 {
1806 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1807 	struct page *page;
1808 	struct node_info ni;
1809 	__u64 phys = 0, len;
1810 	__u32 flags;
1811 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1812 	int err = 0;
1813 
1814 	if (f2fs_has_inline_xattr(inode)) {
1815 		int offset;
1816 
1817 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1818 						inode->i_ino, false);
1819 		if (!page)
1820 			return -ENOMEM;
1821 
1822 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1823 		if (err) {
1824 			f2fs_put_page(page, 1);
1825 			return err;
1826 		}
1827 
1828 		phys = blks_to_bytes(inode, ni.blk_addr);
1829 		offset = offsetof(struct f2fs_inode, i_addr) +
1830 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1831 					get_inline_xattr_addrs(inode));
1832 
1833 		phys += offset;
1834 		len = inline_xattr_size(inode);
1835 
1836 		f2fs_put_page(page, 1);
1837 
1838 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1839 
1840 		if (!xnid)
1841 			flags |= FIEMAP_EXTENT_LAST;
1842 
1843 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1844 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1845 		if (err)
1846 			return err;
1847 	}
1848 
1849 	if (xnid) {
1850 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1851 		if (!page)
1852 			return -ENOMEM;
1853 
1854 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1855 		if (err) {
1856 			f2fs_put_page(page, 1);
1857 			return err;
1858 		}
1859 
1860 		phys = blks_to_bytes(inode, ni.blk_addr);
1861 		len = inode->i_sb->s_blocksize;
1862 
1863 		f2fs_put_page(page, 1);
1864 
1865 		flags = FIEMAP_EXTENT_LAST;
1866 	}
1867 
1868 	if (phys) {
1869 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1870 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1871 	}
1872 
1873 	return (err < 0 ? err : 0);
1874 }
1875 
1876 static loff_t max_inode_blocks(struct inode *inode)
1877 {
1878 	loff_t result = ADDRS_PER_INODE(inode);
1879 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1880 
1881 	/* two direct node blocks */
1882 	result += (leaf_count * 2);
1883 
1884 	/* two indirect node blocks */
1885 	leaf_count *= NIDS_PER_BLOCK;
1886 	result += (leaf_count * 2);
1887 
1888 	/* one double indirect node block */
1889 	leaf_count *= NIDS_PER_BLOCK;
1890 	result += leaf_count;
1891 
1892 	return result;
1893 }
1894 
1895 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1896 		u64 start, u64 len)
1897 {
1898 	struct f2fs_map_blocks map;
1899 	sector_t start_blk, last_blk;
1900 	pgoff_t next_pgofs;
1901 	u64 logical = 0, phys = 0, size = 0;
1902 	u32 flags = 0;
1903 	int ret = 0;
1904 	bool compr_cluster = false, compr_appended;
1905 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1906 	unsigned int count_in_cluster = 0;
1907 	loff_t maxbytes;
1908 
1909 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1910 		ret = f2fs_precache_extents(inode);
1911 		if (ret)
1912 			return ret;
1913 	}
1914 
1915 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1916 	if (ret)
1917 		return ret;
1918 
1919 	inode_lock(inode);
1920 
1921 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1922 	if (start > maxbytes) {
1923 		ret = -EFBIG;
1924 		goto out;
1925 	}
1926 
1927 	if (len > maxbytes || (maxbytes - len) < start)
1928 		len = maxbytes - start;
1929 
1930 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1931 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1932 		goto out;
1933 	}
1934 
1935 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1936 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1937 		if (ret != -EAGAIN)
1938 			goto out;
1939 	}
1940 
1941 	if (bytes_to_blks(inode, len) == 0)
1942 		len = blks_to_bytes(inode, 1);
1943 
1944 	start_blk = bytes_to_blks(inode, start);
1945 	last_blk = bytes_to_blks(inode, start + len - 1);
1946 
1947 next:
1948 	memset(&map, 0, sizeof(map));
1949 	map.m_lblk = start_blk;
1950 	map.m_len = bytes_to_blks(inode, len);
1951 	map.m_next_pgofs = &next_pgofs;
1952 	map.m_seg_type = NO_CHECK_TYPE;
1953 
1954 	if (compr_cluster) {
1955 		map.m_lblk += 1;
1956 		map.m_len = cluster_size - count_in_cluster;
1957 	}
1958 
1959 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1960 	if (ret)
1961 		goto out;
1962 
1963 	/* HOLE */
1964 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1965 		start_blk = next_pgofs;
1966 
1967 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1968 						max_inode_blocks(inode)))
1969 			goto prep_next;
1970 
1971 		flags |= FIEMAP_EXTENT_LAST;
1972 	}
1973 
1974 	compr_appended = false;
1975 	/* In a case of compressed cluster, append this to the last extent */
1976 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1977 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1978 		compr_appended = true;
1979 		goto skip_fill;
1980 	}
1981 
1982 	if (size) {
1983 		flags |= FIEMAP_EXTENT_MERGED;
1984 		if (IS_ENCRYPTED(inode))
1985 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1986 
1987 		ret = fiemap_fill_next_extent(fieinfo, logical,
1988 				phys, size, flags);
1989 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1990 		if (ret)
1991 			goto out;
1992 		size = 0;
1993 	}
1994 
1995 	if (start_blk > last_blk)
1996 		goto out;
1997 
1998 skip_fill:
1999 	if (map.m_pblk == COMPRESS_ADDR) {
2000 		compr_cluster = true;
2001 		count_in_cluster = 1;
2002 	} else if (compr_appended) {
2003 		unsigned int appended_blks = cluster_size -
2004 						count_in_cluster + 1;
2005 		size += blks_to_bytes(inode, appended_blks);
2006 		start_blk += appended_blks;
2007 		compr_cluster = false;
2008 	} else {
2009 		logical = blks_to_bytes(inode, start_blk);
2010 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2011 			blks_to_bytes(inode, map.m_pblk) : 0;
2012 		size = blks_to_bytes(inode, map.m_len);
2013 		flags = 0;
2014 
2015 		if (compr_cluster) {
2016 			flags = FIEMAP_EXTENT_ENCODED;
2017 			count_in_cluster += map.m_len;
2018 			if (count_in_cluster == cluster_size) {
2019 				compr_cluster = false;
2020 				size += blks_to_bytes(inode, 1);
2021 			}
2022 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2023 			flags = FIEMAP_EXTENT_UNWRITTEN;
2024 		}
2025 
2026 		start_blk += bytes_to_blks(inode, size);
2027 	}
2028 
2029 prep_next:
2030 	cond_resched();
2031 	if (fatal_signal_pending(current))
2032 		ret = -EINTR;
2033 	else
2034 		goto next;
2035 out:
2036 	if (ret == 1)
2037 		ret = 0;
2038 
2039 	inode_unlock(inode);
2040 	return ret;
2041 }
2042 
2043 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2044 {
2045 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2046 		return inode->i_sb->s_maxbytes;
2047 
2048 	return i_size_read(inode);
2049 }
2050 
2051 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2052 					unsigned nr_pages,
2053 					struct f2fs_map_blocks *map,
2054 					struct bio **bio_ret,
2055 					sector_t *last_block_in_bio,
2056 					bool is_readahead)
2057 {
2058 	struct bio *bio = *bio_ret;
2059 	const unsigned blocksize = blks_to_bytes(inode, 1);
2060 	sector_t block_in_file;
2061 	sector_t last_block;
2062 	sector_t last_block_in_file;
2063 	sector_t block_nr;
2064 	int ret = 0;
2065 
2066 	block_in_file = (sector_t)page_index(page);
2067 	last_block = block_in_file + nr_pages;
2068 	last_block_in_file = bytes_to_blks(inode,
2069 			f2fs_readpage_limit(inode) + blocksize - 1);
2070 	if (last_block > last_block_in_file)
2071 		last_block = last_block_in_file;
2072 
2073 	/* just zeroing out page which is beyond EOF */
2074 	if (block_in_file >= last_block)
2075 		goto zero_out;
2076 	/*
2077 	 * Map blocks using the previous result first.
2078 	 */
2079 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2080 			block_in_file > map->m_lblk &&
2081 			block_in_file < (map->m_lblk + map->m_len))
2082 		goto got_it;
2083 
2084 	/*
2085 	 * Then do more f2fs_map_blocks() calls until we are
2086 	 * done with this page.
2087 	 */
2088 	map->m_lblk = block_in_file;
2089 	map->m_len = last_block - block_in_file;
2090 
2091 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2092 	if (ret)
2093 		goto out;
2094 got_it:
2095 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2096 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2097 		SetPageMappedToDisk(page);
2098 
2099 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2100 						DATA_GENERIC_ENHANCE_READ)) {
2101 			ret = -EFSCORRUPTED;
2102 			f2fs_handle_error(F2FS_I_SB(inode),
2103 						ERROR_INVALID_BLKADDR);
2104 			goto out;
2105 		}
2106 	} else {
2107 zero_out:
2108 		zero_user_segment(page, 0, PAGE_SIZE);
2109 		if (f2fs_need_verity(inode, page->index) &&
2110 		    !fsverity_verify_page(page)) {
2111 			ret = -EIO;
2112 			goto out;
2113 		}
2114 		if (!PageUptodate(page))
2115 			SetPageUptodate(page);
2116 		unlock_page(page);
2117 		goto out;
2118 	}
2119 
2120 	/*
2121 	 * This page will go to BIO.  Do we need to send this
2122 	 * BIO off first?
2123 	 */
2124 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2125 				       *last_block_in_bio, block_nr) ||
2126 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2127 submit_and_realloc:
2128 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2129 		bio = NULL;
2130 	}
2131 	if (bio == NULL) {
2132 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2133 				is_readahead ? REQ_RAHEAD : 0, page->index,
2134 				false);
2135 		if (IS_ERR(bio)) {
2136 			ret = PTR_ERR(bio);
2137 			bio = NULL;
2138 			goto out;
2139 		}
2140 	}
2141 
2142 	/*
2143 	 * If the page is under writeback, we need to wait for
2144 	 * its completion to see the correct decrypted data.
2145 	 */
2146 	f2fs_wait_on_block_writeback(inode, block_nr);
2147 
2148 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2149 		goto submit_and_realloc;
2150 
2151 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2152 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2153 							F2FS_BLKSIZE);
2154 	*last_block_in_bio = block_nr;
2155 out:
2156 	*bio_ret = bio;
2157 	return ret;
2158 }
2159 
2160 #ifdef CONFIG_F2FS_FS_COMPRESSION
2161 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2162 				unsigned nr_pages, sector_t *last_block_in_bio,
2163 				bool is_readahead, bool for_write)
2164 {
2165 	struct dnode_of_data dn;
2166 	struct inode *inode = cc->inode;
2167 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2168 	struct bio *bio = *bio_ret;
2169 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2170 	sector_t last_block_in_file;
2171 	const unsigned blocksize = blks_to_bytes(inode, 1);
2172 	struct decompress_io_ctx *dic = NULL;
2173 	struct extent_info ei = {};
2174 	bool from_dnode = true;
2175 	int i;
2176 	int ret = 0;
2177 
2178 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2179 
2180 	last_block_in_file = bytes_to_blks(inode,
2181 			f2fs_readpage_limit(inode) + blocksize - 1);
2182 
2183 	/* get rid of pages beyond EOF */
2184 	for (i = 0; i < cc->cluster_size; i++) {
2185 		struct page *page = cc->rpages[i];
2186 
2187 		if (!page)
2188 			continue;
2189 		if ((sector_t)page->index >= last_block_in_file) {
2190 			zero_user_segment(page, 0, PAGE_SIZE);
2191 			if (!PageUptodate(page))
2192 				SetPageUptodate(page);
2193 		} else if (!PageUptodate(page)) {
2194 			continue;
2195 		}
2196 		unlock_page(page);
2197 		if (for_write)
2198 			put_page(page);
2199 		cc->rpages[i] = NULL;
2200 		cc->nr_rpages--;
2201 	}
2202 
2203 	/* we are done since all pages are beyond EOF */
2204 	if (f2fs_cluster_is_empty(cc))
2205 		goto out;
2206 
2207 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2208 		from_dnode = false;
2209 
2210 	if (!from_dnode)
2211 		goto skip_reading_dnode;
2212 
2213 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2214 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2215 	if (ret)
2216 		goto out;
2217 
2218 	if (unlikely(f2fs_cp_error(sbi))) {
2219 		ret = -EIO;
2220 		goto out_put_dnode;
2221 	}
2222 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2223 
2224 skip_reading_dnode:
2225 	for (i = 1; i < cc->cluster_size; i++) {
2226 		block_t blkaddr;
2227 
2228 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2229 					dn.ofs_in_node + i) :
2230 					ei.blk + i - 1;
2231 
2232 		if (!__is_valid_data_blkaddr(blkaddr))
2233 			break;
2234 
2235 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2236 			ret = -EFAULT;
2237 			goto out_put_dnode;
2238 		}
2239 		cc->nr_cpages++;
2240 
2241 		if (!from_dnode && i >= ei.c_len)
2242 			break;
2243 	}
2244 
2245 	/* nothing to decompress */
2246 	if (cc->nr_cpages == 0) {
2247 		ret = 0;
2248 		goto out_put_dnode;
2249 	}
2250 
2251 	dic = f2fs_alloc_dic(cc);
2252 	if (IS_ERR(dic)) {
2253 		ret = PTR_ERR(dic);
2254 		goto out_put_dnode;
2255 	}
2256 
2257 	for (i = 0; i < cc->nr_cpages; i++) {
2258 		struct page *page = dic->cpages[i];
2259 		block_t blkaddr;
2260 		struct bio_post_read_ctx *ctx;
2261 
2262 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2263 					dn.ofs_in_node + i + 1) :
2264 					ei.blk + i;
2265 
2266 		f2fs_wait_on_block_writeback(inode, blkaddr);
2267 
2268 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2269 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2270 				f2fs_decompress_cluster(dic, true);
2271 				break;
2272 			}
2273 			continue;
2274 		}
2275 
2276 		if (bio && (!page_is_mergeable(sbi, bio,
2277 					*last_block_in_bio, blkaddr) ||
2278 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2279 submit_and_realloc:
2280 			f2fs_submit_read_bio(sbi, bio, DATA);
2281 			bio = NULL;
2282 		}
2283 
2284 		if (!bio) {
2285 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2286 					is_readahead ? REQ_RAHEAD : 0,
2287 					page->index, for_write);
2288 			if (IS_ERR(bio)) {
2289 				ret = PTR_ERR(bio);
2290 				f2fs_decompress_end_io(dic, ret, true);
2291 				f2fs_put_dnode(&dn);
2292 				*bio_ret = NULL;
2293 				return ret;
2294 			}
2295 		}
2296 
2297 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2298 			goto submit_and_realloc;
2299 
2300 		ctx = get_post_read_ctx(bio);
2301 		ctx->enabled_steps |= STEP_DECOMPRESS;
2302 		refcount_inc(&dic->refcnt);
2303 
2304 		inc_page_count(sbi, F2FS_RD_DATA);
2305 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2306 		*last_block_in_bio = blkaddr;
2307 	}
2308 
2309 	if (from_dnode)
2310 		f2fs_put_dnode(&dn);
2311 
2312 	*bio_ret = bio;
2313 	return 0;
2314 
2315 out_put_dnode:
2316 	if (from_dnode)
2317 		f2fs_put_dnode(&dn);
2318 out:
2319 	for (i = 0; i < cc->cluster_size; i++) {
2320 		if (cc->rpages[i]) {
2321 			ClearPageUptodate(cc->rpages[i]);
2322 			unlock_page(cc->rpages[i]);
2323 		}
2324 	}
2325 	*bio_ret = bio;
2326 	return ret;
2327 }
2328 #endif
2329 
2330 /*
2331  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2332  * Major change was from block_size == page_size in f2fs by default.
2333  */
2334 static int f2fs_mpage_readpages(struct inode *inode,
2335 		struct readahead_control *rac, struct page *page)
2336 {
2337 	struct bio *bio = NULL;
2338 	sector_t last_block_in_bio = 0;
2339 	struct f2fs_map_blocks map;
2340 #ifdef CONFIG_F2FS_FS_COMPRESSION
2341 	struct compress_ctx cc = {
2342 		.inode = inode,
2343 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2344 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2345 		.cluster_idx = NULL_CLUSTER,
2346 		.rpages = NULL,
2347 		.cpages = NULL,
2348 		.nr_rpages = 0,
2349 		.nr_cpages = 0,
2350 	};
2351 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2352 #endif
2353 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2354 	unsigned max_nr_pages = nr_pages;
2355 	int ret = 0;
2356 
2357 	map.m_pblk = 0;
2358 	map.m_lblk = 0;
2359 	map.m_len = 0;
2360 	map.m_flags = 0;
2361 	map.m_next_pgofs = NULL;
2362 	map.m_next_extent = NULL;
2363 	map.m_seg_type = NO_CHECK_TYPE;
2364 	map.m_may_create = false;
2365 
2366 	for (; nr_pages; nr_pages--) {
2367 		if (rac) {
2368 			page = readahead_page(rac);
2369 			prefetchw(&page->flags);
2370 		}
2371 
2372 #ifdef CONFIG_F2FS_FS_COMPRESSION
2373 		if (f2fs_compressed_file(inode)) {
2374 			/* there are remained compressed pages, submit them */
2375 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2376 				ret = f2fs_read_multi_pages(&cc, &bio,
2377 							max_nr_pages,
2378 							&last_block_in_bio,
2379 							rac != NULL, false);
2380 				f2fs_destroy_compress_ctx(&cc, false);
2381 				if (ret)
2382 					goto set_error_page;
2383 			}
2384 			if (cc.cluster_idx == NULL_CLUSTER) {
2385 				if (nc_cluster_idx ==
2386 					page->index >> cc.log_cluster_size) {
2387 					goto read_single_page;
2388 				}
2389 
2390 				ret = f2fs_is_compressed_cluster(inode, page->index);
2391 				if (ret < 0)
2392 					goto set_error_page;
2393 				else if (!ret) {
2394 					nc_cluster_idx =
2395 						page->index >> cc.log_cluster_size;
2396 					goto read_single_page;
2397 				}
2398 
2399 				nc_cluster_idx = NULL_CLUSTER;
2400 			}
2401 			ret = f2fs_init_compress_ctx(&cc);
2402 			if (ret)
2403 				goto set_error_page;
2404 
2405 			f2fs_compress_ctx_add_page(&cc, page);
2406 
2407 			goto next_page;
2408 		}
2409 read_single_page:
2410 #endif
2411 
2412 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2413 					&bio, &last_block_in_bio, rac);
2414 		if (ret) {
2415 #ifdef CONFIG_F2FS_FS_COMPRESSION
2416 set_error_page:
2417 #endif
2418 			zero_user_segment(page, 0, PAGE_SIZE);
2419 			unlock_page(page);
2420 		}
2421 #ifdef CONFIG_F2FS_FS_COMPRESSION
2422 next_page:
2423 #endif
2424 		if (rac)
2425 			put_page(page);
2426 
2427 #ifdef CONFIG_F2FS_FS_COMPRESSION
2428 		if (f2fs_compressed_file(inode)) {
2429 			/* last page */
2430 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2431 				ret = f2fs_read_multi_pages(&cc, &bio,
2432 							max_nr_pages,
2433 							&last_block_in_bio,
2434 							rac != NULL, false);
2435 				f2fs_destroy_compress_ctx(&cc, false);
2436 			}
2437 		}
2438 #endif
2439 	}
2440 	if (bio)
2441 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2442 	return ret;
2443 }
2444 
2445 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2446 {
2447 	struct page *page = &folio->page;
2448 	struct inode *inode = page_file_mapping(page)->host;
2449 	int ret = -EAGAIN;
2450 
2451 	trace_f2fs_readpage(page, DATA);
2452 
2453 	if (!f2fs_is_compress_backend_ready(inode)) {
2454 		unlock_page(page);
2455 		return -EOPNOTSUPP;
2456 	}
2457 
2458 	/* If the file has inline data, try to read it directly */
2459 	if (f2fs_has_inline_data(inode))
2460 		ret = f2fs_read_inline_data(inode, page);
2461 	if (ret == -EAGAIN)
2462 		ret = f2fs_mpage_readpages(inode, NULL, page);
2463 	return ret;
2464 }
2465 
2466 static void f2fs_readahead(struct readahead_control *rac)
2467 {
2468 	struct inode *inode = rac->mapping->host;
2469 
2470 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2471 
2472 	if (!f2fs_is_compress_backend_ready(inode))
2473 		return;
2474 
2475 	/* If the file has inline data, skip readahead */
2476 	if (f2fs_has_inline_data(inode))
2477 		return;
2478 
2479 	f2fs_mpage_readpages(inode, rac, NULL);
2480 }
2481 
2482 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2483 {
2484 	struct inode *inode = fio->page->mapping->host;
2485 	struct page *mpage, *page;
2486 	gfp_t gfp_flags = GFP_NOFS;
2487 
2488 	if (!f2fs_encrypted_file(inode))
2489 		return 0;
2490 
2491 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2492 
2493 	if (fscrypt_inode_uses_inline_crypto(inode))
2494 		return 0;
2495 
2496 retry_encrypt:
2497 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2498 					PAGE_SIZE, 0, gfp_flags);
2499 	if (IS_ERR(fio->encrypted_page)) {
2500 		/* flush pending IOs and wait for a while in the ENOMEM case */
2501 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2502 			f2fs_flush_merged_writes(fio->sbi);
2503 			memalloc_retry_wait(GFP_NOFS);
2504 			gfp_flags |= __GFP_NOFAIL;
2505 			goto retry_encrypt;
2506 		}
2507 		return PTR_ERR(fio->encrypted_page);
2508 	}
2509 
2510 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2511 	if (mpage) {
2512 		if (PageUptodate(mpage))
2513 			memcpy(page_address(mpage),
2514 				page_address(fio->encrypted_page), PAGE_SIZE);
2515 		f2fs_put_page(mpage, 1);
2516 	}
2517 	return 0;
2518 }
2519 
2520 static inline bool check_inplace_update_policy(struct inode *inode,
2521 				struct f2fs_io_info *fio)
2522 {
2523 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2524 
2525 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2526 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2527 		return false;
2528 	if (IS_F2FS_IPU_FORCE(sbi))
2529 		return true;
2530 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2531 		return true;
2532 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2533 		return true;
2534 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2535 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2536 		return true;
2537 
2538 	/*
2539 	 * IPU for rewrite async pages
2540 	 */
2541 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2542 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2543 		return true;
2544 
2545 	/* this is only set during fdatasync */
2546 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2547 		return true;
2548 
2549 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2550 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2551 		return true;
2552 
2553 	return false;
2554 }
2555 
2556 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2557 {
2558 	/* swap file is migrating in aligned write mode */
2559 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2560 		return false;
2561 
2562 	if (f2fs_is_pinned_file(inode))
2563 		return true;
2564 
2565 	/* if this is cold file, we should overwrite to avoid fragmentation */
2566 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2567 		return true;
2568 
2569 	return check_inplace_update_policy(inode, fio);
2570 }
2571 
2572 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2573 {
2574 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2575 
2576 	/* The below cases were checked when setting it. */
2577 	if (f2fs_is_pinned_file(inode))
2578 		return false;
2579 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2580 		return true;
2581 	if (f2fs_lfs_mode(sbi))
2582 		return true;
2583 	if (S_ISDIR(inode->i_mode))
2584 		return true;
2585 	if (IS_NOQUOTA(inode))
2586 		return true;
2587 	if (f2fs_used_in_atomic_write(inode))
2588 		return true;
2589 
2590 	/* swap file is migrating in aligned write mode */
2591 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2592 		return true;
2593 
2594 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2595 		return true;
2596 
2597 	if (fio) {
2598 		if (page_private_gcing(fio->page))
2599 			return true;
2600 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2601 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2602 			return true;
2603 	}
2604 	return false;
2605 }
2606 
2607 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2608 {
2609 	struct inode *inode = fio->page->mapping->host;
2610 
2611 	if (f2fs_should_update_outplace(inode, fio))
2612 		return false;
2613 
2614 	return f2fs_should_update_inplace(inode, fio);
2615 }
2616 
2617 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2618 {
2619 	struct page *page = fio->page;
2620 	struct inode *inode = page->mapping->host;
2621 	struct dnode_of_data dn;
2622 	struct node_info ni;
2623 	bool ipu_force = false;
2624 	bool atomic_commit;
2625 	int err = 0;
2626 
2627 	/* Use COW inode to make dnode_of_data for atomic write */
2628 	atomic_commit = f2fs_is_atomic_file(inode) &&
2629 				page_private_atomic(fio->page);
2630 	if (atomic_commit)
2631 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2632 	else
2633 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2634 
2635 	if (need_inplace_update(fio) &&
2636 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2637 						&fio->old_blkaddr)) {
2638 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2639 						DATA_GENERIC_ENHANCE)) {
2640 			f2fs_handle_error(fio->sbi,
2641 						ERROR_INVALID_BLKADDR);
2642 			return -EFSCORRUPTED;
2643 		}
2644 
2645 		ipu_force = true;
2646 		fio->need_lock = LOCK_DONE;
2647 		goto got_it;
2648 	}
2649 
2650 	/* Deadlock due to between page->lock and f2fs_lock_op */
2651 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2652 		return -EAGAIN;
2653 
2654 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2655 	if (err)
2656 		goto out;
2657 
2658 	fio->old_blkaddr = dn.data_blkaddr;
2659 
2660 	/* This page is already truncated */
2661 	if (fio->old_blkaddr == NULL_ADDR) {
2662 		ClearPageUptodate(page);
2663 		clear_page_private_gcing(page);
2664 		goto out_writepage;
2665 	}
2666 got_it:
2667 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2668 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2669 						DATA_GENERIC_ENHANCE)) {
2670 		err = -EFSCORRUPTED;
2671 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2672 		goto out_writepage;
2673 	}
2674 
2675 	/* wait for GCed page writeback via META_MAPPING */
2676 	if (fio->meta_gc)
2677 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2678 
2679 	/*
2680 	 * If current allocation needs SSR,
2681 	 * it had better in-place writes for updated data.
2682 	 */
2683 	if (ipu_force ||
2684 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2685 					need_inplace_update(fio))) {
2686 		err = f2fs_encrypt_one_page(fio);
2687 		if (err)
2688 			goto out_writepage;
2689 
2690 		set_page_writeback(page);
2691 		f2fs_put_dnode(&dn);
2692 		if (fio->need_lock == LOCK_REQ)
2693 			f2fs_unlock_op(fio->sbi);
2694 		err = f2fs_inplace_write_data(fio);
2695 		if (err) {
2696 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2697 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2698 			if (PageWriteback(page))
2699 				end_page_writeback(page);
2700 		} else {
2701 			set_inode_flag(inode, FI_UPDATE_WRITE);
2702 		}
2703 		trace_f2fs_do_write_data_page(fio->page, IPU);
2704 		return err;
2705 	}
2706 
2707 	if (fio->need_lock == LOCK_RETRY) {
2708 		if (!f2fs_trylock_op(fio->sbi)) {
2709 			err = -EAGAIN;
2710 			goto out_writepage;
2711 		}
2712 		fio->need_lock = LOCK_REQ;
2713 	}
2714 
2715 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2716 	if (err)
2717 		goto out_writepage;
2718 
2719 	fio->version = ni.version;
2720 
2721 	err = f2fs_encrypt_one_page(fio);
2722 	if (err)
2723 		goto out_writepage;
2724 
2725 	set_page_writeback(page);
2726 
2727 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2728 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2729 
2730 	/* LFS mode write path */
2731 	f2fs_outplace_write_data(&dn, fio);
2732 	trace_f2fs_do_write_data_page(page, OPU);
2733 	set_inode_flag(inode, FI_APPEND_WRITE);
2734 	if (atomic_commit)
2735 		clear_page_private_atomic(page);
2736 out_writepage:
2737 	f2fs_put_dnode(&dn);
2738 out:
2739 	if (fio->need_lock == LOCK_REQ)
2740 		f2fs_unlock_op(fio->sbi);
2741 	return err;
2742 }
2743 
2744 int f2fs_write_single_data_page(struct page *page, int *submitted,
2745 				struct bio **bio,
2746 				sector_t *last_block,
2747 				struct writeback_control *wbc,
2748 				enum iostat_type io_type,
2749 				int compr_blocks,
2750 				bool allow_balance)
2751 {
2752 	struct inode *inode = page->mapping->host;
2753 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2754 	loff_t i_size = i_size_read(inode);
2755 	const pgoff_t end_index = ((unsigned long long)i_size)
2756 							>> PAGE_SHIFT;
2757 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2758 	unsigned offset = 0;
2759 	bool need_balance_fs = false;
2760 	bool quota_inode = IS_NOQUOTA(inode);
2761 	int err = 0;
2762 	struct f2fs_io_info fio = {
2763 		.sbi = sbi,
2764 		.ino = inode->i_ino,
2765 		.type = DATA,
2766 		.op = REQ_OP_WRITE,
2767 		.op_flags = wbc_to_write_flags(wbc),
2768 		.old_blkaddr = NULL_ADDR,
2769 		.page = page,
2770 		.encrypted_page = NULL,
2771 		.submitted = 0,
2772 		.compr_blocks = compr_blocks,
2773 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2774 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2775 		.io_type = io_type,
2776 		.io_wbc = wbc,
2777 		.bio = bio,
2778 		.last_block = last_block,
2779 	};
2780 
2781 	trace_f2fs_writepage(page, DATA);
2782 
2783 	/* we should bypass data pages to proceed the kworker jobs */
2784 	if (unlikely(f2fs_cp_error(sbi))) {
2785 		mapping_set_error(page->mapping, -EIO);
2786 		/*
2787 		 * don't drop any dirty dentry pages for keeping lastest
2788 		 * directory structure.
2789 		 */
2790 		if (S_ISDIR(inode->i_mode) &&
2791 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2792 			goto redirty_out;
2793 
2794 		/* keep data pages in remount-ro mode */
2795 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2796 			goto redirty_out;
2797 		goto out;
2798 	}
2799 
2800 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2801 		goto redirty_out;
2802 
2803 	if (page->index < end_index ||
2804 			f2fs_verity_in_progress(inode) ||
2805 			compr_blocks)
2806 		goto write;
2807 
2808 	/*
2809 	 * If the offset is out-of-range of file size,
2810 	 * this page does not have to be written to disk.
2811 	 */
2812 	offset = i_size & (PAGE_SIZE - 1);
2813 	if ((page->index >= end_index + 1) || !offset)
2814 		goto out;
2815 
2816 	zero_user_segment(page, offset, PAGE_SIZE);
2817 write:
2818 	/* Dentry/quota blocks are controlled by checkpoint */
2819 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2820 		/*
2821 		 * We need to wait for node_write to avoid block allocation during
2822 		 * checkpoint. This can only happen to quota writes which can cause
2823 		 * the below discard race condition.
2824 		 */
2825 		if (quota_inode)
2826 			f2fs_down_read(&sbi->node_write);
2827 
2828 		fio.need_lock = LOCK_DONE;
2829 		err = f2fs_do_write_data_page(&fio);
2830 
2831 		if (quota_inode)
2832 			f2fs_up_read(&sbi->node_write);
2833 
2834 		goto done;
2835 	}
2836 
2837 	if (!wbc->for_reclaim)
2838 		need_balance_fs = true;
2839 	else if (has_not_enough_free_secs(sbi, 0, 0))
2840 		goto redirty_out;
2841 	else
2842 		set_inode_flag(inode, FI_HOT_DATA);
2843 
2844 	err = -EAGAIN;
2845 	if (f2fs_has_inline_data(inode)) {
2846 		err = f2fs_write_inline_data(inode, page);
2847 		if (!err)
2848 			goto out;
2849 	}
2850 
2851 	if (err == -EAGAIN) {
2852 		err = f2fs_do_write_data_page(&fio);
2853 		if (err == -EAGAIN) {
2854 			f2fs_bug_on(sbi, compr_blocks);
2855 			fio.need_lock = LOCK_REQ;
2856 			err = f2fs_do_write_data_page(&fio);
2857 		}
2858 	}
2859 
2860 	if (err) {
2861 		file_set_keep_isize(inode);
2862 	} else {
2863 		spin_lock(&F2FS_I(inode)->i_size_lock);
2864 		if (F2FS_I(inode)->last_disk_size < psize)
2865 			F2FS_I(inode)->last_disk_size = psize;
2866 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2867 	}
2868 
2869 done:
2870 	if (err && err != -ENOENT)
2871 		goto redirty_out;
2872 
2873 out:
2874 	inode_dec_dirty_pages(inode);
2875 	if (err) {
2876 		ClearPageUptodate(page);
2877 		clear_page_private_gcing(page);
2878 	}
2879 
2880 	if (wbc->for_reclaim) {
2881 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2882 		clear_inode_flag(inode, FI_HOT_DATA);
2883 		f2fs_remove_dirty_inode(inode);
2884 		submitted = NULL;
2885 	}
2886 	unlock_page(page);
2887 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2888 			!F2FS_I(inode)->wb_task && allow_balance)
2889 		f2fs_balance_fs(sbi, need_balance_fs);
2890 
2891 	if (unlikely(f2fs_cp_error(sbi))) {
2892 		f2fs_submit_merged_write(sbi, DATA);
2893 		if (bio && *bio)
2894 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2895 		submitted = NULL;
2896 	}
2897 
2898 	if (submitted)
2899 		*submitted = fio.submitted;
2900 
2901 	return 0;
2902 
2903 redirty_out:
2904 	redirty_page_for_writepage(wbc, page);
2905 	/*
2906 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2907 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2908 	 * file_write_and_wait_range() will see EIO error, which is critical
2909 	 * to return value of fsync() followed by atomic_write failure to user.
2910 	 */
2911 	if (!err || wbc->for_reclaim)
2912 		return AOP_WRITEPAGE_ACTIVATE;
2913 	unlock_page(page);
2914 	return err;
2915 }
2916 
2917 static int f2fs_write_data_page(struct page *page,
2918 					struct writeback_control *wbc)
2919 {
2920 #ifdef CONFIG_F2FS_FS_COMPRESSION
2921 	struct inode *inode = page->mapping->host;
2922 
2923 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2924 		goto out;
2925 
2926 	if (f2fs_compressed_file(inode)) {
2927 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2928 			redirty_page_for_writepage(wbc, page);
2929 			return AOP_WRITEPAGE_ACTIVATE;
2930 		}
2931 	}
2932 out:
2933 #endif
2934 
2935 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2936 						wbc, FS_DATA_IO, 0, true);
2937 }
2938 
2939 /*
2940  * This function was copied from write_cache_pages from mm/page-writeback.c.
2941  * The major change is making write step of cold data page separately from
2942  * warm/hot data page.
2943  */
2944 static int f2fs_write_cache_pages(struct address_space *mapping,
2945 					struct writeback_control *wbc,
2946 					enum iostat_type io_type)
2947 {
2948 	int ret = 0;
2949 	int done = 0, retry = 0;
2950 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2951 	struct page **pages = pages_local;
2952 	struct folio_batch fbatch;
2953 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2954 	struct bio *bio = NULL;
2955 	sector_t last_block;
2956 #ifdef CONFIG_F2FS_FS_COMPRESSION
2957 	struct inode *inode = mapping->host;
2958 	struct compress_ctx cc = {
2959 		.inode = inode,
2960 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2961 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2962 		.cluster_idx = NULL_CLUSTER,
2963 		.rpages = NULL,
2964 		.nr_rpages = 0,
2965 		.cpages = NULL,
2966 		.valid_nr_cpages = 0,
2967 		.rbuf = NULL,
2968 		.cbuf = NULL,
2969 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2970 		.private = NULL,
2971 	};
2972 #endif
2973 	int nr_folios, p, idx;
2974 	int nr_pages;
2975 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2976 	pgoff_t index;
2977 	pgoff_t end;		/* Inclusive */
2978 	pgoff_t done_index;
2979 	int range_whole = 0;
2980 	xa_mark_t tag;
2981 	int nwritten = 0;
2982 	int submitted = 0;
2983 	int i;
2984 
2985 #ifdef CONFIG_F2FS_FS_COMPRESSION
2986 	if (f2fs_compressed_file(inode) &&
2987 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2988 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2989 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2990 		max_pages = 1 << cc.log_cluster_size;
2991 	}
2992 #endif
2993 
2994 	folio_batch_init(&fbatch);
2995 
2996 	if (get_dirty_pages(mapping->host) <=
2997 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2998 		set_inode_flag(mapping->host, FI_HOT_DATA);
2999 	else
3000 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3001 
3002 	if (wbc->range_cyclic) {
3003 		index = mapping->writeback_index; /* prev offset */
3004 		end = -1;
3005 	} else {
3006 		index = wbc->range_start >> PAGE_SHIFT;
3007 		end = wbc->range_end >> PAGE_SHIFT;
3008 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3009 			range_whole = 1;
3010 	}
3011 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3012 		tag = PAGECACHE_TAG_TOWRITE;
3013 	else
3014 		tag = PAGECACHE_TAG_DIRTY;
3015 retry:
3016 	retry = 0;
3017 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3018 		tag_pages_for_writeback(mapping, index, end);
3019 	done_index = index;
3020 	while (!done && !retry && (index <= end)) {
3021 		nr_pages = 0;
3022 again:
3023 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3024 				tag, &fbatch);
3025 		if (nr_folios == 0) {
3026 			if (nr_pages)
3027 				goto write;
3028 			break;
3029 		}
3030 
3031 		for (i = 0; i < nr_folios; i++) {
3032 			struct folio *folio = fbatch.folios[i];
3033 
3034 			idx = 0;
3035 			p = folio_nr_pages(folio);
3036 add_more:
3037 			pages[nr_pages] = folio_page(folio, idx);
3038 			folio_get(folio);
3039 			if (++nr_pages == max_pages) {
3040 				index = folio->index + idx + 1;
3041 				folio_batch_release(&fbatch);
3042 				goto write;
3043 			}
3044 			if (++idx < p)
3045 				goto add_more;
3046 		}
3047 		folio_batch_release(&fbatch);
3048 		goto again;
3049 write:
3050 		for (i = 0; i < nr_pages; i++) {
3051 			struct page *page = pages[i];
3052 			struct folio *folio = page_folio(page);
3053 			bool need_readd;
3054 readd:
3055 			need_readd = false;
3056 #ifdef CONFIG_F2FS_FS_COMPRESSION
3057 			if (f2fs_compressed_file(inode)) {
3058 				void *fsdata = NULL;
3059 				struct page *pagep;
3060 				int ret2;
3061 
3062 				ret = f2fs_init_compress_ctx(&cc);
3063 				if (ret) {
3064 					done = 1;
3065 					break;
3066 				}
3067 
3068 				if (!f2fs_cluster_can_merge_page(&cc,
3069 								folio->index)) {
3070 					ret = f2fs_write_multi_pages(&cc,
3071 						&submitted, wbc, io_type);
3072 					if (!ret)
3073 						need_readd = true;
3074 					goto result;
3075 				}
3076 
3077 				if (unlikely(f2fs_cp_error(sbi)))
3078 					goto lock_folio;
3079 
3080 				if (!f2fs_cluster_is_empty(&cc))
3081 					goto lock_folio;
3082 
3083 				if (f2fs_all_cluster_page_ready(&cc,
3084 					pages, i, nr_pages, true))
3085 					goto lock_folio;
3086 
3087 				ret2 = f2fs_prepare_compress_overwrite(
3088 							inode, &pagep,
3089 							folio->index, &fsdata);
3090 				if (ret2 < 0) {
3091 					ret = ret2;
3092 					done = 1;
3093 					break;
3094 				} else if (ret2 &&
3095 					(!f2fs_compress_write_end(inode,
3096 						fsdata, folio->index, 1) ||
3097 					 !f2fs_all_cluster_page_ready(&cc,
3098 						pages, i, nr_pages,
3099 						false))) {
3100 					retry = 1;
3101 					break;
3102 				}
3103 			}
3104 #endif
3105 			/* give a priority to WB_SYNC threads */
3106 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3107 					wbc->sync_mode == WB_SYNC_NONE) {
3108 				done = 1;
3109 				break;
3110 			}
3111 #ifdef CONFIG_F2FS_FS_COMPRESSION
3112 lock_folio:
3113 #endif
3114 			done_index = folio->index;
3115 retry_write:
3116 			folio_lock(folio);
3117 
3118 			if (unlikely(folio->mapping != mapping)) {
3119 continue_unlock:
3120 				folio_unlock(folio);
3121 				continue;
3122 			}
3123 
3124 			if (!folio_test_dirty(folio)) {
3125 				/* someone wrote it for us */
3126 				goto continue_unlock;
3127 			}
3128 
3129 			if (folio_test_writeback(folio)) {
3130 				if (wbc->sync_mode == WB_SYNC_NONE)
3131 					goto continue_unlock;
3132 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3133 			}
3134 
3135 			if (!folio_clear_dirty_for_io(folio))
3136 				goto continue_unlock;
3137 
3138 #ifdef CONFIG_F2FS_FS_COMPRESSION
3139 			if (f2fs_compressed_file(inode)) {
3140 				folio_get(folio);
3141 				f2fs_compress_ctx_add_page(&cc, &folio->page);
3142 				continue;
3143 			}
3144 #endif
3145 			ret = f2fs_write_single_data_page(&folio->page,
3146 					&submitted, &bio, &last_block,
3147 					wbc, io_type, 0, true);
3148 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3149 				folio_unlock(folio);
3150 #ifdef CONFIG_F2FS_FS_COMPRESSION
3151 result:
3152 #endif
3153 			nwritten += submitted;
3154 			wbc->nr_to_write -= submitted;
3155 
3156 			if (unlikely(ret)) {
3157 				/*
3158 				 * keep nr_to_write, since vfs uses this to
3159 				 * get # of written pages.
3160 				 */
3161 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3162 					ret = 0;
3163 					goto next;
3164 				} else if (ret == -EAGAIN) {
3165 					ret = 0;
3166 					if (wbc->sync_mode == WB_SYNC_ALL) {
3167 						f2fs_io_schedule_timeout(
3168 							DEFAULT_IO_TIMEOUT);
3169 						goto retry_write;
3170 					}
3171 					goto next;
3172 				}
3173 				done_index = folio_next_index(folio);
3174 				done = 1;
3175 				break;
3176 			}
3177 
3178 			if (wbc->nr_to_write <= 0 &&
3179 					wbc->sync_mode == WB_SYNC_NONE) {
3180 				done = 1;
3181 				break;
3182 			}
3183 next:
3184 			if (need_readd)
3185 				goto readd;
3186 		}
3187 		release_pages(pages, nr_pages);
3188 		cond_resched();
3189 	}
3190 #ifdef CONFIG_F2FS_FS_COMPRESSION
3191 	/* flush remained pages in compress cluster */
3192 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3193 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3194 		nwritten += submitted;
3195 		wbc->nr_to_write -= submitted;
3196 		if (ret) {
3197 			done = 1;
3198 			retry = 0;
3199 		}
3200 	}
3201 	if (f2fs_compressed_file(inode))
3202 		f2fs_destroy_compress_ctx(&cc, false);
3203 #endif
3204 	if (retry) {
3205 		index = 0;
3206 		end = -1;
3207 		goto retry;
3208 	}
3209 	if (wbc->range_cyclic && !done)
3210 		done_index = 0;
3211 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3212 		mapping->writeback_index = done_index;
3213 
3214 	if (nwritten)
3215 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3216 								NULL, 0, DATA);
3217 	/* submit cached bio of IPU write */
3218 	if (bio)
3219 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3220 
3221 #ifdef CONFIG_F2FS_FS_COMPRESSION
3222 	if (pages != pages_local)
3223 		kfree(pages);
3224 #endif
3225 
3226 	return ret;
3227 }
3228 
3229 static inline bool __should_serialize_io(struct inode *inode,
3230 					struct writeback_control *wbc)
3231 {
3232 	/* to avoid deadlock in path of data flush */
3233 	if (F2FS_I(inode)->wb_task)
3234 		return false;
3235 
3236 	if (!S_ISREG(inode->i_mode))
3237 		return false;
3238 	if (IS_NOQUOTA(inode))
3239 		return false;
3240 
3241 	if (f2fs_need_compress_data(inode))
3242 		return true;
3243 	if (wbc->sync_mode != WB_SYNC_ALL)
3244 		return true;
3245 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3246 		return true;
3247 	return false;
3248 }
3249 
3250 static int __f2fs_write_data_pages(struct address_space *mapping,
3251 						struct writeback_control *wbc,
3252 						enum iostat_type io_type)
3253 {
3254 	struct inode *inode = mapping->host;
3255 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3256 	struct blk_plug plug;
3257 	int ret;
3258 	bool locked = false;
3259 
3260 	/* deal with chardevs and other special file */
3261 	if (!mapping->a_ops->writepage)
3262 		return 0;
3263 
3264 	/* skip writing if there is no dirty page in this inode */
3265 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3266 		return 0;
3267 
3268 	/* during POR, we don't need to trigger writepage at all. */
3269 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3270 		goto skip_write;
3271 
3272 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3273 			wbc->sync_mode == WB_SYNC_NONE &&
3274 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3275 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3276 		goto skip_write;
3277 
3278 	/* skip writing in file defragment preparing stage */
3279 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3280 		goto skip_write;
3281 
3282 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3283 
3284 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3285 	if (wbc->sync_mode == WB_SYNC_ALL)
3286 		atomic_inc(&sbi->wb_sync_req[DATA]);
3287 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3288 		/* to avoid potential deadlock */
3289 		if (current->plug)
3290 			blk_finish_plug(current->plug);
3291 		goto skip_write;
3292 	}
3293 
3294 	if (__should_serialize_io(inode, wbc)) {
3295 		mutex_lock(&sbi->writepages);
3296 		locked = true;
3297 	}
3298 
3299 	blk_start_plug(&plug);
3300 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3301 	blk_finish_plug(&plug);
3302 
3303 	if (locked)
3304 		mutex_unlock(&sbi->writepages);
3305 
3306 	if (wbc->sync_mode == WB_SYNC_ALL)
3307 		atomic_dec(&sbi->wb_sync_req[DATA]);
3308 	/*
3309 	 * if some pages were truncated, we cannot guarantee its mapping->host
3310 	 * to detect pending bios.
3311 	 */
3312 
3313 	f2fs_remove_dirty_inode(inode);
3314 	return ret;
3315 
3316 skip_write:
3317 	wbc->pages_skipped += get_dirty_pages(inode);
3318 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3319 	return 0;
3320 }
3321 
3322 static int f2fs_write_data_pages(struct address_space *mapping,
3323 			    struct writeback_control *wbc)
3324 {
3325 	struct inode *inode = mapping->host;
3326 
3327 	return __f2fs_write_data_pages(mapping, wbc,
3328 			F2FS_I(inode)->cp_task == current ?
3329 			FS_CP_DATA_IO : FS_DATA_IO);
3330 }
3331 
3332 void f2fs_write_failed(struct inode *inode, loff_t to)
3333 {
3334 	loff_t i_size = i_size_read(inode);
3335 
3336 	if (IS_NOQUOTA(inode))
3337 		return;
3338 
3339 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3340 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3341 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3342 		filemap_invalidate_lock(inode->i_mapping);
3343 
3344 		truncate_pagecache(inode, i_size);
3345 		f2fs_truncate_blocks(inode, i_size, true);
3346 
3347 		filemap_invalidate_unlock(inode->i_mapping);
3348 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3349 	}
3350 }
3351 
3352 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3353 			struct page *page, loff_t pos, unsigned len,
3354 			block_t *blk_addr, bool *node_changed)
3355 {
3356 	struct inode *inode = page->mapping->host;
3357 	pgoff_t index = page->index;
3358 	struct dnode_of_data dn;
3359 	struct page *ipage;
3360 	bool locked = false;
3361 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3362 	int err = 0;
3363 
3364 	/*
3365 	 * If a whole page is being written and we already preallocated all the
3366 	 * blocks, then there is no need to get a block address now.
3367 	 */
3368 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3369 		return 0;
3370 
3371 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3372 	if (f2fs_has_inline_data(inode)) {
3373 		if (pos + len > MAX_INLINE_DATA(inode))
3374 			flag = F2FS_GET_BLOCK_DEFAULT;
3375 		f2fs_map_lock(sbi, flag);
3376 		locked = true;
3377 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3378 		f2fs_map_lock(sbi, flag);
3379 		locked = true;
3380 	}
3381 
3382 restart:
3383 	/* check inline_data */
3384 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3385 	if (IS_ERR(ipage)) {
3386 		err = PTR_ERR(ipage);
3387 		goto unlock_out;
3388 	}
3389 
3390 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3391 
3392 	if (f2fs_has_inline_data(inode)) {
3393 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3394 			f2fs_do_read_inline_data(page, ipage);
3395 			set_inode_flag(inode, FI_DATA_EXIST);
3396 			if (inode->i_nlink)
3397 				set_page_private_inline(ipage);
3398 			goto out;
3399 		}
3400 		err = f2fs_convert_inline_page(&dn, page);
3401 		if (err || dn.data_blkaddr != NULL_ADDR)
3402 			goto out;
3403 	}
3404 
3405 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3406 						 &dn.data_blkaddr)) {
3407 		if (locked) {
3408 			err = f2fs_reserve_block(&dn, index);
3409 			goto out;
3410 		}
3411 
3412 		/* hole case */
3413 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3414 		if (!err && dn.data_blkaddr != NULL_ADDR)
3415 			goto out;
3416 		f2fs_put_dnode(&dn);
3417 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3418 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3419 		locked = true;
3420 		goto restart;
3421 	}
3422 out:
3423 	if (!err) {
3424 		/* convert_inline_page can make node_changed */
3425 		*blk_addr = dn.data_blkaddr;
3426 		*node_changed = dn.node_changed;
3427 	}
3428 	f2fs_put_dnode(&dn);
3429 unlock_out:
3430 	if (locked)
3431 		f2fs_map_unlock(sbi, flag);
3432 	return err;
3433 }
3434 
3435 static int __find_data_block(struct inode *inode, pgoff_t index,
3436 				block_t *blk_addr)
3437 {
3438 	struct dnode_of_data dn;
3439 	struct page *ipage;
3440 	int err = 0;
3441 
3442 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3443 	if (IS_ERR(ipage))
3444 		return PTR_ERR(ipage);
3445 
3446 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3447 
3448 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3449 						 &dn.data_blkaddr)) {
3450 		/* hole case */
3451 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3452 		if (err) {
3453 			dn.data_blkaddr = NULL_ADDR;
3454 			err = 0;
3455 		}
3456 	}
3457 	*blk_addr = dn.data_blkaddr;
3458 	f2fs_put_dnode(&dn);
3459 	return err;
3460 }
3461 
3462 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3463 				block_t *blk_addr, bool *node_changed)
3464 {
3465 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3466 	struct dnode_of_data dn;
3467 	struct page *ipage;
3468 	int err = 0;
3469 
3470 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3471 
3472 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3473 	if (IS_ERR(ipage)) {
3474 		err = PTR_ERR(ipage);
3475 		goto unlock_out;
3476 	}
3477 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3478 
3479 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3480 						&dn.data_blkaddr))
3481 		err = f2fs_reserve_block(&dn, index);
3482 
3483 	*blk_addr = dn.data_blkaddr;
3484 	*node_changed = dn.node_changed;
3485 	f2fs_put_dnode(&dn);
3486 
3487 unlock_out:
3488 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3489 	return err;
3490 }
3491 
3492 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3493 			struct page *page, loff_t pos, unsigned int len,
3494 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3495 {
3496 	struct inode *inode = page->mapping->host;
3497 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3498 	pgoff_t index = page->index;
3499 	int err = 0;
3500 	block_t ori_blk_addr = NULL_ADDR;
3501 
3502 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3503 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3504 		goto reserve_block;
3505 
3506 	/* Look for the block in COW inode first */
3507 	err = __find_data_block(cow_inode, index, blk_addr);
3508 	if (err) {
3509 		return err;
3510 	} else if (*blk_addr != NULL_ADDR) {
3511 		*use_cow = true;
3512 		return 0;
3513 	}
3514 
3515 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3516 		goto reserve_block;
3517 
3518 	/* Look for the block in the original inode */
3519 	err = __find_data_block(inode, index, &ori_blk_addr);
3520 	if (err)
3521 		return err;
3522 
3523 reserve_block:
3524 	/* Finally, we should reserve a new block in COW inode for the update */
3525 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3526 	if (err)
3527 		return err;
3528 	inc_atomic_write_cnt(inode);
3529 
3530 	if (ori_blk_addr != NULL_ADDR)
3531 		*blk_addr = ori_blk_addr;
3532 	return 0;
3533 }
3534 
3535 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3536 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3537 {
3538 	struct inode *inode = mapping->host;
3539 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3540 	struct page *page = NULL;
3541 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3542 	bool need_balance = false;
3543 	bool use_cow = false;
3544 	block_t blkaddr = NULL_ADDR;
3545 	int err = 0;
3546 
3547 	trace_f2fs_write_begin(inode, pos, len);
3548 
3549 	if (!f2fs_is_checkpoint_ready(sbi)) {
3550 		err = -ENOSPC;
3551 		goto fail;
3552 	}
3553 
3554 	/*
3555 	 * We should check this at this moment to avoid deadlock on inode page
3556 	 * and #0 page. The locking rule for inline_data conversion should be:
3557 	 * lock_page(page #0) -> lock_page(inode_page)
3558 	 */
3559 	if (index != 0) {
3560 		err = f2fs_convert_inline_inode(inode);
3561 		if (err)
3562 			goto fail;
3563 	}
3564 
3565 #ifdef CONFIG_F2FS_FS_COMPRESSION
3566 	if (f2fs_compressed_file(inode)) {
3567 		int ret;
3568 
3569 		*fsdata = NULL;
3570 
3571 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3572 			goto repeat;
3573 
3574 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3575 							index, fsdata);
3576 		if (ret < 0) {
3577 			err = ret;
3578 			goto fail;
3579 		} else if (ret) {
3580 			return 0;
3581 		}
3582 	}
3583 #endif
3584 
3585 repeat:
3586 	/*
3587 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3588 	 * wait_for_stable_page. Will wait that below with our IO control.
3589 	 */
3590 	page = f2fs_pagecache_get_page(mapping, index,
3591 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3592 	if (!page) {
3593 		err = -ENOMEM;
3594 		goto fail;
3595 	}
3596 
3597 	/* TODO: cluster can be compressed due to race with .writepage */
3598 
3599 	*pagep = page;
3600 
3601 	if (f2fs_is_atomic_file(inode))
3602 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3603 					&blkaddr, &need_balance, &use_cow);
3604 	else
3605 		err = prepare_write_begin(sbi, page, pos, len,
3606 					&blkaddr, &need_balance);
3607 	if (err)
3608 		goto fail;
3609 
3610 	if (need_balance && !IS_NOQUOTA(inode) &&
3611 			has_not_enough_free_secs(sbi, 0, 0)) {
3612 		unlock_page(page);
3613 		f2fs_balance_fs(sbi, true);
3614 		lock_page(page);
3615 		if (page->mapping != mapping) {
3616 			/* The page got truncated from under us */
3617 			f2fs_put_page(page, 1);
3618 			goto repeat;
3619 		}
3620 	}
3621 
3622 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3623 
3624 	if (len == PAGE_SIZE || PageUptodate(page))
3625 		return 0;
3626 
3627 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3628 	    !f2fs_verity_in_progress(inode)) {
3629 		zero_user_segment(page, len, PAGE_SIZE);
3630 		return 0;
3631 	}
3632 
3633 	if (blkaddr == NEW_ADDR) {
3634 		zero_user_segment(page, 0, PAGE_SIZE);
3635 		SetPageUptodate(page);
3636 	} else {
3637 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3638 				DATA_GENERIC_ENHANCE_READ)) {
3639 			err = -EFSCORRUPTED;
3640 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3641 			goto fail;
3642 		}
3643 		err = f2fs_submit_page_read(use_cow ?
3644 				F2FS_I(inode)->cow_inode : inode, page,
3645 				blkaddr, 0, true);
3646 		if (err)
3647 			goto fail;
3648 
3649 		lock_page(page);
3650 		if (unlikely(page->mapping != mapping)) {
3651 			f2fs_put_page(page, 1);
3652 			goto repeat;
3653 		}
3654 		if (unlikely(!PageUptodate(page))) {
3655 			err = -EIO;
3656 			goto fail;
3657 		}
3658 	}
3659 	return 0;
3660 
3661 fail:
3662 	f2fs_put_page(page, 1);
3663 	f2fs_write_failed(inode, pos + len);
3664 	return err;
3665 }
3666 
3667 static int f2fs_write_end(struct file *file,
3668 			struct address_space *mapping,
3669 			loff_t pos, unsigned len, unsigned copied,
3670 			struct page *page, void *fsdata)
3671 {
3672 	struct inode *inode = page->mapping->host;
3673 
3674 	trace_f2fs_write_end(inode, pos, len, copied);
3675 
3676 	/*
3677 	 * This should be come from len == PAGE_SIZE, and we expect copied
3678 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3679 	 * let generic_perform_write() try to copy data again through copied=0.
3680 	 */
3681 	if (!PageUptodate(page)) {
3682 		if (unlikely(copied != len))
3683 			copied = 0;
3684 		else
3685 			SetPageUptodate(page);
3686 	}
3687 
3688 #ifdef CONFIG_F2FS_FS_COMPRESSION
3689 	/* overwrite compressed file */
3690 	if (f2fs_compressed_file(inode) && fsdata) {
3691 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3692 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3693 
3694 		if (pos + copied > i_size_read(inode) &&
3695 				!f2fs_verity_in_progress(inode))
3696 			f2fs_i_size_write(inode, pos + copied);
3697 		return copied;
3698 	}
3699 #endif
3700 
3701 	if (!copied)
3702 		goto unlock_out;
3703 
3704 	set_page_dirty(page);
3705 
3706 	if (f2fs_is_atomic_file(inode))
3707 		set_page_private_atomic(page);
3708 
3709 	if (pos + copied > i_size_read(inode) &&
3710 	    !f2fs_verity_in_progress(inode)) {
3711 		f2fs_i_size_write(inode, pos + copied);
3712 		if (f2fs_is_atomic_file(inode))
3713 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3714 					pos + copied);
3715 	}
3716 unlock_out:
3717 	f2fs_put_page(page, 1);
3718 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3719 	return copied;
3720 }
3721 
3722 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3723 {
3724 	struct inode *inode = folio->mapping->host;
3725 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3726 
3727 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3728 				(offset || length != folio_size(folio)))
3729 		return;
3730 
3731 	if (folio_test_dirty(folio)) {
3732 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3733 			dec_page_count(sbi, F2FS_DIRTY_META);
3734 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3735 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3736 		} else {
3737 			inode_dec_dirty_pages(inode);
3738 			f2fs_remove_dirty_inode(inode);
3739 		}
3740 	}
3741 	clear_page_private_all(&folio->page);
3742 }
3743 
3744 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3745 {
3746 	/* If this is dirty folio, keep private data */
3747 	if (folio_test_dirty(folio))
3748 		return false;
3749 
3750 	clear_page_private_all(&folio->page);
3751 	return true;
3752 }
3753 
3754 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3755 		struct folio *folio)
3756 {
3757 	struct inode *inode = mapping->host;
3758 
3759 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3760 
3761 	if (!folio_test_uptodate(folio))
3762 		folio_mark_uptodate(folio);
3763 	BUG_ON(folio_test_swapcache(folio));
3764 
3765 	if (filemap_dirty_folio(mapping, folio)) {
3766 		f2fs_update_dirty_folio(inode, folio);
3767 		return true;
3768 	}
3769 	return false;
3770 }
3771 
3772 
3773 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3774 {
3775 #ifdef CONFIG_F2FS_FS_COMPRESSION
3776 	struct dnode_of_data dn;
3777 	sector_t start_idx, blknr = 0;
3778 	int ret;
3779 
3780 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3781 
3782 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3783 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3784 	if (ret)
3785 		return 0;
3786 
3787 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3788 		dn.ofs_in_node += block - start_idx;
3789 		blknr = f2fs_data_blkaddr(&dn);
3790 		if (!__is_valid_data_blkaddr(blknr))
3791 			blknr = 0;
3792 	}
3793 
3794 	f2fs_put_dnode(&dn);
3795 	return blknr;
3796 #else
3797 	return 0;
3798 #endif
3799 }
3800 
3801 
3802 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3803 {
3804 	struct inode *inode = mapping->host;
3805 	sector_t blknr = 0;
3806 
3807 	if (f2fs_has_inline_data(inode))
3808 		goto out;
3809 
3810 	/* make sure allocating whole blocks */
3811 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3812 		filemap_write_and_wait(mapping);
3813 
3814 	/* Block number less than F2FS MAX BLOCKS */
3815 	if (unlikely(block >= max_file_blocks(inode)))
3816 		goto out;
3817 
3818 	if (f2fs_compressed_file(inode)) {
3819 		blknr = f2fs_bmap_compress(inode, block);
3820 	} else {
3821 		struct f2fs_map_blocks map;
3822 
3823 		memset(&map, 0, sizeof(map));
3824 		map.m_lblk = block;
3825 		map.m_len = 1;
3826 		map.m_next_pgofs = NULL;
3827 		map.m_seg_type = NO_CHECK_TYPE;
3828 
3829 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3830 			blknr = map.m_pblk;
3831 	}
3832 out:
3833 	trace_f2fs_bmap(inode, block, blknr);
3834 	return blknr;
3835 }
3836 
3837 #ifdef CONFIG_SWAP
3838 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3839 							unsigned int blkcnt)
3840 {
3841 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3842 	unsigned int blkofs;
3843 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3844 	unsigned int secidx = start_blk / blk_per_sec;
3845 	unsigned int end_sec;
3846 	int ret = 0;
3847 
3848 	if (!blkcnt)
3849 		return 0;
3850 	end_sec = secidx + (blkcnt - 1) / blk_per_sec;
3851 
3852 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3853 	filemap_invalidate_lock(inode->i_mapping);
3854 
3855 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3856 	set_inode_flag(inode, FI_OPU_WRITE);
3857 
3858 	for (; secidx <= end_sec; secidx++) {
3859 		unsigned int blkofs_end = secidx == end_sec ?
3860 			(blkcnt - 1) % blk_per_sec : blk_per_sec - 1;
3861 
3862 		f2fs_down_write(&sbi->pin_sem);
3863 
3864 		ret = f2fs_allocate_pinning_section(sbi);
3865 		if (ret) {
3866 			f2fs_up_write(&sbi->pin_sem);
3867 			break;
3868 		}
3869 
3870 		set_inode_flag(inode, FI_SKIP_WRITES);
3871 
3872 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3873 			struct page *page;
3874 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3875 
3876 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3877 			if (IS_ERR(page)) {
3878 				f2fs_up_write(&sbi->pin_sem);
3879 				ret = PTR_ERR(page);
3880 				goto done;
3881 			}
3882 
3883 			set_page_dirty(page);
3884 			f2fs_put_page(page, 1);
3885 		}
3886 
3887 		clear_inode_flag(inode, FI_SKIP_WRITES);
3888 
3889 		ret = filemap_fdatawrite(inode->i_mapping);
3890 
3891 		f2fs_up_write(&sbi->pin_sem);
3892 
3893 		if (ret)
3894 			break;
3895 	}
3896 
3897 done:
3898 	clear_inode_flag(inode, FI_SKIP_WRITES);
3899 	clear_inode_flag(inode, FI_OPU_WRITE);
3900 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3901 
3902 	filemap_invalidate_unlock(inode->i_mapping);
3903 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3904 
3905 	return ret;
3906 }
3907 
3908 static int check_swap_activate(struct swap_info_struct *sis,
3909 				struct file *swap_file, sector_t *span)
3910 {
3911 	struct address_space *mapping = swap_file->f_mapping;
3912 	struct inode *inode = mapping->host;
3913 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3914 	block_t cur_lblock;
3915 	block_t last_lblock;
3916 	block_t pblock;
3917 	block_t lowest_pblock = -1;
3918 	block_t highest_pblock = 0;
3919 	int nr_extents = 0;
3920 	unsigned int nr_pblocks;
3921 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3922 	unsigned int not_aligned = 0;
3923 	int ret = 0;
3924 
3925 	/*
3926 	 * Map all the blocks into the extent list.  This code doesn't try
3927 	 * to be very smart.
3928 	 */
3929 	cur_lblock = 0;
3930 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3931 
3932 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3933 		struct f2fs_map_blocks map;
3934 retry:
3935 		cond_resched();
3936 
3937 		memset(&map, 0, sizeof(map));
3938 		map.m_lblk = cur_lblock;
3939 		map.m_len = last_lblock - cur_lblock;
3940 		map.m_next_pgofs = NULL;
3941 		map.m_next_extent = NULL;
3942 		map.m_seg_type = NO_CHECK_TYPE;
3943 		map.m_may_create = false;
3944 
3945 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3946 		if (ret)
3947 			goto out;
3948 
3949 		/* hole */
3950 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3951 			f2fs_err(sbi, "Swapfile has holes");
3952 			ret = -EINVAL;
3953 			goto out;
3954 		}
3955 
3956 		pblock = map.m_pblk;
3957 		nr_pblocks = map.m_len;
3958 
3959 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3960 				nr_pblocks % blks_per_sec ||
3961 				!f2fs_valid_pinned_area(sbi, pblock)) {
3962 			bool last_extent = false;
3963 
3964 			not_aligned++;
3965 
3966 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3967 			if (cur_lblock + nr_pblocks > sis->max)
3968 				nr_pblocks -= blks_per_sec;
3969 
3970 			/* this extent is last one */
3971 			if (!nr_pblocks) {
3972 				nr_pblocks = last_lblock - cur_lblock;
3973 				last_extent = true;
3974 			}
3975 
3976 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3977 							nr_pblocks);
3978 			if (ret) {
3979 				if (ret == -ENOENT)
3980 					ret = -EINVAL;
3981 				goto out;
3982 			}
3983 
3984 			if (!last_extent)
3985 				goto retry;
3986 		}
3987 
3988 		if (cur_lblock + nr_pblocks >= sis->max)
3989 			nr_pblocks = sis->max - cur_lblock;
3990 
3991 		if (cur_lblock) {	/* exclude the header page */
3992 			if (pblock < lowest_pblock)
3993 				lowest_pblock = pblock;
3994 			if (pblock + nr_pblocks - 1 > highest_pblock)
3995 				highest_pblock = pblock + nr_pblocks - 1;
3996 		}
3997 
3998 		/*
3999 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4000 		 */
4001 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4002 		if (ret < 0)
4003 			goto out;
4004 		nr_extents += ret;
4005 		cur_lblock += nr_pblocks;
4006 	}
4007 	ret = nr_extents;
4008 	*span = 1 + highest_pblock - lowest_pblock;
4009 	if (cur_lblock == 0)
4010 		cur_lblock = 1;	/* force Empty message */
4011 	sis->max = cur_lblock;
4012 	sis->pages = cur_lblock - 1;
4013 	sis->highest_bit = cur_lblock - 1;
4014 out:
4015 	if (not_aligned)
4016 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4017 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4018 	return ret;
4019 }
4020 
4021 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4022 				sector_t *span)
4023 {
4024 	struct inode *inode = file_inode(file);
4025 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4026 	int ret;
4027 
4028 	if (!S_ISREG(inode->i_mode))
4029 		return -EINVAL;
4030 
4031 	if (f2fs_readonly(sbi->sb))
4032 		return -EROFS;
4033 
4034 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4035 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4036 		return -EINVAL;
4037 	}
4038 
4039 	ret = f2fs_convert_inline_inode(inode);
4040 	if (ret)
4041 		return ret;
4042 
4043 	if (!f2fs_disable_compressed_file(inode))
4044 		return -EINVAL;
4045 
4046 	f2fs_precache_extents(inode);
4047 
4048 	ret = filemap_fdatawrite(inode->i_mapping);
4049 	if (ret < 0)
4050 		return ret;
4051 
4052 	ret = check_swap_activate(sis, file, span);
4053 	if (ret < 0)
4054 		return ret;
4055 
4056 	stat_inc_swapfile_inode(inode);
4057 	set_inode_flag(inode, FI_PIN_FILE);
4058 	f2fs_update_time(sbi, REQ_TIME);
4059 	return ret;
4060 }
4061 
4062 static void f2fs_swap_deactivate(struct file *file)
4063 {
4064 	struct inode *inode = file_inode(file);
4065 
4066 	stat_dec_swapfile_inode(inode);
4067 	clear_inode_flag(inode, FI_PIN_FILE);
4068 }
4069 #else
4070 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4071 				sector_t *span)
4072 {
4073 	return -EOPNOTSUPP;
4074 }
4075 
4076 static void f2fs_swap_deactivate(struct file *file)
4077 {
4078 }
4079 #endif
4080 
4081 const struct address_space_operations f2fs_dblock_aops = {
4082 	.read_folio	= f2fs_read_data_folio,
4083 	.readahead	= f2fs_readahead,
4084 	.writepage	= f2fs_write_data_page,
4085 	.writepages	= f2fs_write_data_pages,
4086 	.write_begin	= f2fs_write_begin,
4087 	.write_end	= f2fs_write_end,
4088 	.dirty_folio	= f2fs_dirty_data_folio,
4089 	.migrate_folio	= filemap_migrate_folio,
4090 	.invalidate_folio = f2fs_invalidate_folio,
4091 	.release_folio	= f2fs_release_folio,
4092 	.bmap		= f2fs_bmap,
4093 	.swap_activate  = f2fs_swap_activate,
4094 	.swap_deactivate = f2fs_swap_deactivate,
4095 };
4096 
4097 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4098 {
4099 	struct address_space *mapping = page_mapping(page);
4100 	unsigned long flags;
4101 
4102 	xa_lock_irqsave(&mapping->i_pages, flags);
4103 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4104 						PAGECACHE_TAG_DIRTY);
4105 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4106 }
4107 
4108 int __init f2fs_init_post_read_processing(void)
4109 {
4110 	bio_post_read_ctx_cache =
4111 		kmem_cache_create("f2fs_bio_post_read_ctx",
4112 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4113 	if (!bio_post_read_ctx_cache)
4114 		goto fail;
4115 	bio_post_read_ctx_pool =
4116 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4117 					 bio_post_read_ctx_cache);
4118 	if (!bio_post_read_ctx_pool)
4119 		goto fail_free_cache;
4120 	return 0;
4121 
4122 fail_free_cache:
4123 	kmem_cache_destroy(bio_post_read_ctx_cache);
4124 fail:
4125 	return -ENOMEM;
4126 }
4127 
4128 void f2fs_destroy_post_read_processing(void)
4129 {
4130 	mempool_destroy(bio_post_read_ctx_pool);
4131 	kmem_cache_destroy(bio_post_read_ctx_cache);
4132 }
4133 
4134 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4135 {
4136 	if (!f2fs_sb_has_encrypt(sbi) &&
4137 		!f2fs_sb_has_verity(sbi) &&
4138 		!f2fs_sb_has_compression(sbi))
4139 		return 0;
4140 
4141 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4142 						 WQ_UNBOUND | WQ_HIGHPRI,
4143 						 num_online_cpus());
4144 	return sbi->post_read_wq ? 0 : -ENOMEM;
4145 }
4146 
4147 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4148 {
4149 	if (sbi->post_read_wq)
4150 		destroy_workqueue(sbi->post_read_wq);
4151 }
4152 
4153 int __init f2fs_init_bio_entry_cache(void)
4154 {
4155 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4156 			sizeof(struct bio_entry));
4157 	return bio_entry_slab ? 0 : -ENOMEM;
4158 }
4159 
4160 void f2fs_destroy_bio_entry_cache(void)
4161 {
4162 	kmem_cache_destroy(bio_entry_slab);
4163 }
4164 
4165 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4166 			    unsigned int flags, struct iomap *iomap,
4167 			    struct iomap *srcmap)
4168 {
4169 	struct f2fs_map_blocks map = {};
4170 	pgoff_t next_pgofs = 0;
4171 	int err;
4172 
4173 	map.m_lblk = bytes_to_blks(inode, offset);
4174 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4175 	map.m_next_pgofs = &next_pgofs;
4176 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4177 	if (flags & IOMAP_WRITE)
4178 		map.m_may_create = true;
4179 
4180 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4181 	if (err)
4182 		return err;
4183 
4184 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4185 
4186 	/*
4187 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4188 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4189 	 * limiting the length of the mapping returned.
4190 	 */
4191 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4192 
4193 	/*
4194 	 * We should never see delalloc or compressed extents here based on
4195 	 * prior flushing and checks.
4196 	 */
4197 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4198 		return -EINVAL;
4199 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4200 		return -EINVAL;
4201 
4202 	if (map.m_flags & F2FS_MAP_MAPPED) {
4203 		iomap->length = blks_to_bytes(inode, map.m_len);
4204 		iomap->type = IOMAP_MAPPED;
4205 		iomap->flags |= IOMAP_F_MERGED;
4206 		iomap->bdev = map.m_bdev;
4207 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4208 	} else {
4209 		if (flags & IOMAP_WRITE)
4210 			return -ENOTBLK;
4211 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4212 				iomap->offset;
4213 		iomap->type = IOMAP_HOLE;
4214 		iomap->addr = IOMAP_NULL_ADDR;
4215 	}
4216 
4217 	if (map.m_flags & F2FS_MAP_NEW)
4218 		iomap->flags |= IOMAP_F_NEW;
4219 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4220 	    offset + length > i_size_read(inode))
4221 		iomap->flags |= IOMAP_F_DIRTY;
4222 
4223 	return 0;
4224 }
4225 
4226 const struct iomap_ops f2fs_iomap_ops = {
4227 	.iomap_begin	= f2fs_iomap_begin,
4228 };
4229