1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/cleancache.h> 22 #include <linux/sched/signal.h> 23 #include <linux/fiemap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && 73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 74 page_private_gcing(page)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct page *page) 80 { 81 struct address_space *mapping = page_file_mapping(page); 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = 1 << 0, 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = 1 << 1, 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = 1 << 2, 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct work_struct work; 119 unsigned int enabled_steps; 120 block_t fs_blkaddr; 121 }; 122 123 static void f2fs_finish_read_bio(struct bio *bio) 124 { 125 struct bio_vec *bv; 126 struct bvec_iter_all iter_all; 127 128 /* 129 * Update and unlock the bio's pagecache pages, and put the 130 * decompression context for any compressed pages. 131 */ 132 bio_for_each_segment_all(bv, bio, iter_all) { 133 struct page *page = bv->bv_page; 134 135 if (f2fs_is_compressed_page(page)) { 136 if (bio->bi_status) 137 f2fs_end_read_compressed_page(page, true, 0); 138 f2fs_put_page_dic(page); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readpages() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 229 { 230 struct bio_vec *bv; 231 struct bvec_iter_all iter_all; 232 bool all_compressed = true; 233 block_t blkaddr = ctx->fs_blkaddr; 234 235 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 236 struct page *page = bv->bv_page; 237 238 /* PG_error was set if decryption failed. */ 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, PageError(page), 241 blkaddr); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 262 if (ctx->enabled_steps & STEP_DECRYPT) 263 fscrypt_decrypt_bio(ctx->bio); 264 265 if (ctx->enabled_steps & STEP_DECOMPRESS) 266 f2fs_handle_step_decompress(ctx); 267 268 f2fs_verify_and_finish_bio(ctx->bio); 269 } 270 271 static void f2fs_read_end_io(struct bio *bio) 272 { 273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 274 struct bio_post_read_ctx *ctx; 275 276 iostat_update_and_unbind_ctx(bio, 0); 277 ctx = bio->bi_private; 278 279 if (time_to_inject(sbi, FAULT_READ_IO)) { 280 f2fs_show_injection_info(sbi, FAULT_READ_IO); 281 bio->bi_status = BLK_STS_IOERR; 282 } 283 284 if (bio->bi_status) { 285 f2fs_finish_read_bio(bio); 286 return; 287 } 288 289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 290 INIT_WORK(&ctx->work, f2fs_post_read_work); 291 queue_work(ctx->sbi->post_read_wq, &ctx->work); 292 } else { 293 f2fs_verify_and_finish_bio(bio); 294 } 295 } 296 297 static void f2fs_write_end_io(struct bio *bio) 298 { 299 struct f2fs_sb_info *sbi; 300 struct bio_vec *bvec; 301 struct bvec_iter_all iter_all; 302 303 iostat_update_and_unbind_ctx(bio, 1); 304 sbi = bio->bi_private; 305 306 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 308 bio->bi_status = BLK_STS_IOERR; 309 } 310 311 bio_for_each_segment_all(bvec, bio, iter_all) { 312 struct page *page = bvec->bv_page; 313 enum count_type type = WB_DATA_TYPE(page); 314 315 if (page_private_dummy(page)) { 316 clear_page_private_dummy(page); 317 unlock_page(page); 318 mempool_free(page, sbi->write_io_dummy); 319 320 if (unlikely(bio->bi_status)) 321 f2fs_stop_checkpoint(sbi, true); 322 continue; 323 } 324 325 fscrypt_finalize_bounce_page(&page); 326 327 #ifdef CONFIG_F2FS_FS_COMPRESSION 328 if (f2fs_is_compressed_page(page)) { 329 f2fs_compress_write_end_io(bio, page); 330 continue; 331 } 332 #endif 333 334 if (unlikely(bio->bi_status)) { 335 mapping_set_error(page->mapping, -EIO); 336 if (type == F2FS_WB_CP_DATA) 337 f2fs_stop_checkpoint(sbi, true); 338 } 339 340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 341 page->index != nid_of_node(page)); 342 343 dec_page_count(sbi, type); 344 if (f2fs_in_warm_node_list(sbi, page)) 345 f2fs_del_fsync_node_entry(sbi, page); 346 clear_page_private_gcing(page); 347 end_page_writeback(page); 348 } 349 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 350 wq_has_sleeper(&sbi->cp_wait)) 351 wake_up(&sbi->cp_wait); 352 353 bio_put(bio); 354 } 355 356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 357 block_t blk_addr, struct bio *bio) 358 { 359 struct block_device *bdev = sbi->sb->s_bdev; 360 int i; 361 362 if (f2fs_is_multi_device(sbi)) { 363 for (i = 0; i < sbi->s_ndevs; i++) { 364 if (FDEV(i).start_blk <= blk_addr && 365 FDEV(i).end_blk >= blk_addr) { 366 blk_addr -= FDEV(i).start_blk; 367 bdev = FDEV(i).bdev; 368 break; 369 } 370 } 371 } 372 if (bio) { 373 bio_set_dev(bio, bdev); 374 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 375 } 376 return bdev; 377 } 378 379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 380 { 381 int i; 382 383 if (!f2fs_is_multi_device(sbi)) 384 return 0; 385 386 for (i = 0; i < sbi->s_ndevs; i++) 387 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 388 return i; 389 return 0; 390 } 391 392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 393 { 394 struct f2fs_sb_info *sbi = fio->sbi; 395 struct bio *bio; 396 397 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); 398 399 f2fs_target_device(sbi, fio->new_blkaddr, bio); 400 if (is_read_io(fio->op)) { 401 bio->bi_end_io = f2fs_read_end_io; 402 bio->bi_private = NULL; 403 } else { 404 bio->bi_end_io = f2fs_write_end_io; 405 bio->bi_private = sbi; 406 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 407 fio->type, fio->temp); 408 } 409 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 410 411 if (fio->io_wbc) 412 wbc_init_bio(fio->io_wbc, bio); 413 414 return bio; 415 } 416 417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 418 pgoff_t first_idx, 419 const struct f2fs_io_info *fio, 420 gfp_t gfp_mask) 421 { 422 /* 423 * The f2fs garbage collector sets ->encrypted_page when it wants to 424 * read/write raw data without encryption. 425 */ 426 if (!fio || !fio->encrypted_page) 427 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 428 } 429 430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 431 pgoff_t next_idx, 432 const struct f2fs_io_info *fio) 433 { 434 /* 435 * The f2fs garbage collector sets ->encrypted_page when it wants to 436 * read/write raw data without encryption. 437 */ 438 if (fio && fio->encrypted_page) 439 return !bio_has_crypt_ctx(bio); 440 441 return fscrypt_mergeable_bio(bio, inode, next_idx); 442 } 443 444 static inline void __submit_bio(struct f2fs_sb_info *sbi, 445 struct bio *bio, enum page_type type) 446 { 447 if (!is_read_io(bio_op(bio))) { 448 unsigned int start; 449 450 if (type != DATA && type != NODE) 451 goto submit_io; 452 453 if (f2fs_lfs_mode(sbi) && current->plug) 454 blk_finish_plug(current->plug); 455 456 if (!F2FS_IO_ALIGNED(sbi)) 457 goto submit_io; 458 459 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 460 start %= F2FS_IO_SIZE(sbi); 461 462 if (start == 0) 463 goto submit_io; 464 465 /* fill dummy pages */ 466 for (; start < F2FS_IO_SIZE(sbi); start++) { 467 struct page *page = 468 mempool_alloc(sbi->write_io_dummy, 469 GFP_NOIO | __GFP_NOFAIL); 470 f2fs_bug_on(sbi, !page); 471 472 lock_page(page); 473 474 zero_user_segment(page, 0, PAGE_SIZE); 475 set_page_private_dummy(page); 476 477 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 478 f2fs_bug_on(sbi, 1); 479 } 480 /* 481 * In the NODE case, we lose next block address chain. So, we 482 * need to do checkpoint in f2fs_sync_file. 483 */ 484 if (type == NODE) 485 set_sbi_flag(sbi, SBI_NEED_CP); 486 } 487 submit_io: 488 if (is_read_io(bio_op(bio))) 489 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 490 else 491 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 492 493 iostat_update_submit_ctx(bio, type); 494 submit_bio(bio); 495 } 496 497 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 498 struct bio *bio, enum page_type type) 499 { 500 __submit_bio(sbi, bio, type); 501 } 502 503 static void __attach_io_flag(struct f2fs_io_info *fio) 504 { 505 struct f2fs_sb_info *sbi = fio->sbi; 506 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 507 unsigned int io_flag, fua_flag, meta_flag; 508 509 if (fio->type == DATA) 510 io_flag = sbi->data_io_flag; 511 else if (fio->type == NODE) 512 io_flag = sbi->node_io_flag; 513 else 514 return; 515 516 fua_flag = io_flag & temp_mask; 517 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 518 519 /* 520 * data/node io flag bits per temp: 521 * REQ_META | REQ_FUA | 522 * 5 | 4 | 3 | 2 | 1 | 0 | 523 * Cold | Warm | Hot | Cold | Warm | Hot | 524 */ 525 if ((1 << fio->temp) & meta_flag) 526 fio->op_flags |= REQ_META; 527 if ((1 << fio->temp) & fua_flag) 528 fio->op_flags |= REQ_FUA; 529 } 530 531 static void __submit_merged_bio(struct f2fs_bio_info *io) 532 { 533 struct f2fs_io_info *fio = &io->fio; 534 535 if (!io->bio) 536 return; 537 538 __attach_io_flag(fio); 539 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 540 541 if (is_read_io(fio->op)) 542 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 543 else 544 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 545 546 __submit_bio(io->sbi, io->bio, fio->type); 547 io->bio = NULL; 548 } 549 550 static bool __has_merged_page(struct bio *bio, struct inode *inode, 551 struct page *page, nid_t ino) 552 { 553 struct bio_vec *bvec; 554 struct bvec_iter_all iter_all; 555 556 if (!bio) 557 return false; 558 559 if (!inode && !page && !ino) 560 return true; 561 562 bio_for_each_segment_all(bvec, bio, iter_all) { 563 struct page *target = bvec->bv_page; 564 565 if (fscrypt_is_bounce_page(target)) { 566 target = fscrypt_pagecache_page(target); 567 if (IS_ERR(target)) 568 continue; 569 } 570 if (f2fs_is_compressed_page(target)) { 571 target = f2fs_compress_control_page(target); 572 if (IS_ERR(target)) 573 continue; 574 } 575 576 if (inode && inode == target->mapping->host) 577 return true; 578 if (page && page == target) 579 return true; 580 if (ino && ino == ino_of_node(target)) 581 return true; 582 } 583 584 return false; 585 } 586 587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 588 enum page_type type, enum temp_type temp) 589 { 590 enum page_type btype = PAGE_TYPE_OF_BIO(type); 591 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 592 593 down_write(&io->io_rwsem); 594 595 /* change META to META_FLUSH in the checkpoint procedure */ 596 if (type >= META_FLUSH) { 597 io->fio.type = META_FLUSH; 598 io->fio.op = REQ_OP_WRITE; 599 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 600 if (!test_opt(sbi, NOBARRIER)) 601 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 602 } 603 __submit_merged_bio(io); 604 up_write(&io->io_rwsem); 605 } 606 607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 608 struct inode *inode, struct page *page, 609 nid_t ino, enum page_type type, bool force) 610 { 611 enum temp_type temp; 612 bool ret = true; 613 614 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 615 if (!force) { 616 enum page_type btype = PAGE_TYPE_OF_BIO(type); 617 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 618 619 down_read(&io->io_rwsem); 620 ret = __has_merged_page(io->bio, inode, page, ino); 621 up_read(&io->io_rwsem); 622 } 623 if (ret) 624 __f2fs_submit_merged_write(sbi, type, temp); 625 626 /* TODO: use HOT temp only for meta pages now. */ 627 if (type >= META) 628 break; 629 } 630 } 631 632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 633 { 634 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 635 } 636 637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 638 struct inode *inode, struct page *page, 639 nid_t ino, enum page_type type) 640 { 641 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 642 } 643 644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 645 { 646 f2fs_submit_merged_write(sbi, DATA); 647 f2fs_submit_merged_write(sbi, NODE); 648 f2fs_submit_merged_write(sbi, META); 649 } 650 651 /* 652 * Fill the locked page with data located in the block address. 653 * A caller needs to unlock the page on failure. 654 */ 655 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 656 { 657 struct bio *bio; 658 struct page *page = fio->encrypted_page ? 659 fio->encrypted_page : fio->page; 660 661 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 662 fio->is_por ? META_POR : (__is_meta_io(fio) ? 663 META_GENERIC : DATA_GENERIC_ENHANCE))) 664 return -EFSCORRUPTED; 665 666 trace_f2fs_submit_page_bio(page, fio); 667 668 /* Allocate a new bio */ 669 bio = __bio_alloc(fio, 1); 670 671 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 672 fio->page->index, fio, GFP_NOIO); 673 674 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 675 bio_put(bio); 676 return -EFAULT; 677 } 678 679 if (fio->io_wbc && !is_read_io(fio->op)) 680 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 681 682 __attach_io_flag(fio); 683 bio_set_op_attrs(bio, fio->op, fio->op_flags); 684 685 inc_page_count(fio->sbi, is_read_io(fio->op) ? 686 __read_io_type(page): WB_DATA_TYPE(fio->page)); 687 688 __submit_bio(fio->sbi, bio, fio->type); 689 return 0; 690 } 691 692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 693 block_t last_blkaddr, block_t cur_blkaddr) 694 { 695 if (unlikely(sbi->max_io_bytes && 696 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 697 return false; 698 if (last_blkaddr + 1 != cur_blkaddr) 699 return false; 700 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 701 } 702 703 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 704 struct f2fs_io_info *fio) 705 { 706 if (io->fio.op != fio->op) 707 return false; 708 return io->fio.op_flags == fio->op_flags; 709 } 710 711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 712 struct f2fs_bio_info *io, 713 struct f2fs_io_info *fio, 714 block_t last_blkaddr, 715 block_t cur_blkaddr) 716 { 717 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 718 unsigned int filled_blocks = 719 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 720 unsigned int io_size = F2FS_IO_SIZE(sbi); 721 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 722 723 /* IOs in bio is aligned and left space of vectors is not enough */ 724 if (!(filled_blocks % io_size) && left_vecs < io_size) 725 return false; 726 } 727 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 728 return false; 729 return io_type_is_mergeable(io, fio); 730 } 731 732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 733 struct page *page, enum temp_type temp) 734 { 735 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 736 struct bio_entry *be; 737 738 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 739 be->bio = bio; 740 bio_get(bio); 741 742 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 743 f2fs_bug_on(sbi, 1); 744 745 down_write(&io->bio_list_lock); 746 list_add_tail(&be->list, &io->bio_list); 747 up_write(&io->bio_list_lock); 748 } 749 750 static void del_bio_entry(struct bio_entry *be) 751 { 752 list_del(&be->list); 753 kmem_cache_free(bio_entry_slab, be); 754 } 755 756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 757 struct page *page) 758 { 759 struct f2fs_sb_info *sbi = fio->sbi; 760 enum temp_type temp; 761 bool found = false; 762 int ret = -EAGAIN; 763 764 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 765 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 766 struct list_head *head = &io->bio_list; 767 struct bio_entry *be; 768 769 down_write(&io->bio_list_lock); 770 list_for_each_entry(be, head, list) { 771 if (be->bio != *bio) 772 continue; 773 774 found = true; 775 776 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 777 *fio->last_block, 778 fio->new_blkaddr)); 779 if (f2fs_crypt_mergeable_bio(*bio, 780 fio->page->mapping->host, 781 fio->page->index, fio) && 782 bio_add_page(*bio, page, PAGE_SIZE, 0) == 783 PAGE_SIZE) { 784 ret = 0; 785 break; 786 } 787 788 /* page can't be merged into bio; submit the bio */ 789 del_bio_entry(be); 790 __submit_bio(sbi, *bio, DATA); 791 break; 792 } 793 up_write(&io->bio_list_lock); 794 } 795 796 if (ret) { 797 bio_put(*bio); 798 *bio = NULL; 799 } 800 801 return ret; 802 } 803 804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 805 struct bio **bio, struct page *page) 806 { 807 enum temp_type temp; 808 bool found = false; 809 struct bio *target = bio ? *bio : NULL; 810 811 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 812 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 813 struct list_head *head = &io->bio_list; 814 struct bio_entry *be; 815 816 if (list_empty(head)) 817 continue; 818 819 down_read(&io->bio_list_lock); 820 list_for_each_entry(be, head, list) { 821 if (target) 822 found = (target == be->bio); 823 else 824 found = __has_merged_page(be->bio, NULL, 825 page, 0); 826 if (found) 827 break; 828 } 829 up_read(&io->bio_list_lock); 830 831 if (!found) 832 continue; 833 834 found = false; 835 836 down_write(&io->bio_list_lock); 837 list_for_each_entry(be, head, list) { 838 if (target) 839 found = (target == be->bio); 840 else 841 found = __has_merged_page(be->bio, NULL, 842 page, 0); 843 if (found) { 844 target = be->bio; 845 del_bio_entry(be); 846 break; 847 } 848 } 849 up_write(&io->bio_list_lock); 850 } 851 852 if (found) 853 __submit_bio(sbi, target, DATA); 854 if (bio && *bio) { 855 bio_put(*bio); 856 *bio = NULL; 857 } 858 } 859 860 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 861 { 862 struct bio *bio = *fio->bio; 863 struct page *page = fio->encrypted_page ? 864 fio->encrypted_page : fio->page; 865 866 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 867 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 868 return -EFSCORRUPTED; 869 870 trace_f2fs_submit_page_bio(page, fio); 871 872 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 873 fio->new_blkaddr)) 874 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 875 alloc_new: 876 if (!bio) { 877 bio = __bio_alloc(fio, BIO_MAX_VECS); 878 __attach_io_flag(fio); 879 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 880 fio->page->index, fio, GFP_NOIO); 881 bio_set_op_attrs(bio, fio->op, fio->op_flags); 882 883 add_bio_entry(fio->sbi, bio, page, fio->temp); 884 } else { 885 if (add_ipu_page(fio, &bio, page)) 886 goto alloc_new; 887 } 888 889 if (fio->io_wbc) 890 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 891 892 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 893 894 *fio->last_block = fio->new_blkaddr; 895 *fio->bio = bio; 896 897 return 0; 898 } 899 900 void f2fs_submit_page_write(struct f2fs_io_info *fio) 901 { 902 struct f2fs_sb_info *sbi = fio->sbi; 903 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 904 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 905 struct page *bio_page; 906 907 f2fs_bug_on(sbi, is_read_io(fio->op)); 908 909 down_write(&io->io_rwsem); 910 next: 911 if (fio->in_list) { 912 spin_lock(&io->io_lock); 913 if (list_empty(&io->io_list)) { 914 spin_unlock(&io->io_lock); 915 goto out; 916 } 917 fio = list_first_entry(&io->io_list, 918 struct f2fs_io_info, list); 919 list_del(&fio->list); 920 spin_unlock(&io->io_lock); 921 } 922 923 verify_fio_blkaddr(fio); 924 925 if (fio->encrypted_page) 926 bio_page = fio->encrypted_page; 927 else if (fio->compressed_page) 928 bio_page = fio->compressed_page; 929 else 930 bio_page = fio->page; 931 932 /* set submitted = true as a return value */ 933 fio->submitted = true; 934 935 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 936 937 if (io->bio && 938 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 939 fio->new_blkaddr) || 940 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 941 bio_page->index, fio))) 942 __submit_merged_bio(io); 943 alloc_new: 944 if (io->bio == NULL) { 945 if (F2FS_IO_ALIGNED(sbi) && 946 (fio->type == DATA || fio->type == NODE) && 947 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 948 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 949 fio->retry = true; 950 goto skip; 951 } 952 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 953 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 954 bio_page->index, fio, GFP_NOIO); 955 io->fio = *fio; 956 } 957 958 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 959 __submit_merged_bio(io); 960 goto alloc_new; 961 } 962 963 if (fio->io_wbc) 964 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 965 966 io->last_block_in_bio = fio->new_blkaddr; 967 968 trace_f2fs_submit_page_write(fio->page, fio); 969 skip: 970 if (fio->in_list) 971 goto next; 972 out: 973 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 974 !f2fs_is_checkpoint_ready(sbi)) 975 __submit_merged_bio(io); 976 up_write(&io->io_rwsem); 977 } 978 979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 980 unsigned nr_pages, unsigned op_flag, 981 pgoff_t first_idx, bool for_write) 982 { 983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 984 struct bio *bio; 985 struct bio_post_read_ctx *ctx = NULL; 986 unsigned int post_read_steps = 0; 987 988 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, 989 bio_max_segs(nr_pages), &f2fs_bioset); 990 if (!bio) 991 return ERR_PTR(-ENOMEM); 992 993 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 994 995 f2fs_target_device(sbi, blkaddr, bio); 996 bio->bi_end_io = f2fs_read_end_io; 997 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 998 999 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1000 post_read_steps |= STEP_DECRYPT; 1001 1002 if (f2fs_need_verity(inode, first_idx)) 1003 post_read_steps |= STEP_VERITY; 1004 1005 /* 1006 * STEP_DECOMPRESS is handled specially, since a compressed file might 1007 * contain both compressed and uncompressed clusters. We'll allocate a 1008 * bio_post_read_ctx if the file is compressed, but the caller is 1009 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1010 */ 1011 1012 if (post_read_steps || f2fs_compressed_file(inode)) { 1013 /* Due to the mempool, this never fails. */ 1014 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1015 ctx->bio = bio; 1016 ctx->sbi = sbi; 1017 ctx->enabled_steps = post_read_steps; 1018 ctx->fs_blkaddr = blkaddr; 1019 bio->bi_private = ctx; 1020 } 1021 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1022 1023 return bio; 1024 } 1025 1026 /* This can handle encryption stuffs */ 1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1028 block_t blkaddr, int op_flags, bool for_write) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1031 struct bio *bio; 1032 1033 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1034 page->index, for_write); 1035 if (IS_ERR(bio)) 1036 return PTR_ERR(bio); 1037 1038 /* wait for GCed page writeback via META_MAPPING */ 1039 f2fs_wait_on_block_writeback(inode, blkaddr); 1040 1041 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1042 bio_put(bio); 1043 return -EFAULT; 1044 } 1045 ClearPageError(page); 1046 inc_page_count(sbi, F2FS_RD_DATA); 1047 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1048 __submit_bio(sbi, bio, DATA); 1049 return 0; 1050 } 1051 1052 static void __set_data_blkaddr(struct dnode_of_data *dn) 1053 { 1054 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1055 __le32 *addr_array; 1056 int base = 0; 1057 1058 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1059 base = get_extra_isize(dn->inode); 1060 1061 /* Get physical address of data block */ 1062 addr_array = blkaddr_in_node(rn); 1063 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1064 } 1065 1066 /* 1067 * Lock ordering for the change of data block address: 1068 * ->data_page 1069 * ->node_page 1070 * update block addresses in the node page 1071 */ 1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1073 { 1074 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1075 __set_data_blkaddr(dn); 1076 if (set_page_dirty(dn->node_page)) 1077 dn->node_changed = true; 1078 } 1079 1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1081 { 1082 dn->data_blkaddr = blkaddr; 1083 f2fs_set_data_blkaddr(dn); 1084 f2fs_update_extent_cache(dn); 1085 } 1086 1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1089 { 1090 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1091 int err; 1092 1093 if (!count) 1094 return 0; 1095 1096 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1097 return -EPERM; 1098 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1099 return err; 1100 1101 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1102 dn->ofs_in_node, count); 1103 1104 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1105 1106 for (; count > 0; dn->ofs_in_node++) { 1107 block_t blkaddr = f2fs_data_blkaddr(dn); 1108 1109 if (blkaddr == NULL_ADDR) { 1110 dn->data_blkaddr = NEW_ADDR; 1111 __set_data_blkaddr(dn); 1112 count--; 1113 } 1114 } 1115 1116 if (set_page_dirty(dn->node_page)) 1117 dn->node_changed = true; 1118 return 0; 1119 } 1120 1121 /* Should keep dn->ofs_in_node unchanged */ 1122 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1123 { 1124 unsigned int ofs_in_node = dn->ofs_in_node; 1125 int ret; 1126 1127 ret = f2fs_reserve_new_blocks(dn, 1); 1128 dn->ofs_in_node = ofs_in_node; 1129 return ret; 1130 } 1131 1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1133 { 1134 bool need_put = dn->inode_page ? false : true; 1135 int err; 1136 1137 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1138 if (err) 1139 return err; 1140 1141 if (dn->data_blkaddr == NULL_ADDR) 1142 err = f2fs_reserve_new_block(dn); 1143 if (err || need_put) 1144 f2fs_put_dnode(dn); 1145 return err; 1146 } 1147 1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1149 { 1150 struct extent_info ei = {0, }; 1151 struct inode *inode = dn->inode; 1152 1153 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1154 dn->data_blkaddr = ei.blk + index - ei.fofs; 1155 return 0; 1156 } 1157 1158 return f2fs_reserve_block(dn, index); 1159 } 1160 1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1162 int op_flags, bool for_write) 1163 { 1164 struct address_space *mapping = inode->i_mapping; 1165 struct dnode_of_data dn; 1166 struct page *page; 1167 struct extent_info ei = {0, }; 1168 int err; 1169 1170 page = f2fs_grab_cache_page(mapping, index, for_write); 1171 if (!page) 1172 return ERR_PTR(-ENOMEM); 1173 1174 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1175 dn.data_blkaddr = ei.blk + index - ei.fofs; 1176 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1177 DATA_GENERIC_ENHANCE_READ)) { 1178 err = -EFSCORRUPTED; 1179 goto put_err; 1180 } 1181 goto got_it; 1182 } 1183 1184 set_new_dnode(&dn, inode, NULL, NULL, 0); 1185 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1186 if (err) 1187 goto put_err; 1188 f2fs_put_dnode(&dn); 1189 1190 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1191 err = -ENOENT; 1192 goto put_err; 1193 } 1194 if (dn.data_blkaddr != NEW_ADDR && 1195 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1196 dn.data_blkaddr, 1197 DATA_GENERIC_ENHANCE)) { 1198 err = -EFSCORRUPTED; 1199 goto put_err; 1200 } 1201 got_it: 1202 if (PageUptodate(page)) { 1203 unlock_page(page); 1204 return page; 1205 } 1206 1207 /* 1208 * A new dentry page is allocated but not able to be written, since its 1209 * new inode page couldn't be allocated due to -ENOSPC. 1210 * In such the case, its blkaddr can be remained as NEW_ADDR. 1211 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1212 * f2fs_init_inode_metadata. 1213 */ 1214 if (dn.data_blkaddr == NEW_ADDR) { 1215 zero_user_segment(page, 0, PAGE_SIZE); 1216 if (!PageUptodate(page)) 1217 SetPageUptodate(page); 1218 unlock_page(page); 1219 return page; 1220 } 1221 1222 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1223 op_flags, for_write); 1224 if (err) 1225 goto put_err; 1226 return page; 1227 1228 put_err: 1229 f2fs_put_page(page, 1); 1230 return ERR_PTR(err); 1231 } 1232 1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1234 { 1235 struct address_space *mapping = inode->i_mapping; 1236 struct page *page; 1237 1238 page = find_get_page(mapping, index); 1239 if (page && PageUptodate(page)) 1240 return page; 1241 f2fs_put_page(page, 0); 1242 1243 page = f2fs_get_read_data_page(inode, index, 0, false); 1244 if (IS_ERR(page)) 1245 return page; 1246 1247 if (PageUptodate(page)) 1248 return page; 1249 1250 wait_on_page_locked(page); 1251 if (unlikely(!PageUptodate(page))) { 1252 f2fs_put_page(page, 0); 1253 return ERR_PTR(-EIO); 1254 } 1255 return page; 1256 } 1257 1258 /* 1259 * If it tries to access a hole, return an error. 1260 * Because, the callers, functions in dir.c and GC, should be able to know 1261 * whether this page exists or not. 1262 */ 1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1264 bool for_write) 1265 { 1266 struct address_space *mapping = inode->i_mapping; 1267 struct page *page; 1268 repeat: 1269 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1270 if (IS_ERR(page)) 1271 return page; 1272 1273 /* wait for read completion */ 1274 lock_page(page); 1275 if (unlikely(page->mapping != mapping)) { 1276 f2fs_put_page(page, 1); 1277 goto repeat; 1278 } 1279 if (unlikely(!PageUptodate(page))) { 1280 f2fs_put_page(page, 1); 1281 return ERR_PTR(-EIO); 1282 } 1283 return page; 1284 } 1285 1286 /* 1287 * Caller ensures that this data page is never allocated. 1288 * A new zero-filled data page is allocated in the page cache. 1289 * 1290 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1291 * f2fs_unlock_op(). 1292 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1293 * ipage should be released by this function. 1294 */ 1295 struct page *f2fs_get_new_data_page(struct inode *inode, 1296 struct page *ipage, pgoff_t index, bool new_i_size) 1297 { 1298 struct address_space *mapping = inode->i_mapping; 1299 struct page *page; 1300 struct dnode_of_data dn; 1301 int err; 1302 1303 page = f2fs_grab_cache_page(mapping, index, true); 1304 if (!page) { 1305 /* 1306 * before exiting, we should make sure ipage will be released 1307 * if any error occur. 1308 */ 1309 f2fs_put_page(ipage, 1); 1310 return ERR_PTR(-ENOMEM); 1311 } 1312 1313 set_new_dnode(&dn, inode, ipage, NULL, 0); 1314 err = f2fs_reserve_block(&dn, index); 1315 if (err) { 1316 f2fs_put_page(page, 1); 1317 return ERR_PTR(err); 1318 } 1319 if (!ipage) 1320 f2fs_put_dnode(&dn); 1321 1322 if (PageUptodate(page)) 1323 goto got_it; 1324 1325 if (dn.data_blkaddr == NEW_ADDR) { 1326 zero_user_segment(page, 0, PAGE_SIZE); 1327 if (!PageUptodate(page)) 1328 SetPageUptodate(page); 1329 } else { 1330 f2fs_put_page(page, 1); 1331 1332 /* if ipage exists, blkaddr should be NEW_ADDR */ 1333 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1334 page = f2fs_get_lock_data_page(inode, index, true); 1335 if (IS_ERR(page)) 1336 return page; 1337 } 1338 got_it: 1339 if (new_i_size && i_size_read(inode) < 1340 ((loff_t)(index + 1) << PAGE_SHIFT)) 1341 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1342 return page; 1343 } 1344 1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1346 { 1347 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1348 struct f2fs_summary sum; 1349 struct node_info ni; 1350 block_t old_blkaddr; 1351 blkcnt_t count = 1; 1352 int err; 1353 1354 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1355 return -EPERM; 1356 1357 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1358 if (err) 1359 return err; 1360 1361 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1362 if (dn->data_blkaddr != NULL_ADDR) 1363 goto alloc; 1364 1365 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1366 return err; 1367 1368 alloc: 1369 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1370 old_blkaddr = dn->data_blkaddr; 1371 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1372 &sum, seg_type, NULL); 1373 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1374 invalidate_mapping_pages(META_MAPPING(sbi), 1375 old_blkaddr, old_blkaddr); 1376 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1377 } 1378 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1379 1380 /* 1381 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1382 * data from unwritten block via dio_read. 1383 */ 1384 return 0; 1385 } 1386 1387 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1388 { 1389 struct inode *inode = file_inode(iocb->ki_filp); 1390 struct f2fs_map_blocks map; 1391 int flag; 1392 int err = 0; 1393 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1394 1395 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1396 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1397 if (map.m_len > map.m_lblk) 1398 map.m_len -= map.m_lblk; 1399 else 1400 map.m_len = 0; 1401 1402 map.m_next_pgofs = NULL; 1403 map.m_next_extent = NULL; 1404 map.m_seg_type = NO_CHECK_TYPE; 1405 map.m_may_create = true; 1406 1407 if (direct_io) { 1408 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1409 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1410 F2FS_GET_BLOCK_PRE_AIO : 1411 F2FS_GET_BLOCK_PRE_DIO; 1412 goto map_blocks; 1413 } 1414 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1415 err = f2fs_convert_inline_inode(inode); 1416 if (err) 1417 return err; 1418 } 1419 if (f2fs_has_inline_data(inode)) 1420 return err; 1421 1422 flag = F2FS_GET_BLOCK_PRE_AIO; 1423 1424 map_blocks: 1425 err = f2fs_map_blocks(inode, &map, 1, flag); 1426 if (map.m_len > 0 && err == -ENOSPC) { 1427 if (!direct_io) 1428 set_inode_flag(inode, FI_NO_PREALLOC); 1429 err = 0; 1430 } 1431 return err; 1432 } 1433 1434 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1435 { 1436 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1437 if (lock) 1438 down_read(&sbi->node_change); 1439 else 1440 up_read(&sbi->node_change); 1441 } else { 1442 if (lock) 1443 f2fs_lock_op(sbi); 1444 else 1445 f2fs_unlock_op(sbi); 1446 } 1447 } 1448 1449 /* 1450 * f2fs_map_blocks() tries to find or build mapping relationship which 1451 * maps continuous logical blocks to physical blocks, and return such 1452 * info via f2fs_map_blocks structure. 1453 */ 1454 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1455 int create, int flag) 1456 { 1457 unsigned int maxblocks = map->m_len; 1458 struct dnode_of_data dn; 1459 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1460 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1461 pgoff_t pgofs, end_offset, end; 1462 int err = 0, ofs = 1; 1463 unsigned int ofs_in_node, last_ofs_in_node; 1464 blkcnt_t prealloc; 1465 struct extent_info ei = {0, }; 1466 block_t blkaddr; 1467 unsigned int start_pgofs; 1468 int bidx = 0; 1469 1470 if (!maxblocks) 1471 return 0; 1472 1473 map->m_bdev = inode->i_sb->s_bdev; 1474 map->m_multidev_dio = 1475 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1476 1477 map->m_len = 0; 1478 map->m_flags = 0; 1479 1480 /* it only supports block size == page size */ 1481 pgofs = (pgoff_t)map->m_lblk; 1482 end = pgofs + maxblocks; 1483 1484 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1485 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1486 map->m_may_create) 1487 goto next_dnode; 1488 1489 map->m_pblk = ei.blk + pgofs - ei.fofs; 1490 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1491 map->m_flags = F2FS_MAP_MAPPED; 1492 if (map->m_next_extent) 1493 *map->m_next_extent = pgofs + map->m_len; 1494 1495 /* for hardware encryption, but to avoid potential issue in future */ 1496 if (flag == F2FS_GET_BLOCK_DIO) 1497 f2fs_wait_on_block_writeback_range(inode, 1498 map->m_pblk, map->m_len); 1499 1500 if (map->m_multidev_dio) { 1501 block_t blk_addr = map->m_pblk; 1502 1503 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1504 1505 map->m_bdev = FDEV(bidx).bdev; 1506 map->m_pblk -= FDEV(bidx).start_blk; 1507 map->m_len = min(map->m_len, 1508 FDEV(bidx).end_blk + 1 - map->m_pblk); 1509 1510 if (map->m_may_create) 1511 f2fs_update_device_state(sbi, inode->i_ino, 1512 blk_addr, map->m_len); 1513 } 1514 goto out; 1515 } 1516 1517 next_dnode: 1518 if (map->m_may_create) 1519 f2fs_do_map_lock(sbi, flag, true); 1520 1521 /* When reading holes, we need its node page */ 1522 set_new_dnode(&dn, inode, NULL, NULL, 0); 1523 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1524 if (err) { 1525 if (flag == F2FS_GET_BLOCK_BMAP) 1526 map->m_pblk = 0; 1527 1528 if (err == -ENOENT) { 1529 /* 1530 * There is one exceptional case that read_node_page() 1531 * may return -ENOENT due to filesystem has been 1532 * shutdown or cp_error, so force to convert error 1533 * number to EIO for such case. 1534 */ 1535 if (map->m_may_create && 1536 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1537 f2fs_cp_error(sbi))) { 1538 err = -EIO; 1539 goto unlock_out; 1540 } 1541 1542 err = 0; 1543 if (map->m_next_pgofs) 1544 *map->m_next_pgofs = 1545 f2fs_get_next_page_offset(&dn, pgofs); 1546 if (map->m_next_extent) 1547 *map->m_next_extent = 1548 f2fs_get_next_page_offset(&dn, pgofs); 1549 } 1550 goto unlock_out; 1551 } 1552 1553 start_pgofs = pgofs; 1554 prealloc = 0; 1555 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1556 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1557 1558 next_block: 1559 blkaddr = f2fs_data_blkaddr(&dn); 1560 1561 if (__is_valid_data_blkaddr(blkaddr) && 1562 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1563 err = -EFSCORRUPTED; 1564 goto sync_out; 1565 } 1566 1567 if (__is_valid_data_blkaddr(blkaddr)) { 1568 /* use out-place-update for driect IO under LFS mode */ 1569 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1570 map->m_may_create) { 1571 err = __allocate_data_block(&dn, map->m_seg_type); 1572 if (err) 1573 goto sync_out; 1574 blkaddr = dn.data_blkaddr; 1575 set_inode_flag(inode, FI_APPEND_WRITE); 1576 } 1577 } else { 1578 if (create) { 1579 if (unlikely(f2fs_cp_error(sbi))) { 1580 err = -EIO; 1581 goto sync_out; 1582 } 1583 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1584 if (blkaddr == NULL_ADDR) { 1585 prealloc++; 1586 last_ofs_in_node = dn.ofs_in_node; 1587 } 1588 } else { 1589 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1590 flag != F2FS_GET_BLOCK_DIO); 1591 err = __allocate_data_block(&dn, 1592 map->m_seg_type); 1593 if (!err) 1594 set_inode_flag(inode, FI_APPEND_WRITE); 1595 } 1596 if (err) 1597 goto sync_out; 1598 map->m_flags |= F2FS_MAP_NEW; 1599 blkaddr = dn.data_blkaddr; 1600 } else { 1601 if (f2fs_compressed_file(inode) && 1602 f2fs_sanity_check_cluster(&dn) && 1603 (flag != F2FS_GET_BLOCK_FIEMAP || 1604 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1605 err = -EFSCORRUPTED; 1606 goto sync_out; 1607 } 1608 if (flag == F2FS_GET_BLOCK_BMAP) { 1609 map->m_pblk = 0; 1610 goto sync_out; 1611 } 1612 if (flag == F2FS_GET_BLOCK_PRECACHE) 1613 goto sync_out; 1614 if (flag == F2FS_GET_BLOCK_FIEMAP && 1615 blkaddr == NULL_ADDR) { 1616 if (map->m_next_pgofs) 1617 *map->m_next_pgofs = pgofs + 1; 1618 goto sync_out; 1619 } 1620 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1621 /* for defragment case */ 1622 if (map->m_next_pgofs) 1623 *map->m_next_pgofs = pgofs + 1; 1624 goto sync_out; 1625 } 1626 } 1627 } 1628 1629 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1630 goto skip; 1631 1632 if (map->m_multidev_dio) 1633 bidx = f2fs_target_device_index(sbi, blkaddr); 1634 1635 if (map->m_len == 0) { 1636 /* preallocated unwritten block should be mapped for fiemap. */ 1637 if (blkaddr == NEW_ADDR) 1638 map->m_flags |= F2FS_MAP_UNWRITTEN; 1639 map->m_flags |= F2FS_MAP_MAPPED; 1640 1641 map->m_pblk = blkaddr; 1642 map->m_len = 1; 1643 1644 if (map->m_multidev_dio) 1645 map->m_bdev = FDEV(bidx).bdev; 1646 } else if ((map->m_pblk != NEW_ADDR && 1647 blkaddr == (map->m_pblk + ofs)) || 1648 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1649 flag == F2FS_GET_BLOCK_PRE_DIO) { 1650 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1651 goto sync_out; 1652 ofs++; 1653 map->m_len++; 1654 } else { 1655 goto sync_out; 1656 } 1657 1658 skip: 1659 dn.ofs_in_node++; 1660 pgofs++; 1661 1662 /* preallocate blocks in batch for one dnode page */ 1663 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1664 (pgofs == end || dn.ofs_in_node == end_offset)) { 1665 1666 dn.ofs_in_node = ofs_in_node; 1667 err = f2fs_reserve_new_blocks(&dn, prealloc); 1668 if (err) 1669 goto sync_out; 1670 1671 map->m_len += dn.ofs_in_node - ofs_in_node; 1672 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1673 err = -ENOSPC; 1674 goto sync_out; 1675 } 1676 dn.ofs_in_node = end_offset; 1677 } 1678 1679 if (pgofs >= end) 1680 goto sync_out; 1681 else if (dn.ofs_in_node < end_offset) 1682 goto next_block; 1683 1684 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1685 if (map->m_flags & F2FS_MAP_MAPPED) { 1686 unsigned int ofs = start_pgofs - map->m_lblk; 1687 1688 f2fs_update_extent_cache_range(&dn, 1689 start_pgofs, map->m_pblk + ofs, 1690 map->m_len - ofs); 1691 } 1692 } 1693 1694 f2fs_put_dnode(&dn); 1695 1696 if (map->m_may_create) { 1697 f2fs_do_map_lock(sbi, flag, false); 1698 f2fs_balance_fs(sbi, dn.node_changed); 1699 } 1700 goto next_dnode; 1701 1702 sync_out: 1703 1704 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1705 /* 1706 * for hardware encryption, but to avoid potential issue 1707 * in future 1708 */ 1709 f2fs_wait_on_block_writeback_range(inode, 1710 map->m_pblk, map->m_len); 1711 invalidate_mapping_pages(META_MAPPING(sbi), 1712 map->m_pblk, map->m_pblk); 1713 1714 if (map->m_multidev_dio) { 1715 block_t blk_addr = map->m_pblk; 1716 1717 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1718 1719 map->m_bdev = FDEV(bidx).bdev; 1720 map->m_pblk -= FDEV(bidx).start_blk; 1721 1722 if (map->m_may_create) 1723 f2fs_update_device_state(sbi, inode->i_ino, 1724 blk_addr, map->m_len); 1725 1726 f2fs_bug_on(sbi, blk_addr + map->m_len > 1727 FDEV(bidx).end_blk + 1); 1728 } 1729 } 1730 1731 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1732 if (map->m_flags & F2FS_MAP_MAPPED) { 1733 unsigned int ofs = start_pgofs - map->m_lblk; 1734 1735 f2fs_update_extent_cache_range(&dn, 1736 start_pgofs, map->m_pblk + ofs, 1737 map->m_len - ofs); 1738 } 1739 if (map->m_next_extent) 1740 *map->m_next_extent = pgofs + 1; 1741 } 1742 f2fs_put_dnode(&dn); 1743 unlock_out: 1744 if (map->m_may_create) { 1745 f2fs_do_map_lock(sbi, flag, false); 1746 f2fs_balance_fs(sbi, dn.node_changed); 1747 } 1748 out: 1749 trace_f2fs_map_blocks(inode, map, create, flag, err); 1750 return err; 1751 } 1752 1753 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1754 { 1755 struct f2fs_map_blocks map; 1756 block_t last_lblk; 1757 int err; 1758 1759 if (pos + len > i_size_read(inode)) 1760 return false; 1761 1762 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1763 map.m_next_pgofs = NULL; 1764 map.m_next_extent = NULL; 1765 map.m_seg_type = NO_CHECK_TYPE; 1766 map.m_may_create = false; 1767 last_lblk = F2FS_BLK_ALIGN(pos + len); 1768 1769 while (map.m_lblk < last_lblk) { 1770 map.m_len = last_lblk - map.m_lblk; 1771 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1772 if (err || map.m_len == 0) 1773 return false; 1774 map.m_lblk += map.m_len; 1775 } 1776 return true; 1777 } 1778 1779 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1780 { 1781 return (bytes >> inode->i_blkbits); 1782 } 1783 1784 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1785 { 1786 return (blks << inode->i_blkbits); 1787 } 1788 1789 static int __get_data_block(struct inode *inode, sector_t iblock, 1790 struct buffer_head *bh, int create, int flag, 1791 pgoff_t *next_pgofs, int seg_type, bool may_write) 1792 { 1793 struct f2fs_map_blocks map; 1794 int err; 1795 1796 map.m_lblk = iblock; 1797 map.m_len = bytes_to_blks(inode, bh->b_size); 1798 map.m_next_pgofs = next_pgofs; 1799 map.m_next_extent = NULL; 1800 map.m_seg_type = seg_type; 1801 map.m_may_create = may_write; 1802 1803 err = f2fs_map_blocks(inode, &map, create, flag); 1804 if (!err) { 1805 map_bh(bh, inode->i_sb, map.m_pblk); 1806 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1807 bh->b_size = blks_to_bytes(inode, map.m_len); 1808 1809 if (map.m_multidev_dio) 1810 bh->b_bdev = map.m_bdev; 1811 } 1812 return err; 1813 } 1814 1815 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1816 struct buffer_head *bh_result, int create) 1817 { 1818 return __get_data_block(inode, iblock, bh_result, create, 1819 F2FS_GET_BLOCK_DIO, NULL, 1820 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1821 true); 1822 } 1823 1824 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1825 struct buffer_head *bh_result, int create) 1826 { 1827 return __get_data_block(inode, iblock, bh_result, create, 1828 F2FS_GET_BLOCK_DIO, NULL, 1829 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1830 false); 1831 } 1832 1833 static int f2fs_xattr_fiemap(struct inode *inode, 1834 struct fiemap_extent_info *fieinfo) 1835 { 1836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1837 struct page *page; 1838 struct node_info ni; 1839 __u64 phys = 0, len; 1840 __u32 flags; 1841 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1842 int err = 0; 1843 1844 if (f2fs_has_inline_xattr(inode)) { 1845 int offset; 1846 1847 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1848 inode->i_ino, false); 1849 if (!page) 1850 return -ENOMEM; 1851 1852 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1853 if (err) { 1854 f2fs_put_page(page, 1); 1855 return err; 1856 } 1857 1858 phys = blks_to_bytes(inode, ni.blk_addr); 1859 offset = offsetof(struct f2fs_inode, i_addr) + 1860 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1861 get_inline_xattr_addrs(inode)); 1862 1863 phys += offset; 1864 len = inline_xattr_size(inode); 1865 1866 f2fs_put_page(page, 1); 1867 1868 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1869 1870 if (!xnid) 1871 flags |= FIEMAP_EXTENT_LAST; 1872 1873 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1874 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1875 if (err || err == 1) 1876 return err; 1877 } 1878 1879 if (xnid) { 1880 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1881 if (!page) 1882 return -ENOMEM; 1883 1884 err = f2fs_get_node_info(sbi, xnid, &ni); 1885 if (err) { 1886 f2fs_put_page(page, 1); 1887 return err; 1888 } 1889 1890 phys = blks_to_bytes(inode, ni.blk_addr); 1891 len = inode->i_sb->s_blocksize; 1892 1893 f2fs_put_page(page, 1); 1894 1895 flags = FIEMAP_EXTENT_LAST; 1896 } 1897 1898 if (phys) { 1899 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1900 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1901 } 1902 1903 return (err < 0 ? err : 0); 1904 } 1905 1906 static loff_t max_inode_blocks(struct inode *inode) 1907 { 1908 loff_t result = ADDRS_PER_INODE(inode); 1909 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1910 1911 /* two direct node blocks */ 1912 result += (leaf_count * 2); 1913 1914 /* two indirect node blocks */ 1915 leaf_count *= NIDS_PER_BLOCK; 1916 result += (leaf_count * 2); 1917 1918 /* one double indirect node block */ 1919 leaf_count *= NIDS_PER_BLOCK; 1920 result += leaf_count; 1921 1922 return result; 1923 } 1924 1925 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1926 u64 start, u64 len) 1927 { 1928 struct f2fs_map_blocks map; 1929 sector_t start_blk, last_blk; 1930 pgoff_t next_pgofs; 1931 u64 logical = 0, phys = 0, size = 0; 1932 u32 flags = 0; 1933 int ret = 0; 1934 bool compr_cluster = false, compr_appended; 1935 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1936 unsigned int count_in_cluster = 0; 1937 loff_t maxbytes; 1938 1939 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1940 ret = f2fs_precache_extents(inode); 1941 if (ret) 1942 return ret; 1943 } 1944 1945 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1946 if (ret) 1947 return ret; 1948 1949 inode_lock(inode); 1950 1951 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1952 if (start > maxbytes) { 1953 ret = -EFBIG; 1954 goto out; 1955 } 1956 1957 if (len > maxbytes || (maxbytes - len) < start) 1958 len = maxbytes - start; 1959 1960 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1961 ret = f2fs_xattr_fiemap(inode, fieinfo); 1962 goto out; 1963 } 1964 1965 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1966 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1967 if (ret != -EAGAIN) 1968 goto out; 1969 } 1970 1971 if (bytes_to_blks(inode, len) == 0) 1972 len = blks_to_bytes(inode, 1); 1973 1974 start_blk = bytes_to_blks(inode, start); 1975 last_blk = bytes_to_blks(inode, start + len - 1); 1976 1977 next: 1978 memset(&map, 0, sizeof(map)); 1979 map.m_lblk = start_blk; 1980 map.m_len = bytes_to_blks(inode, len); 1981 map.m_next_pgofs = &next_pgofs; 1982 map.m_seg_type = NO_CHECK_TYPE; 1983 1984 if (compr_cluster) { 1985 map.m_lblk += 1; 1986 map.m_len = cluster_size - count_in_cluster; 1987 } 1988 1989 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1990 if (ret) 1991 goto out; 1992 1993 /* HOLE */ 1994 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1995 start_blk = next_pgofs; 1996 1997 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1998 max_inode_blocks(inode))) 1999 goto prep_next; 2000 2001 flags |= FIEMAP_EXTENT_LAST; 2002 } 2003 2004 compr_appended = false; 2005 /* In a case of compressed cluster, append this to the last extent */ 2006 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 2007 !(map.m_flags & F2FS_MAP_FLAGS))) { 2008 compr_appended = true; 2009 goto skip_fill; 2010 } 2011 2012 if (size) { 2013 flags |= FIEMAP_EXTENT_MERGED; 2014 if (IS_ENCRYPTED(inode)) 2015 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2016 2017 ret = fiemap_fill_next_extent(fieinfo, logical, 2018 phys, size, flags); 2019 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2020 if (ret) 2021 goto out; 2022 size = 0; 2023 } 2024 2025 if (start_blk > last_blk) 2026 goto out; 2027 2028 skip_fill: 2029 if (map.m_pblk == COMPRESS_ADDR) { 2030 compr_cluster = true; 2031 count_in_cluster = 1; 2032 } else if (compr_appended) { 2033 unsigned int appended_blks = cluster_size - 2034 count_in_cluster + 1; 2035 size += blks_to_bytes(inode, appended_blks); 2036 start_blk += appended_blks; 2037 compr_cluster = false; 2038 } else { 2039 logical = blks_to_bytes(inode, start_blk); 2040 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2041 blks_to_bytes(inode, map.m_pblk) : 0; 2042 size = blks_to_bytes(inode, map.m_len); 2043 flags = 0; 2044 2045 if (compr_cluster) { 2046 flags = FIEMAP_EXTENT_ENCODED; 2047 count_in_cluster += map.m_len; 2048 if (count_in_cluster == cluster_size) { 2049 compr_cluster = false; 2050 size += blks_to_bytes(inode, 1); 2051 } 2052 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 2053 flags = FIEMAP_EXTENT_UNWRITTEN; 2054 } 2055 2056 start_blk += bytes_to_blks(inode, size); 2057 } 2058 2059 prep_next: 2060 cond_resched(); 2061 if (fatal_signal_pending(current)) 2062 ret = -EINTR; 2063 else 2064 goto next; 2065 out: 2066 if (ret == 1) 2067 ret = 0; 2068 2069 inode_unlock(inode); 2070 return ret; 2071 } 2072 2073 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2074 { 2075 if (IS_ENABLED(CONFIG_FS_VERITY) && 2076 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2077 return inode->i_sb->s_maxbytes; 2078 2079 return i_size_read(inode); 2080 } 2081 2082 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2083 unsigned nr_pages, 2084 struct f2fs_map_blocks *map, 2085 struct bio **bio_ret, 2086 sector_t *last_block_in_bio, 2087 bool is_readahead) 2088 { 2089 struct bio *bio = *bio_ret; 2090 const unsigned blocksize = blks_to_bytes(inode, 1); 2091 sector_t block_in_file; 2092 sector_t last_block; 2093 sector_t last_block_in_file; 2094 sector_t block_nr; 2095 int ret = 0; 2096 2097 block_in_file = (sector_t)page_index(page); 2098 last_block = block_in_file + nr_pages; 2099 last_block_in_file = bytes_to_blks(inode, 2100 f2fs_readpage_limit(inode) + blocksize - 1); 2101 if (last_block > last_block_in_file) 2102 last_block = last_block_in_file; 2103 2104 /* just zeroing out page which is beyond EOF */ 2105 if (block_in_file >= last_block) 2106 goto zero_out; 2107 /* 2108 * Map blocks using the previous result first. 2109 */ 2110 if ((map->m_flags & F2FS_MAP_MAPPED) && 2111 block_in_file > map->m_lblk && 2112 block_in_file < (map->m_lblk + map->m_len)) 2113 goto got_it; 2114 2115 /* 2116 * Then do more f2fs_map_blocks() calls until we are 2117 * done with this page. 2118 */ 2119 map->m_lblk = block_in_file; 2120 map->m_len = last_block - block_in_file; 2121 2122 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2123 if (ret) 2124 goto out; 2125 got_it: 2126 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2127 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2128 SetPageMappedToDisk(page); 2129 2130 if (!PageUptodate(page) && (!PageSwapCache(page) && 2131 !cleancache_get_page(page))) { 2132 SetPageUptodate(page); 2133 goto confused; 2134 } 2135 2136 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2137 DATA_GENERIC_ENHANCE_READ)) { 2138 ret = -EFSCORRUPTED; 2139 goto out; 2140 } 2141 } else { 2142 zero_out: 2143 zero_user_segment(page, 0, PAGE_SIZE); 2144 if (f2fs_need_verity(inode, page->index) && 2145 !fsverity_verify_page(page)) { 2146 ret = -EIO; 2147 goto out; 2148 } 2149 if (!PageUptodate(page)) 2150 SetPageUptodate(page); 2151 unlock_page(page); 2152 goto out; 2153 } 2154 2155 /* 2156 * This page will go to BIO. Do we need to send this 2157 * BIO off first? 2158 */ 2159 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2160 *last_block_in_bio, block_nr) || 2161 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2162 submit_and_realloc: 2163 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2164 bio = NULL; 2165 } 2166 if (bio == NULL) { 2167 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2168 is_readahead ? REQ_RAHEAD : 0, page->index, 2169 false); 2170 if (IS_ERR(bio)) { 2171 ret = PTR_ERR(bio); 2172 bio = NULL; 2173 goto out; 2174 } 2175 } 2176 2177 /* 2178 * If the page is under writeback, we need to wait for 2179 * its completion to see the correct decrypted data. 2180 */ 2181 f2fs_wait_on_block_writeback(inode, block_nr); 2182 2183 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2184 goto submit_and_realloc; 2185 2186 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2187 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2188 ClearPageError(page); 2189 *last_block_in_bio = block_nr; 2190 goto out; 2191 confused: 2192 if (bio) { 2193 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2194 bio = NULL; 2195 } 2196 unlock_page(page); 2197 out: 2198 *bio_ret = bio; 2199 return ret; 2200 } 2201 2202 #ifdef CONFIG_F2FS_FS_COMPRESSION 2203 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2204 unsigned nr_pages, sector_t *last_block_in_bio, 2205 bool is_readahead, bool for_write) 2206 { 2207 struct dnode_of_data dn; 2208 struct inode *inode = cc->inode; 2209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2210 struct bio *bio = *bio_ret; 2211 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2212 sector_t last_block_in_file; 2213 const unsigned blocksize = blks_to_bytes(inode, 1); 2214 struct decompress_io_ctx *dic = NULL; 2215 struct extent_info ei = {0, }; 2216 bool from_dnode = true; 2217 int i; 2218 int ret = 0; 2219 2220 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2221 2222 last_block_in_file = bytes_to_blks(inode, 2223 f2fs_readpage_limit(inode) + blocksize - 1); 2224 2225 /* get rid of pages beyond EOF */ 2226 for (i = 0; i < cc->cluster_size; i++) { 2227 struct page *page = cc->rpages[i]; 2228 2229 if (!page) 2230 continue; 2231 if ((sector_t)page->index >= last_block_in_file) { 2232 zero_user_segment(page, 0, PAGE_SIZE); 2233 if (!PageUptodate(page)) 2234 SetPageUptodate(page); 2235 } else if (!PageUptodate(page)) { 2236 continue; 2237 } 2238 unlock_page(page); 2239 if (for_write) 2240 put_page(page); 2241 cc->rpages[i] = NULL; 2242 cc->nr_rpages--; 2243 } 2244 2245 /* we are done since all pages are beyond EOF */ 2246 if (f2fs_cluster_is_empty(cc)) 2247 goto out; 2248 2249 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2250 from_dnode = false; 2251 2252 if (!from_dnode) 2253 goto skip_reading_dnode; 2254 2255 set_new_dnode(&dn, inode, NULL, NULL, 0); 2256 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2257 if (ret) 2258 goto out; 2259 2260 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2261 2262 skip_reading_dnode: 2263 for (i = 1; i < cc->cluster_size; i++) { 2264 block_t blkaddr; 2265 2266 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2267 dn.ofs_in_node + i) : 2268 ei.blk + i - 1; 2269 2270 if (!__is_valid_data_blkaddr(blkaddr)) 2271 break; 2272 2273 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2274 ret = -EFAULT; 2275 goto out_put_dnode; 2276 } 2277 cc->nr_cpages++; 2278 2279 if (!from_dnode && i >= ei.c_len) 2280 break; 2281 } 2282 2283 /* nothing to decompress */ 2284 if (cc->nr_cpages == 0) { 2285 ret = 0; 2286 goto out_put_dnode; 2287 } 2288 2289 dic = f2fs_alloc_dic(cc); 2290 if (IS_ERR(dic)) { 2291 ret = PTR_ERR(dic); 2292 goto out_put_dnode; 2293 } 2294 2295 for (i = 0; i < cc->nr_cpages; i++) { 2296 struct page *page = dic->cpages[i]; 2297 block_t blkaddr; 2298 struct bio_post_read_ctx *ctx; 2299 2300 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2301 dn.ofs_in_node + i + 1) : 2302 ei.blk + i; 2303 2304 f2fs_wait_on_block_writeback(inode, blkaddr); 2305 2306 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2307 if (atomic_dec_and_test(&dic->remaining_pages)) 2308 f2fs_decompress_cluster(dic); 2309 continue; 2310 } 2311 2312 if (bio && (!page_is_mergeable(sbi, bio, 2313 *last_block_in_bio, blkaddr) || 2314 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2315 submit_and_realloc: 2316 __submit_bio(sbi, bio, DATA); 2317 bio = NULL; 2318 } 2319 2320 if (!bio) { 2321 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2322 is_readahead ? REQ_RAHEAD : 0, 2323 page->index, for_write); 2324 if (IS_ERR(bio)) { 2325 ret = PTR_ERR(bio); 2326 f2fs_decompress_end_io(dic, ret); 2327 f2fs_put_dnode(&dn); 2328 *bio_ret = NULL; 2329 return ret; 2330 } 2331 } 2332 2333 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2334 goto submit_and_realloc; 2335 2336 ctx = get_post_read_ctx(bio); 2337 ctx->enabled_steps |= STEP_DECOMPRESS; 2338 refcount_inc(&dic->refcnt); 2339 2340 inc_page_count(sbi, F2FS_RD_DATA); 2341 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2342 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2343 ClearPageError(page); 2344 *last_block_in_bio = blkaddr; 2345 } 2346 2347 if (from_dnode) 2348 f2fs_put_dnode(&dn); 2349 2350 *bio_ret = bio; 2351 return 0; 2352 2353 out_put_dnode: 2354 if (from_dnode) 2355 f2fs_put_dnode(&dn); 2356 out: 2357 for (i = 0; i < cc->cluster_size; i++) { 2358 if (cc->rpages[i]) { 2359 ClearPageUptodate(cc->rpages[i]); 2360 ClearPageError(cc->rpages[i]); 2361 unlock_page(cc->rpages[i]); 2362 } 2363 } 2364 *bio_ret = bio; 2365 return ret; 2366 } 2367 #endif 2368 2369 /* 2370 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2371 * Major change was from block_size == page_size in f2fs by default. 2372 */ 2373 static int f2fs_mpage_readpages(struct inode *inode, 2374 struct readahead_control *rac, struct page *page) 2375 { 2376 struct bio *bio = NULL; 2377 sector_t last_block_in_bio = 0; 2378 struct f2fs_map_blocks map; 2379 #ifdef CONFIG_F2FS_FS_COMPRESSION 2380 struct compress_ctx cc = { 2381 .inode = inode, 2382 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2383 .cluster_size = F2FS_I(inode)->i_cluster_size, 2384 .cluster_idx = NULL_CLUSTER, 2385 .rpages = NULL, 2386 .cpages = NULL, 2387 .nr_rpages = 0, 2388 .nr_cpages = 0, 2389 }; 2390 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2391 #endif 2392 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2393 unsigned max_nr_pages = nr_pages; 2394 int ret = 0; 2395 2396 map.m_pblk = 0; 2397 map.m_lblk = 0; 2398 map.m_len = 0; 2399 map.m_flags = 0; 2400 map.m_next_pgofs = NULL; 2401 map.m_next_extent = NULL; 2402 map.m_seg_type = NO_CHECK_TYPE; 2403 map.m_may_create = false; 2404 2405 for (; nr_pages; nr_pages--) { 2406 if (rac) { 2407 page = readahead_page(rac); 2408 prefetchw(&page->flags); 2409 } 2410 2411 #ifdef CONFIG_F2FS_FS_COMPRESSION 2412 if (f2fs_compressed_file(inode)) { 2413 /* there are remained comressed pages, submit them */ 2414 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2415 ret = f2fs_read_multi_pages(&cc, &bio, 2416 max_nr_pages, 2417 &last_block_in_bio, 2418 rac != NULL, false); 2419 f2fs_destroy_compress_ctx(&cc, false); 2420 if (ret) 2421 goto set_error_page; 2422 } 2423 if (cc.cluster_idx == NULL_CLUSTER) { 2424 if (nc_cluster_idx == 2425 page->index >> cc.log_cluster_size) { 2426 goto read_single_page; 2427 } 2428 2429 ret = f2fs_is_compressed_cluster(inode, page->index); 2430 if (ret < 0) 2431 goto set_error_page; 2432 else if (!ret) { 2433 nc_cluster_idx = 2434 page->index >> cc.log_cluster_size; 2435 goto read_single_page; 2436 } 2437 2438 nc_cluster_idx = NULL_CLUSTER; 2439 } 2440 ret = f2fs_init_compress_ctx(&cc); 2441 if (ret) 2442 goto set_error_page; 2443 2444 f2fs_compress_ctx_add_page(&cc, page); 2445 2446 goto next_page; 2447 } 2448 read_single_page: 2449 #endif 2450 2451 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2452 &bio, &last_block_in_bio, rac); 2453 if (ret) { 2454 #ifdef CONFIG_F2FS_FS_COMPRESSION 2455 set_error_page: 2456 #endif 2457 SetPageError(page); 2458 zero_user_segment(page, 0, PAGE_SIZE); 2459 unlock_page(page); 2460 } 2461 #ifdef CONFIG_F2FS_FS_COMPRESSION 2462 next_page: 2463 #endif 2464 if (rac) 2465 put_page(page); 2466 2467 #ifdef CONFIG_F2FS_FS_COMPRESSION 2468 if (f2fs_compressed_file(inode)) { 2469 /* last page */ 2470 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2471 ret = f2fs_read_multi_pages(&cc, &bio, 2472 max_nr_pages, 2473 &last_block_in_bio, 2474 rac != NULL, false); 2475 f2fs_destroy_compress_ctx(&cc, false); 2476 } 2477 } 2478 #endif 2479 } 2480 if (bio) 2481 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2482 return ret; 2483 } 2484 2485 static int f2fs_read_data_page(struct file *file, struct page *page) 2486 { 2487 struct inode *inode = page_file_mapping(page)->host; 2488 int ret = -EAGAIN; 2489 2490 trace_f2fs_readpage(page, DATA); 2491 2492 if (!f2fs_is_compress_backend_ready(inode)) { 2493 unlock_page(page); 2494 return -EOPNOTSUPP; 2495 } 2496 2497 /* If the file has inline data, try to read it directly */ 2498 if (f2fs_has_inline_data(inode)) 2499 ret = f2fs_read_inline_data(inode, page); 2500 if (ret == -EAGAIN) 2501 ret = f2fs_mpage_readpages(inode, NULL, page); 2502 return ret; 2503 } 2504 2505 static void f2fs_readahead(struct readahead_control *rac) 2506 { 2507 struct inode *inode = rac->mapping->host; 2508 2509 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2510 2511 if (!f2fs_is_compress_backend_ready(inode)) 2512 return; 2513 2514 /* If the file has inline data, skip readpages */ 2515 if (f2fs_has_inline_data(inode)) 2516 return; 2517 2518 f2fs_mpage_readpages(inode, rac, NULL); 2519 } 2520 2521 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2522 { 2523 struct inode *inode = fio->page->mapping->host; 2524 struct page *mpage, *page; 2525 gfp_t gfp_flags = GFP_NOFS; 2526 2527 if (!f2fs_encrypted_file(inode)) 2528 return 0; 2529 2530 page = fio->compressed_page ? fio->compressed_page : fio->page; 2531 2532 /* wait for GCed page writeback via META_MAPPING */ 2533 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2534 2535 if (fscrypt_inode_uses_inline_crypto(inode)) 2536 return 0; 2537 2538 retry_encrypt: 2539 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2540 PAGE_SIZE, 0, gfp_flags); 2541 if (IS_ERR(fio->encrypted_page)) { 2542 /* flush pending IOs and wait for a while in the ENOMEM case */ 2543 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2544 f2fs_flush_merged_writes(fio->sbi); 2545 memalloc_retry_wait(GFP_NOFS); 2546 gfp_flags |= __GFP_NOFAIL; 2547 goto retry_encrypt; 2548 } 2549 return PTR_ERR(fio->encrypted_page); 2550 } 2551 2552 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2553 if (mpage) { 2554 if (PageUptodate(mpage)) 2555 memcpy(page_address(mpage), 2556 page_address(fio->encrypted_page), PAGE_SIZE); 2557 f2fs_put_page(mpage, 1); 2558 } 2559 return 0; 2560 } 2561 2562 static inline bool check_inplace_update_policy(struct inode *inode, 2563 struct f2fs_io_info *fio) 2564 { 2565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2566 unsigned int policy = SM_I(sbi)->ipu_policy; 2567 2568 if (policy & (0x1 << F2FS_IPU_FORCE)) 2569 return true; 2570 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2571 return true; 2572 if (policy & (0x1 << F2FS_IPU_UTIL) && 2573 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2574 return true; 2575 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2576 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2577 return true; 2578 2579 /* 2580 * IPU for rewrite async pages 2581 */ 2582 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2583 fio && fio->op == REQ_OP_WRITE && 2584 !(fio->op_flags & REQ_SYNC) && 2585 !IS_ENCRYPTED(inode)) 2586 return true; 2587 2588 /* this is only set during fdatasync */ 2589 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2590 is_inode_flag_set(inode, FI_NEED_IPU)) 2591 return true; 2592 2593 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2594 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2595 return true; 2596 2597 return false; 2598 } 2599 2600 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2601 { 2602 /* swap file is migrating in aligned write mode */ 2603 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2604 return false; 2605 2606 if (f2fs_is_pinned_file(inode)) 2607 return true; 2608 2609 /* if this is cold file, we should overwrite to avoid fragmentation */ 2610 if (file_is_cold(inode)) 2611 return true; 2612 2613 return check_inplace_update_policy(inode, fio); 2614 } 2615 2616 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2617 { 2618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2619 2620 if (f2fs_lfs_mode(sbi)) 2621 return true; 2622 if (S_ISDIR(inode->i_mode)) 2623 return true; 2624 if (IS_NOQUOTA(inode)) 2625 return true; 2626 if (f2fs_is_atomic_file(inode)) 2627 return true; 2628 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2629 return true; 2630 2631 /* swap file is migrating in aligned write mode */ 2632 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2633 return true; 2634 2635 if (fio) { 2636 if (page_private_gcing(fio->page)) 2637 return true; 2638 if (page_private_dummy(fio->page)) 2639 return true; 2640 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2641 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2642 return true; 2643 } 2644 return false; 2645 } 2646 2647 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2648 { 2649 struct inode *inode = fio->page->mapping->host; 2650 2651 if (f2fs_should_update_outplace(inode, fio)) 2652 return false; 2653 2654 return f2fs_should_update_inplace(inode, fio); 2655 } 2656 2657 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2658 { 2659 struct page *page = fio->page; 2660 struct inode *inode = page->mapping->host; 2661 struct dnode_of_data dn; 2662 struct extent_info ei = {0, }; 2663 struct node_info ni; 2664 bool ipu_force = false; 2665 int err = 0; 2666 2667 set_new_dnode(&dn, inode, NULL, NULL, 0); 2668 if (need_inplace_update(fio) && 2669 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2670 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2671 2672 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2673 DATA_GENERIC_ENHANCE)) 2674 return -EFSCORRUPTED; 2675 2676 ipu_force = true; 2677 fio->need_lock = LOCK_DONE; 2678 goto got_it; 2679 } 2680 2681 /* Deadlock due to between page->lock and f2fs_lock_op */ 2682 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2683 return -EAGAIN; 2684 2685 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2686 if (err) 2687 goto out; 2688 2689 fio->old_blkaddr = dn.data_blkaddr; 2690 2691 /* This page is already truncated */ 2692 if (fio->old_blkaddr == NULL_ADDR) { 2693 ClearPageUptodate(page); 2694 clear_page_private_gcing(page); 2695 goto out_writepage; 2696 } 2697 got_it: 2698 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2699 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2700 DATA_GENERIC_ENHANCE)) { 2701 err = -EFSCORRUPTED; 2702 goto out_writepage; 2703 } 2704 /* 2705 * If current allocation needs SSR, 2706 * it had better in-place writes for updated data. 2707 */ 2708 if (ipu_force || 2709 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2710 need_inplace_update(fio))) { 2711 err = f2fs_encrypt_one_page(fio); 2712 if (err) 2713 goto out_writepage; 2714 2715 set_page_writeback(page); 2716 ClearPageError(page); 2717 f2fs_put_dnode(&dn); 2718 if (fio->need_lock == LOCK_REQ) 2719 f2fs_unlock_op(fio->sbi); 2720 err = f2fs_inplace_write_data(fio); 2721 if (err) { 2722 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2723 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2724 if (PageWriteback(page)) 2725 end_page_writeback(page); 2726 } else { 2727 set_inode_flag(inode, FI_UPDATE_WRITE); 2728 } 2729 trace_f2fs_do_write_data_page(fio->page, IPU); 2730 return err; 2731 } 2732 2733 if (fio->need_lock == LOCK_RETRY) { 2734 if (!f2fs_trylock_op(fio->sbi)) { 2735 err = -EAGAIN; 2736 goto out_writepage; 2737 } 2738 fio->need_lock = LOCK_REQ; 2739 } 2740 2741 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2742 if (err) 2743 goto out_writepage; 2744 2745 fio->version = ni.version; 2746 2747 err = f2fs_encrypt_one_page(fio); 2748 if (err) 2749 goto out_writepage; 2750 2751 set_page_writeback(page); 2752 ClearPageError(page); 2753 2754 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2755 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2756 2757 /* LFS mode write path */ 2758 f2fs_outplace_write_data(&dn, fio); 2759 trace_f2fs_do_write_data_page(page, OPU); 2760 set_inode_flag(inode, FI_APPEND_WRITE); 2761 if (page->index == 0) 2762 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2763 out_writepage: 2764 f2fs_put_dnode(&dn); 2765 out: 2766 if (fio->need_lock == LOCK_REQ) 2767 f2fs_unlock_op(fio->sbi); 2768 return err; 2769 } 2770 2771 int f2fs_write_single_data_page(struct page *page, int *submitted, 2772 struct bio **bio, 2773 sector_t *last_block, 2774 struct writeback_control *wbc, 2775 enum iostat_type io_type, 2776 int compr_blocks, 2777 bool allow_balance) 2778 { 2779 struct inode *inode = page->mapping->host; 2780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2781 loff_t i_size = i_size_read(inode); 2782 const pgoff_t end_index = ((unsigned long long)i_size) 2783 >> PAGE_SHIFT; 2784 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2785 unsigned offset = 0; 2786 bool need_balance_fs = false; 2787 int err = 0; 2788 struct f2fs_io_info fio = { 2789 .sbi = sbi, 2790 .ino = inode->i_ino, 2791 .type = DATA, 2792 .op = REQ_OP_WRITE, 2793 .op_flags = wbc_to_write_flags(wbc), 2794 .old_blkaddr = NULL_ADDR, 2795 .page = page, 2796 .encrypted_page = NULL, 2797 .submitted = false, 2798 .compr_blocks = compr_blocks, 2799 .need_lock = LOCK_RETRY, 2800 .io_type = io_type, 2801 .io_wbc = wbc, 2802 .bio = bio, 2803 .last_block = last_block, 2804 }; 2805 2806 trace_f2fs_writepage(page, DATA); 2807 2808 /* we should bypass data pages to proceed the kworkder jobs */ 2809 if (unlikely(f2fs_cp_error(sbi))) { 2810 mapping_set_error(page->mapping, -EIO); 2811 /* 2812 * don't drop any dirty dentry pages for keeping lastest 2813 * directory structure. 2814 */ 2815 if (S_ISDIR(inode->i_mode)) 2816 goto redirty_out; 2817 goto out; 2818 } 2819 2820 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2821 goto redirty_out; 2822 2823 if (page->index < end_index || 2824 f2fs_verity_in_progress(inode) || 2825 compr_blocks) 2826 goto write; 2827 2828 /* 2829 * If the offset is out-of-range of file size, 2830 * this page does not have to be written to disk. 2831 */ 2832 offset = i_size & (PAGE_SIZE - 1); 2833 if ((page->index >= end_index + 1) || !offset) 2834 goto out; 2835 2836 zero_user_segment(page, offset, PAGE_SIZE); 2837 write: 2838 if (f2fs_is_drop_cache(inode)) 2839 goto out; 2840 /* we should not write 0'th page having journal header */ 2841 if (f2fs_is_volatile_file(inode) && (!page->index || 2842 (!wbc->for_reclaim && 2843 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2844 goto redirty_out; 2845 2846 /* Dentry/quota blocks are controlled by checkpoint */ 2847 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2848 /* 2849 * We need to wait for node_write to avoid block allocation during 2850 * checkpoint. This can only happen to quota writes which can cause 2851 * the below discard race condition. 2852 */ 2853 if (IS_NOQUOTA(inode)) 2854 down_read(&sbi->node_write); 2855 2856 fio.need_lock = LOCK_DONE; 2857 err = f2fs_do_write_data_page(&fio); 2858 2859 if (IS_NOQUOTA(inode)) 2860 up_read(&sbi->node_write); 2861 2862 goto done; 2863 } 2864 2865 if (!wbc->for_reclaim) 2866 need_balance_fs = true; 2867 else if (has_not_enough_free_secs(sbi, 0, 0)) 2868 goto redirty_out; 2869 else 2870 set_inode_flag(inode, FI_HOT_DATA); 2871 2872 err = -EAGAIN; 2873 if (f2fs_has_inline_data(inode)) { 2874 err = f2fs_write_inline_data(inode, page); 2875 if (!err) 2876 goto out; 2877 } 2878 2879 if (err == -EAGAIN) { 2880 err = f2fs_do_write_data_page(&fio); 2881 if (err == -EAGAIN) { 2882 fio.need_lock = LOCK_REQ; 2883 err = f2fs_do_write_data_page(&fio); 2884 } 2885 } 2886 2887 if (err) { 2888 file_set_keep_isize(inode); 2889 } else { 2890 spin_lock(&F2FS_I(inode)->i_size_lock); 2891 if (F2FS_I(inode)->last_disk_size < psize) 2892 F2FS_I(inode)->last_disk_size = psize; 2893 spin_unlock(&F2FS_I(inode)->i_size_lock); 2894 } 2895 2896 done: 2897 if (err && err != -ENOENT) 2898 goto redirty_out; 2899 2900 out: 2901 inode_dec_dirty_pages(inode); 2902 if (err) { 2903 ClearPageUptodate(page); 2904 clear_page_private_gcing(page); 2905 } 2906 2907 if (wbc->for_reclaim) { 2908 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2909 clear_inode_flag(inode, FI_HOT_DATA); 2910 f2fs_remove_dirty_inode(inode); 2911 submitted = NULL; 2912 } 2913 unlock_page(page); 2914 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2915 !F2FS_I(inode)->cp_task && allow_balance) 2916 f2fs_balance_fs(sbi, need_balance_fs); 2917 2918 if (unlikely(f2fs_cp_error(sbi))) { 2919 f2fs_submit_merged_write(sbi, DATA); 2920 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2921 submitted = NULL; 2922 } 2923 2924 if (submitted) 2925 *submitted = fio.submitted ? 1 : 0; 2926 2927 return 0; 2928 2929 redirty_out: 2930 redirty_page_for_writepage(wbc, page); 2931 /* 2932 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2933 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2934 * file_write_and_wait_range() will see EIO error, which is critical 2935 * to return value of fsync() followed by atomic_write failure to user. 2936 */ 2937 if (!err || wbc->for_reclaim) 2938 return AOP_WRITEPAGE_ACTIVATE; 2939 unlock_page(page); 2940 return err; 2941 } 2942 2943 static int f2fs_write_data_page(struct page *page, 2944 struct writeback_control *wbc) 2945 { 2946 #ifdef CONFIG_F2FS_FS_COMPRESSION 2947 struct inode *inode = page->mapping->host; 2948 2949 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2950 goto out; 2951 2952 if (f2fs_compressed_file(inode)) { 2953 if (f2fs_is_compressed_cluster(inode, page->index)) { 2954 redirty_page_for_writepage(wbc, page); 2955 return AOP_WRITEPAGE_ACTIVATE; 2956 } 2957 } 2958 out: 2959 #endif 2960 2961 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2962 wbc, FS_DATA_IO, 0, true); 2963 } 2964 2965 /* 2966 * This function was copied from write_cche_pages from mm/page-writeback.c. 2967 * The major change is making write step of cold data page separately from 2968 * warm/hot data page. 2969 */ 2970 static int f2fs_write_cache_pages(struct address_space *mapping, 2971 struct writeback_control *wbc, 2972 enum iostat_type io_type) 2973 { 2974 int ret = 0; 2975 int done = 0, retry = 0; 2976 struct pagevec pvec; 2977 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2978 struct bio *bio = NULL; 2979 sector_t last_block; 2980 #ifdef CONFIG_F2FS_FS_COMPRESSION 2981 struct inode *inode = mapping->host; 2982 struct compress_ctx cc = { 2983 .inode = inode, 2984 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2985 .cluster_size = F2FS_I(inode)->i_cluster_size, 2986 .cluster_idx = NULL_CLUSTER, 2987 .rpages = NULL, 2988 .nr_rpages = 0, 2989 .cpages = NULL, 2990 .rbuf = NULL, 2991 .cbuf = NULL, 2992 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2993 .private = NULL, 2994 }; 2995 #endif 2996 int nr_pages; 2997 pgoff_t index; 2998 pgoff_t end; /* Inclusive */ 2999 pgoff_t done_index; 3000 int range_whole = 0; 3001 xa_mark_t tag; 3002 int nwritten = 0; 3003 int submitted = 0; 3004 int i; 3005 3006 pagevec_init(&pvec); 3007 3008 if (get_dirty_pages(mapping->host) <= 3009 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3010 set_inode_flag(mapping->host, FI_HOT_DATA); 3011 else 3012 clear_inode_flag(mapping->host, FI_HOT_DATA); 3013 3014 if (wbc->range_cyclic) { 3015 index = mapping->writeback_index; /* prev offset */ 3016 end = -1; 3017 } else { 3018 index = wbc->range_start >> PAGE_SHIFT; 3019 end = wbc->range_end >> PAGE_SHIFT; 3020 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3021 range_whole = 1; 3022 } 3023 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3024 tag = PAGECACHE_TAG_TOWRITE; 3025 else 3026 tag = PAGECACHE_TAG_DIRTY; 3027 retry: 3028 retry = 0; 3029 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3030 tag_pages_for_writeback(mapping, index, end); 3031 done_index = index; 3032 while (!done && !retry && (index <= end)) { 3033 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3034 tag); 3035 if (nr_pages == 0) 3036 break; 3037 3038 for (i = 0; i < nr_pages; i++) { 3039 struct page *page = pvec.pages[i]; 3040 bool need_readd; 3041 readd: 3042 need_readd = false; 3043 #ifdef CONFIG_F2FS_FS_COMPRESSION 3044 if (f2fs_compressed_file(inode)) { 3045 void *fsdata = NULL; 3046 struct page *pagep; 3047 int ret2; 3048 3049 ret = f2fs_init_compress_ctx(&cc); 3050 if (ret) { 3051 done = 1; 3052 break; 3053 } 3054 3055 if (!f2fs_cluster_can_merge_page(&cc, 3056 page->index)) { 3057 ret = f2fs_write_multi_pages(&cc, 3058 &submitted, wbc, io_type); 3059 if (!ret) 3060 need_readd = true; 3061 goto result; 3062 } 3063 3064 if (unlikely(f2fs_cp_error(sbi))) 3065 goto lock_page; 3066 3067 if (!f2fs_cluster_is_empty(&cc)) 3068 goto lock_page; 3069 3070 ret2 = f2fs_prepare_compress_overwrite( 3071 inode, &pagep, 3072 page->index, &fsdata); 3073 if (ret2 < 0) { 3074 ret = ret2; 3075 done = 1; 3076 break; 3077 } else if (ret2 && 3078 (!f2fs_compress_write_end(inode, 3079 fsdata, page->index, 1) || 3080 !f2fs_all_cluster_page_loaded(&cc, 3081 &pvec, i, nr_pages))) { 3082 retry = 1; 3083 break; 3084 } 3085 } 3086 #endif 3087 /* give a priority to WB_SYNC threads */ 3088 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3089 wbc->sync_mode == WB_SYNC_NONE) { 3090 done = 1; 3091 break; 3092 } 3093 #ifdef CONFIG_F2FS_FS_COMPRESSION 3094 lock_page: 3095 #endif 3096 done_index = page->index; 3097 retry_write: 3098 lock_page(page); 3099 3100 if (unlikely(page->mapping != mapping)) { 3101 continue_unlock: 3102 unlock_page(page); 3103 continue; 3104 } 3105 3106 if (!PageDirty(page)) { 3107 /* someone wrote it for us */ 3108 goto continue_unlock; 3109 } 3110 3111 if (PageWriteback(page)) { 3112 if (wbc->sync_mode != WB_SYNC_NONE) 3113 f2fs_wait_on_page_writeback(page, 3114 DATA, true, true); 3115 else 3116 goto continue_unlock; 3117 } 3118 3119 if (!clear_page_dirty_for_io(page)) 3120 goto continue_unlock; 3121 3122 #ifdef CONFIG_F2FS_FS_COMPRESSION 3123 if (f2fs_compressed_file(inode)) { 3124 get_page(page); 3125 f2fs_compress_ctx_add_page(&cc, page); 3126 continue; 3127 } 3128 #endif 3129 ret = f2fs_write_single_data_page(page, &submitted, 3130 &bio, &last_block, wbc, io_type, 3131 0, true); 3132 if (ret == AOP_WRITEPAGE_ACTIVATE) 3133 unlock_page(page); 3134 #ifdef CONFIG_F2FS_FS_COMPRESSION 3135 result: 3136 #endif 3137 nwritten += submitted; 3138 wbc->nr_to_write -= submitted; 3139 3140 if (unlikely(ret)) { 3141 /* 3142 * keep nr_to_write, since vfs uses this to 3143 * get # of written pages. 3144 */ 3145 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3146 ret = 0; 3147 goto next; 3148 } else if (ret == -EAGAIN) { 3149 ret = 0; 3150 if (wbc->sync_mode == WB_SYNC_ALL) { 3151 cond_resched(); 3152 congestion_wait(BLK_RW_ASYNC, 3153 DEFAULT_IO_TIMEOUT); 3154 goto retry_write; 3155 } 3156 goto next; 3157 } 3158 done_index = page->index + 1; 3159 done = 1; 3160 break; 3161 } 3162 3163 if (wbc->nr_to_write <= 0 && 3164 wbc->sync_mode == WB_SYNC_NONE) { 3165 done = 1; 3166 break; 3167 } 3168 next: 3169 if (need_readd) 3170 goto readd; 3171 } 3172 pagevec_release(&pvec); 3173 cond_resched(); 3174 } 3175 #ifdef CONFIG_F2FS_FS_COMPRESSION 3176 /* flush remained pages in compress cluster */ 3177 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3178 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3179 nwritten += submitted; 3180 wbc->nr_to_write -= submitted; 3181 if (ret) { 3182 done = 1; 3183 retry = 0; 3184 } 3185 } 3186 if (f2fs_compressed_file(inode)) 3187 f2fs_destroy_compress_ctx(&cc, false); 3188 #endif 3189 if (retry) { 3190 index = 0; 3191 end = -1; 3192 goto retry; 3193 } 3194 if (wbc->range_cyclic && !done) 3195 done_index = 0; 3196 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3197 mapping->writeback_index = done_index; 3198 3199 if (nwritten) 3200 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3201 NULL, 0, DATA); 3202 /* submit cached bio of IPU write */ 3203 if (bio) 3204 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3205 3206 return ret; 3207 } 3208 3209 static inline bool __should_serialize_io(struct inode *inode, 3210 struct writeback_control *wbc) 3211 { 3212 /* to avoid deadlock in path of data flush */ 3213 if (F2FS_I(inode)->cp_task) 3214 return false; 3215 3216 if (!S_ISREG(inode->i_mode)) 3217 return false; 3218 if (IS_NOQUOTA(inode)) 3219 return false; 3220 3221 if (f2fs_need_compress_data(inode)) 3222 return true; 3223 if (wbc->sync_mode != WB_SYNC_ALL) 3224 return true; 3225 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3226 return true; 3227 return false; 3228 } 3229 3230 static int __f2fs_write_data_pages(struct address_space *mapping, 3231 struct writeback_control *wbc, 3232 enum iostat_type io_type) 3233 { 3234 struct inode *inode = mapping->host; 3235 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3236 struct blk_plug plug; 3237 int ret; 3238 bool locked = false; 3239 3240 /* deal with chardevs and other special file */ 3241 if (!mapping->a_ops->writepage) 3242 return 0; 3243 3244 /* skip writing if there is no dirty page in this inode */ 3245 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3246 return 0; 3247 3248 /* during POR, we don't need to trigger writepage at all. */ 3249 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3250 goto skip_write; 3251 3252 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3253 wbc->sync_mode == WB_SYNC_NONE && 3254 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3255 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3256 goto skip_write; 3257 3258 /* skip writing during file defragment */ 3259 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3260 goto skip_write; 3261 3262 trace_f2fs_writepages(mapping->host, wbc, DATA); 3263 3264 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3265 if (wbc->sync_mode == WB_SYNC_ALL) 3266 atomic_inc(&sbi->wb_sync_req[DATA]); 3267 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3268 goto skip_write; 3269 3270 if (__should_serialize_io(inode, wbc)) { 3271 mutex_lock(&sbi->writepages); 3272 locked = true; 3273 } 3274 3275 blk_start_plug(&plug); 3276 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3277 blk_finish_plug(&plug); 3278 3279 if (locked) 3280 mutex_unlock(&sbi->writepages); 3281 3282 if (wbc->sync_mode == WB_SYNC_ALL) 3283 atomic_dec(&sbi->wb_sync_req[DATA]); 3284 /* 3285 * if some pages were truncated, we cannot guarantee its mapping->host 3286 * to detect pending bios. 3287 */ 3288 3289 f2fs_remove_dirty_inode(inode); 3290 return ret; 3291 3292 skip_write: 3293 wbc->pages_skipped += get_dirty_pages(inode); 3294 trace_f2fs_writepages(mapping->host, wbc, DATA); 3295 return 0; 3296 } 3297 3298 static int f2fs_write_data_pages(struct address_space *mapping, 3299 struct writeback_control *wbc) 3300 { 3301 struct inode *inode = mapping->host; 3302 3303 return __f2fs_write_data_pages(mapping, wbc, 3304 F2FS_I(inode)->cp_task == current ? 3305 FS_CP_DATA_IO : FS_DATA_IO); 3306 } 3307 3308 static void f2fs_write_failed(struct inode *inode, loff_t to) 3309 { 3310 loff_t i_size = i_size_read(inode); 3311 3312 if (IS_NOQUOTA(inode)) 3313 return; 3314 3315 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3316 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3317 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3318 filemap_invalidate_lock(inode->i_mapping); 3319 3320 truncate_pagecache(inode, i_size); 3321 f2fs_truncate_blocks(inode, i_size, true); 3322 3323 filemap_invalidate_unlock(inode->i_mapping); 3324 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3325 } 3326 } 3327 3328 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3329 struct page *page, loff_t pos, unsigned len, 3330 block_t *blk_addr, bool *node_changed) 3331 { 3332 struct inode *inode = page->mapping->host; 3333 pgoff_t index = page->index; 3334 struct dnode_of_data dn; 3335 struct page *ipage; 3336 bool locked = false; 3337 struct extent_info ei = {0, }; 3338 int err = 0; 3339 int flag; 3340 3341 /* 3342 * we already allocated all the blocks, so we don't need to get 3343 * the block addresses when there is no need to fill the page. 3344 */ 3345 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 3346 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 3347 !f2fs_verity_in_progress(inode)) 3348 return 0; 3349 3350 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3351 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3352 flag = F2FS_GET_BLOCK_DEFAULT; 3353 else 3354 flag = F2FS_GET_BLOCK_PRE_AIO; 3355 3356 if (f2fs_has_inline_data(inode) || 3357 (pos & PAGE_MASK) >= i_size_read(inode)) { 3358 f2fs_do_map_lock(sbi, flag, true); 3359 locked = true; 3360 } 3361 3362 restart: 3363 /* check inline_data */ 3364 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3365 if (IS_ERR(ipage)) { 3366 err = PTR_ERR(ipage); 3367 goto unlock_out; 3368 } 3369 3370 set_new_dnode(&dn, inode, ipage, ipage, 0); 3371 3372 if (f2fs_has_inline_data(inode)) { 3373 if (pos + len <= MAX_INLINE_DATA(inode)) { 3374 f2fs_do_read_inline_data(page, ipage); 3375 set_inode_flag(inode, FI_DATA_EXIST); 3376 if (inode->i_nlink) 3377 set_page_private_inline(ipage); 3378 } else { 3379 err = f2fs_convert_inline_page(&dn, page); 3380 if (err) 3381 goto out; 3382 if (dn.data_blkaddr == NULL_ADDR) 3383 err = f2fs_get_block(&dn, index); 3384 } 3385 } else if (locked) { 3386 err = f2fs_get_block(&dn, index); 3387 } else { 3388 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3389 dn.data_blkaddr = ei.blk + index - ei.fofs; 3390 } else { 3391 /* hole case */ 3392 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3393 if (err || dn.data_blkaddr == NULL_ADDR) { 3394 f2fs_put_dnode(&dn); 3395 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3396 true); 3397 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3398 locked = true; 3399 goto restart; 3400 } 3401 } 3402 } 3403 3404 /* convert_inline_page can make node_changed */ 3405 *blk_addr = dn.data_blkaddr; 3406 *node_changed = dn.node_changed; 3407 out: 3408 f2fs_put_dnode(&dn); 3409 unlock_out: 3410 if (locked) 3411 f2fs_do_map_lock(sbi, flag, false); 3412 return err; 3413 } 3414 3415 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3416 loff_t pos, unsigned len, unsigned flags, 3417 struct page **pagep, void **fsdata) 3418 { 3419 struct inode *inode = mapping->host; 3420 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3421 struct page *page = NULL; 3422 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3423 bool need_balance = false, drop_atomic = false; 3424 block_t blkaddr = NULL_ADDR; 3425 int err = 0; 3426 3427 trace_f2fs_write_begin(inode, pos, len, flags); 3428 3429 if (!f2fs_is_checkpoint_ready(sbi)) { 3430 err = -ENOSPC; 3431 goto fail; 3432 } 3433 3434 if ((f2fs_is_atomic_file(inode) && 3435 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3436 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3437 err = -ENOMEM; 3438 drop_atomic = true; 3439 goto fail; 3440 } 3441 3442 /* 3443 * We should check this at this moment to avoid deadlock on inode page 3444 * and #0 page. The locking rule for inline_data conversion should be: 3445 * lock_page(page #0) -> lock_page(inode_page) 3446 */ 3447 if (index != 0) { 3448 err = f2fs_convert_inline_inode(inode); 3449 if (err) 3450 goto fail; 3451 } 3452 3453 #ifdef CONFIG_F2FS_FS_COMPRESSION 3454 if (f2fs_compressed_file(inode)) { 3455 int ret; 3456 3457 *fsdata = NULL; 3458 3459 if (len == PAGE_SIZE) 3460 goto repeat; 3461 3462 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3463 index, fsdata); 3464 if (ret < 0) { 3465 err = ret; 3466 goto fail; 3467 } else if (ret) { 3468 return 0; 3469 } 3470 } 3471 #endif 3472 3473 repeat: 3474 /* 3475 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3476 * wait_for_stable_page. Will wait that below with our IO control. 3477 */ 3478 page = f2fs_pagecache_get_page(mapping, index, 3479 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3480 if (!page) { 3481 err = -ENOMEM; 3482 goto fail; 3483 } 3484 3485 /* TODO: cluster can be compressed due to race with .writepage */ 3486 3487 *pagep = page; 3488 3489 err = prepare_write_begin(sbi, page, pos, len, 3490 &blkaddr, &need_balance); 3491 if (err) 3492 goto fail; 3493 3494 if (need_balance && !IS_NOQUOTA(inode) && 3495 has_not_enough_free_secs(sbi, 0, 0)) { 3496 unlock_page(page); 3497 f2fs_balance_fs(sbi, true); 3498 lock_page(page); 3499 if (page->mapping != mapping) { 3500 /* The page got truncated from under us */ 3501 f2fs_put_page(page, 1); 3502 goto repeat; 3503 } 3504 } 3505 3506 f2fs_wait_on_page_writeback(page, DATA, false, true); 3507 3508 if (len == PAGE_SIZE || PageUptodate(page)) 3509 return 0; 3510 3511 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3512 !f2fs_verity_in_progress(inode)) { 3513 zero_user_segment(page, len, PAGE_SIZE); 3514 return 0; 3515 } 3516 3517 if (blkaddr == NEW_ADDR) { 3518 zero_user_segment(page, 0, PAGE_SIZE); 3519 SetPageUptodate(page); 3520 } else { 3521 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3522 DATA_GENERIC_ENHANCE_READ)) { 3523 err = -EFSCORRUPTED; 3524 goto fail; 3525 } 3526 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3527 if (err) 3528 goto fail; 3529 3530 lock_page(page); 3531 if (unlikely(page->mapping != mapping)) { 3532 f2fs_put_page(page, 1); 3533 goto repeat; 3534 } 3535 if (unlikely(!PageUptodate(page))) { 3536 err = -EIO; 3537 goto fail; 3538 } 3539 } 3540 return 0; 3541 3542 fail: 3543 f2fs_put_page(page, 1); 3544 f2fs_write_failed(inode, pos + len); 3545 if (drop_atomic) 3546 f2fs_drop_inmem_pages_all(sbi, false); 3547 return err; 3548 } 3549 3550 static int f2fs_write_end(struct file *file, 3551 struct address_space *mapping, 3552 loff_t pos, unsigned len, unsigned copied, 3553 struct page *page, void *fsdata) 3554 { 3555 struct inode *inode = page->mapping->host; 3556 3557 trace_f2fs_write_end(inode, pos, len, copied); 3558 3559 /* 3560 * This should be come from len == PAGE_SIZE, and we expect copied 3561 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3562 * let generic_perform_write() try to copy data again through copied=0. 3563 */ 3564 if (!PageUptodate(page)) { 3565 if (unlikely(copied != len)) 3566 copied = 0; 3567 else 3568 SetPageUptodate(page); 3569 } 3570 3571 #ifdef CONFIG_F2FS_FS_COMPRESSION 3572 /* overwrite compressed file */ 3573 if (f2fs_compressed_file(inode) && fsdata) { 3574 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3575 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3576 3577 if (pos + copied > i_size_read(inode) && 3578 !f2fs_verity_in_progress(inode)) 3579 f2fs_i_size_write(inode, pos + copied); 3580 return copied; 3581 } 3582 #endif 3583 3584 if (!copied) 3585 goto unlock_out; 3586 3587 set_page_dirty(page); 3588 3589 if (pos + copied > i_size_read(inode) && 3590 !f2fs_verity_in_progress(inode)) 3591 f2fs_i_size_write(inode, pos + copied); 3592 unlock_out: 3593 f2fs_put_page(page, 1); 3594 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3595 return copied; 3596 } 3597 3598 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 3599 loff_t offset) 3600 { 3601 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 3602 unsigned blkbits = i_blkbits; 3603 unsigned blocksize_mask = (1 << blkbits) - 1; 3604 unsigned long align = offset | iov_iter_alignment(iter); 3605 struct block_device *bdev = inode->i_sb->s_bdev; 3606 3607 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) 3608 return 1; 3609 3610 if (align & blocksize_mask) { 3611 if (bdev) 3612 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 3613 blocksize_mask = (1 << blkbits) - 1; 3614 if (align & blocksize_mask) 3615 return -EINVAL; 3616 return 1; 3617 } 3618 return 0; 3619 } 3620 3621 static void f2fs_dio_end_io(struct bio *bio) 3622 { 3623 struct f2fs_private_dio *dio = bio->bi_private; 3624 3625 dec_page_count(F2FS_I_SB(dio->inode), 3626 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3627 3628 bio->bi_private = dio->orig_private; 3629 bio->bi_end_io = dio->orig_end_io; 3630 3631 kfree(dio); 3632 3633 bio_endio(bio); 3634 } 3635 3636 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 3637 loff_t file_offset) 3638 { 3639 struct f2fs_private_dio *dio; 3640 bool write = (bio_op(bio) == REQ_OP_WRITE); 3641 3642 dio = f2fs_kzalloc(F2FS_I_SB(inode), 3643 sizeof(struct f2fs_private_dio), GFP_NOFS); 3644 if (!dio) 3645 goto out; 3646 3647 dio->inode = inode; 3648 dio->orig_end_io = bio->bi_end_io; 3649 dio->orig_private = bio->bi_private; 3650 dio->write = write; 3651 3652 bio->bi_end_io = f2fs_dio_end_io; 3653 bio->bi_private = dio; 3654 3655 inc_page_count(F2FS_I_SB(inode), 3656 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3657 3658 submit_bio(bio); 3659 return; 3660 out: 3661 bio->bi_status = BLK_STS_IOERR; 3662 bio_endio(bio); 3663 } 3664 3665 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3666 { 3667 struct address_space *mapping = iocb->ki_filp->f_mapping; 3668 struct inode *inode = mapping->host; 3669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3670 struct f2fs_inode_info *fi = F2FS_I(inode); 3671 size_t count = iov_iter_count(iter); 3672 loff_t offset = iocb->ki_pos; 3673 int rw = iov_iter_rw(iter); 3674 int err; 3675 enum rw_hint hint = iocb->ki_hint; 3676 int whint_mode = F2FS_OPTION(sbi).whint_mode; 3677 bool do_opu; 3678 3679 err = check_direct_IO(inode, iter, offset); 3680 if (err) 3681 return err < 0 ? err : 0; 3682 3683 if (f2fs_force_buffered_io(inode, iocb, iter)) 3684 return 0; 3685 3686 do_opu = rw == WRITE && f2fs_lfs_mode(sbi); 3687 3688 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 3689 3690 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 3691 iocb->ki_hint = WRITE_LIFE_NOT_SET; 3692 3693 if (iocb->ki_flags & IOCB_NOWAIT) { 3694 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 3695 iocb->ki_hint = hint; 3696 err = -EAGAIN; 3697 goto out; 3698 } 3699 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 3700 up_read(&fi->i_gc_rwsem[rw]); 3701 iocb->ki_hint = hint; 3702 err = -EAGAIN; 3703 goto out; 3704 } 3705 } else { 3706 down_read(&fi->i_gc_rwsem[rw]); 3707 if (do_opu) 3708 down_read(&fi->i_gc_rwsem[READ]); 3709 } 3710 3711 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3712 iter, rw == WRITE ? get_data_block_dio_write : 3713 get_data_block_dio, NULL, f2fs_dio_submit_bio, 3714 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : 3715 DIO_SKIP_HOLES); 3716 3717 if (do_opu) 3718 up_read(&fi->i_gc_rwsem[READ]); 3719 3720 up_read(&fi->i_gc_rwsem[rw]); 3721 3722 if (rw == WRITE) { 3723 if (whint_mode == WHINT_MODE_OFF) 3724 iocb->ki_hint = hint; 3725 if (err > 0) { 3726 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3727 err); 3728 if (!do_opu) 3729 set_inode_flag(inode, FI_UPDATE_WRITE); 3730 } else if (err == -EIOCBQUEUED) { 3731 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3732 count - iov_iter_count(iter)); 3733 } else if (err < 0) { 3734 f2fs_write_failed(inode, offset + count); 3735 } 3736 } else { 3737 if (err > 0) 3738 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); 3739 else if (err == -EIOCBQUEUED) 3740 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, 3741 count - iov_iter_count(iter)); 3742 } 3743 3744 out: 3745 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 3746 3747 return err; 3748 } 3749 3750 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3751 unsigned int length) 3752 { 3753 struct inode *inode = page->mapping->host; 3754 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3755 3756 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3757 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3758 return; 3759 3760 if (PageDirty(page)) { 3761 if (inode->i_ino == F2FS_META_INO(sbi)) { 3762 dec_page_count(sbi, F2FS_DIRTY_META); 3763 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3764 dec_page_count(sbi, F2FS_DIRTY_NODES); 3765 } else { 3766 inode_dec_dirty_pages(inode); 3767 f2fs_remove_dirty_inode(inode); 3768 } 3769 } 3770 3771 clear_page_private_gcing(page); 3772 3773 if (test_opt(sbi, COMPRESS_CACHE)) { 3774 if (f2fs_compressed_file(inode)) 3775 f2fs_invalidate_compress_pages(sbi, inode->i_ino); 3776 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3777 clear_page_private_data(page); 3778 } 3779 3780 if (page_private_atomic(page)) 3781 return f2fs_drop_inmem_page(inode, page); 3782 3783 detach_page_private(page); 3784 set_page_private(page, 0); 3785 } 3786 3787 int f2fs_release_page(struct page *page, gfp_t wait) 3788 { 3789 /* If this is dirty page, keep PagePrivate */ 3790 if (PageDirty(page)) 3791 return 0; 3792 3793 /* This is atomic written page, keep Private */ 3794 if (page_private_atomic(page)) 3795 return 0; 3796 3797 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3798 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3799 struct inode *inode = page->mapping->host; 3800 3801 if (f2fs_compressed_file(inode)) 3802 f2fs_invalidate_compress_pages(sbi, inode->i_ino); 3803 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3804 clear_page_private_data(page); 3805 } 3806 3807 clear_page_private_gcing(page); 3808 3809 detach_page_private(page); 3810 set_page_private(page, 0); 3811 return 1; 3812 } 3813 3814 static int f2fs_set_data_page_dirty(struct page *page) 3815 { 3816 struct inode *inode = page_file_mapping(page)->host; 3817 3818 trace_f2fs_set_page_dirty(page, DATA); 3819 3820 if (!PageUptodate(page)) 3821 SetPageUptodate(page); 3822 if (PageSwapCache(page)) 3823 return __set_page_dirty_nobuffers(page); 3824 3825 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3826 if (!page_private_atomic(page)) { 3827 f2fs_register_inmem_page(inode, page); 3828 return 1; 3829 } 3830 /* 3831 * Previously, this page has been registered, we just 3832 * return here. 3833 */ 3834 return 0; 3835 } 3836 3837 if (!PageDirty(page)) { 3838 __set_page_dirty_nobuffers(page); 3839 f2fs_update_dirty_page(inode, page); 3840 return 1; 3841 } 3842 return 0; 3843 } 3844 3845 3846 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3847 { 3848 #ifdef CONFIG_F2FS_FS_COMPRESSION 3849 struct dnode_of_data dn; 3850 sector_t start_idx, blknr = 0; 3851 int ret; 3852 3853 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3854 3855 set_new_dnode(&dn, inode, NULL, NULL, 0); 3856 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3857 if (ret) 3858 return 0; 3859 3860 if (dn.data_blkaddr != COMPRESS_ADDR) { 3861 dn.ofs_in_node += block - start_idx; 3862 blknr = f2fs_data_blkaddr(&dn); 3863 if (!__is_valid_data_blkaddr(blknr)) 3864 blknr = 0; 3865 } 3866 3867 f2fs_put_dnode(&dn); 3868 return blknr; 3869 #else 3870 return 0; 3871 #endif 3872 } 3873 3874 3875 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3876 { 3877 struct inode *inode = mapping->host; 3878 sector_t blknr = 0; 3879 3880 if (f2fs_has_inline_data(inode)) 3881 goto out; 3882 3883 /* make sure allocating whole blocks */ 3884 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3885 filemap_write_and_wait(mapping); 3886 3887 /* Block number less than F2FS MAX BLOCKS */ 3888 if (unlikely(block >= max_file_blocks(inode))) 3889 goto out; 3890 3891 if (f2fs_compressed_file(inode)) { 3892 blknr = f2fs_bmap_compress(inode, block); 3893 } else { 3894 struct f2fs_map_blocks map; 3895 3896 memset(&map, 0, sizeof(map)); 3897 map.m_lblk = block; 3898 map.m_len = 1; 3899 map.m_next_pgofs = NULL; 3900 map.m_seg_type = NO_CHECK_TYPE; 3901 3902 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3903 blknr = map.m_pblk; 3904 } 3905 out: 3906 trace_f2fs_bmap(inode, block, blknr); 3907 return blknr; 3908 } 3909 3910 #ifdef CONFIG_MIGRATION 3911 #include <linux/migrate.h> 3912 3913 int f2fs_migrate_page(struct address_space *mapping, 3914 struct page *newpage, struct page *page, enum migrate_mode mode) 3915 { 3916 int rc, extra_count; 3917 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3918 bool atomic_written = page_private_atomic(page); 3919 3920 BUG_ON(PageWriteback(page)); 3921 3922 /* migrating an atomic written page is safe with the inmem_lock hold */ 3923 if (atomic_written) { 3924 if (mode != MIGRATE_SYNC) 3925 return -EBUSY; 3926 if (!mutex_trylock(&fi->inmem_lock)) 3927 return -EAGAIN; 3928 } 3929 3930 /* one extra reference was held for atomic_write page */ 3931 extra_count = atomic_written ? 1 : 0; 3932 rc = migrate_page_move_mapping(mapping, newpage, 3933 page, extra_count); 3934 if (rc != MIGRATEPAGE_SUCCESS) { 3935 if (atomic_written) 3936 mutex_unlock(&fi->inmem_lock); 3937 return rc; 3938 } 3939 3940 if (atomic_written) { 3941 struct inmem_pages *cur; 3942 3943 list_for_each_entry(cur, &fi->inmem_pages, list) 3944 if (cur->page == page) { 3945 cur->page = newpage; 3946 break; 3947 } 3948 mutex_unlock(&fi->inmem_lock); 3949 put_page(page); 3950 get_page(newpage); 3951 } 3952 3953 /* guarantee to start from no stale private field */ 3954 set_page_private(newpage, 0); 3955 if (PagePrivate(page)) { 3956 set_page_private(newpage, page_private(page)); 3957 SetPagePrivate(newpage); 3958 get_page(newpage); 3959 3960 set_page_private(page, 0); 3961 ClearPagePrivate(page); 3962 put_page(page); 3963 } 3964 3965 if (mode != MIGRATE_SYNC_NO_COPY) 3966 migrate_page_copy(newpage, page); 3967 else 3968 migrate_page_states(newpage, page); 3969 3970 return MIGRATEPAGE_SUCCESS; 3971 } 3972 #endif 3973 3974 #ifdef CONFIG_SWAP 3975 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3976 unsigned int blkcnt) 3977 { 3978 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3979 unsigned int blkofs; 3980 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3981 unsigned int secidx = start_blk / blk_per_sec; 3982 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3983 int ret = 0; 3984 3985 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3986 filemap_invalidate_lock(inode->i_mapping); 3987 3988 set_inode_flag(inode, FI_ALIGNED_WRITE); 3989 3990 for (; secidx < end_sec; secidx++) { 3991 down_write(&sbi->pin_sem); 3992 3993 f2fs_lock_op(sbi); 3994 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3995 f2fs_unlock_op(sbi); 3996 3997 set_inode_flag(inode, FI_DO_DEFRAG); 3998 3999 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 4000 struct page *page; 4001 unsigned int blkidx = secidx * blk_per_sec + blkofs; 4002 4003 page = f2fs_get_lock_data_page(inode, blkidx, true); 4004 if (IS_ERR(page)) { 4005 up_write(&sbi->pin_sem); 4006 ret = PTR_ERR(page); 4007 goto done; 4008 } 4009 4010 set_page_dirty(page); 4011 f2fs_put_page(page, 1); 4012 } 4013 4014 clear_inode_flag(inode, FI_DO_DEFRAG); 4015 4016 ret = filemap_fdatawrite(inode->i_mapping); 4017 4018 up_write(&sbi->pin_sem); 4019 4020 if (ret) 4021 break; 4022 } 4023 4024 done: 4025 clear_inode_flag(inode, FI_DO_DEFRAG); 4026 clear_inode_flag(inode, FI_ALIGNED_WRITE); 4027 4028 filemap_invalidate_unlock(inode->i_mapping); 4029 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4030 4031 return ret; 4032 } 4033 4034 static int check_swap_activate(struct swap_info_struct *sis, 4035 struct file *swap_file, sector_t *span) 4036 { 4037 struct address_space *mapping = swap_file->f_mapping; 4038 struct inode *inode = mapping->host; 4039 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4040 sector_t cur_lblock; 4041 sector_t last_lblock; 4042 sector_t pblock; 4043 sector_t lowest_pblock = -1; 4044 sector_t highest_pblock = 0; 4045 int nr_extents = 0; 4046 unsigned long nr_pblocks; 4047 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 4048 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 4049 unsigned int not_aligned = 0; 4050 int ret = 0; 4051 4052 /* 4053 * Map all the blocks into the extent list. This code doesn't try 4054 * to be very smart. 4055 */ 4056 cur_lblock = 0; 4057 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 4058 4059 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 4060 struct f2fs_map_blocks map; 4061 retry: 4062 cond_resched(); 4063 4064 memset(&map, 0, sizeof(map)); 4065 map.m_lblk = cur_lblock; 4066 map.m_len = last_lblock - cur_lblock; 4067 map.m_next_pgofs = NULL; 4068 map.m_next_extent = NULL; 4069 map.m_seg_type = NO_CHECK_TYPE; 4070 map.m_may_create = false; 4071 4072 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 4073 if (ret) 4074 goto out; 4075 4076 /* hole */ 4077 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 4078 f2fs_err(sbi, "Swapfile has holes"); 4079 ret = -EINVAL; 4080 goto out; 4081 } 4082 4083 pblock = map.m_pblk; 4084 nr_pblocks = map.m_len; 4085 4086 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 4087 nr_pblocks & sec_blks_mask) { 4088 not_aligned++; 4089 4090 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 4091 if (cur_lblock + nr_pblocks > sis->max) 4092 nr_pblocks -= blks_per_sec; 4093 4094 if (!nr_pblocks) { 4095 /* this extent is last one */ 4096 nr_pblocks = map.m_len; 4097 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 4098 goto next; 4099 } 4100 4101 ret = f2fs_migrate_blocks(inode, cur_lblock, 4102 nr_pblocks); 4103 if (ret) 4104 goto out; 4105 goto retry; 4106 } 4107 next: 4108 if (cur_lblock + nr_pblocks >= sis->max) 4109 nr_pblocks = sis->max - cur_lblock; 4110 4111 if (cur_lblock) { /* exclude the header page */ 4112 if (pblock < lowest_pblock) 4113 lowest_pblock = pblock; 4114 if (pblock + nr_pblocks - 1 > highest_pblock) 4115 highest_pblock = pblock + nr_pblocks - 1; 4116 } 4117 4118 /* 4119 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4120 */ 4121 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4122 if (ret < 0) 4123 goto out; 4124 nr_extents += ret; 4125 cur_lblock += nr_pblocks; 4126 } 4127 ret = nr_extents; 4128 *span = 1 + highest_pblock - lowest_pblock; 4129 if (cur_lblock == 0) 4130 cur_lblock = 1; /* force Empty message */ 4131 sis->max = cur_lblock; 4132 sis->pages = cur_lblock - 1; 4133 sis->highest_bit = cur_lblock - 1; 4134 out: 4135 if (not_aligned) 4136 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 4137 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4138 return ret; 4139 } 4140 4141 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4142 sector_t *span) 4143 { 4144 struct inode *inode = file_inode(file); 4145 int ret; 4146 4147 if (!S_ISREG(inode->i_mode)) 4148 return -EINVAL; 4149 4150 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4151 return -EROFS; 4152 4153 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 4154 f2fs_err(F2FS_I_SB(inode), 4155 "Swapfile not supported in LFS mode"); 4156 return -EINVAL; 4157 } 4158 4159 ret = f2fs_convert_inline_inode(inode); 4160 if (ret) 4161 return ret; 4162 4163 if (!f2fs_disable_compressed_file(inode)) 4164 return -EINVAL; 4165 4166 f2fs_precache_extents(inode); 4167 4168 ret = check_swap_activate(sis, file, span); 4169 if (ret < 0) 4170 return ret; 4171 4172 set_inode_flag(inode, FI_PIN_FILE); 4173 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4174 return ret; 4175 } 4176 4177 static void f2fs_swap_deactivate(struct file *file) 4178 { 4179 struct inode *inode = file_inode(file); 4180 4181 clear_inode_flag(inode, FI_PIN_FILE); 4182 } 4183 #else 4184 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4185 sector_t *span) 4186 { 4187 return -EOPNOTSUPP; 4188 } 4189 4190 static void f2fs_swap_deactivate(struct file *file) 4191 { 4192 } 4193 #endif 4194 4195 const struct address_space_operations f2fs_dblock_aops = { 4196 .readpage = f2fs_read_data_page, 4197 .readahead = f2fs_readahead, 4198 .writepage = f2fs_write_data_page, 4199 .writepages = f2fs_write_data_pages, 4200 .write_begin = f2fs_write_begin, 4201 .write_end = f2fs_write_end, 4202 .set_page_dirty = f2fs_set_data_page_dirty, 4203 .invalidatepage = f2fs_invalidate_page, 4204 .releasepage = f2fs_release_page, 4205 .direct_IO = f2fs_direct_IO, 4206 .bmap = f2fs_bmap, 4207 .swap_activate = f2fs_swap_activate, 4208 .swap_deactivate = f2fs_swap_deactivate, 4209 #ifdef CONFIG_MIGRATION 4210 .migratepage = f2fs_migrate_page, 4211 #endif 4212 }; 4213 4214 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4215 { 4216 struct address_space *mapping = page_mapping(page); 4217 unsigned long flags; 4218 4219 xa_lock_irqsave(&mapping->i_pages, flags); 4220 __xa_clear_mark(&mapping->i_pages, page_index(page), 4221 PAGECACHE_TAG_DIRTY); 4222 xa_unlock_irqrestore(&mapping->i_pages, flags); 4223 } 4224 4225 int __init f2fs_init_post_read_processing(void) 4226 { 4227 bio_post_read_ctx_cache = 4228 kmem_cache_create("f2fs_bio_post_read_ctx", 4229 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4230 if (!bio_post_read_ctx_cache) 4231 goto fail; 4232 bio_post_read_ctx_pool = 4233 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4234 bio_post_read_ctx_cache); 4235 if (!bio_post_read_ctx_pool) 4236 goto fail_free_cache; 4237 return 0; 4238 4239 fail_free_cache: 4240 kmem_cache_destroy(bio_post_read_ctx_cache); 4241 fail: 4242 return -ENOMEM; 4243 } 4244 4245 void f2fs_destroy_post_read_processing(void) 4246 { 4247 mempool_destroy(bio_post_read_ctx_pool); 4248 kmem_cache_destroy(bio_post_read_ctx_cache); 4249 } 4250 4251 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4252 { 4253 if (!f2fs_sb_has_encrypt(sbi) && 4254 !f2fs_sb_has_verity(sbi) && 4255 !f2fs_sb_has_compression(sbi)) 4256 return 0; 4257 4258 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4259 WQ_UNBOUND | WQ_HIGHPRI, 4260 num_online_cpus()); 4261 if (!sbi->post_read_wq) 4262 return -ENOMEM; 4263 return 0; 4264 } 4265 4266 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4267 { 4268 if (sbi->post_read_wq) 4269 destroy_workqueue(sbi->post_read_wq); 4270 } 4271 4272 int __init f2fs_init_bio_entry_cache(void) 4273 { 4274 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4275 sizeof(struct bio_entry)); 4276 if (!bio_entry_slab) 4277 return -ENOMEM; 4278 return 0; 4279 } 4280 4281 void f2fs_destroy_bio_entry_cache(void) 4282 { 4283 kmem_cache_destroy(bio_entry_slab); 4284 } 4285