1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/cleancache.h> 22 #include <linux/sched/signal.h> 23 #include <linux/fiemap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && 73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 74 page_private_gcing(page)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct page *page) 80 { 81 struct address_space *mapping = page_file_mapping(page); 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = 1 << 0, 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = 1 << 1, 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = 1 << 2, 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct work_struct work; 119 unsigned int enabled_steps; 120 block_t fs_blkaddr; 121 }; 122 123 static void f2fs_finish_read_bio(struct bio *bio) 124 { 125 struct bio_vec *bv; 126 struct bvec_iter_all iter_all; 127 128 /* 129 * Update and unlock the bio's pagecache pages, and put the 130 * decompression context for any compressed pages. 131 */ 132 bio_for_each_segment_all(bv, bio, iter_all) { 133 struct page *page = bv->bv_page; 134 135 if (f2fs_is_compressed_page(page)) { 136 if (bio->bi_status) 137 f2fs_end_read_compressed_page(page, true, 0); 138 f2fs_put_page_dic(page); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readpages() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 229 { 230 struct bio_vec *bv; 231 struct bvec_iter_all iter_all; 232 bool all_compressed = true; 233 block_t blkaddr = ctx->fs_blkaddr; 234 235 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 236 struct page *page = bv->bv_page; 237 238 /* PG_error was set if decryption failed. */ 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, PageError(page), 241 blkaddr); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 262 if (ctx->enabled_steps & STEP_DECRYPT) 263 fscrypt_decrypt_bio(ctx->bio); 264 265 if (ctx->enabled_steps & STEP_DECOMPRESS) 266 f2fs_handle_step_decompress(ctx); 267 268 f2fs_verify_and_finish_bio(ctx->bio); 269 } 270 271 static void f2fs_read_end_io(struct bio *bio) 272 { 273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 274 struct bio_post_read_ctx *ctx; 275 276 iostat_update_and_unbind_ctx(bio, 0); 277 ctx = bio->bi_private; 278 279 if (time_to_inject(sbi, FAULT_READ_IO)) { 280 f2fs_show_injection_info(sbi, FAULT_READ_IO); 281 bio->bi_status = BLK_STS_IOERR; 282 } 283 284 if (bio->bi_status) { 285 f2fs_finish_read_bio(bio); 286 return; 287 } 288 289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 290 INIT_WORK(&ctx->work, f2fs_post_read_work); 291 queue_work(ctx->sbi->post_read_wq, &ctx->work); 292 } else { 293 f2fs_verify_and_finish_bio(bio); 294 } 295 } 296 297 static void f2fs_write_end_io(struct bio *bio) 298 { 299 struct f2fs_sb_info *sbi; 300 struct bio_vec *bvec; 301 struct bvec_iter_all iter_all; 302 303 iostat_update_and_unbind_ctx(bio, 1); 304 sbi = bio->bi_private; 305 306 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 308 bio->bi_status = BLK_STS_IOERR; 309 } 310 311 bio_for_each_segment_all(bvec, bio, iter_all) { 312 struct page *page = bvec->bv_page; 313 enum count_type type = WB_DATA_TYPE(page); 314 315 if (page_private_dummy(page)) { 316 clear_page_private_dummy(page); 317 unlock_page(page); 318 mempool_free(page, sbi->write_io_dummy); 319 320 if (unlikely(bio->bi_status)) 321 f2fs_stop_checkpoint(sbi, true); 322 continue; 323 } 324 325 fscrypt_finalize_bounce_page(&page); 326 327 #ifdef CONFIG_F2FS_FS_COMPRESSION 328 if (f2fs_is_compressed_page(page)) { 329 f2fs_compress_write_end_io(bio, page); 330 continue; 331 } 332 #endif 333 334 if (unlikely(bio->bi_status)) { 335 mapping_set_error(page->mapping, -EIO); 336 if (type == F2FS_WB_CP_DATA) 337 f2fs_stop_checkpoint(sbi, true); 338 } 339 340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 341 page->index != nid_of_node(page)); 342 343 dec_page_count(sbi, type); 344 if (f2fs_in_warm_node_list(sbi, page)) 345 f2fs_del_fsync_node_entry(sbi, page); 346 clear_page_private_gcing(page); 347 end_page_writeback(page); 348 } 349 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 350 wq_has_sleeper(&sbi->cp_wait)) 351 wake_up(&sbi->cp_wait); 352 353 bio_put(bio); 354 } 355 356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 357 block_t blk_addr, struct bio *bio) 358 { 359 struct block_device *bdev = sbi->sb->s_bdev; 360 int i; 361 362 if (f2fs_is_multi_device(sbi)) { 363 for (i = 0; i < sbi->s_ndevs; i++) { 364 if (FDEV(i).start_blk <= blk_addr && 365 FDEV(i).end_blk >= blk_addr) { 366 blk_addr -= FDEV(i).start_blk; 367 bdev = FDEV(i).bdev; 368 break; 369 } 370 } 371 } 372 if (bio) { 373 bio_set_dev(bio, bdev); 374 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 375 } 376 return bdev; 377 } 378 379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 380 { 381 int i; 382 383 if (!f2fs_is_multi_device(sbi)) 384 return 0; 385 386 for (i = 0; i < sbi->s_ndevs; i++) 387 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 388 return i; 389 return 0; 390 } 391 392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 393 { 394 struct f2fs_sb_info *sbi = fio->sbi; 395 struct bio *bio; 396 397 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset); 398 399 f2fs_target_device(sbi, fio->new_blkaddr, bio); 400 if (is_read_io(fio->op)) { 401 bio->bi_end_io = f2fs_read_end_io; 402 bio->bi_private = NULL; 403 } else { 404 bio->bi_end_io = f2fs_write_end_io; 405 bio->bi_private = sbi; 406 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 407 fio->type, fio->temp); 408 } 409 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 410 411 if (fio->io_wbc) 412 wbc_init_bio(fio->io_wbc, bio); 413 414 return bio; 415 } 416 417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 418 pgoff_t first_idx, 419 const struct f2fs_io_info *fio, 420 gfp_t gfp_mask) 421 { 422 /* 423 * The f2fs garbage collector sets ->encrypted_page when it wants to 424 * read/write raw data without encryption. 425 */ 426 if (!fio || !fio->encrypted_page) 427 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 428 } 429 430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 431 pgoff_t next_idx, 432 const struct f2fs_io_info *fio) 433 { 434 /* 435 * The f2fs garbage collector sets ->encrypted_page when it wants to 436 * read/write raw data without encryption. 437 */ 438 if (fio && fio->encrypted_page) 439 return !bio_has_crypt_ctx(bio); 440 441 return fscrypt_mergeable_bio(bio, inode, next_idx); 442 } 443 444 static inline void __submit_bio(struct f2fs_sb_info *sbi, 445 struct bio *bio, enum page_type type) 446 { 447 if (!is_read_io(bio_op(bio))) { 448 unsigned int start; 449 450 if (type != DATA && type != NODE) 451 goto submit_io; 452 453 if (f2fs_lfs_mode(sbi) && current->plug) 454 blk_finish_plug(current->plug); 455 456 if (!F2FS_IO_ALIGNED(sbi)) 457 goto submit_io; 458 459 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 460 start %= F2FS_IO_SIZE(sbi); 461 462 if (start == 0) 463 goto submit_io; 464 465 /* fill dummy pages */ 466 for (; start < F2FS_IO_SIZE(sbi); start++) { 467 struct page *page = 468 mempool_alloc(sbi->write_io_dummy, 469 GFP_NOIO | __GFP_NOFAIL); 470 f2fs_bug_on(sbi, !page); 471 472 lock_page(page); 473 474 zero_user_segment(page, 0, PAGE_SIZE); 475 set_page_private_dummy(page); 476 477 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 478 f2fs_bug_on(sbi, 1); 479 } 480 /* 481 * In the NODE case, we lose next block address chain. So, we 482 * need to do checkpoint in f2fs_sync_file. 483 */ 484 if (type == NODE) 485 set_sbi_flag(sbi, SBI_NEED_CP); 486 } 487 submit_io: 488 if (is_read_io(bio_op(bio))) 489 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 490 else 491 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 492 493 iostat_update_submit_ctx(bio, type); 494 submit_bio(bio); 495 } 496 497 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 498 struct bio *bio, enum page_type type) 499 { 500 __submit_bio(sbi, bio, type); 501 } 502 503 static void __attach_io_flag(struct f2fs_io_info *fio) 504 { 505 struct f2fs_sb_info *sbi = fio->sbi; 506 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 507 unsigned int io_flag, fua_flag, meta_flag; 508 509 if (fio->type == DATA) 510 io_flag = sbi->data_io_flag; 511 else if (fio->type == NODE) 512 io_flag = sbi->node_io_flag; 513 else 514 return; 515 516 fua_flag = io_flag & temp_mask; 517 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 518 519 /* 520 * data/node io flag bits per temp: 521 * REQ_META | REQ_FUA | 522 * 5 | 4 | 3 | 2 | 1 | 0 | 523 * Cold | Warm | Hot | Cold | Warm | Hot | 524 */ 525 if ((1 << fio->temp) & meta_flag) 526 fio->op_flags |= REQ_META; 527 if ((1 << fio->temp) & fua_flag) 528 fio->op_flags |= REQ_FUA; 529 } 530 531 static void __submit_merged_bio(struct f2fs_bio_info *io) 532 { 533 struct f2fs_io_info *fio = &io->fio; 534 535 if (!io->bio) 536 return; 537 538 __attach_io_flag(fio); 539 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 540 541 if (is_read_io(fio->op)) 542 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 543 else 544 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 545 546 __submit_bio(io->sbi, io->bio, fio->type); 547 io->bio = NULL; 548 } 549 550 static bool __has_merged_page(struct bio *bio, struct inode *inode, 551 struct page *page, nid_t ino) 552 { 553 struct bio_vec *bvec; 554 struct bvec_iter_all iter_all; 555 556 if (!bio) 557 return false; 558 559 if (!inode && !page && !ino) 560 return true; 561 562 bio_for_each_segment_all(bvec, bio, iter_all) { 563 struct page *target = bvec->bv_page; 564 565 if (fscrypt_is_bounce_page(target)) { 566 target = fscrypt_pagecache_page(target); 567 if (IS_ERR(target)) 568 continue; 569 } 570 if (f2fs_is_compressed_page(target)) { 571 target = f2fs_compress_control_page(target); 572 if (IS_ERR(target)) 573 continue; 574 } 575 576 if (inode && inode == target->mapping->host) 577 return true; 578 if (page && page == target) 579 return true; 580 if (ino && ino == ino_of_node(target)) 581 return true; 582 } 583 584 return false; 585 } 586 587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 588 enum page_type type, enum temp_type temp) 589 { 590 enum page_type btype = PAGE_TYPE_OF_BIO(type); 591 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 592 593 down_write(&io->io_rwsem); 594 595 /* change META to META_FLUSH in the checkpoint procedure */ 596 if (type >= META_FLUSH) { 597 io->fio.type = META_FLUSH; 598 io->fio.op = REQ_OP_WRITE; 599 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 600 if (!test_opt(sbi, NOBARRIER)) 601 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 602 } 603 __submit_merged_bio(io); 604 up_write(&io->io_rwsem); 605 } 606 607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 608 struct inode *inode, struct page *page, 609 nid_t ino, enum page_type type, bool force) 610 { 611 enum temp_type temp; 612 bool ret = true; 613 614 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 615 if (!force) { 616 enum page_type btype = PAGE_TYPE_OF_BIO(type); 617 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 618 619 down_read(&io->io_rwsem); 620 ret = __has_merged_page(io->bio, inode, page, ino); 621 up_read(&io->io_rwsem); 622 } 623 if (ret) 624 __f2fs_submit_merged_write(sbi, type, temp); 625 626 /* TODO: use HOT temp only for meta pages now. */ 627 if (type >= META) 628 break; 629 } 630 } 631 632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 633 { 634 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 635 } 636 637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 638 struct inode *inode, struct page *page, 639 nid_t ino, enum page_type type) 640 { 641 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 642 } 643 644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 645 { 646 f2fs_submit_merged_write(sbi, DATA); 647 f2fs_submit_merged_write(sbi, NODE); 648 f2fs_submit_merged_write(sbi, META); 649 } 650 651 /* 652 * Fill the locked page with data located in the block address. 653 * A caller needs to unlock the page on failure. 654 */ 655 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 656 { 657 struct bio *bio; 658 struct page *page = fio->encrypted_page ? 659 fio->encrypted_page : fio->page; 660 661 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 662 fio->is_por ? META_POR : (__is_meta_io(fio) ? 663 META_GENERIC : DATA_GENERIC_ENHANCE))) 664 return -EFSCORRUPTED; 665 666 trace_f2fs_submit_page_bio(page, fio); 667 668 /* Allocate a new bio */ 669 bio = __bio_alloc(fio, 1); 670 671 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 672 fio->page->index, fio, GFP_NOIO); 673 674 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 675 bio_put(bio); 676 return -EFAULT; 677 } 678 679 if (fio->io_wbc && !is_read_io(fio->op)) 680 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 681 682 __attach_io_flag(fio); 683 bio_set_op_attrs(bio, fio->op, fio->op_flags); 684 685 inc_page_count(fio->sbi, is_read_io(fio->op) ? 686 __read_io_type(page): WB_DATA_TYPE(fio->page)); 687 688 __submit_bio(fio->sbi, bio, fio->type); 689 return 0; 690 } 691 692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 693 block_t last_blkaddr, block_t cur_blkaddr) 694 { 695 if (unlikely(sbi->max_io_bytes && 696 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 697 return false; 698 if (last_blkaddr + 1 != cur_blkaddr) 699 return false; 700 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 701 } 702 703 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 704 struct f2fs_io_info *fio) 705 { 706 if (io->fio.op != fio->op) 707 return false; 708 return io->fio.op_flags == fio->op_flags; 709 } 710 711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 712 struct f2fs_bio_info *io, 713 struct f2fs_io_info *fio, 714 block_t last_blkaddr, 715 block_t cur_blkaddr) 716 { 717 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 718 unsigned int filled_blocks = 719 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 720 unsigned int io_size = F2FS_IO_SIZE(sbi); 721 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 722 723 /* IOs in bio is aligned and left space of vectors is not enough */ 724 if (!(filled_blocks % io_size) && left_vecs < io_size) 725 return false; 726 } 727 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 728 return false; 729 return io_type_is_mergeable(io, fio); 730 } 731 732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 733 struct page *page, enum temp_type temp) 734 { 735 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 736 struct bio_entry *be; 737 738 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 739 be->bio = bio; 740 bio_get(bio); 741 742 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 743 f2fs_bug_on(sbi, 1); 744 745 down_write(&io->bio_list_lock); 746 list_add_tail(&be->list, &io->bio_list); 747 up_write(&io->bio_list_lock); 748 } 749 750 static void del_bio_entry(struct bio_entry *be) 751 { 752 list_del(&be->list); 753 kmem_cache_free(bio_entry_slab, be); 754 } 755 756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 757 struct page *page) 758 { 759 struct f2fs_sb_info *sbi = fio->sbi; 760 enum temp_type temp; 761 bool found = false; 762 int ret = -EAGAIN; 763 764 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 765 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 766 struct list_head *head = &io->bio_list; 767 struct bio_entry *be; 768 769 down_write(&io->bio_list_lock); 770 list_for_each_entry(be, head, list) { 771 if (be->bio != *bio) 772 continue; 773 774 found = true; 775 776 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 777 *fio->last_block, 778 fio->new_blkaddr)); 779 if (f2fs_crypt_mergeable_bio(*bio, 780 fio->page->mapping->host, 781 fio->page->index, fio) && 782 bio_add_page(*bio, page, PAGE_SIZE, 0) == 783 PAGE_SIZE) { 784 ret = 0; 785 break; 786 } 787 788 /* page can't be merged into bio; submit the bio */ 789 del_bio_entry(be); 790 __submit_bio(sbi, *bio, DATA); 791 break; 792 } 793 up_write(&io->bio_list_lock); 794 } 795 796 if (ret) { 797 bio_put(*bio); 798 *bio = NULL; 799 } 800 801 return ret; 802 } 803 804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 805 struct bio **bio, struct page *page) 806 { 807 enum temp_type temp; 808 bool found = false; 809 struct bio *target = bio ? *bio : NULL; 810 811 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 812 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 813 struct list_head *head = &io->bio_list; 814 struct bio_entry *be; 815 816 if (list_empty(head)) 817 continue; 818 819 down_read(&io->bio_list_lock); 820 list_for_each_entry(be, head, list) { 821 if (target) 822 found = (target == be->bio); 823 else 824 found = __has_merged_page(be->bio, NULL, 825 page, 0); 826 if (found) 827 break; 828 } 829 up_read(&io->bio_list_lock); 830 831 if (!found) 832 continue; 833 834 found = false; 835 836 down_write(&io->bio_list_lock); 837 list_for_each_entry(be, head, list) { 838 if (target) 839 found = (target == be->bio); 840 else 841 found = __has_merged_page(be->bio, NULL, 842 page, 0); 843 if (found) { 844 target = be->bio; 845 del_bio_entry(be); 846 break; 847 } 848 } 849 up_write(&io->bio_list_lock); 850 } 851 852 if (found) 853 __submit_bio(sbi, target, DATA); 854 if (bio && *bio) { 855 bio_put(*bio); 856 *bio = NULL; 857 } 858 } 859 860 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 861 { 862 struct bio *bio = *fio->bio; 863 struct page *page = fio->encrypted_page ? 864 fio->encrypted_page : fio->page; 865 866 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 867 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 868 return -EFSCORRUPTED; 869 870 trace_f2fs_submit_page_bio(page, fio); 871 872 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 873 fio->new_blkaddr)) 874 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 875 alloc_new: 876 if (!bio) { 877 bio = __bio_alloc(fio, BIO_MAX_VECS); 878 __attach_io_flag(fio); 879 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 880 fio->page->index, fio, GFP_NOIO); 881 bio_set_op_attrs(bio, fio->op, fio->op_flags); 882 883 add_bio_entry(fio->sbi, bio, page, fio->temp); 884 } else { 885 if (add_ipu_page(fio, &bio, page)) 886 goto alloc_new; 887 } 888 889 if (fio->io_wbc) 890 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 891 892 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 893 894 *fio->last_block = fio->new_blkaddr; 895 *fio->bio = bio; 896 897 return 0; 898 } 899 900 void f2fs_submit_page_write(struct f2fs_io_info *fio) 901 { 902 struct f2fs_sb_info *sbi = fio->sbi; 903 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 904 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 905 struct page *bio_page; 906 907 f2fs_bug_on(sbi, is_read_io(fio->op)); 908 909 down_write(&io->io_rwsem); 910 next: 911 if (fio->in_list) { 912 spin_lock(&io->io_lock); 913 if (list_empty(&io->io_list)) { 914 spin_unlock(&io->io_lock); 915 goto out; 916 } 917 fio = list_first_entry(&io->io_list, 918 struct f2fs_io_info, list); 919 list_del(&fio->list); 920 spin_unlock(&io->io_lock); 921 } 922 923 verify_fio_blkaddr(fio); 924 925 if (fio->encrypted_page) 926 bio_page = fio->encrypted_page; 927 else if (fio->compressed_page) 928 bio_page = fio->compressed_page; 929 else 930 bio_page = fio->page; 931 932 /* set submitted = true as a return value */ 933 fio->submitted = true; 934 935 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 936 937 if (io->bio && 938 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 939 fio->new_blkaddr) || 940 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 941 bio_page->index, fio))) 942 __submit_merged_bio(io); 943 alloc_new: 944 if (io->bio == NULL) { 945 if (F2FS_IO_ALIGNED(sbi) && 946 (fio->type == DATA || fio->type == NODE) && 947 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 948 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 949 fio->retry = true; 950 goto skip; 951 } 952 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 953 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 954 bio_page->index, fio, GFP_NOIO); 955 io->fio = *fio; 956 } 957 958 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 959 __submit_merged_bio(io); 960 goto alloc_new; 961 } 962 963 if (fio->io_wbc) 964 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 965 966 io->last_block_in_bio = fio->new_blkaddr; 967 968 trace_f2fs_submit_page_write(fio->page, fio); 969 skip: 970 if (fio->in_list) 971 goto next; 972 out: 973 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 974 !f2fs_is_checkpoint_ready(sbi)) 975 __submit_merged_bio(io); 976 up_write(&io->io_rwsem); 977 } 978 979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 980 unsigned nr_pages, unsigned op_flag, 981 pgoff_t first_idx, bool for_write) 982 { 983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 984 struct bio *bio; 985 struct bio_post_read_ctx *ctx = NULL; 986 unsigned int post_read_steps = 0; 987 988 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL, 989 bio_max_segs(nr_pages), &f2fs_bioset); 990 if (!bio) 991 return ERR_PTR(-ENOMEM); 992 993 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 994 995 f2fs_target_device(sbi, blkaddr, bio); 996 bio->bi_end_io = f2fs_read_end_io; 997 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 998 999 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1000 post_read_steps |= STEP_DECRYPT; 1001 1002 if (f2fs_need_verity(inode, first_idx)) 1003 post_read_steps |= STEP_VERITY; 1004 1005 /* 1006 * STEP_DECOMPRESS is handled specially, since a compressed file might 1007 * contain both compressed and uncompressed clusters. We'll allocate a 1008 * bio_post_read_ctx if the file is compressed, but the caller is 1009 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1010 */ 1011 1012 if (post_read_steps || f2fs_compressed_file(inode)) { 1013 /* Due to the mempool, this never fails. */ 1014 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1015 ctx->bio = bio; 1016 ctx->sbi = sbi; 1017 ctx->enabled_steps = post_read_steps; 1018 ctx->fs_blkaddr = blkaddr; 1019 bio->bi_private = ctx; 1020 } 1021 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1022 1023 return bio; 1024 } 1025 1026 /* This can handle encryption stuffs */ 1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1028 block_t blkaddr, int op_flags, bool for_write) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1031 struct bio *bio; 1032 1033 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1034 page->index, for_write); 1035 if (IS_ERR(bio)) 1036 return PTR_ERR(bio); 1037 1038 /* wait for GCed page writeback via META_MAPPING */ 1039 f2fs_wait_on_block_writeback(inode, blkaddr); 1040 1041 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1042 bio_put(bio); 1043 return -EFAULT; 1044 } 1045 ClearPageError(page); 1046 inc_page_count(sbi, F2FS_RD_DATA); 1047 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1048 __submit_bio(sbi, bio, DATA); 1049 return 0; 1050 } 1051 1052 static void __set_data_blkaddr(struct dnode_of_data *dn) 1053 { 1054 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1055 __le32 *addr_array; 1056 int base = 0; 1057 1058 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1059 base = get_extra_isize(dn->inode); 1060 1061 /* Get physical address of data block */ 1062 addr_array = blkaddr_in_node(rn); 1063 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1064 } 1065 1066 /* 1067 * Lock ordering for the change of data block address: 1068 * ->data_page 1069 * ->node_page 1070 * update block addresses in the node page 1071 */ 1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1073 { 1074 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1075 __set_data_blkaddr(dn); 1076 if (set_page_dirty(dn->node_page)) 1077 dn->node_changed = true; 1078 } 1079 1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1081 { 1082 dn->data_blkaddr = blkaddr; 1083 f2fs_set_data_blkaddr(dn); 1084 f2fs_update_extent_cache(dn); 1085 } 1086 1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1089 { 1090 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1091 int err; 1092 1093 if (!count) 1094 return 0; 1095 1096 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1097 return -EPERM; 1098 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1099 return err; 1100 1101 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1102 dn->ofs_in_node, count); 1103 1104 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1105 1106 for (; count > 0; dn->ofs_in_node++) { 1107 block_t blkaddr = f2fs_data_blkaddr(dn); 1108 1109 if (blkaddr == NULL_ADDR) { 1110 dn->data_blkaddr = NEW_ADDR; 1111 __set_data_blkaddr(dn); 1112 count--; 1113 } 1114 } 1115 1116 if (set_page_dirty(dn->node_page)) 1117 dn->node_changed = true; 1118 return 0; 1119 } 1120 1121 /* Should keep dn->ofs_in_node unchanged */ 1122 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1123 { 1124 unsigned int ofs_in_node = dn->ofs_in_node; 1125 int ret; 1126 1127 ret = f2fs_reserve_new_blocks(dn, 1); 1128 dn->ofs_in_node = ofs_in_node; 1129 return ret; 1130 } 1131 1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1133 { 1134 bool need_put = dn->inode_page ? false : true; 1135 int err; 1136 1137 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1138 if (err) 1139 return err; 1140 1141 if (dn->data_blkaddr == NULL_ADDR) 1142 err = f2fs_reserve_new_block(dn); 1143 if (err || need_put) 1144 f2fs_put_dnode(dn); 1145 return err; 1146 } 1147 1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1149 { 1150 struct extent_info ei = {0, }; 1151 struct inode *inode = dn->inode; 1152 1153 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1154 dn->data_blkaddr = ei.blk + index - ei.fofs; 1155 return 0; 1156 } 1157 1158 return f2fs_reserve_block(dn, index); 1159 } 1160 1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1162 int op_flags, bool for_write) 1163 { 1164 struct address_space *mapping = inode->i_mapping; 1165 struct dnode_of_data dn; 1166 struct page *page; 1167 struct extent_info ei = {0, }; 1168 int err; 1169 1170 page = f2fs_grab_cache_page(mapping, index, for_write); 1171 if (!page) 1172 return ERR_PTR(-ENOMEM); 1173 1174 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1175 dn.data_blkaddr = ei.blk + index - ei.fofs; 1176 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1177 DATA_GENERIC_ENHANCE_READ)) { 1178 err = -EFSCORRUPTED; 1179 goto put_err; 1180 } 1181 goto got_it; 1182 } 1183 1184 set_new_dnode(&dn, inode, NULL, NULL, 0); 1185 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1186 if (err) 1187 goto put_err; 1188 f2fs_put_dnode(&dn); 1189 1190 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1191 err = -ENOENT; 1192 goto put_err; 1193 } 1194 if (dn.data_blkaddr != NEW_ADDR && 1195 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1196 dn.data_blkaddr, 1197 DATA_GENERIC_ENHANCE)) { 1198 err = -EFSCORRUPTED; 1199 goto put_err; 1200 } 1201 got_it: 1202 if (PageUptodate(page)) { 1203 unlock_page(page); 1204 return page; 1205 } 1206 1207 /* 1208 * A new dentry page is allocated but not able to be written, since its 1209 * new inode page couldn't be allocated due to -ENOSPC. 1210 * In such the case, its blkaddr can be remained as NEW_ADDR. 1211 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1212 * f2fs_init_inode_metadata. 1213 */ 1214 if (dn.data_blkaddr == NEW_ADDR) { 1215 zero_user_segment(page, 0, PAGE_SIZE); 1216 if (!PageUptodate(page)) 1217 SetPageUptodate(page); 1218 unlock_page(page); 1219 return page; 1220 } 1221 1222 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1223 op_flags, for_write); 1224 if (err) 1225 goto put_err; 1226 return page; 1227 1228 put_err: 1229 f2fs_put_page(page, 1); 1230 return ERR_PTR(err); 1231 } 1232 1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1234 { 1235 struct address_space *mapping = inode->i_mapping; 1236 struct page *page; 1237 1238 page = find_get_page(mapping, index); 1239 if (page && PageUptodate(page)) 1240 return page; 1241 f2fs_put_page(page, 0); 1242 1243 page = f2fs_get_read_data_page(inode, index, 0, false); 1244 if (IS_ERR(page)) 1245 return page; 1246 1247 if (PageUptodate(page)) 1248 return page; 1249 1250 wait_on_page_locked(page); 1251 if (unlikely(!PageUptodate(page))) { 1252 f2fs_put_page(page, 0); 1253 return ERR_PTR(-EIO); 1254 } 1255 return page; 1256 } 1257 1258 /* 1259 * If it tries to access a hole, return an error. 1260 * Because, the callers, functions in dir.c and GC, should be able to know 1261 * whether this page exists or not. 1262 */ 1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1264 bool for_write) 1265 { 1266 struct address_space *mapping = inode->i_mapping; 1267 struct page *page; 1268 repeat: 1269 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1270 if (IS_ERR(page)) 1271 return page; 1272 1273 /* wait for read completion */ 1274 lock_page(page); 1275 if (unlikely(page->mapping != mapping)) { 1276 f2fs_put_page(page, 1); 1277 goto repeat; 1278 } 1279 if (unlikely(!PageUptodate(page))) { 1280 f2fs_put_page(page, 1); 1281 return ERR_PTR(-EIO); 1282 } 1283 return page; 1284 } 1285 1286 /* 1287 * Caller ensures that this data page is never allocated. 1288 * A new zero-filled data page is allocated in the page cache. 1289 * 1290 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1291 * f2fs_unlock_op(). 1292 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1293 * ipage should be released by this function. 1294 */ 1295 struct page *f2fs_get_new_data_page(struct inode *inode, 1296 struct page *ipage, pgoff_t index, bool new_i_size) 1297 { 1298 struct address_space *mapping = inode->i_mapping; 1299 struct page *page; 1300 struct dnode_of_data dn; 1301 int err; 1302 1303 page = f2fs_grab_cache_page(mapping, index, true); 1304 if (!page) { 1305 /* 1306 * before exiting, we should make sure ipage will be released 1307 * if any error occur. 1308 */ 1309 f2fs_put_page(ipage, 1); 1310 return ERR_PTR(-ENOMEM); 1311 } 1312 1313 set_new_dnode(&dn, inode, ipage, NULL, 0); 1314 err = f2fs_reserve_block(&dn, index); 1315 if (err) { 1316 f2fs_put_page(page, 1); 1317 return ERR_PTR(err); 1318 } 1319 if (!ipage) 1320 f2fs_put_dnode(&dn); 1321 1322 if (PageUptodate(page)) 1323 goto got_it; 1324 1325 if (dn.data_blkaddr == NEW_ADDR) { 1326 zero_user_segment(page, 0, PAGE_SIZE); 1327 if (!PageUptodate(page)) 1328 SetPageUptodate(page); 1329 } else { 1330 f2fs_put_page(page, 1); 1331 1332 /* if ipage exists, blkaddr should be NEW_ADDR */ 1333 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1334 page = f2fs_get_lock_data_page(inode, index, true); 1335 if (IS_ERR(page)) 1336 return page; 1337 } 1338 got_it: 1339 if (new_i_size && i_size_read(inode) < 1340 ((loff_t)(index + 1) << PAGE_SHIFT)) 1341 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1342 return page; 1343 } 1344 1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1346 { 1347 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1348 struct f2fs_summary sum; 1349 struct node_info ni; 1350 block_t old_blkaddr; 1351 blkcnt_t count = 1; 1352 int err; 1353 1354 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1355 return -EPERM; 1356 1357 err = f2fs_get_node_info(sbi, dn->nid, &ni); 1358 if (err) 1359 return err; 1360 1361 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1362 if (dn->data_blkaddr != NULL_ADDR) 1363 goto alloc; 1364 1365 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1366 return err; 1367 1368 alloc: 1369 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1370 old_blkaddr = dn->data_blkaddr; 1371 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1372 &sum, seg_type, NULL); 1373 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1374 invalidate_mapping_pages(META_MAPPING(sbi), 1375 old_blkaddr, old_blkaddr); 1376 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1377 } 1378 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1379 1380 /* 1381 * i_size will be updated by direct_IO. Otherwise, we'll get stale 1382 * data from unwritten block via dio_read. 1383 */ 1384 return 0; 1385 } 1386 1387 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1388 { 1389 struct inode *inode = file_inode(iocb->ki_filp); 1390 struct f2fs_map_blocks map; 1391 int flag; 1392 int err = 0; 1393 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1394 1395 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1396 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1397 if (map.m_len > map.m_lblk) 1398 map.m_len -= map.m_lblk; 1399 else 1400 map.m_len = 0; 1401 1402 map.m_next_pgofs = NULL; 1403 map.m_next_extent = NULL; 1404 map.m_seg_type = NO_CHECK_TYPE; 1405 map.m_may_create = true; 1406 1407 if (direct_io) { 1408 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1409 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1410 F2FS_GET_BLOCK_PRE_AIO : 1411 F2FS_GET_BLOCK_PRE_DIO; 1412 goto map_blocks; 1413 } 1414 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1415 err = f2fs_convert_inline_inode(inode); 1416 if (err) 1417 return err; 1418 } 1419 if (f2fs_has_inline_data(inode)) 1420 return err; 1421 1422 flag = F2FS_GET_BLOCK_PRE_AIO; 1423 1424 map_blocks: 1425 err = f2fs_map_blocks(inode, &map, 1, flag); 1426 if (map.m_len > 0 && err == -ENOSPC) { 1427 if (!direct_io) 1428 set_inode_flag(inode, FI_NO_PREALLOC); 1429 err = 0; 1430 } 1431 return err; 1432 } 1433 1434 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1435 { 1436 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1437 if (lock) 1438 down_read(&sbi->node_change); 1439 else 1440 up_read(&sbi->node_change); 1441 } else { 1442 if (lock) 1443 f2fs_lock_op(sbi); 1444 else 1445 f2fs_unlock_op(sbi); 1446 } 1447 } 1448 1449 /* 1450 * f2fs_map_blocks() tries to find or build mapping relationship which 1451 * maps continuous logical blocks to physical blocks, and return such 1452 * info via f2fs_map_blocks structure. 1453 */ 1454 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1455 int create, int flag) 1456 { 1457 unsigned int maxblocks = map->m_len; 1458 struct dnode_of_data dn; 1459 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1460 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1461 pgoff_t pgofs, end_offset, end; 1462 int err = 0, ofs = 1; 1463 unsigned int ofs_in_node, last_ofs_in_node; 1464 blkcnt_t prealloc; 1465 struct extent_info ei = {0, }; 1466 block_t blkaddr; 1467 unsigned int start_pgofs; 1468 1469 if (!maxblocks) 1470 return 0; 1471 1472 map->m_len = 0; 1473 map->m_flags = 0; 1474 1475 /* it only supports block size == page size */ 1476 pgofs = (pgoff_t)map->m_lblk; 1477 end = pgofs + maxblocks; 1478 1479 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1480 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1481 map->m_may_create) 1482 goto next_dnode; 1483 1484 map->m_pblk = ei.blk + pgofs - ei.fofs; 1485 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1486 map->m_flags = F2FS_MAP_MAPPED; 1487 if (map->m_next_extent) 1488 *map->m_next_extent = pgofs + map->m_len; 1489 1490 /* for hardware encryption, but to avoid potential issue in future */ 1491 if (flag == F2FS_GET_BLOCK_DIO) 1492 f2fs_wait_on_block_writeback_range(inode, 1493 map->m_pblk, map->m_len); 1494 goto out; 1495 } 1496 1497 next_dnode: 1498 if (map->m_may_create) 1499 f2fs_do_map_lock(sbi, flag, true); 1500 1501 /* When reading holes, we need its node page */ 1502 set_new_dnode(&dn, inode, NULL, NULL, 0); 1503 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1504 if (err) { 1505 if (flag == F2FS_GET_BLOCK_BMAP) 1506 map->m_pblk = 0; 1507 1508 if (err == -ENOENT) { 1509 /* 1510 * There is one exceptional case that read_node_page() 1511 * may return -ENOENT due to filesystem has been 1512 * shutdown or cp_error, so force to convert error 1513 * number to EIO for such case. 1514 */ 1515 if (map->m_may_create && 1516 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1517 f2fs_cp_error(sbi))) { 1518 err = -EIO; 1519 goto unlock_out; 1520 } 1521 1522 err = 0; 1523 if (map->m_next_pgofs) 1524 *map->m_next_pgofs = 1525 f2fs_get_next_page_offset(&dn, pgofs); 1526 if (map->m_next_extent) 1527 *map->m_next_extent = 1528 f2fs_get_next_page_offset(&dn, pgofs); 1529 } 1530 goto unlock_out; 1531 } 1532 1533 start_pgofs = pgofs; 1534 prealloc = 0; 1535 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1536 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1537 1538 next_block: 1539 blkaddr = f2fs_data_blkaddr(&dn); 1540 1541 if (__is_valid_data_blkaddr(blkaddr) && 1542 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1543 err = -EFSCORRUPTED; 1544 goto sync_out; 1545 } 1546 1547 if (__is_valid_data_blkaddr(blkaddr)) { 1548 /* use out-place-update for driect IO under LFS mode */ 1549 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1550 map->m_may_create) { 1551 err = __allocate_data_block(&dn, map->m_seg_type); 1552 if (err) 1553 goto sync_out; 1554 blkaddr = dn.data_blkaddr; 1555 set_inode_flag(inode, FI_APPEND_WRITE); 1556 } 1557 } else { 1558 if (create) { 1559 if (unlikely(f2fs_cp_error(sbi))) { 1560 err = -EIO; 1561 goto sync_out; 1562 } 1563 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1564 if (blkaddr == NULL_ADDR) { 1565 prealloc++; 1566 last_ofs_in_node = dn.ofs_in_node; 1567 } 1568 } else { 1569 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1570 flag != F2FS_GET_BLOCK_DIO); 1571 err = __allocate_data_block(&dn, 1572 map->m_seg_type); 1573 if (!err) 1574 set_inode_flag(inode, FI_APPEND_WRITE); 1575 } 1576 if (err) 1577 goto sync_out; 1578 map->m_flags |= F2FS_MAP_NEW; 1579 blkaddr = dn.data_blkaddr; 1580 } else { 1581 if (f2fs_compressed_file(inode) && 1582 f2fs_sanity_check_cluster(&dn) && 1583 (flag != F2FS_GET_BLOCK_FIEMAP || 1584 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1585 err = -EFSCORRUPTED; 1586 goto sync_out; 1587 } 1588 if (flag == F2FS_GET_BLOCK_BMAP) { 1589 map->m_pblk = 0; 1590 goto sync_out; 1591 } 1592 if (flag == F2FS_GET_BLOCK_PRECACHE) 1593 goto sync_out; 1594 if (flag == F2FS_GET_BLOCK_FIEMAP && 1595 blkaddr == NULL_ADDR) { 1596 if (map->m_next_pgofs) 1597 *map->m_next_pgofs = pgofs + 1; 1598 goto sync_out; 1599 } 1600 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1601 /* for defragment case */ 1602 if (map->m_next_pgofs) 1603 *map->m_next_pgofs = pgofs + 1; 1604 goto sync_out; 1605 } 1606 } 1607 } 1608 1609 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1610 goto skip; 1611 1612 if (map->m_len == 0) { 1613 /* preallocated unwritten block should be mapped for fiemap. */ 1614 if (blkaddr == NEW_ADDR) 1615 map->m_flags |= F2FS_MAP_UNWRITTEN; 1616 map->m_flags |= F2FS_MAP_MAPPED; 1617 1618 map->m_pblk = blkaddr; 1619 map->m_len = 1; 1620 } else if ((map->m_pblk != NEW_ADDR && 1621 blkaddr == (map->m_pblk + ofs)) || 1622 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1623 flag == F2FS_GET_BLOCK_PRE_DIO) { 1624 ofs++; 1625 map->m_len++; 1626 } else { 1627 goto sync_out; 1628 } 1629 1630 skip: 1631 dn.ofs_in_node++; 1632 pgofs++; 1633 1634 /* preallocate blocks in batch for one dnode page */ 1635 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1636 (pgofs == end || dn.ofs_in_node == end_offset)) { 1637 1638 dn.ofs_in_node = ofs_in_node; 1639 err = f2fs_reserve_new_blocks(&dn, prealloc); 1640 if (err) 1641 goto sync_out; 1642 1643 map->m_len += dn.ofs_in_node - ofs_in_node; 1644 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1645 err = -ENOSPC; 1646 goto sync_out; 1647 } 1648 dn.ofs_in_node = end_offset; 1649 } 1650 1651 if (pgofs >= end) 1652 goto sync_out; 1653 else if (dn.ofs_in_node < end_offset) 1654 goto next_block; 1655 1656 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1657 if (map->m_flags & F2FS_MAP_MAPPED) { 1658 unsigned int ofs = start_pgofs - map->m_lblk; 1659 1660 f2fs_update_extent_cache_range(&dn, 1661 start_pgofs, map->m_pblk + ofs, 1662 map->m_len - ofs); 1663 } 1664 } 1665 1666 f2fs_put_dnode(&dn); 1667 1668 if (map->m_may_create) { 1669 f2fs_do_map_lock(sbi, flag, false); 1670 f2fs_balance_fs(sbi, dn.node_changed); 1671 } 1672 goto next_dnode; 1673 1674 sync_out: 1675 1676 /* for hardware encryption, but to avoid potential issue in future */ 1677 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1678 f2fs_wait_on_block_writeback_range(inode, 1679 map->m_pblk, map->m_len); 1680 1681 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1682 if (map->m_flags & F2FS_MAP_MAPPED) { 1683 unsigned int ofs = start_pgofs - map->m_lblk; 1684 1685 f2fs_update_extent_cache_range(&dn, 1686 start_pgofs, map->m_pblk + ofs, 1687 map->m_len - ofs); 1688 } 1689 if (map->m_next_extent) 1690 *map->m_next_extent = pgofs + 1; 1691 } 1692 f2fs_put_dnode(&dn); 1693 unlock_out: 1694 if (map->m_may_create) { 1695 f2fs_do_map_lock(sbi, flag, false); 1696 f2fs_balance_fs(sbi, dn.node_changed); 1697 } 1698 out: 1699 trace_f2fs_map_blocks(inode, map, err); 1700 return err; 1701 } 1702 1703 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1704 { 1705 struct f2fs_map_blocks map; 1706 block_t last_lblk; 1707 int err; 1708 1709 if (pos + len > i_size_read(inode)) 1710 return false; 1711 1712 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1713 map.m_next_pgofs = NULL; 1714 map.m_next_extent = NULL; 1715 map.m_seg_type = NO_CHECK_TYPE; 1716 map.m_may_create = false; 1717 last_lblk = F2FS_BLK_ALIGN(pos + len); 1718 1719 while (map.m_lblk < last_lblk) { 1720 map.m_len = last_lblk - map.m_lblk; 1721 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1722 if (err || map.m_len == 0) 1723 return false; 1724 map.m_lblk += map.m_len; 1725 } 1726 return true; 1727 } 1728 1729 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1730 { 1731 return (bytes >> inode->i_blkbits); 1732 } 1733 1734 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1735 { 1736 return (blks << inode->i_blkbits); 1737 } 1738 1739 static int __get_data_block(struct inode *inode, sector_t iblock, 1740 struct buffer_head *bh, int create, int flag, 1741 pgoff_t *next_pgofs, int seg_type, bool may_write) 1742 { 1743 struct f2fs_map_blocks map; 1744 int err; 1745 1746 map.m_lblk = iblock; 1747 map.m_len = bytes_to_blks(inode, bh->b_size); 1748 map.m_next_pgofs = next_pgofs; 1749 map.m_next_extent = NULL; 1750 map.m_seg_type = seg_type; 1751 map.m_may_create = may_write; 1752 1753 err = f2fs_map_blocks(inode, &map, create, flag); 1754 if (!err) { 1755 map_bh(bh, inode->i_sb, map.m_pblk); 1756 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1757 bh->b_size = blks_to_bytes(inode, map.m_len); 1758 } 1759 return err; 1760 } 1761 1762 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1763 struct buffer_head *bh_result, int create) 1764 { 1765 return __get_data_block(inode, iblock, bh_result, create, 1766 F2FS_GET_BLOCK_DIO, NULL, 1767 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1768 true); 1769 } 1770 1771 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1772 struct buffer_head *bh_result, int create) 1773 { 1774 return __get_data_block(inode, iblock, bh_result, create, 1775 F2FS_GET_BLOCK_DIO, NULL, 1776 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1777 false); 1778 } 1779 1780 static int f2fs_xattr_fiemap(struct inode *inode, 1781 struct fiemap_extent_info *fieinfo) 1782 { 1783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1784 struct page *page; 1785 struct node_info ni; 1786 __u64 phys = 0, len; 1787 __u32 flags; 1788 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1789 int err = 0; 1790 1791 if (f2fs_has_inline_xattr(inode)) { 1792 int offset; 1793 1794 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1795 inode->i_ino, false); 1796 if (!page) 1797 return -ENOMEM; 1798 1799 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1800 if (err) { 1801 f2fs_put_page(page, 1); 1802 return err; 1803 } 1804 1805 phys = blks_to_bytes(inode, ni.blk_addr); 1806 offset = offsetof(struct f2fs_inode, i_addr) + 1807 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1808 get_inline_xattr_addrs(inode)); 1809 1810 phys += offset; 1811 len = inline_xattr_size(inode); 1812 1813 f2fs_put_page(page, 1); 1814 1815 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1816 1817 if (!xnid) 1818 flags |= FIEMAP_EXTENT_LAST; 1819 1820 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1821 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1822 if (err || err == 1) 1823 return err; 1824 } 1825 1826 if (xnid) { 1827 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1828 if (!page) 1829 return -ENOMEM; 1830 1831 err = f2fs_get_node_info(sbi, xnid, &ni); 1832 if (err) { 1833 f2fs_put_page(page, 1); 1834 return err; 1835 } 1836 1837 phys = blks_to_bytes(inode, ni.blk_addr); 1838 len = inode->i_sb->s_blocksize; 1839 1840 f2fs_put_page(page, 1); 1841 1842 flags = FIEMAP_EXTENT_LAST; 1843 } 1844 1845 if (phys) { 1846 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1847 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1848 } 1849 1850 return (err < 0 ? err : 0); 1851 } 1852 1853 static loff_t max_inode_blocks(struct inode *inode) 1854 { 1855 loff_t result = ADDRS_PER_INODE(inode); 1856 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1857 1858 /* two direct node blocks */ 1859 result += (leaf_count * 2); 1860 1861 /* two indirect node blocks */ 1862 leaf_count *= NIDS_PER_BLOCK; 1863 result += (leaf_count * 2); 1864 1865 /* one double indirect node block */ 1866 leaf_count *= NIDS_PER_BLOCK; 1867 result += leaf_count; 1868 1869 return result; 1870 } 1871 1872 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1873 u64 start, u64 len) 1874 { 1875 struct f2fs_map_blocks map; 1876 sector_t start_blk, last_blk; 1877 pgoff_t next_pgofs; 1878 u64 logical = 0, phys = 0, size = 0; 1879 u32 flags = 0; 1880 int ret = 0; 1881 bool compr_cluster = false, compr_appended; 1882 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1883 unsigned int count_in_cluster = 0; 1884 loff_t maxbytes; 1885 1886 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1887 ret = f2fs_precache_extents(inode); 1888 if (ret) 1889 return ret; 1890 } 1891 1892 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1893 if (ret) 1894 return ret; 1895 1896 inode_lock(inode); 1897 1898 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1899 if (start > maxbytes) { 1900 ret = -EFBIG; 1901 goto out; 1902 } 1903 1904 if (len > maxbytes || (maxbytes - len) < start) 1905 len = maxbytes - start; 1906 1907 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1908 ret = f2fs_xattr_fiemap(inode, fieinfo); 1909 goto out; 1910 } 1911 1912 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1913 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1914 if (ret != -EAGAIN) 1915 goto out; 1916 } 1917 1918 if (bytes_to_blks(inode, len) == 0) 1919 len = blks_to_bytes(inode, 1); 1920 1921 start_blk = bytes_to_blks(inode, start); 1922 last_blk = bytes_to_blks(inode, start + len - 1); 1923 1924 next: 1925 memset(&map, 0, sizeof(map)); 1926 map.m_lblk = start_blk; 1927 map.m_len = bytes_to_blks(inode, len); 1928 map.m_next_pgofs = &next_pgofs; 1929 map.m_seg_type = NO_CHECK_TYPE; 1930 1931 if (compr_cluster) { 1932 map.m_lblk += 1; 1933 map.m_len = cluster_size - count_in_cluster; 1934 } 1935 1936 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1937 if (ret) 1938 goto out; 1939 1940 /* HOLE */ 1941 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1942 start_blk = next_pgofs; 1943 1944 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1945 max_inode_blocks(inode))) 1946 goto prep_next; 1947 1948 flags |= FIEMAP_EXTENT_LAST; 1949 } 1950 1951 compr_appended = false; 1952 /* In a case of compressed cluster, append this to the last extent */ 1953 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1954 !(map.m_flags & F2FS_MAP_FLAGS))) { 1955 compr_appended = true; 1956 goto skip_fill; 1957 } 1958 1959 if (size) { 1960 flags |= FIEMAP_EXTENT_MERGED; 1961 if (IS_ENCRYPTED(inode)) 1962 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1963 1964 ret = fiemap_fill_next_extent(fieinfo, logical, 1965 phys, size, flags); 1966 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1967 if (ret) 1968 goto out; 1969 size = 0; 1970 } 1971 1972 if (start_blk > last_blk) 1973 goto out; 1974 1975 skip_fill: 1976 if (map.m_pblk == COMPRESS_ADDR) { 1977 compr_cluster = true; 1978 count_in_cluster = 1; 1979 } else if (compr_appended) { 1980 unsigned int appended_blks = cluster_size - 1981 count_in_cluster + 1; 1982 size += blks_to_bytes(inode, appended_blks); 1983 start_blk += appended_blks; 1984 compr_cluster = false; 1985 } else { 1986 logical = blks_to_bytes(inode, start_blk); 1987 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1988 blks_to_bytes(inode, map.m_pblk) : 0; 1989 size = blks_to_bytes(inode, map.m_len); 1990 flags = 0; 1991 1992 if (compr_cluster) { 1993 flags = FIEMAP_EXTENT_ENCODED; 1994 count_in_cluster += map.m_len; 1995 if (count_in_cluster == cluster_size) { 1996 compr_cluster = false; 1997 size += blks_to_bytes(inode, 1); 1998 } 1999 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 2000 flags = FIEMAP_EXTENT_UNWRITTEN; 2001 } 2002 2003 start_blk += bytes_to_blks(inode, size); 2004 } 2005 2006 prep_next: 2007 cond_resched(); 2008 if (fatal_signal_pending(current)) 2009 ret = -EINTR; 2010 else 2011 goto next; 2012 out: 2013 if (ret == 1) 2014 ret = 0; 2015 2016 inode_unlock(inode); 2017 return ret; 2018 } 2019 2020 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2021 { 2022 if (IS_ENABLED(CONFIG_FS_VERITY) && 2023 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2024 return inode->i_sb->s_maxbytes; 2025 2026 return i_size_read(inode); 2027 } 2028 2029 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2030 unsigned nr_pages, 2031 struct f2fs_map_blocks *map, 2032 struct bio **bio_ret, 2033 sector_t *last_block_in_bio, 2034 bool is_readahead) 2035 { 2036 struct bio *bio = *bio_ret; 2037 const unsigned blocksize = blks_to_bytes(inode, 1); 2038 sector_t block_in_file; 2039 sector_t last_block; 2040 sector_t last_block_in_file; 2041 sector_t block_nr; 2042 int ret = 0; 2043 2044 block_in_file = (sector_t)page_index(page); 2045 last_block = block_in_file + nr_pages; 2046 last_block_in_file = bytes_to_blks(inode, 2047 f2fs_readpage_limit(inode) + blocksize - 1); 2048 if (last_block > last_block_in_file) 2049 last_block = last_block_in_file; 2050 2051 /* just zeroing out page which is beyond EOF */ 2052 if (block_in_file >= last_block) 2053 goto zero_out; 2054 /* 2055 * Map blocks using the previous result first. 2056 */ 2057 if ((map->m_flags & F2FS_MAP_MAPPED) && 2058 block_in_file > map->m_lblk && 2059 block_in_file < (map->m_lblk + map->m_len)) 2060 goto got_it; 2061 2062 /* 2063 * Then do more f2fs_map_blocks() calls until we are 2064 * done with this page. 2065 */ 2066 map->m_lblk = block_in_file; 2067 map->m_len = last_block - block_in_file; 2068 2069 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2070 if (ret) 2071 goto out; 2072 got_it: 2073 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2074 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2075 SetPageMappedToDisk(page); 2076 2077 if (!PageUptodate(page) && (!PageSwapCache(page) && 2078 !cleancache_get_page(page))) { 2079 SetPageUptodate(page); 2080 goto confused; 2081 } 2082 2083 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2084 DATA_GENERIC_ENHANCE_READ)) { 2085 ret = -EFSCORRUPTED; 2086 goto out; 2087 } 2088 } else { 2089 zero_out: 2090 zero_user_segment(page, 0, PAGE_SIZE); 2091 if (f2fs_need_verity(inode, page->index) && 2092 !fsverity_verify_page(page)) { 2093 ret = -EIO; 2094 goto out; 2095 } 2096 if (!PageUptodate(page)) 2097 SetPageUptodate(page); 2098 unlock_page(page); 2099 goto out; 2100 } 2101 2102 /* 2103 * This page will go to BIO. Do we need to send this 2104 * BIO off first? 2105 */ 2106 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2107 *last_block_in_bio, block_nr) || 2108 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2109 submit_and_realloc: 2110 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2111 bio = NULL; 2112 } 2113 if (bio == NULL) { 2114 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2115 is_readahead ? REQ_RAHEAD : 0, page->index, 2116 false); 2117 if (IS_ERR(bio)) { 2118 ret = PTR_ERR(bio); 2119 bio = NULL; 2120 goto out; 2121 } 2122 } 2123 2124 /* 2125 * If the page is under writeback, we need to wait for 2126 * its completion to see the correct decrypted data. 2127 */ 2128 f2fs_wait_on_block_writeback(inode, block_nr); 2129 2130 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2131 goto submit_and_realloc; 2132 2133 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2134 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2135 ClearPageError(page); 2136 *last_block_in_bio = block_nr; 2137 goto out; 2138 confused: 2139 if (bio) { 2140 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2141 bio = NULL; 2142 } 2143 unlock_page(page); 2144 out: 2145 *bio_ret = bio; 2146 return ret; 2147 } 2148 2149 #ifdef CONFIG_F2FS_FS_COMPRESSION 2150 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2151 unsigned nr_pages, sector_t *last_block_in_bio, 2152 bool is_readahead, bool for_write) 2153 { 2154 struct dnode_of_data dn; 2155 struct inode *inode = cc->inode; 2156 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2157 struct bio *bio = *bio_ret; 2158 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2159 sector_t last_block_in_file; 2160 const unsigned blocksize = blks_to_bytes(inode, 1); 2161 struct decompress_io_ctx *dic = NULL; 2162 struct extent_info ei = {0, }; 2163 bool from_dnode = true; 2164 int i; 2165 int ret = 0; 2166 2167 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2168 2169 last_block_in_file = bytes_to_blks(inode, 2170 f2fs_readpage_limit(inode) + blocksize - 1); 2171 2172 /* get rid of pages beyond EOF */ 2173 for (i = 0; i < cc->cluster_size; i++) { 2174 struct page *page = cc->rpages[i]; 2175 2176 if (!page) 2177 continue; 2178 if ((sector_t)page->index >= last_block_in_file) { 2179 zero_user_segment(page, 0, PAGE_SIZE); 2180 if (!PageUptodate(page)) 2181 SetPageUptodate(page); 2182 } else if (!PageUptodate(page)) { 2183 continue; 2184 } 2185 unlock_page(page); 2186 if (for_write) 2187 put_page(page); 2188 cc->rpages[i] = NULL; 2189 cc->nr_rpages--; 2190 } 2191 2192 /* we are done since all pages are beyond EOF */ 2193 if (f2fs_cluster_is_empty(cc)) 2194 goto out; 2195 2196 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2197 from_dnode = false; 2198 2199 if (!from_dnode) 2200 goto skip_reading_dnode; 2201 2202 set_new_dnode(&dn, inode, NULL, NULL, 0); 2203 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2204 if (ret) 2205 goto out; 2206 2207 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2208 2209 skip_reading_dnode: 2210 for (i = 1; i < cc->cluster_size; i++) { 2211 block_t blkaddr; 2212 2213 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2214 dn.ofs_in_node + i) : 2215 ei.blk + i - 1; 2216 2217 if (!__is_valid_data_blkaddr(blkaddr)) 2218 break; 2219 2220 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2221 ret = -EFAULT; 2222 goto out_put_dnode; 2223 } 2224 cc->nr_cpages++; 2225 2226 if (!from_dnode && i >= ei.c_len) 2227 break; 2228 } 2229 2230 /* nothing to decompress */ 2231 if (cc->nr_cpages == 0) { 2232 ret = 0; 2233 goto out_put_dnode; 2234 } 2235 2236 dic = f2fs_alloc_dic(cc); 2237 if (IS_ERR(dic)) { 2238 ret = PTR_ERR(dic); 2239 goto out_put_dnode; 2240 } 2241 2242 for (i = 0; i < cc->nr_cpages; i++) { 2243 struct page *page = dic->cpages[i]; 2244 block_t blkaddr; 2245 struct bio_post_read_ctx *ctx; 2246 2247 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2248 dn.ofs_in_node + i + 1) : 2249 ei.blk + i; 2250 2251 f2fs_wait_on_block_writeback(inode, blkaddr); 2252 2253 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2254 if (atomic_dec_and_test(&dic->remaining_pages)) 2255 f2fs_decompress_cluster(dic); 2256 continue; 2257 } 2258 2259 if (bio && (!page_is_mergeable(sbi, bio, 2260 *last_block_in_bio, blkaddr) || 2261 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2262 submit_and_realloc: 2263 __submit_bio(sbi, bio, DATA); 2264 bio = NULL; 2265 } 2266 2267 if (!bio) { 2268 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2269 is_readahead ? REQ_RAHEAD : 0, 2270 page->index, for_write); 2271 if (IS_ERR(bio)) { 2272 ret = PTR_ERR(bio); 2273 f2fs_decompress_end_io(dic, ret); 2274 f2fs_put_dnode(&dn); 2275 *bio_ret = NULL; 2276 return ret; 2277 } 2278 } 2279 2280 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2281 goto submit_and_realloc; 2282 2283 ctx = get_post_read_ctx(bio); 2284 ctx->enabled_steps |= STEP_DECOMPRESS; 2285 refcount_inc(&dic->refcnt); 2286 2287 inc_page_count(sbi, F2FS_RD_DATA); 2288 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2289 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2290 ClearPageError(page); 2291 *last_block_in_bio = blkaddr; 2292 } 2293 2294 if (from_dnode) 2295 f2fs_put_dnode(&dn); 2296 2297 *bio_ret = bio; 2298 return 0; 2299 2300 out_put_dnode: 2301 if (from_dnode) 2302 f2fs_put_dnode(&dn); 2303 out: 2304 for (i = 0; i < cc->cluster_size; i++) { 2305 if (cc->rpages[i]) { 2306 ClearPageUptodate(cc->rpages[i]); 2307 ClearPageError(cc->rpages[i]); 2308 unlock_page(cc->rpages[i]); 2309 } 2310 } 2311 *bio_ret = bio; 2312 return ret; 2313 } 2314 #endif 2315 2316 /* 2317 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2318 * Major change was from block_size == page_size in f2fs by default. 2319 */ 2320 static int f2fs_mpage_readpages(struct inode *inode, 2321 struct readahead_control *rac, struct page *page) 2322 { 2323 struct bio *bio = NULL; 2324 sector_t last_block_in_bio = 0; 2325 struct f2fs_map_blocks map; 2326 #ifdef CONFIG_F2FS_FS_COMPRESSION 2327 struct compress_ctx cc = { 2328 .inode = inode, 2329 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2330 .cluster_size = F2FS_I(inode)->i_cluster_size, 2331 .cluster_idx = NULL_CLUSTER, 2332 .rpages = NULL, 2333 .cpages = NULL, 2334 .nr_rpages = 0, 2335 .nr_cpages = 0, 2336 }; 2337 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2338 #endif 2339 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2340 unsigned max_nr_pages = nr_pages; 2341 int ret = 0; 2342 2343 map.m_pblk = 0; 2344 map.m_lblk = 0; 2345 map.m_len = 0; 2346 map.m_flags = 0; 2347 map.m_next_pgofs = NULL; 2348 map.m_next_extent = NULL; 2349 map.m_seg_type = NO_CHECK_TYPE; 2350 map.m_may_create = false; 2351 2352 for (; nr_pages; nr_pages--) { 2353 if (rac) { 2354 page = readahead_page(rac); 2355 prefetchw(&page->flags); 2356 } 2357 2358 #ifdef CONFIG_F2FS_FS_COMPRESSION 2359 if (f2fs_compressed_file(inode)) { 2360 /* there are remained comressed pages, submit them */ 2361 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2362 ret = f2fs_read_multi_pages(&cc, &bio, 2363 max_nr_pages, 2364 &last_block_in_bio, 2365 rac != NULL, false); 2366 f2fs_destroy_compress_ctx(&cc, false); 2367 if (ret) 2368 goto set_error_page; 2369 } 2370 if (cc.cluster_idx == NULL_CLUSTER) { 2371 if (nc_cluster_idx == 2372 page->index >> cc.log_cluster_size) { 2373 goto read_single_page; 2374 } 2375 2376 ret = f2fs_is_compressed_cluster(inode, page->index); 2377 if (ret < 0) 2378 goto set_error_page; 2379 else if (!ret) { 2380 nc_cluster_idx = 2381 page->index >> cc.log_cluster_size; 2382 goto read_single_page; 2383 } 2384 2385 nc_cluster_idx = NULL_CLUSTER; 2386 } 2387 ret = f2fs_init_compress_ctx(&cc); 2388 if (ret) 2389 goto set_error_page; 2390 2391 f2fs_compress_ctx_add_page(&cc, page); 2392 2393 goto next_page; 2394 } 2395 read_single_page: 2396 #endif 2397 2398 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2399 &bio, &last_block_in_bio, rac); 2400 if (ret) { 2401 #ifdef CONFIG_F2FS_FS_COMPRESSION 2402 set_error_page: 2403 #endif 2404 SetPageError(page); 2405 zero_user_segment(page, 0, PAGE_SIZE); 2406 unlock_page(page); 2407 } 2408 #ifdef CONFIG_F2FS_FS_COMPRESSION 2409 next_page: 2410 #endif 2411 if (rac) 2412 put_page(page); 2413 2414 #ifdef CONFIG_F2FS_FS_COMPRESSION 2415 if (f2fs_compressed_file(inode)) { 2416 /* last page */ 2417 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2418 ret = f2fs_read_multi_pages(&cc, &bio, 2419 max_nr_pages, 2420 &last_block_in_bio, 2421 rac != NULL, false); 2422 f2fs_destroy_compress_ctx(&cc, false); 2423 } 2424 } 2425 #endif 2426 } 2427 if (bio) 2428 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2429 return ret; 2430 } 2431 2432 static int f2fs_read_data_page(struct file *file, struct page *page) 2433 { 2434 struct inode *inode = page_file_mapping(page)->host; 2435 int ret = -EAGAIN; 2436 2437 trace_f2fs_readpage(page, DATA); 2438 2439 if (!f2fs_is_compress_backend_ready(inode)) { 2440 unlock_page(page); 2441 return -EOPNOTSUPP; 2442 } 2443 2444 /* If the file has inline data, try to read it directly */ 2445 if (f2fs_has_inline_data(inode)) 2446 ret = f2fs_read_inline_data(inode, page); 2447 if (ret == -EAGAIN) 2448 ret = f2fs_mpage_readpages(inode, NULL, page); 2449 return ret; 2450 } 2451 2452 static void f2fs_readahead(struct readahead_control *rac) 2453 { 2454 struct inode *inode = rac->mapping->host; 2455 2456 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2457 2458 if (!f2fs_is_compress_backend_ready(inode)) 2459 return; 2460 2461 /* If the file has inline data, skip readpages */ 2462 if (f2fs_has_inline_data(inode)) 2463 return; 2464 2465 f2fs_mpage_readpages(inode, rac, NULL); 2466 } 2467 2468 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2469 { 2470 struct inode *inode = fio->page->mapping->host; 2471 struct page *mpage, *page; 2472 gfp_t gfp_flags = GFP_NOFS; 2473 2474 if (!f2fs_encrypted_file(inode)) 2475 return 0; 2476 2477 page = fio->compressed_page ? fio->compressed_page : fio->page; 2478 2479 /* wait for GCed page writeback via META_MAPPING */ 2480 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2481 2482 if (fscrypt_inode_uses_inline_crypto(inode)) 2483 return 0; 2484 2485 retry_encrypt: 2486 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2487 PAGE_SIZE, 0, gfp_flags); 2488 if (IS_ERR(fio->encrypted_page)) { 2489 /* flush pending IOs and wait for a while in the ENOMEM case */ 2490 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2491 f2fs_flush_merged_writes(fio->sbi); 2492 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2493 gfp_flags |= __GFP_NOFAIL; 2494 goto retry_encrypt; 2495 } 2496 return PTR_ERR(fio->encrypted_page); 2497 } 2498 2499 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2500 if (mpage) { 2501 if (PageUptodate(mpage)) 2502 memcpy(page_address(mpage), 2503 page_address(fio->encrypted_page), PAGE_SIZE); 2504 f2fs_put_page(mpage, 1); 2505 } 2506 return 0; 2507 } 2508 2509 static inline bool check_inplace_update_policy(struct inode *inode, 2510 struct f2fs_io_info *fio) 2511 { 2512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2513 unsigned int policy = SM_I(sbi)->ipu_policy; 2514 2515 if (policy & (0x1 << F2FS_IPU_FORCE)) 2516 return true; 2517 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2518 return true; 2519 if (policy & (0x1 << F2FS_IPU_UTIL) && 2520 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2521 return true; 2522 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2523 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2524 return true; 2525 2526 /* 2527 * IPU for rewrite async pages 2528 */ 2529 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2530 fio && fio->op == REQ_OP_WRITE && 2531 !(fio->op_flags & REQ_SYNC) && 2532 !IS_ENCRYPTED(inode)) 2533 return true; 2534 2535 /* this is only set during fdatasync */ 2536 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2537 is_inode_flag_set(inode, FI_NEED_IPU)) 2538 return true; 2539 2540 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2541 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2542 return true; 2543 2544 return false; 2545 } 2546 2547 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2548 { 2549 /* swap file is migrating in aligned write mode */ 2550 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2551 return false; 2552 2553 if (f2fs_is_pinned_file(inode)) 2554 return true; 2555 2556 /* if this is cold file, we should overwrite to avoid fragmentation */ 2557 if (file_is_cold(inode)) 2558 return true; 2559 2560 return check_inplace_update_policy(inode, fio); 2561 } 2562 2563 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2564 { 2565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2566 2567 if (f2fs_lfs_mode(sbi)) 2568 return true; 2569 if (S_ISDIR(inode->i_mode)) 2570 return true; 2571 if (IS_NOQUOTA(inode)) 2572 return true; 2573 if (f2fs_is_atomic_file(inode)) 2574 return true; 2575 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2576 return true; 2577 2578 /* swap file is migrating in aligned write mode */ 2579 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2580 return true; 2581 2582 if (fio) { 2583 if (page_private_gcing(fio->page)) 2584 return true; 2585 if (page_private_dummy(fio->page)) 2586 return true; 2587 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2588 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2589 return true; 2590 } 2591 return false; 2592 } 2593 2594 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2595 { 2596 struct inode *inode = fio->page->mapping->host; 2597 2598 if (f2fs_should_update_outplace(inode, fio)) 2599 return false; 2600 2601 return f2fs_should_update_inplace(inode, fio); 2602 } 2603 2604 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2605 { 2606 struct page *page = fio->page; 2607 struct inode *inode = page->mapping->host; 2608 struct dnode_of_data dn; 2609 struct extent_info ei = {0, }; 2610 struct node_info ni; 2611 bool ipu_force = false; 2612 int err = 0; 2613 2614 set_new_dnode(&dn, inode, NULL, NULL, 0); 2615 if (need_inplace_update(fio) && 2616 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2617 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2618 2619 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2620 DATA_GENERIC_ENHANCE)) 2621 return -EFSCORRUPTED; 2622 2623 ipu_force = true; 2624 fio->need_lock = LOCK_DONE; 2625 goto got_it; 2626 } 2627 2628 /* Deadlock due to between page->lock and f2fs_lock_op */ 2629 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2630 return -EAGAIN; 2631 2632 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2633 if (err) 2634 goto out; 2635 2636 fio->old_blkaddr = dn.data_blkaddr; 2637 2638 /* This page is already truncated */ 2639 if (fio->old_blkaddr == NULL_ADDR) { 2640 ClearPageUptodate(page); 2641 clear_page_private_gcing(page); 2642 goto out_writepage; 2643 } 2644 got_it: 2645 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2646 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2647 DATA_GENERIC_ENHANCE)) { 2648 err = -EFSCORRUPTED; 2649 goto out_writepage; 2650 } 2651 /* 2652 * If current allocation needs SSR, 2653 * it had better in-place writes for updated data. 2654 */ 2655 if (ipu_force || 2656 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2657 need_inplace_update(fio))) { 2658 err = f2fs_encrypt_one_page(fio); 2659 if (err) 2660 goto out_writepage; 2661 2662 set_page_writeback(page); 2663 ClearPageError(page); 2664 f2fs_put_dnode(&dn); 2665 if (fio->need_lock == LOCK_REQ) 2666 f2fs_unlock_op(fio->sbi); 2667 err = f2fs_inplace_write_data(fio); 2668 if (err) { 2669 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2670 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2671 if (PageWriteback(page)) 2672 end_page_writeback(page); 2673 } else { 2674 set_inode_flag(inode, FI_UPDATE_WRITE); 2675 } 2676 trace_f2fs_do_write_data_page(fio->page, IPU); 2677 return err; 2678 } 2679 2680 if (fio->need_lock == LOCK_RETRY) { 2681 if (!f2fs_trylock_op(fio->sbi)) { 2682 err = -EAGAIN; 2683 goto out_writepage; 2684 } 2685 fio->need_lock = LOCK_REQ; 2686 } 2687 2688 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 2689 if (err) 2690 goto out_writepage; 2691 2692 fio->version = ni.version; 2693 2694 err = f2fs_encrypt_one_page(fio); 2695 if (err) 2696 goto out_writepage; 2697 2698 set_page_writeback(page); 2699 ClearPageError(page); 2700 2701 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2702 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2703 2704 /* LFS mode write path */ 2705 f2fs_outplace_write_data(&dn, fio); 2706 trace_f2fs_do_write_data_page(page, OPU); 2707 set_inode_flag(inode, FI_APPEND_WRITE); 2708 if (page->index == 0) 2709 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2710 out_writepage: 2711 f2fs_put_dnode(&dn); 2712 out: 2713 if (fio->need_lock == LOCK_REQ) 2714 f2fs_unlock_op(fio->sbi); 2715 return err; 2716 } 2717 2718 int f2fs_write_single_data_page(struct page *page, int *submitted, 2719 struct bio **bio, 2720 sector_t *last_block, 2721 struct writeback_control *wbc, 2722 enum iostat_type io_type, 2723 int compr_blocks, 2724 bool allow_balance) 2725 { 2726 struct inode *inode = page->mapping->host; 2727 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2728 loff_t i_size = i_size_read(inode); 2729 const pgoff_t end_index = ((unsigned long long)i_size) 2730 >> PAGE_SHIFT; 2731 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2732 unsigned offset = 0; 2733 bool need_balance_fs = false; 2734 int err = 0; 2735 struct f2fs_io_info fio = { 2736 .sbi = sbi, 2737 .ino = inode->i_ino, 2738 .type = DATA, 2739 .op = REQ_OP_WRITE, 2740 .op_flags = wbc_to_write_flags(wbc), 2741 .old_blkaddr = NULL_ADDR, 2742 .page = page, 2743 .encrypted_page = NULL, 2744 .submitted = false, 2745 .compr_blocks = compr_blocks, 2746 .need_lock = LOCK_RETRY, 2747 .io_type = io_type, 2748 .io_wbc = wbc, 2749 .bio = bio, 2750 .last_block = last_block, 2751 }; 2752 2753 trace_f2fs_writepage(page, DATA); 2754 2755 /* we should bypass data pages to proceed the kworkder jobs */ 2756 if (unlikely(f2fs_cp_error(sbi))) { 2757 mapping_set_error(page->mapping, -EIO); 2758 /* 2759 * don't drop any dirty dentry pages for keeping lastest 2760 * directory structure. 2761 */ 2762 if (S_ISDIR(inode->i_mode)) 2763 goto redirty_out; 2764 goto out; 2765 } 2766 2767 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2768 goto redirty_out; 2769 2770 if (page->index < end_index || 2771 f2fs_verity_in_progress(inode) || 2772 compr_blocks) 2773 goto write; 2774 2775 /* 2776 * If the offset is out-of-range of file size, 2777 * this page does not have to be written to disk. 2778 */ 2779 offset = i_size & (PAGE_SIZE - 1); 2780 if ((page->index >= end_index + 1) || !offset) 2781 goto out; 2782 2783 zero_user_segment(page, offset, PAGE_SIZE); 2784 write: 2785 if (f2fs_is_drop_cache(inode)) 2786 goto out; 2787 /* we should not write 0'th page having journal header */ 2788 if (f2fs_is_volatile_file(inode) && (!page->index || 2789 (!wbc->for_reclaim && 2790 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2791 goto redirty_out; 2792 2793 /* Dentry/quota blocks are controlled by checkpoint */ 2794 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2795 /* 2796 * We need to wait for node_write to avoid block allocation during 2797 * checkpoint. This can only happen to quota writes which can cause 2798 * the below discard race condition. 2799 */ 2800 if (IS_NOQUOTA(inode)) 2801 down_read(&sbi->node_write); 2802 2803 fio.need_lock = LOCK_DONE; 2804 err = f2fs_do_write_data_page(&fio); 2805 2806 if (IS_NOQUOTA(inode)) 2807 up_read(&sbi->node_write); 2808 2809 goto done; 2810 } 2811 2812 if (!wbc->for_reclaim) 2813 need_balance_fs = true; 2814 else if (has_not_enough_free_secs(sbi, 0, 0)) 2815 goto redirty_out; 2816 else 2817 set_inode_flag(inode, FI_HOT_DATA); 2818 2819 err = -EAGAIN; 2820 if (f2fs_has_inline_data(inode)) { 2821 err = f2fs_write_inline_data(inode, page); 2822 if (!err) 2823 goto out; 2824 } 2825 2826 if (err == -EAGAIN) { 2827 err = f2fs_do_write_data_page(&fio); 2828 if (err == -EAGAIN) { 2829 fio.need_lock = LOCK_REQ; 2830 err = f2fs_do_write_data_page(&fio); 2831 } 2832 } 2833 2834 if (err) { 2835 file_set_keep_isize(inode); 2836 } else { 2837 spin_lock(&F2FS_I(inode)->i_size_lock); 2838 if (F2FS_I(inode)->last_disk_size < psize) 2839 F2FS_I(inode)->last_disk_size = psize; 2840 spin_unlock(&F2FS_I(inode)->i_size_lock); 2841 } 2842 2843 done: 2844 if (err && err != -ENOENT) 2845 goto redirty_out; 2846 2847 out: 2848 inode_dec_dirty_pages(inode); 2849 if (err) { 2850 ClearPageUptodate(page); 2851 clear_page_private_gcing(page); 2852 } 2853 2854 if (wbc->for_reclaim) { 2855 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2856 clear_inode_flag(inode, FI_HOT_DATA); 2857 f2fs_remove_dirty_inode(inode); 2858 submitted = NULL; 2859 } 2860 unlock_page(page); 2861 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2862 !F2FS_I(inode)->cp_task && allow_balance) 2863 f2fs_balance_fs(sbi, need_balance_fs); 2864 2865 if (unlikely(f2fs_cp_error(sbi))) { 2866 f2fs_submit_merged_write(sbi, DATA); 2867 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2868 submitted = NULL; 2869 } 2870 2871 if (submitted) 2872 *submitted = fio.submitted ? 1 : 0; 2873 2874 return 0; 2875 2876 redirty_out: 2877 redirty_page_for_writepage(wbc, page); 2878 /* 2879 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2880 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2881 * file_write_and_wait_range() will see EIO error, which is critical 2882 * to return value of fsync() followed by atomic_write failure to user. 2883 */ 2884 if (!err || wbc->for_reclaim) 2885 return AOP_WRITEPAGE_ACTIVATE; 2886 unlock_page(page); 2887 return err; 2888 } 2889 2890 static int f2fs_write_data_page(struct page *page, 2891 struct writeback_control *wbc) 2892 { 2893 #ifdef CONFIG_F2FS_FS_COMPRESSION 2894 struct inode *inode = page->mapping->host; 2895 2896 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2897 goto out; 2898 2899 if (f2fs_compressed_file(inode)) { 2900 if (f2fs_is_compressed_cluster(inode, page->index)) { 2901 redirty_page_for_writepage(wbc, page); 2902 return AOP_WRITEPAGE_ACTIVATE; 2903 } 2904 } 2905 out: 2906 #endif 2907 2908 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2909 wbc, FS_DATA_IO, 0, true); 2910 } 2911 2912 /* 2913 * This function was copied from write_cche_pages from mm/page-writeback.c. 2914 * The major change is making write step of cold data page separately from 2915 * warm/hot data page. 2916 */ 2917 static int f2fs_write_cache_pages(struct address_space *mapping, 2918 struct writeback_control *wbc, 2919 enum iostat_type io_type) 2920 { 2921 int ret = 0; 2922 int done = 0, retry = 0; 2923 struct pagevec pvec; 2924 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2925 struct bio *bio = NULL; 2926 sector_t last_block; 2927 #ifdef CONFIG_F2FS_FS_COMPRESSION 2928 struct inode *inode = mapping->host; 2929 struct compress_ctx cc = { 2930 .inode = inode, 2931 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2932 .cluster_size = F2FS_I(inode)->i_cluster_size, 2933 .cluster_idx = NULL_CLUSTER, 2934 .rpages = NULL, 2935 .nr_rpages = 0, 2936 .cpages = NULL, 2937 .rbuf = NULL, 2938 .cbuf = NULL, 2939 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2940 .private = NULL, 2941 }; 2942 #endif 2943 int nr_pages; 2944 pgoff_t index; 2945 pgoff_t end; /* Inclusive */ 2946 pgoff_t done_index; 2947 int range_whole = 0; 2948 xa_mark_t tag; 2949 int nwritten = 0; 2950 int submitted = 0; 2951 int i; 2952 2953 pagevec_init(&pvec); 2954 2955 if (get_dirty_pages(mapping->host) <= 2956 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2957 set_inode_flag(mapping->host, FI_HOT_DATA); 2958 else 2959 clear_inode_flag(mapping->host, FI_HOT_DATA); 2960 2961 if (wbc->range_cyclic) { 2962 index = mapping->writeback_index; /* prev offset */ 2963 end = -1; 2964 } else { 2965 index = wbc->range_start >> PAGE_SHIFT; 2966 end = wbc->range_end >> PAGE_SHIFT; 2967 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2968 range_whole = 1; 2969 } 2970 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2971 tag = PAGECACHE_TAG_TOWRITE; 2972 else 2973 tag = PAGECACHE_TAG_DIRTY; 2974 retry: 2975 retry = 0; 2976 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2977 tag_pages_for_writeback(mapping, index, end); 2978 done_index = index; 2979 while (!done && !retry && (index <= end)) { 2980 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2981 tag); 2982 if (nr_pages == 0) 2983 break; 2984 2985 for (i = 0; i < nr_pages; i++) { 2986 struct page *page = pvec.pages[i]; 2987 bool need_readd; 2988 readd: 2989 need_readd = false; 2990 #ifdef CONFIG_F2FS_FS_COMPRESSION 2991 if (f2fs_compressed_file(inode)) { 2992 ret = f2fs_init_compress_ctx(&cc); 2993 if (ret) { 2994 done = 1; 2995 break; 2996 } 2997 2998 if (!f2fs_cluster_can_merge_page(&cc, 2999 page->index)) { 3000 ret = f2fs_write_multi_pages(&cc, 3001 &submitted, wbc, io_type); 3002 if (!ret) 3003 need_readd = true; 3004 goto result; 3005 } 3006 3007 if (unlikely(f2fs_cp_error(sbi))) 3008 goto lock_page; 3009 3010 if (f2fs_cluster_is_empty(&cc)) { 3011 void *fsdata = NULL; 3012 struct page *pagep; 3013 int ret2; 3014 3015 ret2 = f2fs_prepare_compress_overwrite( 3016 inode, &pagep, 3017 page->index, &fsdata); 3018 if (ret2 < 0) { 3019 ret = ret2; 3020 done = 1; 3021 break; 3022 } else if (ret2 && 3023 !f2fs_compress_write_end(inode, 3024 fsdata, page->index, 3025 1)) { 3026 retry = 1; 3027 break; 3028 } 3029 } else { 3030 goto lock_page; 3031 } 3032 } 3033 #endif 3034 /* give a priority to WB_SYNC threads */ 3035 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3036 wbc->sync_mode == WB_SYNC_NONE) { 3037 done = 1; 3038 break; 3039 } 3040 #ifdef CONFIG_F2FS_FS_COMPRESSION 3041 lock_page: 3042 #endif 3043 done_index = page->index; 3044 retry_write: 3045 lock_page(page); 3046 3047 if (unlikely(page->mapping != mapping)) { 3048 continue_unlock: 3049 unlock_page(page); 3050 continue; 3051 } 3052 3053 if (!PageDirty(page)) { 3054 /* someone wrote it for us */ 3055 goto continue_unlock; 3056 } 3057 3058 if (PageWriteback(page)) { 3059 if (wbc->sync_mode != WB_SYNC_NONE) 3060 f2fs_wait_on_page_writeback(page, 3061 DATA, true, true); 3062 else 3063 goto continue_unlock; 3064 } 3065 3066 if (!clear_page_dirty_for_io(page)) 3067 goto continue_unlock; 3068 3069 #ifdef CONFIG_F2FS_FS_COMPRESSION 3070 if (f2fs_compressed_file(inode)) { 3071 get_page(page); 3072 f2fs_compress_ctx_add_page(&cc, page); 3073 continue; 3074 } 3075 #endif 3076 ret = f2fs_write_single_data_page(page, &submitted, 3077 &bio, &last_block, wbc, io_type, 3078 0, true); 3079 if (ret == AOP_WRITEPAGE_ACTIVATE) 3080 unlock_page(page); 3081 #ifdef CONFIG_F2FS_FS_COMPRESSION 3082 result: 3083 #endif 3084 nwritten += submitted; 3085 wbc->nr_to_write -= submitted; 3086 3087 if (unlikely(ret)) { 3088 /* 3089 * keep nr_to_write, since vfs uses this to 3090 * get # of written pages. 3091 */ 3092 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3093 ret = 0; 3094 goto next; 3095 } else if (ret == -EAGAIN) { 3096 ret = 0; 3097 if (wbc->sync_mode == WB_SYNC_ALL) { 3098 cond_resched(); 3099 congestion_wait(BLK_RW_ASYNC, 3100 DEFAULT_IO_TIMEOUT); 3101 goto retry_write; 3102 } 3103 goto next; 3104 } 3105 done_index = page->index + 1; 3106 done = 1; 3107 break; 3108 } 3109 3110 if (wbc->nr_to_write <= 0 && 3111 wbc->sync_mode == WB_SYNC_NONE) { 3112 done = 1; 3113 break; 3114 } 3115 next: 3116 if (need_readd) 3117 goto readd; 3118 } 3119 pagevec_release(&pvec); 3120 cond_resched(); 3121 } 3122 #ifdef CONFIG_F2FS_FS_COMPRESSION 3123 /* flush remained pages in compress cluster */ 3124 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3125 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3126 nwritten += submitted; 3127 wbc->nr_to_write -= submitted; 3128 if (ret) { 3129 done = 1; 3130 retry = 0; 3131 } 3132 } 3133 if (f2fs_compressed_file(inode)) 3134 f2fs_destroy_compress_ctx(&cc, false); 3135 #endif 3136 if (retry) { 3137 index = 0; 3138 end = -1; 3139 goto retry; 3140 } 3141 if (wbc->range_cyclic && !done) 3142 done_index = 0; 3143 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3144 mapping->writeback_index = done_index; 3145 3146 if (nwritten) 3147 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3148 NULL, 0, DATA); 3149 /* submit cached bio of IPU write */ 3150 if (bio) 3151 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3152 3153 return ret; 3154 } 3155 3156 static inline bool __should_serialize_io(struct inode *inode, 3157 struct writeback_control *wbc) 3158 { 3159 /* to avoid deadlock in path of data flush */ 3160 if (F2FS_I(inode)->cp_task) 3161 return false; 3162 3163 if (!S_ISREG(inode->i_mode)) 3164 return false; 3165 if (IS_NOQUOTA(inode)) 3166 return false; 3167 3168 if (f2fs_need_compress_data(inode)) 3169 return true; 3170 if (wbc->sync_mode != WB_SYNC_ALL) 3171 return true; 3172 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3173 return true; 3174 return false; 3175 } 3176 3177 static int __f2fs_write_data_pages(struct address_space *mapping, 3178 struct writeback_control *wbc, 3179 enum iostat_type io_type) 3180 { 3181 struct inode *inode = mapping->host; 3182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3183 struct blk_plug plug; 3184 int ret; 3185 bool locked = false; 3186 3187 /* deal with chardevs and other special file */ 3188 if (!mapping->a_ops->writepage) 3189 return 0; 3190 3191 /* skip writing if there is no dirty page in this inode */ 3192 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3193 return 0; 3194 3195 /* during POR, we don't need to trigger writepage at all. */ 3196 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3197 goto skip_write; 3198 3199 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3200 wbc->sync_mode == WB_SYNC_NONE && 3201 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3202 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3203 goto skip_write; 3204 3205 /* skip writing during file defragment */ 3206 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 3207 goto skip_write; 3208 3209 trace_f2fs_writepages(mapping->host, wbc, DATA); 3210 3211 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3212 if (wbc->sync_mode == WB_SYNC_ALL) 3213 atomic_inc(&sbi->wb_sync_req[DATA]); 3214 else if (atomic_read(&sbi->wb_sync_req[DATA])) 3215 goto skip_write; 3216 3217 if (__should_serialize_io(inode, wbc)) { 3218 mutex_lock(&sbi->writepages); 3219 locked = true; 3220 } 3221 3222 blk_start_plug(&plug); 3223 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3224 blk_finish_plug(&plug); 3225 3226 if (locked) 3227 mutex_unlock(&sbi->writepages); 3228 3229 if (wbc->sync_mode == WB_SYNC_ALL) 3230 atomic_dec(&sbi->wb_sync_req[DATA]); 3231 /* 3232 * if some pages were truncated, we cannot guarantee its mapping->host 3233 * to detect pending bios. 3234 */ 3235 3236 f2fs_remove_dirty_inode(inode); 3237 return ret; 3238 3239 skip_write: 3240 wbc->pages_skipped += get_dirty_pages(inode); 3241 trace_f2fs_writepages(mapping->host, wbc, DATA); 3242 return 0; 3243 } 3244 3245 static int f2fs_write_data_pages(struct address_space *mapping, 3246 struct writeback_control *wbc) 3247 { 3248 struct inode *inode = mapping->host; 3249 3250 return __f2fs_write_data_pages(mapping, wbc, 3251 F2FS_I(inode)->cp_task == current ? 3252 FS_CP_DATA_IO : FS_DATA_IO); 3253 } 3254 3255 static void f2fs_write_failed(struct inode *inode, loff_t to) 3256 { 3257 loff_t i_size = i_size_read(inode); 3258 3259 if (IS_NOQUOTA(inode)) 3260 return; 3261 3262 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3263 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3264 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3265 filemap_invalidate_lock(inode->i_mapping); 3266 3267 truncate_pagecache(inode, i_size); 3268 f2fs_truncate_blocks(inode, i_size, true); 3269 3270 filemap_invalidate_unlock(inode->i_mapping); 3271 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3272 } 3273 } 3274 3275 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3276 struct page *page, loff_t pos, unsigned len, 3277 block_t *blk_addr, bool *node_changed) 3278 { 3279 struct inode *inode = page->mapping->host; 3280 pgoff_t index = page->index; 3281 struct dnode_of_data dn; 3282 struct page *ipage; 3283 bool locked = false; 3284 struct extent_info ei = {0, }; 3285 int err = 0; 3286 int flag; 3287 3288 /* 3289 * we already allocated all the blocks, so we don't need to get 3290 * the block addresses when there is no need to fill the page. 3291 */ 3292 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 3293 !is_inode_flag_set(inode, FI_NO_PREALLOC) && 3294 !f2fs_verity_in_progress(inode)) 3295 return 0; 3296 3297 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3298 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3299 flag = F2FS_GET_BLOCK_DEFAULT; 3300 else 3301 flag = F2FS_GET_BLOCK_PRE_AIO; 3302 3303 if (f2fs_has_inline_data(inode) || 3304 (pos & PAGE_MASK) >= i_size_read(inode)) { 3305 f2fs_do_map_lock(sbi, flag, true); 3306 locked = true; 3307 } 3308 3309 restart: 3310 /* check inline_data */ 3311 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3312 if (IS_ERR(ipage)) { 3313 err = PTR_ERR(ipage); 3314 goto unlock_out; 3315 } 3316 3317 set_new_dnode(&dn, inode, ipage, ipage, 0); 3318 3319 if (f2fs_has_inline_data(inode)) { 3320 if (pos + len <= MAX_INLINE_DATA(inode)) { 3321 f2fs_do_read_inline_data(page, ipage); 3322 set_inode_flag(inode, FI_DATA_EXIST); 3323 if (inode->i_nlink) 3324 set_page_private_inline(ipage); 3325 } else { 3326 err = f2fs_convert_inline_page(&dn, page); 3327 if (err) 3328 goto out; 3329 if (dn.data_blkaddr == NULL_ADDR) 3330 err = f2fs_get_block(&dn, index); 3331 } 3332 } else if (locked) { 3333 err = f2fs_get_block(&dn, index); 3334 } else { 3335 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3336 dn.data_blkaddr = ei.blk + index - ei.fofs; 3337 } else { 3338 /* hole case */ 3339 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3340 if (err || dn.data_blkaddr == NULL_ADDR) { 3341 f2fs_put_dnode(&dn); 3342 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3343 true); 3344 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3345 locked = true; 3346 goto restart; 3347 } 3348 } 3349 } 3350 3351 /* convert_inline_page can make node_changed */ 3352 *blk_addr = dn.data_blkaddr; 3353 *node_changed = dn.node_changed; 3354 out: 3355 f2fs_put_dnode(&dn); 3356 unlock_out: 3357 if (locked) 3358 f2fs_do_map_lock(sbi, flag, false); 3359 return err; 3360 } 3361 3362 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3363 loff_t pos, unsigned len, unsigned flags, 3364 struct page **pagep, void **fsdata) 3365 { 3366 struct inode *inode = mapping->host; 3367 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3368 struct page *page = NULL; 3369 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3370 bool need_balance = false, drop_atomic = false; 3371 block_t blkaddr = NULL_ADDR; 3372 int err = 0; 3373 3374 trace_f2fs_write_begin(inode, pos, len, flags); 3375 3376 if (!f2fs_is_checkpoint_ready(sbi)) { 3377 err = -ENOSPC; 3378 goto fail; 3379 } 3380 3381 if ((f2fs_is_atomic_file(inode) && 3382 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3383 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3384 err = -ENOMEM; 3385 drop_atomic = true; 3386 goto fail; 3387 } 3388 3389 /* 3390 * We should check this at this moment to avoid deadlock on inode page 3391 * and #0 page. The locking rule for inline_data conversion should be: 3392 * lock_page(page #0) -> lock_page(inode_page) 3393 */ 3394 if (index != 0) { 3395 err = f2fs_convert_inline_inode(inode); 3396 if (err) 3397 goto fail; 3398 } 3399 3400 #ifdef CONFIG_F2FS_FS_COMPRESSION 3401 if (f2fs_compressed_file(inode)) { 3402 int ret; 3403 3404 *fsdata = NULL; 3405 3406 if (len == PAGE_SIZE) 3407 goto repeat; 3408 3409 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3410 index, fsdata); 3411 if (ret < 0) { 3412 err = ret; 3413 goto fail; 3414 } else if (ret) { 3415 return 0; 3416 } 3417 } 3418 #endif 3419 3420 repeat: 3421 /* 3422 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3423 * wait_for_stable_page. Will wait that below with our IO control. 3424 */ 3425 page = f2fs_pagecache_get_page(mapping, index, 3426 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3427 if (!page) { 3428 err = -ENOMEM; 3429 goto fail; 3430 } 3431 3432 /* TODO: cluster can be compressed due to race with .writepage */ 3433 3434 *pagep = page; 3435 3436 err = prepare_write_begin(sbi, page, pos, len, 3437 &blkaddr, &need_balance); 3438 if (err) 3439 goto fail; 3440 3441 if (need_balance && !IS_NOQUOTA(inode) && 3442 has_not_enough_free_secs(sbi, 0, 0)) { 3443 unlock_page(page); 3444 f2fs_balance_fs(sbi, true); 3445 lock_page(page); 3446 if (page->mapping != mapping) { 3447 /* The page got truncated from under us */ 3448 f2fs_put_page(page, 1); 3449 goto repeat; 3450 } 3451 } 3452 3453 f2fs_wait_on_page_writeback(page, DATA, false, true); 3454 3455 if (len == PAGE_SIZE || PageUptodate(page)) 3456 return 0; 3457 3458 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3459 !f2fs_verity_in_progress(inode)) { 3460 zero_user_segment(page, len, PAGE_SIZE); 3461 return 0; 3462 } 3463 3464 if (blkaddr == NEW_ADDR) { 3465 zero_user_segment(page, 0, PAGE_SIZE); 3466 SetPageUptodate(page); 3467 } else { 3468 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3469 DATA_GENERIC_ENHANCE_READ)) { 3470 err = -EFSCORRUPTED; 3471 goto fail; 3472 } 3473 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3474 if (err) 3475 goto fail; 3476 3477 lock_page(page); 3478 if (unlikely(page->mapping != mapping)) { 3479 f2fs_put_page(page, 1); 3480 goto repeat; 3481 } 3482 if (unlikely(!PageUptodate(page))) { 3483 err = -EIO; 3484 goto fail; 3485 } 3486 } 3487 return 0; 3488 3489 fail: 3490 f2fs_put_page(page, 1); 3491 f2fs_write_failed(inode, pos + len); 3492 if (drop_atomic) 3493 f2fs_drop_inmem_pages_all(sbi, false); 3494 return err; 3495 } 3496 3497 static int f2fs_write_end(struct file *file, 3498 struct address_space *mapping, 3499 loff_t pos, unsigned len, unsigned copied, 3500 struct page *page, void *fsdata) 3501 { 3502 struct inode *inode = page->mapping->host; 3503 3504 trace_f2fs_write_end(inode, pos, len, copied); 3505 3506 /* 3507 * This should be come from len == PAGE_SIZE, and we expect copied 3508 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3509 * let generic_perform_write() try to copy data again through copied=0. 3510 */ 3511 if (!PageUptodate(page)) { 3512 if (unlikely(copied != len)) 3513 copied = 0; 3514 else 3515 SetPageUptodate(page); 3516 } 3517 3518 #ifdef CONFIG_F2FS_FS_COMPRESSION 3519 /* overwrite compressed file */ 3520 if (f2fs_compressed_file(inode) && fsdata) { 3521 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3522 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3523 3524 if (pos + copied > i_size_read(inode) && 3525 !f2fs_verity_in_progress(inode)) 3526 f2fs_i_size_write(inode, pos + copied); 3527 return copied; 3528 } 3529 #endif 3530 3531 if (!copied) 3532 goto unlock_out; 3533 3534 set_page_dirty(page); 3535 3536 if (pos + copied > i_size_read(inode) && 3537 !f2fs_verity_in_progress(inode)) 3538 f2fs_i_size_write(inode, pos + copied); 3539 unlock_out: 3540 f2fs_put_page(page, 1); 3541 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3542 return copied; 3543 } 3544 3545 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 3546 loff_t offset) 3547 { 3548 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 3549 unsigned blkbits = i_blkbits; 3550 unsigned blocksize_mask = (1 << blkbits) - 1; 3551 unsigned long align = offset | iov_iter_alignment(iter); 3552 struct block_device *bdev = inode->i_sb->s_bdev; 3553 3554 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode)) 3555 return 1; 3556 3557 if (align & blocksize_mask) { 3558 if (bdev) 3559 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 3560 blocksize_mask = (1 << blkbits) - 1; 3561 if (align & blocksize_mask) 3562 return -EINVAL; 3563 return 1; 3564 } 3565 return 0; 3566 } 3567 3568 static void f2fs_dio_end_io(struct bio *bio) 3569 { 3570 struct f2fs_private_dio *dio = bio->bi_private; 3571 3572 dec_page_count(F2FS_I_SB(dio->inode), 3573 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3574 3575 bio->bi_private = dio->orig_private; 3576 bio->bi_end_io = dio->orig_end_io; 3577 3578 kfree(dio); 3579 3580 bio_endio(bio); 3581 } 3582 3583 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 3584 loff_t file_offset) 3585 { 3586 struct f2fs_private_dio *dio; 3587 bool write = (bio_op(bio) == REQ_OP_WRITE); 3588 3589 dio = f2fs_kzalloc(F2FS_I_SB(inode), 3590 sizeof(struct f2fs_private_dio), GFP_NOFS); 3591 if (!dio) 3592 goto out; 3593 3594 dio->inode = inode; 3595 dio->orig_end_io = bio->bi_end_io; 3596 dio->orig_private = bio->bi_private; 3597 dio->write = write; 3598 3599 bio->bi_end_io = f2fs_dio_end_io; 3600 bio->bi_private = dio; 3601 3602 inc_page_count(F2FS_I_SB(inode), 3603 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 3604 3605 submit_bio(bio); 3606 return; 3607 out: 3608 bio->bi_status = BLK_STS_IOERR; 3609 bio_endio(bio); 3610 } 3611 3612 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3613 { 3614 struct address_space *mapping = iocb->ki_filp->f_mapping; 3615 struct inode *inode = mapping->host; 3616 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3617 struct f2fs_inode_info *fi = F2FS_I(inode); 3618 size_t count = iov_iter_count(iter); 3619 loff_t offset = iocb->ki_pos; 3620 int rw = iov_iter_rw(iter); 3621 int err; 3622 enum rw_hint hint = iocb->ki_hint; 3623 int whint_mode = F2FS_OPTION(sbi).whint_mode; 3624 bool do_opu; 3625 3626 err = check_direct_IO(inode, iter, offset); 3627 if (err) 3628 return err < 0 ? err : 0; 3629 3630 if (f2fs_force_buffered_io(inode, iocb, iter)) 3631 return 0; 3632 3633 do_opu = rw == WRITE && f2fs_lfs_mode(sbi); 3634 3635 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 3636 3637 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 3638 iocb->ki_hint = WRITE_LIFE_NOT_SET; 3639 3640 if (iocb->ki_flags & IOCB_NOWAIT) { 3641 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 3642 iocb->ki_hint = hint; 3643 err = -EAGAIN; 3644 goto out; 3645 } 3646 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 3647 up_read(&fi->i_gc_rwsem[rw]); 3648 iocb->ki_hint = hint; 3649 err = -EAGAIN; 3650 goto out; 3651 } 3652 } else { 3653 down_read(&fi->i_gc_rwsem[rw]); 3654 if (do_opu) 3655 down_read(&fi->i_gc_rwsem[READ]); 3656 } 3657 3658 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3659 iter, rw == WRITE ? get_data_block_dio_write : 3660 get_data_block_dio, NULL, f2fs_dio_submit_bio, 3661 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES : 3662 DIO_SKIP_HOLES); 3663 3664 if (do_opu) 3665 up_read(&fi->i_gc_rwsem[READ]); 3666 3667 up_read(&fi->i_gc_rwsem[rw]); 3668 3669 if (rw == WRITE) { 3670 if (whint_mode == WHINT_MODE_OFF) 3671 iocb->ki_hint = hint; 3672 if (err > 0) { 3673 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3674 err); 3675 if (!do_opu) 3676 set_inode_flag(inode, FI_UPDATE_WRITE); 3677 } else if (err == -EIOCBQUEUED) { 3678 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 3679 count - iov_iter_count(iter)); 3680 } else if (err < 0) { 3681 f2fs_write_failed(inode, offset + count); 3682 } 3683 } else { 3684 if (err > 0) 3685 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err); 3686 else if (err == -EIOCBQUEUED) 3687 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO, 3688 count - iov_iter_count(iter)); 3689 } 3690 3691 out: 3692 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 3693 3694 return err; 3695 } 3696 3697 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3698 unsigned int length) 3699 { 3700 struct inode *inode = page->mapping->host; 3701 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3702 3703 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3704 (offset % PAGE_SIZE || length != PAGE_SIZE)) 3705 return; 3706 3707 if (PageDirty(page)) { 3708 if (inode->i_ino == F2FS_META_INO(sbi)) { 3709 dec_page_count(sbi, F2FS_DIRTY_META); 3710 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3711 dec_page_count(sbi, F2FS_DIRTY_NODES); 3712 } else { 3713 inode_dec_dirty_pages(inode); 3714 f2fs_remove_dirty_inode(inode); 3715 } 3716 } 3717 3718 clear_page_private_gcing(page); 3719 3720 if (test_opt(sbi, COMPRESS_CACHE)) { 3721 if (f2fs_compressed_file(inode)) 3722 f2fs_invalidate_compress_pages(sbi, inode->i_ino); 3723 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3724 clear_page_private_data(page); 3725 } 3726 3727 if (page_private_atomic(page)) 3728 return f2fs_drop_inmem_page(inode, page); 3729 3730 detach_page_private(page); 3731 set_page_private(page, 0); 3732 } 3733 3734 int f2fs_release_page(struct page *page, gfp_t wait) 3735 { 3736 /* If this is dirty page, keep PagePrivate */ 3737 if (PageDirty(page)) 3738 return 0; 3739 3740 /* This is atomic written page, keep Private */ 3741 if (page_private_atomic(page)) 3742 return 0; 3743 3744 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3745 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3746 struct inode *inode = page->mapping->host; 3747 3748 if (f2fs_compressed_file(inode)) 3749 f2fs_invalidate_compress_pages(sbi, inode->i_ino); 3750 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3751 clear_page_private_data(page); 3752 } 3753 3754 clear_page_private_gcing(page); 3755 3756 detach_page_private(page); 3757 set_page_private(page, 0); 3758 return 1; 3759 } 3760 3761 static int f2fs_set_data_page_dirty(struct page *page) 3762 { 3763 struct inode *inode = page_file_mapping(page)->host; 3764 3765 trace_f2fs_set_page_dirty(page, DATA); 3766 3767 if (!PageUptodate(page)) 3768 SetPageUptodate(page); 3769 if (PageSwapCache(page)) 3770 return __set_page_dirty_nobuffers(page); 3771 3772 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3773 if (!page_private_atomic(page)) { 3774 f2fs_register_inmem_page(inode, page); 3775 return 1; 3776 } 3777 /* 3778 * Previously, this page has been registered, we just 3779 * return here. 3780 */ 3781 return 0; 3782 } 3783 3784 if (!PageDirty(page)) { 3785 __set_page_dirty_nobuffers(page); 3786 f2fs_update_dirty_page(inode, page); 3787 return 1; 3788 } 3789 return 0; 3790 } 3791 3792 3793 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3794 { 3795 #ifdef CONFIG_F2FS_FS_COMPRESSION 3796 struct dnode_of_data dn; 3797 sector_t start_idx, blknr = 0; 3798 int ret; 3799 3800 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3801 3802 set_new_dnode(&dn, inode, NULL, NULL, 0); 3803 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3804 if (ret) 3805 return 0; 3806 3807 if (dn.data_blkaddr != COMPRESS_ADDR) { 3808 dn.ofs_in_node += block - start_idx; 3809 blknr = f2fs_data_blkaddr(&dn); 3810 if (!__is_valid_data_blkaddr(blknr)) 3811 blknr = 0; 3812 } 3813 3814 f2fs_put_dnode(&dn); 3815 return blknr; 3816 #else 3817 return 0; 3818 #endif 3819 } 3820 3821 3822 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3823 { 3824 struct inode *inode = mapping->host; 3825 sector_t blknr = 0; 3826 3827 if (f2fs_has_inline_data(inode)) 3828 goto out; 3829 3830 /* make sure allocating whole blocks */ 3831 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3832 filemap_write_and_wait(mapping); 3833 3834 /* Block number less than F2FS MAX BLOCKS */ 3835 if (unlikely(block >= max_file_blocks(inode))) 3836 goto out; 3837 3838 if (f2fs_compressed_file(inode)) { 3839 blknr = f2fs_bmap_compress(inode, block); 3840 } else { 3841 struct f2fs_map_blocks map; 3842 3843 memset(&map, 0, sizeof(map)); 3844 map.m_lblk = block; 3845 map.m_len = 1; 3846 map.m_next_pgofs = NULL; 3847 map.m_seg_type = NO_CHECK_TYPE; 3848 3849 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3850 blknr = map.m_pblk; 3851 } 3852 out: 3853 trace_f2fs_bmap(inode, block, blknr); 3854 return blknr; 3855 } 3856 3857 #ifdef CONFIG_MIGRATION 3858 #include <linux/migrate.h> 3859 3860 int f2fs_migrate_page(struct address_space *mapping, 3861 struct page *newpage, struct page *page, enum migrate_mode mode) 3862 { 3863 int rc, extra_count; 3864 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3865 bool atomic_written = page_private_atomic(page); 3866 3867 BUG_ON(PageWriteback(page)); 3868 3869 /* migrating an atomic written page is safe with the inmem_lock hold */ 3870 if (atomic_written) { 3871 if (mode != MIGRATE_SYNC) 3872 return -EBUSY; 3873 if (!mutex_trylock(&fi->inmem_lock)) 3874 return -EAGAIN; 3875 } 3876 3877 /* one extra reference was held for atomic_write page */ 3878 extra_count = atomic_written ? 1 : 0; 3879 rc = migrate_page_move_mapping(mapping, newpage, 3880 page, extra_count); 3881 if (rc != MIGRATEPAGE_SUCCESS) { 3882 if (atomic_written) 3883 mutex_unlock(&fi->inmem_lock); 3884 return rc; 3885 } 3886 3887 if (atomic_written) { 3888 struct inmem_pages *cur; 3889 3890 list_for_each_entry(cur, &fi->inmem_pages, list) 3891 if (cur->page == page) { 3892 cur->page = newpage; 3893 break; 3894 } 3895 mutex_unlock(&fi->inmem_lock); 3896 put_page(page); 3897 get_page(newpage); 3898 } 3899 3900 /* guarantee to start from no stale private field */ 3901 set_page_private(newpage, 0); 3902 if (PagePrivate(page)) { 3903 set_page_private(newpage, page_private(page)); 3904 SetPagePrivate(newpage); 3905 get_page(newpage); 3906 3907 set_page_private(page, 0); 3908 ClearPagePrivate(page); 3909 put_page(page); 3910 } 3911 3912 if (mode != MIGRATE_SYNC_NO_COPY) 3913 migrate_page_copy(newpage, page); 3914 else 3915 migrate_page_states(newpage, page); 3916 3917 return MIGRATEPAGE_SUCCESS; 3918 } 3919 #endif 3920 3921 #ifdef CONFIG_SWAP 3922 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3923 unsigned int blkcnt) 3924 { 3925 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3926 unsigned int blkofs; 3927 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3928 unsigned int secidx = start_blk / blk_per_sec; 3929 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3930 int ret = 0; 3931 3932 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3933 filemap_invalidate_lock(inode->i_mapping); 3934 3935 set_inode_flag(inode, FI_ALIGNED_WRITE); 3936 3937 for (; secidx < end_sec; secidx++) { 3938 down_write(&sbi->pin_sem); 3939 3940 f2fs_lock_op(sbi); 3941 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3942 f2fs_unlock_op(sbi); 3943 3944 set_inode_flag(inode, FI_DO_DEFRAG); 3945 3946 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3947 struct page *page; 3948 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3949 3950 page = f2fs_get_lock_data_page(inode, blkidx, true); 3951 if (IS_ERR(page)) { 3952 up_write(&sbi->pin_sem); 3953 ret = PTR_ERR(page); 3954 goto done; 3955 } 3956 3957 set_page_dirty(page); 3958 f2fs_put_page(page, 1); 3959 } 3960 3961 clear_inode_flag(inode, FI_DO_DEFRAG); 3962 3963 ret = filemap_fdatawrite(inode->i_mapping); 3964 3965 up_write(&sbi->pin_sem); 3966 3967 if (ret) 3968 break; 3969 } 3970 3971 done: 3972 clear_inode_flag(inode, FI_DO_DEFRAG); 3973 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3974 3975 filemap_invalidate_unlock(inode->i_mapping); 3976 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3977 3978 return ret; 3979 } 3980 3981 static int check_swap_activate(struct swap_info_struct *sis, 3982 struct file *swap_file, sector_t *span) 3983 { 3984 struct address_space *mapping = swap_file->f_mapping; 3985 struct inode *inode = mapping->host; 3986 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3987 sector_t cur_lblock; 3988 sector_t last_lblock; 3989 sector_t pblock; 3990 sector_t lowest_pblock = -1; 3991 sector_t highest_pblock = 0; 3992 int nr_extents = 0; 3993 unsigned long nr_pblocks; 3994 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3995 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3996 unsigned int not_aligned = 0; 3997 int ret = 0; 3998 3999 /* 4000 * Map all the blocks into the extent list. This code doesn't try 4001 * to be very smart. 4002 */ 4003 cur_lblock = 0; 4004 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 4005 4006 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 4007 struct f2fs_map_blocks map; 4008 retry: 4009 cond_resched(); 4010 4011 memset(&map, 0, sizeof(map)); 4012 map.m_lblk = cur_lblock; 4013 map.m_len = last_lblock - cur_lblock; 4014 map.m_next_pgofs = NULL; 4015 map.m_next_extent = NULL; 4016 map.m_seg_type = NO_CHECK_TYPE; 4017 map.m_may_create = false; 4018 4019 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 4020 if (ret) 4021 goto out; 4022 4023 /* hole */ 4024 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 4025 f2fs_err(sbi, "Swapfile has holes"); 4026 ret = -EINVAL; 4027 goto out; 4028 } 4029 4030 pblock = map.m_pblk; 4031 nr_pblocks = map.m_len; 4032 4033 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 4034 nr_pblocks & sec_blks_mask) { 4035 not_aligned++; 4036 4037 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 4038 if (cur_lblock + nr_pblocks > sis->max) 4039 nr_pblocks -= blks_per_sec; 4040 4041 if (!nr_pblocks) { 4042 /* this extent is last one */ 4043 nr_pblocks = map.m_len; 4044 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 4045 goto next; 4046 } 4047 4048 ret = f2fs_migrate_blocks(inode, cur_lblock, 4049 nr_pblocks); 4050 if (ret) 4051 goto out; 4052 goto retry; 4053 } 4054 next: 4055 if (cur_lblock + nr_pblocks >= sis->max) 4056 nr_pblocks = sis->max - cur_lblock; 4057 4058 if (cur_lblock) { /* exclude the header page */ 4059 if (pblock < lowest_pblock) 4060 lowest_pblock = pblock; 4061 if (pblock + nr_pblocks - 1 > highest_pblock) 4062 highest_pblock = pblock + nr_pblocks - 1; 4063 } 4064 4065 /* 4066 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4067 */ 4068 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4069 if (ret < 0) 4070 goto out; 4071 nr_extents += ret; 4072 cur_lblock += nr_pblocks; 4073 } 4074 ret = nr_extents; 4075 *span = 1 + highest_pblock - lowest_pblock; 4076 if (cur_lblock == 0) 4077 cur_lblock = 1; /* force Empty message */ 4078 sis->max = cur_lblock; 4079 sis->pages = cur_lblock - 1; 4080 sis->highest_bit = cur_lblock - 1; 4081 out: 4082 if (not_aligned) 4083 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 4084 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4085 return ret; 4086 } 4087 4088 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4089 sector_t *span) 4090 { 4091 struct inode *inode = file_inode(file); 4092 int ret; 4093 4094 if (!S_ISREG(inode->i_mode)) 4095 return -EINVAL; 4096 4097 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4098 return -EROFS; 4099 4100 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 4101 f2fs_err(F2FS_I_SB(inode), 4102 "Swapfile not supported in LFS mode"); 4103 return -EINVAL; 4104 } 4105 4106 ret = f2fs_convert_inline_inode(inode); 4107 if (ret) 4108 return ret; 4109 4110 if (!f2fs_disable_compressed_file(inode)) 4111 return -EINVAL; 4112 4113 f2fs_precache_extents(inode); 4114 4115 ret = check_swap_activate(sis, file, span); 4116 if (ret < 0) 4117 return ret; 4118 4119 set_inode_flag(inode, FI_PIN_FILE); 4120 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4121 return ret; 4122 } 4123 4124 static void f2fs_swap_deactivate(struct file *file) 4125 { 4126 struct inode *inode = file_inode(file); 4127 4128 clear_inode_flag(inode, FI_PIN_FILE); 4129 } 4130 #else 4131 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4132 sector_t *span) 4133 { 4134 return -EOPNOTSUPP; 4135 } 4136 4137 static void f2fs_swap_deactivate(struct file *file) 4138 { 4139 } 4140 #endif 4141 4142 const struct address_space_operations f2fs_dblock_aops = { 4143 .readpage = f2fs_read_data_page, 4144 .readahead = f2fs_readahead, 4145 .writepage = f2fs_write_data_page, 4146 .writepages = f2fs_write_data_pages, 4147 .write_begin = f2fs_write_begin, 4148 .write_end = f2fs_write_end, 4149 .set_page_dirty = f2fs_set_data_page_dirty, 4150 .invalidatepage = f2fs_invalidate_page, 4151 .releasepage = f2fs_release_page, 4152 .direct_IO = f2fs_direct_IO, 4153 .bmap = f2fs_bmap, 4154 .swap_activate = f2fs_swap_activate, 4155 .swap_deactivate = f2fs_swap_deactivate, 4156 #ifdef CONFIG_MIGRATION 4157 .migratepage = f2fs_migrate_page, 4158 #endif 4159 }; 4160 4161 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4162 { 4163 struct address_space *mapping = page_mapping(page); 4164 unsigned long flags; 4165 4166 xa_lock_irqsave(&mapping->i_pages, flags); 4167 __xa_clear_mark(&mapping->i_pages, page_index(page), 4168 PAGECACHE_TAG_DIRTY); 4169 xa_unlock_irqrestore(&mapping->i_pages, flags); 4170 } 4171 4172 int __init f2fs_init_post_read_processing(void) 4173 { 4174 bio_post_read_ctx_cache = 4175 kmem_cache_create("f2fs_bio_post_read_ctx", 4176 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4177 if (!bio_post_read_ctx_cache) 4178 goto fail; 4179 bio_post_read_ctx_pool = 4180 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4181 bio_post_read_ctx_cache); 4182 if (!bio_post_read_ctx_pool) 4183 goto fail_free_cache; 4184 return 0; 4185 4186 fail_free_cache: 4187 kmem_cache_destroy(bio_post_read_ctx_cache); 4188 fail: 4189 return -ENOMEM; 4190 } 4191 4192 void f2fs_destroy_post_read_processing(void) 4193 { 4194 mempool_destroy(bio_post_read_ctx_pool); 4195 kmem_cache_destroy(bio_post_read_ctx_cache); 4196 } 4197 4198 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4199 { 4200 if (!f2fs_sb_has_encrypt(sbi) && 4201 !f2fs_sb_has_verity(sbi) && 4202 !f2fs_sb_has_compression(sbi)) 4203 return 0; 4204 4205 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4206 WQ_UNBOUND | WQ_HIGHPRI, 4207 num_online_cpus()); 4208 if (!sbi->post_read_wq) 4209 return -ENOMEM; 4210 return 0; 4211 } 4212 4213 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4214 { 4215 if (sbi->post_read_wq) 4216 destroy_workqueue(sbi->post_read_wq); 4217 } 4218 4219 int __init f2fs_init_bio_entry_cache(void) 4220 { 4221 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4222 sizeof(struct bio_entry)); 4223 if (!bio_entry_slab) 4224 return -ENOMEM; 4225 return 0; 4226 } 4227 4228 void f2fs_destroy_bio_entry_cache(void) 4229 { 4230 kmem_cache_destroy(bio_entry_slab); 4231 } 4232