1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/prefetch.h> 18 #include <linux/uio.h> 19 #include <linux/cleancache.h> 20 #include <linux/sched/signal.h> 21 22 #include "f2fs.h" 23 #include "node.h" 24 #include "segment.h" 25 #include "trace.h" 26 #include <trace/events/f2fs.h> 27 28 #define NUM_PREALLOC_POST_READ_CTXS 128 29 30 static struct kmem_cache *bio_post_read_ctx_cache; 31 static mempool_t *bio_post_read_ctx_pool; 32 33 static bool __is_cp_guaranteed(struct page *page) 34 { 35 struct address_space *mapping = page->mapping; 36 struct inode *inode; 37 struct f2fs_sb_info *sbi; 38 39 if (!mapping) 40 return false; 41 42 inode = mapping->host; 43 sbi = F2FS_I_SB(inode); 44 45 if (inode->i_ino == F2FS_META_INO(sbi) || 46 inode->i_ino == F2FS_NODE_INO(sbi) || 47 S_ISDIR(inode->i_mode) || 48 (S_ISREG(inode->i_mode) && 49 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 50 is_cold_data(page)) 51 return true; 52 return false; 53 } 54 55 static enum count_type __read_io_type(struct page *page) 56 { 57 struct address_space *mapping = page->mapping; 58 59 if (mapping) { 60 struct inode *inode = mapping->host; 61 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi)) 64 return F2FS_RD_META; 65 66 if (inode->i_ino == F2FS_NODE_INO(sbi)) 67 return F2FS_RD_NODE; 68 } 69 return F2FS_RD_DATA; 70 } 71 72 /* postprocessing steps for read bios */ 73 enum bio_post_read_step { 74 STEP_INITIAL = 0, 75 STEP_DECRYPT, 76 }; 77 78 struct bio_post_read_ctx { 79 struct bio *bio; 80 struct work_struct work; 81 unsigned int cur_step; 82 unsigned int enabled_steps; 83 }; 84 85 static void __read_end_io(struct bio *bio) 86 { 87 struct page *page; 88 struct bio_vec *bv; 89 int i; 90 91 bio_for_each_segment_all(bv, bio, i) { 92 page = bv->bv_page; 93 94 /* PG_error was set if any post_read step failed */ 95 if (bio->bi_status || PageError(page)) { 96 ClearPageUptodate(page); 97 /* will re-read again later */ 98 ClearPageError(page); 99 } else { 100 SetPageUptodate(page); 101 } 102 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 103 unlock_page(page); 104 } 105 if (bio->bi_private) 106 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 107 bio_put(bio); 108 } 109 110 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 111 112 static void decrypt_work(struct work_struct *work) 113 { 114 struct bio_post_read_ctx *ctx = 115 container_of(work, struct bio_post_read_ctx, work); 116 117 fscrypt_decrypt_bio(ctx->bio); 118 119 bio_post_read_processing(ctx); 120 } 121 122 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 123 { 124 switch (++ctx->cur_step) { 125 case STEP_DECRYPT: 126 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { 127 INIT_WORK(&ctx->work, decrypt_work); 128 fscrypt_enqueue_decrypt_work(&ctx->work); 129 return; 130 } 131 ctx->cur_step++; 132 /* fall-through */ 133 default: 134 __read_end_io(ctx->bio); 135 } 136 } 137 138 static bool f2fs_bio_post_read_required(struct bio *bio) 139 { 140 return bio->bi_private && !bio->bi_status; 141 } 142 143 static void f2fs_read_end_io(struct bio *bio) 144 { 145 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), 146 FAULT_READ_IO)) { 147 f2fs_show_injection_info(FAULT_READ_IO); 148 bio->bi_status = BLK_STS_IOERR; 149 } 150 151 if (f2fs_bio_post_read_required(bio)) { 152 struct bio_post_read_ctx *ctx = bio->bi_private; 153 154 ctx->cur_step = STEP_INITIAL; 155 bio_post_read_processing(ctx); 156 return; 157 } 158 159 __read_end_io(bio); 160 } 161 162 static void f2fs_write_end_io(struct bio *bio) 163 { 164 struct f2fs_sb_info *sbi = bio->bi_private; 165 struct bio_vec *bvec; 166 int i; 167 168 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 169 f2fs_show_injection_info(FAULT_WRITE_IO); 170 bio->bi_status = BLK_STS_IOERR; 171 } 172 173 bio_for_each_segment_all(bvec, bio, i) { 174 struct page *page = bvec->bv_page; 175 enum count_type type = WB_DATA_TYPE(page); 176 177 if (IS_DUMMY_WRITTEN_PAGE(page)) { 178 set_page_private(page, (unsigned long)NULL); 179 ClearPagePrivate(page); 180 unlock_page(page); 181 mempool_free(page, sbi->write_io_dummy); 182 183 if (unlikely(bio->bi_status)) 184 f2fs_stop_checkpoint(sbi, true); 185 continue; 186 } 187 188 fscrypt_pullback_bio_page(&page, true); 189 190 if (unlikely(bio->bi_status)) { 191 mapping_set_error(page->mapping, -EIO); 192 if (type == F2FS_WB_CP_DATA) 193 f2fs_stop_checkpoint(sbi, true); 194 } 195 196 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 197 page->index != nid_of_node(page)); 198 199 dec_page_count(sbi, type); 200 if (f2fs_in_warm_node_list(sbi, page)) 201 f2fs_del_fsync_node_entry(sbi, page); 202 clear_cold_data(page); 203 end_page_writeback(page); 204 } 205 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 206 wq_has_sleeper(&sbi->cp_wait)) 207 wake_up(&sbi->cp_wait); 208 209 bio_put(bio); 210 } 211 212 /* 213 * Return true, if pre_bio's bdev is same as its target device. 214 */ 215 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 216 block_t blk_addr, struct bio *bio) 217 { 218 struct block_device *bdev = sbi->sb->s_bdev; 219 int i; 220 221 for (i = 0; i < sbi->s_ndevs; i++) { 222 if (FDEV(i).start_blk <= blk_addr && 223 FDEV(i).end_blk >= blk_addr) { 224 blk_addr -= FDEV(i).start_blk; 225 bdev = FDEV(i).bdev; 226 break; 227 } 228 } 229 if (bio) { 230 bio_set_dev(bio, bdev); 231 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 232 } 233 return bdev; 234 } 235 236 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 237 { 238 int i; 239 240 for (i = 0; i < sbi->s_ndevs; i++) 241 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 242 return i; 243 return 0; 244 } 245 246 static bool __same_bdev(struct f2fs_sb_info *sbi, 247 block_t blk_addr, struct bio *bio) 248 { 249 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 250 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 251 } 252 253 /* 254 * Low-level block read/write IO operations. 255 */ 256 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 257 struct writeback_control *wbc, 258 int npages, bool is_read, 259 enum page_type type, enum temp_type temp) 260 { 261 struct bio *bio; 262 263 bio = f2fs_bio_alloc(sbi, npages, true); 264 265 f2fs_target_device(sbi, blk_addr, bio); 266 if (is_read) { 267 bio->bi_end_io = f2fs_read_end_io; 268 bio->bi_private = NULL; 269 } else { 270 bio->bi_end_io = f2fs_write_end_io; 271 bio->bi_private = sbi; 272 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp); 273 } 274 if (wbc) 275 wbc_init_bio(wbc, bio); 276 277 return bio; 278 } 279 280 static inline void __submit_bio(struct f2fs_sb_info *sbi, 281 struct bio *bio, enum page_type type) 282 { 283 if (!is_read_io(bio_op(bio))) { 284 unsigned int start; 285 286 if (type != DATA && type != NODE) 287 goto submit_io; 288 289 if (test_opt(sbi, LFS) && current->plug) 290 blk_finish_plug(current->plug); 291 292 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 293 start %= F2FS_IO_SIZE(sbi); 294 295 if (start == 0) 296 goto submit_io; 297 298 /* fill dummy pages */ 299 for (; start < F2FS_IO_SIZE(sbi); start++) { 300 struct page *page = 301 mempool_alloc(sbi->write_io_dummy, 302 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL); 303 f2fs_bug_on(sbi, !page); 304 305 SetPagePrivate(page); 306 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 307 lock_page(page); 308 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 309 f2fs_bug_on(sbi, 1); 310 } 311 /* 312 * In the NODE case, we lose next block address chain. So, we 313 * need to do checkpoint in f2fs_sync_file. 314 */ 315 if (type == NODE) 316 set_sbi_flag(sbi, SBI_NEED_CP); 317 } 318 submit_io: 319 if (is_read_io(bio_op(bio))) 320 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 321 else 322 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 323 submit_bio(bio); 324 } 325 326 static void __submit_merged_bio(struct f2fs_bio_info *io) 327 { 328 struct f2fs_io_info *fio = &io->fio; 329 330 if (!io->bio) 331 return; 332 333 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 334 335 if (is_read_io(fio->op)) 336 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 337 else 338 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 339 340 __submit_bio(io->sbi, io->bio, fio->type); 341 io->bio = NULL; 342 } 343 344 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 345 struct page *page, nid_t ino) 346 { 347 struct bio_vec *bvec; 348 struct page *target; 349 int i; 350 351 if (!io->bio) 352 return false; 353 354 if (!inode && !page && !ino) 355 return true; 356 357 bio_for_each_segment_all(bvec, io->bio, i) { 358 359 if (bvec->bv_page->mapping) 360 target = bvec->bv_page; 361 else 362 target = fscrypt_control_page(bvec->bv_page); 363 364 if (inode && inode == target->mapping->host) 365 return true; 366 if (page && page == target) 367 return true; 368 if (ino && ino == ino_of_node(target)) 369 return true; 370 } 371 372 return false; 373 } 374 375 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 376 enum page_type type, enum temp_type temp) 377 { 378 enum page_type btype = PAGE_TYPE_OF_BIO(type); 379 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 380 381 down_write(&io->io_rwsem); 382 383 /* change META to META_FLUSH in the checkpoint procedure */ 384 if (type >= META_FLUSH) { 385 io->fio.type = META_FLUSH; 386 io->fio.op = REQ_OP_WRITE; 387 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 388 if (!test_opt(sbi, NOBARRIER)) 389 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 390 } 391 __submit_merged_bio(io); 392 up_write(&io->io_rwsem); 393 } 394 395 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 396 struct inode *inode, struct page *page, 397 nid_t ino, enum page_type type, bool force) 398 { 399 enum temp_type temp; 400 bool ret = true; 401 402 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 403 if (!force) { 404 enum page_type btype = PAGE_TYPE_OF_BIO(type); 405 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 406 407 down_read(&io->io_rwsem); 408 ret = __has_merged_page(io, inode, page, ino); 409 up_read(&io->io_rwsem); 410 } 411 if (ret) 412 __f2fs_submit_merged_write(sbi, type, temp); 413 414 /* TODO: use HOT temp only for meta pages now. */ 415 if (type >= META) 416 break; 417 } 418 } 419 420 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 421 { 422 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true); 423 } 424 425 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 426 struct inode *inode, struct page *page, 427 nid_t ino, enum page_type type) 428 { 429 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 430 } 431 432 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 433 { 434 f2fs_submit_merged_write(sbi, DATA); 435 f2fs_submit_merged_write(sbi, NODE); 436 f2fs_submit_merged_write(sbi, META); 437 } 438 439 /* 440 * Fill the locked page with data located in the block address. 441 * A caller needs to unlock the page on failure. 442 */ 443 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 444 { 445 struct bio *bio; 446 struct page *page = fio->encrypted_page ? 447 fio->encrypted_page : fio->page; 448 449 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 450 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 451 return -EFAULT; 452 453 trace_f2fs_submit_page_bio(page, fio); 454 f2fs_trace_ios(fio, 0); 455 456 /* Allocate a new bio */ 457 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 458 1, is_read_io(fio->op), fio->type, fio->temp); 459 460 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 461 bio_put(bio); 462 return -EFAULT; 463 } 464 465 if (fio->io_wbc && !is_read_io(fio->op)) 466 wbc_account_io(fio->io_wbc, page, PAGE_SIZE); 467 468 bio_set_op_attrs(bio, fio->op, fio->op_flags); 469 470 inc_page_count(fio->sbi, is_read_io(fio->op) ? 471 __read_io_type(page): WB_DATA_TYPE(fio->page)); 472 473 __submit_bio(fio->sbi, bio, fio->type); 474 return 0; 475 } 476 477 void f2fs_submit_page_write(struct f2fs_io_info *fio) 478 { 479 struct f2fs_sb_info *sbi = fio->sbi; 480 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 481 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 482 struct page *bio_page; 483 484 f2fs_bug_on(sbi, is_read_io(fio->op)); 485 486 down_write(&io->io_rwsem); 487 next: 488 if (fio->in_list) { 489 spin_lock(&io->io_lock); 490 if (list_empty(&io->io_list)) { 491 spin_unlock(&io->io_lock); 492 goto out; 493 } 494 fio = list_first_entry(&io->io_list, 495 struct f2fs_io_info, list); 496 list_del(&fio->list); 497 spin_unlock(&io->io_lock); 498 } 499 500 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 501 verify_block_addr(fio, fio->old_blkaddr); 502 verify_block_addr(fio, fio->new_blkaddr); 503 504 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 505 506 /* set submitted = true as a return value */ 507 fio->submitted = true; 508 509 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 510 511 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 512 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 513 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 514 __submit_merged_bio(io); 515 alloc_new: 516 if (io->bio == NULL) { 517 if ((fio->type == DATA || fio->type == NODE) && 518 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 519 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 520 fio->retry = true; 521 goto skip; 522 } 523 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 524 BIO_MAX_PAGES, false, 525 fio->type, fio->temp); 526 io->fio = *fio; 527 } 528 529 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 530 __submit_merged_bio(io); 531 goto alloc_new; 532 } 533 534 if (fio->io_wbc) 535 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE); 536 537 io->last_block_in_bio = fio->new_blkaddr; 538 f2fs_trace_ios(fio, 0); 539 540 trace_f2fs_submit_page_write(fio->page, fio); 541 skip: 542 if (fio->in_list) 543 goto next; 544 out: 545 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 546 f2fs_is_checkpoint_ready(sbi)) 547 __submit_merged_bio(io); 548 up_write(&io->io_rwsem); 549 } 550 551 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 552 unsigned nr_pages, unsigned op_flag) 553 { 554 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 555 struct bio *bio; 556 struct bio_post_read_ctx *ctx; 557 unsigned int post_read_steps = 0; 558 559 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) 560 return ERR_PTR(-EFAULT); 561 562 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 563 if (!bio) 564 return ERR_PTR(-ENOMEM); 565 f2fs_target_device(sbi, blkaddr, bio); 566 bio->bi_end_io = f2fs_read_end_io; 567 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 568 569 if (f2fs_encrypted_file(inode)) 570 post_read_steps |= 1 << STEP_DECRYPT; 571 if (post_read_steps) { 572 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 573 if (!ctx) { 574 bio_put(bio); 575 return ERR_PTR(-ENOMEM); 576 } 577 ctx->bio = bio; 578 ctx->enabled_steps = post_read_steps; 579 bio->bi_private = ctx; 580 } 581 582 return bio; 583 } 584 585 /* This can handle encryption stuffs */ 586 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 587 block_t blkaddr) 588 { 589 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0); 590 591 if (IS_ERR(bio)) 592 return PTR_ERR(bio); 593 594 /* wait for GCed page writeback via META_MAPPING */ 595 f2fs_wait_on_block_writeback(inode, blkaddr); 596 597 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 598 bio_put(bio); 599 return -EFAULT; 600 } 601 ClearPageError(page); 602 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 603 __submit_bio(F2FS_I_SB(inode), bio, DATA); 604 return 0; 605 } 606 607 static void __set_data_blkaddr(struct dnode_of_data *dn) 608 { 609 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 610 __le32 *addr_array; 611 int base = 0; 612 613 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 614 base = get_extra_isize(dn->inode); 615 616 /* Get physical address of data block */ 617 addr_array = blkaddr_in_node(rn); 618 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 619 } 620 621 /* 622 * Lock ordering for the change of data block address: 623 * ->data_page 624 * ->node_page 625 * update block addresses in the node page 626 */ 627 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 628 { 629 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 630 __set_data_blkaddr(dn); 631 if (set_page_dirty(dn->node_page)) 632 dn->node_changed = true; 633 } 634 635 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 636 { 637 dn->data_blkaddr = blkaddr; 638 f2fs_set_data_blkaddr(dn); 639 f2fs_update_extent_cache(dn); 640 } 641 642 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 643 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 644 { 645 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 646 int err; 647 648 if (!count) 649 return 0; 650 651 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 652 return -EPERM; 653 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 654 return err; 655 656 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 657 dn->ofs_in_node, count); 658 659 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 660 661 for (; count > 0; dn->ofs_in_node++) { 662 block_t blkaddr = datablock_addr(dn->inode, 663 dn->node_page, dn->ofs_in_node); 664 if (blkaddr == NULL_ADDR) { 665 dn->data_blkaddr = NEW_ADDR; 666 __set_data_blkaddr(dn); 667 count--; 668 } 669 } 670 671 if (set_page_dirty(dn->node_page)) 672 dn->node_changed = true; 673 return 0; 674 } 675 676 /* Should keep dn->ofs_in_node unchanged */ 677 int f2fs_reserve_new_block(struct dnode_of_data *dn) 678 { 679 unsigned int ofs_in_node = dn->ofs_in_node; 680 int ret; 681 682 ret = f2fs_reserve_new_blocks(dn, 1); 683 dn->ofs_in_node = ofs_in_node; 684 return ret; 685 } 686 687 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 688 { 689 bool need_put = dn->inode_page ? false : true; 690 int err; 691 692 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 693 if (err) 694 return err; 695 696 if (dn->data_blkaddr == NULL_ADDR) 697 err = f2fs_reserve_new_block(dn); 698 if (err || need_put) 699 f2fs_put_dnode(dn); 700 return err; 701 } 702 703 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 704 { 705 struct extent_info ei = {0,0,0}; 706 struct inode *inode = dn->inode; 707 708 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 709 dn->data_blkaddr = ei.blk + index - ei.fofs; 710 return 0; 711 } 712 713 return f2fs_reserve_block(dn, index); 714 } 715 716 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 717 int op_flags, bool for_write) 718 { 719 struct address_space *mapping = inode->i_mapping; 720 struct dnode_of_data dn; 721 struct page *page; 722 struct extent_info ei = {0,0,0}; 723 int err; 724 725 page = f2fs_grab_cache_page(mapping, index, for_write); 726 if (!page) 727 return ERR_PTR(-ENOMEM); 728 729 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 730 dn.data_blkaddr = ei.blk + index - ei.fofs; 731 goto got_it; 732 } 733 734 set_new_dnode(&dn, inode, NULL, NULL, 0); 735 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 736 if (err) 737 goto put_err; 738 f2fs_put_dnode(&dn); 739 740 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 741 err = -ENOENT; 742 goto put_err; 743 } 744 got_it: 745 if (PageUptodate(page)) { 746 unlock_page(page); 747 return page; 748 } 749 750 /* 751 * A new dentry page is allocated but not able to be written, since its 752 * new inode page couldn't be allocated due to -ENOSPC. 753 * In such the case, its blkaddr can be remained as NEW_ADDR. 754 * see, f2fs_add_link -> f2fs_get_new_data_page -> 755 * f2fs_init_inode_metadata. 756 */ 757 if (dn.data_blkaddr == NEW_ADDR) { 758 zero_user_segment(page, 0, PAGE_SIZE); 759 if (!PageUptodate(page)) 760 SetPageUptodate(page); 761 unlock_page(page); 762 return page; 763 } 764 765 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 766 if (err) 767 goto put_err; 768 return page; 769 770 put_err: 771 f2fs_put_page(page, 1); 772 return ERR_PTR(err); 773 } 774 775 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 776 { 777 struct address_space *mapping = inode->i_mapping; 778 struct page *page; 779 780 page = find_get_page(mapping, index); 781 if (page && PageUptodate(page)) 782 return page; 783 f2fs_put_page(page, 0); 784 785 page = f2fs_get_read_data_page(inode, index, 0, false); 786 if (IS_ERR(page)) 787 return page; 788 789 if (PageUptodate(page)) 790 return page; 791 792 wait_on_page_locked(page); 793 if (unlikely(!PageUptodate(page))) { 794 f2fs_put_page(page, 0); 795 return ERR_PTR(-EIO); 796 } 797 return page; 798 } 799 800 /* 801 * If it tries to access a hole, return an error. 802 * Because, the callers, functions in dir.c and GC, should be able to know 803 * whether this page exists or not. 804 */ 805 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 806 bool for_write) 807 { 808 struct address_space *mapping = inode->i_mapping; 809 struct page *page; 810 repeat: 811 page = f2fs_get_read_data_page(inode, index, 0, for_write); 812 if (IS_ERR(page)) 813 return page; 814 815 /* wait for read completion */ 816 lock_page(page); 817 if (unlikely(page->mapping != mapping)) { 818 f2fs_put_page(page, 1); 819 goto repeat; 820 } 821 if (unlikely(!PageUptodate(page))) { 822 f2fs_put_page(page, 1); 823 return ERR_PTR(-EIO); 824 } 825 return page; 826 } 827 828 /* 829 * Caller ensures that this data page is never allocated. 830 * A new zero-filled data page is allocated in the page cache. 831 * 832 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 833 * f2fs_unlock_op(). 834 * Note that, ipage is set only by make_empty_dir, and if any error occur, 835 * ipage should be released by this function. 836 */ 837 struct page *f2fs_get_new_data_page(struct inode *inode, 838 struct page *ipage, pgoff_t index, bool new_i_size) 839 { 840 struct address_space *mapping = inode->i_mapping; 841 struct page *page; 842 struct dnode_of_data dn; 843 int err; 844 845 page = f2fs_grab_cache_page(mapping, index, true); 846 if (!page) { 847 /* 848 * before exiting, we should make sure ipage will be released 849 * if any error occur. 850 */ 851 f2fs_put_page(ipage, 1); 852 return ERR_PTR(-ENOMEM); 853 } 854 855 set_new_dnode(&dn, inode, ipage, NULL, 0); 856 err = f2fs_reserve_block(&dn, index); 857 if (err) { 858 f2fs_put_page(page, 1); 859 return ERR_PTR(err); 860 } 861 if (!ipage) 862 f2fs_put_dnode(&dn); 863 864 if (PageUptodate(page)) 865 goto got_it; 866 867 if (dn.data_blkaddr == NEW_ADDR) { 868 zero_user_segment(page, 0, PAGE_SIZE); 869 if (!PageUptodate(page)) 870 SetPageUptodate(page); 871 } else { 872 f2fs_put_page(page, 1); 873 874 /* if ipage exists, blkaddr should be NEW_ADDR */ 875 f2fs_bug_on(F2FS_I_SB(inode), ipage); 876 page = f2fs_get_lock_data_page(inode, index, true); 877 if (IS_ERR(page)) 878 return page; 879 } 880 got_it: 881 if (new_i_size && i_size_read(inode) < 882 ((loff_t)(index + 1) << PAGE_SHIFT)) 883 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 884 return page; 885 } 886 887 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 888 { 889 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 890 struct f2fs_summary sum; 891 struct node_info ni; 892 block_t old_blkaddr; 893 blkcnt_t count = 1; 894 int err; 895 896 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 897 return -EPERM; 898 899 err = f2fs_get_node_info(sbi, dn->nid, &ni); 900 if (err) 901 return err; 902 903 dn->data_blkaddr = datablock_addr(dn->inode, 904 dn->node_page, dn->ofs_in_node); 905 if (dn->data_blkaddr != NULL_ADDR) 906 goto alloc; 907 908 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 909 return err; 910 911 alloc: 912 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 913 old_blkaddr = dn->data_blkaddr; 914 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 915 &sum, seg_type, NULL, false); 916 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 917 invalidate_mapping_pages(META_MAPPING(sbi), 918 old_blkaddr, old_blkaddr); 919 f2fs_set_data_blkaddr(dn); 920 921 /* 922 * i_size will be updated by direct_IO. Otherwise, we'll get stale 923 * data from unwritten block via dio_read. 924 */ 925 return 0; 926 } 927 928 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 929 { 930 struct inode *inode = file_inode(iocb->ki_filp); 931 struct f2fs_map_blocks map; 932 int flag; 933 int err = 0; 934 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 935 936 /* convert inline data for Direct I/O*/ 937 if (direct_io) { 938 err = f2fs_convert_inline_inode(inode); 939 if (err) 940 return err; 941 } 942 943 if (direct_io && allow_outplace_dio(inode, iocb, from)) 944 return 0; 945 946 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 947 return 0; 948 949 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 950 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 951 if (map.m_len > map.m_lblk) 952 map.m_len -= map.m_lblk; 953 else 954 map.m_len = 0; 955 956 map.m_next_pgofs = NULL; 957 map.m_next_extent = NULL; 958 map.m_seg_type = NO_CHECK_TYPE; 959 map.m_may_create = true; 960 961 if (direct_io) { 962 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 963 flag = f2fs_force_buffered_io(inode, iocb, from) ? 964 F2FS_GET_BLOCK_PRE_AIO : 965 F2FS_GET_BLOCK_PRE_DIO; 966 goto map_blocks; 967 } 968 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 969 err = f2fs_convert_inline_inode(inode); 970 if (err) 971 return err; 972 } 973 if (f2fs_has_inline_data(inode)) 974 return err; 975 976 flag = F2FS_GET_BLOCK_PRE_AIO; 977 978 map_blocks: 979 err = f2fs_map_blocks(inode, &map, 1, flag); 980 if (map.m_len > 0 && err == -ENOSPC) { 981 if (!direct_io) 982 set_inode_flag(inode, FI_NO_PREALLOC); 983 err = 0; 984 } 985 return err; 986 } 987 988 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 989 { 990 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 991 if (lock) 992 down_read(&sbi->node_change); 993 else 994 up_read(&sbi->node_change); 995 } else { 996 if (lock) 997 f2fs_lock_op(sbi); 998 else 999 f2fs_unlock_op(sbi); 1000 } 1001 } 1002 1003 /* 1004 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 1005 * f2fs_map_blocks structure. 1006 * If original data blocks are allocated, then give them to blockdev. 1007 * Otherwise, 1008 * a. preallocate requested block addresses 1009 * b. do not use extent cache for better performance 1010 * c. give the block addresses to blockdev 1011 */ 1012 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1013 int create, int flag) 1014 { 1015 unsigned int maxblocks = map->m_len; 1016 struct dnode_of_data dn; 1017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1018 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1019 pgoff_t pgofs, end_offset, end; 1020 int err = 0, ofs = 1; 1021 unsigned int ofs_in_node, last_ofs_in_node; 1022 blkcnt_t prealloc; 1023 struct extent_info ei = {0,0,0}; 1024 block_t blkaddr; 1025 unsigned int start_pgofs; 1026 1027 if (!maxblocks) 1028 return 0; 1029 1030 map->m_len = 0; 1031 map->m_flags = 0; 1032 1033 /* it only supports block size == page size */ 1034 pgofs = (pgoff_t)map->m_lblk; 1035 end = pgofs + maxblocks; 1036 1037 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1038 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1039 map->m_may_create) 1040 goto next_dnode; 1041 1042 map->m_pblk = ei.blk + pgofs - ei.fofs; 1043 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1044 map->m_flags = F2FS_MAP_MAPPED; 1045 if (map->m_next_extent) 1046 *map->m_next_extent = pgofs + map->m_len; 1047 1048 /* for hardware encryption, but to avoid potential issue in future */ 1049 if (flag == F2FS_GET_BLOCK_DIO) 1050 f2fs_wait_on_block_writeback_range(inode, 1051 map->m_pblk, map->m_len); 1052 goto out; 1053 } 1054 1055 next_dnode: 1056 if (map->m_may_create) 1057 __do_map_lock(sbi, flag, true); 1058 1059 /* When reading holes, we need its node page */ 1060 set_new_dnode(&dn, inode, NULL, NULL, 0); 1061 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1062 if (err) { 1063 if (flag == F2FS_GET_BLOCK_BMAP) 1064 map->m_pblk = 0; 1065 if (err == -ENOENT) { 1066 err = 0; 1067 if (map->m_next_pgofs) 1068 *map->m_next_pgofs = 1069 f2fs_get_next_page_offset(&dn, pgofs); 1070 if (map->m_next_extent) 1071 *map->m_next_extent = 1072 f2fs_get_next_page_offset(&dn, pgofs); 1073 } 1074 goto unlock_out; 1075 } 1076 1077 start_pgofs = pgofs; 1078 prealloc = 0; 1079 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1080 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1081 1082 next_block: 1083 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 1084 1085 if (__is_valid_data_blkaddr(blkaddr) && 1086 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 1087 err = -EFAULT; 1088 goto sync_out; 1089 } 1090 1091 if (is_valid_data_blkaddr(sbi, blkaddr)) { 1092 /* use out-place-update for driect IO under LFS mode */ 1093 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1094 map->m_may_create) { 1095 err = __allocate_data_block(&dn, map->m_seg_type); 1096 if (!err) { 1097 blkaddr = dn.data_blkaddr; 1098 set_inode_flag(inode, FI_APPEND_WRITE); 1099 } 1100 } 1101 } else { 1102 if (create) { 1103 if (unlikely(f2fs_cp_error(sbi))) { 1104 err = -EIO; 1105 goto sync_out; 1106 } 1107 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1108 if (blkaddr == NULL_ADDR) { 1109 prealloc++; 1110 last_ofs_in_node = dn.ofs_in_node; 1111 } 1112 } else { 1113 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1114 flag != F2FS_GET_BLOCK_DIO); 1115 err = __allocate_data_block(&dn, 1116 map->m_seg_type); 1117 if (!err) 1118 set_inode_flag(inode, FI_APPEND_WRITE); 1119 } 1120 if (err) 1121 goto sync_out; 1122 map->m_flags |= F2FS_MAP_NEW; 1123 blkaddr = dn.data_blkaddr; 1124 } else { 1125 if (flag == F2FS_GET_BLOCK_BMAP) { 1126 map->m_pblk = 0; 1127 goto sync_out; 1128 } 1129 if (flag == F2FS_GET_BLOCK_PRECACHE) 1130 goto sync_out; 1131 if (flag == F2FS_GET_BLOCK_FIEMAP && 1132 blkaddr == NULL_ADDR) { 1133 if (map->m_next_pgofs) 1134 *map->m_next_pgofs = pgofs + 1; 1135 goto sync_out; 1136 } 1137 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1138 /* for defragment case */ 1139 if (map->m_next_pgofs) 1140 *map->m_next_pgofs = pgofs + 1; 1141 goto sync_out; 1142 } 1143 } 1144 } 1145 1146 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1147 goto skip; 1148 1149 if (map->m_len == 0) { 1150 /* preallocated unwritten block should be mapped for fiemap. */ 1151 if (blkaddr == NEW_ADDR) 1152 map->m_flags |= F2FS_MAP_UNWRITTEN; 1153 map->m_flags |= F2FS_MAP_MAPPED; 1154 1155 map->m_pblk = blkaddr; 1156 map->m_len = 1; 1157 } else if ((map->m_pblk != NEW_ADDR && 1158 blkaddr == (map->m_pblk + ofs)) || 1159 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1160 flag == F2FS_GET_BLOCK_PRE_DIO) { 1161 ofs++; 1162 map->m_len++; 1163 } else { 1164 goto sync_out; 1165 } 1166 1167 skip: 1168 dn.ofs_in_node++; 1169 pgofs++; 1170 1171 /* preallocate blocks in batch for one dnode page */ 1172 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1173 (pgofs == end || dn.ofs_in_node == end_offset)) { 1174 1175 dn.ofs_in_node = ofs_in_node; 1176 err = f2fs_reserve_new_blocks(&dn, prealloc); 1177 if (err) 1178 goto sync_out; 1179 1180 map->m_len += dn.ofs_in_node - ofs_in_node; 1181 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1182 err = -ENOSPC; 1183 goto sync_out; 1184 } 1185 dn.ofs_in_node = end_offset; 1186 } 1187 1188 if (pgofs >= end) 1189 goto sync_out; 1190 else if (dn.ofs_in_node < end_offset) 1191 goto next_block; 1192 1193 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1194 if (map->m_flags & F2FS_MAP_MAPPED) { 1195 unsigned int ofs = start_pgofs - map->m_lblk; 1196 1197 f2fs_update_extent_cache_range(&dn, 1198 start_pgofs, map->m_pblk + ofs, 1199 map->m_len - ofs); 1200 } 1201 } 1202 1203 f2fs_put_dnode(&dn); 1204 1205 if (map->m_may_create) { 1206 __do_map_lock(sbi, flag, false); 1207 f2fs_balance_fs(sbi, dn.node_changed); 1208 } 1209 goto next_dnode; 1210 1211 sync_out: 1212 1213 /* for hardware encryption, but to avoid potential issue in future */ 1214 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1215 f2fs_wait_on_block_writeback_range(inode, 1216 map->m_pblk, map->m_len); 1217 1218 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1219 if (map->m_flags & F2FS_MAP_MAPPED) { 1220 unsigned int ofs = start_pgofs - map->m_lblk; 1221 1222 f2fs_update_extent_cache_range(&dn, 1223 start_pgofs, map->m_pblk + ofs, 1224 map->m_len - ofs); 1225 } 1226 if (map->m_next_extent) 1227 *map->m_next_extent = pgofs + 1; 1228 } 1229 f2fs_put_dnode(&dn); 1230 unlock_out: 1231 if (map->m_may_create) { 1232 __do_map_lock(sbi, flag, false); 1233 f2fs_balance_fs(sbi, dn.node_changed); 1234 } 1235 out: 1236 trace_f2fs_map_blocks(inode, map, err); 1237 return err; 1238 } 1239 1240 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1241 { 1242 struct f2fs_map_blocks map; 1243 block_t last_lblk; 1244 int err; 1245 1246 if (pos + len > i_size_read(inode)) 1247 return false; 1248 1249 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1250 map.m_next_pgofs = NULL; 1251 map.m_next_extent = NULL; 1252 map.m_seg_type = NO_CHECK_TYPE; 1253 map.m_may_create = false; 1254 last_lblk = F2FS_BLK_ALIGN(pos + len); 1255 1256 while (map.m_lblk < last_lblk) { 1257 map.m_len = last_lblk - map.m_lblk; 1258 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1259 if (err || map.m_len == 0) 1260 return false; 1261 map.m_lblk += map.m_len; 1262 } 1263 return true; 1264 } 1265 1266 static int __get_data_block(struct inode *inode, sector_t iblock, 1267 struct buffer_head *bh, int create, int flag, 1268 pgoff_t *next_pgofs, int seg_type, bool may_write) 1269 { 1270 struct f2fs_map_blocks map; 1271 int err; 1272 1273 map.m_lblk = iblock; 1274 map.m_len = bh->b_size >> inode->i_blkbits; 1275 map.m_next_pgofs = next_pgofs; 1276 map.m_next_extent = NULL; 1277 map.m_seg_type = seg_type; 1278 map.m_may_create = may_write; 1279 1280 err = f2fs_map_blocks(inode, &map, create, flag); 1281 if (!err) { 1282 map_bh(bh, inode->i_sb, map.m_pblk); 1283 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1284 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1285 } 1286 return err; 1287 } 1288 1289 static int get_data_block(struct inode *inode, sector_t iblock, 1290 struct buffer_head *bh_result, int create, int flag, 1291 pgoff_t *next_pgofs) 1292 { 1293 return __get_data_block(inode, iblock, bh_result, create, 1294 flag, next_pgofs, 1295 NO_CHECK_TYPE, create); 1296 } 1297 1298 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1299 struct buffer_head *bh_result, int create) 1300 { 1301 return __get_data_block(inode, iblock, bh_result, create, 1302 F2FS_GET_BLOCK_DIO, NULL, 1303 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1304 true); 1305 } 1306 1307 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1308 struct buffer_head *bh_result, int create) 1309 { 1310 return __get_data_block(inode, iblock, bh_result, create, 1311 F2FS_GET_BLOCK_DIO, NULL, 1312 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1313 false); 1314 } 1315 1316 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1317 struct buffer_head *bh_result, int create) 1318 { 1319 /* Block number less than F2FS MAX BLOCKS */ 1320 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1321 return -EFBIG; 1322 1323 return __get_data_block(inode, iblock, bh_result, create, 1324 F2FS_GET_BLOCK_BMAP, NULL, 1325 NO_CHECK_TYPE, create); 1326 } 1327 1328 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1329 { 1330 return (offset >> inode->i_blkbits); 1331 } 1332 1333 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1334 { 1335 return (blk << inode->i_blkbits); 1336 } 1337 1338 static int f2fs_xattr_fiemap(struct inode *inode, 1339 struct fiemap_extent_info *fieinfo) 1340 { 1341 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1342 struct page *page; 1343 struct node_info ni; 1344 __u64 phys = 0, len; 1345 __u32 flags; 1346 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1347 int err = 0; 1348 1349 if (f2fs_has_inline_xattr(inode)) { 1350 int offset; 1351 1352 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1353 inode->i_ino, false); 1354 if (!page) 1355 return -ENOMEM; 1356 1357 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1358 if (err) { 1359 f2fs_put_page(page, 1); 1360 return err; 1361 } 1362 1363 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1364 offset = offsetof(struct f2fs_inode, i_addr) + 1365 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1366 get_inline_xattr_addrs(inode)); 1367 1368 phys += offset; 1369 len = inline_xattr_size(inode); 1370 1371 f2fs_put_page(page, 1); 1372 1373 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1374 1375 if (!xnid) 1376 flags |= FIEMAP_EXTENT_LAST; 1377 1378 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1379 if (err || err == 1) 1380 return err; 1381 } 1382 1383 if (xnid) { 1384 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1385 if (!page) 1386 return -ENOMEM; 1387 1388 err = f2fs_get_node_info(sbi, xnid, &ni); 1389 if (err) { 1390 f2fs_put_page(page, 1); 1391 return err; 1392 } 1393 1394 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1395 len = inode->i_sb->s_blocksize; 1396 1397 f2fs_put_page(page, 1); 1398 1399 flags = FIEMAP_EXTENT_LAST; 1400 } 1401 1402 if (phys) 1403 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1404 1405 return (err < 0 ? err : 0); 1406 } 1407 1408 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1409 u64 start, u64 len) 1410 { 1411 struct buffer_head map_bh; 1412 sector_t start_blk, last_blk; 1413 pgoff_t next_pgofs; 1414 u64 logical = 0, phys = 0, size = 0; 1415 u32 flags = 0; 1416 int ret = 0; 1417 1418 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1419 ret = f2fs_precache_extents(inode); 1420 if (ret) 1421 return ret; 1422 } 1423 1424 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1425 if (ret) 1426 return ret; 1427 1428 inode_lock(inode); 1429 1430 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1431 ret = f2fs_xattr_fiemap(inode, fieinfo); 1432 goto out; 1433 } 1434 1435 if (f2fs_has_inline_data(inode)) { 1436 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1437 if (ret != -EAGAIN) 1438 goto out; 1439 } 1440 1441 if (logical_to_blk(inode, len) == 0) 1442 len = blk_to_logical(inode, 1); 1443 1444 start_blk = logical_to_blk(inode, start); 1445 last_blk = logical_to_blk(inode, start + len - 1); 1446 1447 next: 1448 memset(&map_bh, 0, sizeof(struct buffer_head)); 1449 map_bh.b_size = len; 1450 1451 ret = get_data_block(inode, start_blk, &map_bh, 0, 1452 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1453 if (ret) 1454 goto out; 1455 1456 /* HOLE */ 1457 if (!buffer_mapped(&map_bh)) { 1458 start_blk = next_pgofs; 1459 1460 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1461 F2FS_I_SB(inode)->max_file_blocks)) 1462 goto prep_next; 1463 1464 flags |= FIEMAP_EXTENT_LAST; 1465 } 1466 1467 if (size) { 1468 if (f2fs_encrypted_inode(inode)) 1469 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1470 1471 ret = fiemap_fill_next_extent(fieinfo, logical, 1472 phys, size, flags); 1473 } 1474 1475 if (start_blk > last_blk || ret) 1476 goto out; 1477 1478 logical = blk_to_logical(inode, start_blk); 1479 phys = blk_to_logical(inode, map_bh.b_blocknr); 1480 size = map_bh.b_size; 1481 flags = 0; 1482 if (buffer_unwritten(&map_bh)) 1483 flags = FIEMAP_EXTENT_UNWRITTEN; 1484 1485 start_blk += logical_to_blk(inode, size); 1486 1487 prep_next: 1488 cond_resched(); 1489 if (fatal_signal_pending(current)) 1490 ret = -EINTR; 1491 else 1492 goto next; 1493 out: 1494 if (ret == 1) 1495 ret = 0; 1496 1497 inode_unlock(inode); 1498 return ret; 1499 } 1500 1501 /* 1502 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1503 * Major change was from block_size == page_size in f2fs by default. 1504 * 1505 * Note that the aops->readpages() function is ONLY used for read-ahead. If 1506 * this function ever deviates from doing just read-ahead, it should either 1507 * use ->readpage() or do the necessary surgery to decouple ->readpages() 1508 * from read-ahead. 1509 */ 1510 static int f2fs_mpage_readpages(struct address_space *mapping, 1511 struct list_head *pages, struct page *page, 1512 unsigned nr_pages, bool is_readahead) 1513 { 1514 struct bio *bio = NULL; 1515 sector_t last_block_in_bio = 0; 1516 struct inode *inode = mapping->host; 1517 const unsigned blkbits = inode->i_blkbits; 1518 const unsigned blocksize = 1 << blkbits; 1519 sector_t block_in_file; 1520 sector_t last_block; 1521 sector_t last_block_in_file; 1522 sector_t block_nr; 1523 struct f2fs_map_blocks map; 1524 1525 map.m_pblk = 0; 1526 map.m_lblk = 0; 1527 map.m_len = 0; 1528 map.m_flags = 0; 1529 map.m_next_pgofs = NULL; 1530 map.m_next_extent = NULL; 1531 map.m_seg_type = NO_CHECK_TYPE; 1532 map.m_may_create = false; 1533 1534 for (; nr_pages; nr_pages--) { 1535 if (pages) { 1536 page = list_last_entry(pages, struct page, lru); 1537 1538 prefetchw(&page->flags); 1539 list_del(&page->lru); 1540 if (add_to_page_cache_lru(page, mapping, 1541 page->index, 1542 readahead_gfp_mask(mapping))) 1543 goto next_page; 1544 } 1545 1546 block_in_file = (sector_t)page->index; 1547 last_block = block_in_file + nr_pages; 1548 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1549 blkbits; 1550 if (last_block > last_block_in_file) 1551 last_block = last_block_in_file; 1552 1553 /* 1554 * Map blocks using the previous result first. 1555 */ 1556 if ((map.m_flags & F2FS_MAP_MAPPED) && 1557 block_in_file > map.m_lblk && 1558 block_in_file < (map.m_lblk + map.m_len)) 1559 goto got_it; 1560 1561 /* 1562 * Then do more f2fs_map_blocks() calls until we are 1563 * done with this page. 1564 */ 1565 map.m_flags = 0; 1566 1567 if (block_in_file < last_block) { 1568 map.m_lblk = block_in_file; 1569 map.m_len = last_block - block_in_file; 1570 1571 if (f2fs_map_blocks(inode, &map, 0, 1572 F2FS_GET_BLOCK_DEFAULT)) 1573 goto set_error_page; 1574 } 1575 got_it: 1576 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1577 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1578 SetPageMappedToDisk(page); 1579 1580 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1581 SetPageUptodate(page); 1582 goto confused; 1583 } 1584 1585 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 1586 DATA_GENERIC)) 1587 goto set_error_page; 1588 } else { 1589 zero_user_segment(page, 0, PAGE_SIZE); 1590 if (!PageUptodate(page)) 1591 SetPageUptodate(page); 1592 unlock_page(page); 1593 goto next_page; 1594 } 1595 1596 /* 1597 * This page will go to BIO. Do we need to send this 1598 * BIO off first? 1599 */ 1600 if (bio && (last_block_in_bio != block_nr - 1 || 1601 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1602 submit_and_realloc: 1603 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1604 bio = NULL; 1605 } 1606 if (bio == NULL) { 1607 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 1608 is_readahead ? REQ_RAHEAD : 0); 1609 if (IS_ERR(bio)) { 1610 bio = NULL; 1611 goto set_error_page; 1612 } 1613 } 1614 1615 /* 1616 * If the page is under writeback, we need to wait for 1617 * its completion to see the correct decrypted data. 1618 */ 1619 f2fs_wait_on_block_writeback(inode, block_nr); 1620 1621 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1622 goto submit_and_realloc; 1623 1624 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 1625 ClearPageError(page); 1626 last_block_in_bio = block_nr; 1627 goto next_page; 1628 set_error_page: 1629 SetPageError(page); 1630 zero_user_segment(page, 0, PAGE_SIZE); 1631 unlock_page(page); 1632 goto next_page; 1633 confused: 1634 if (bio) { 1635 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1636 bio = NULL; 1637 } 1638 unlock_page(page); 1639 next_page: 1640 if (pages) 1641 put_page(page); 1642 } 1643 BUG_ON(pages && !list_empty(pages)); 1644 if (bio) 1645 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1646 return 0; 1647 } 1648 1649 static int f2fs_read_data_page(struct file *file, struct page *page) 1650 { 1651 struct inode *inode = page->mapping->host; 1652 int ret = -EAGAIN; 1653 1654 trace_f2fs_readpage(page, DATA); 1655 1656 /* If the file has inline data, try to read it directly */ 1657 if (f2fs_has_inline_data(inode)) 1658 ret = f2fs_read_inline_data(inode, page); 1659 if (ret == -EAGAIN) 1660 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false); 1661 return ret; 1662 } 1663 1664 static int f2fs_read_data_pages(struct file *file, 1665 struct address_space *mapping, 1666 struct list_head *pages, unsigned nr_pages) 1667 { 1668 struct inode *inode = mapping->host; 1669 struct page *page = list_last_entry(pages, struct page, lru); 1670 1671 trace_f2fs_readpages(inode, page, nr_pages); 1672 1673 /* If the file has inline data, skip readpages */ 1674 if (f2fs_has_inline_data(inode)) 1675 return 0; 1676 1677 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true); 1678 } 1679 1680 static int encrypt_one_page(struct f2fs_io_info *fio) 1681 { 1682 struct inode *inode = fio->page->mapping->host; 1683 struct page *mpage; 1684 gfp_t gfp_flags = GFP_NOFS; 1685 1686 if (!f2fs_encrypted_file(inode)) 1687 return 0; 1688 1689 /* wait for GCed page writeback via META_MAPPING */ 1690 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 1691 1692 retry_encrypt: 1693 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1694 PAGE_SIZE, 0, fio->page->index, gfp_flags); 1695 if (IS_ERR(fio->encrypted_page)) { 1696 /* flush pending IOs and wait for a while in the ENOMEM case */ 1697 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1698 f2fs_flush_merged_writes(fio->sbi); 1699 congestion_wait(BLK_RW_ASYNC, HZ/50); 1700 gfp_flags |= __GFP_NOFAIL; 1701 goto retry_encrypt; 1702 } 1703 return PTR_ERR(fio->encrypted_page); 1704 } 1705 1706 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 1707 if (mpage) { 1708 if (PageUptodate(mpage)) 1709 memcpy(page_address(mpage), 1710 page_address(fio->encrypted_page), PAGE_SIZE); 1711 f2fs_put_page(mpage, 1); 1712 } 1713 return 0; 1714 } 1715 1716 static inline bool check_inplace_update_policy(struct inode *inode, 1717 struct f2fs_io_info *fio) 1718 { 1719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1720 unsigned int policy = SM_I(sbi)->ipu_policy; 1721 1722 if (policy & (0x1 << F2FS_IPU_FORCE)) 1723 return true; 1724 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 1725 return true; 1726 if (policy & (0x1 << F2FS_IPU_UTIL) && 1727 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1728 return true; 1729 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 1730 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1731 return true; 1732 1733 /* 1734 * IPU for rewrite async pages 1735 */ 1736 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1737 fio && fio->op == REQ_OP_WRITE && 1738 !(fio->op_flags & REQ_SYNC) && 1739 !f2fs_encrypted_inode(inode)) 1740 return true; 1741 1742 /* this is only set during fdatasync */ 1743 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1744 is_inode_flag_set(inode, FI_NEED_IPU)) 1745 return true; 1746 1747 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1748 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1749 return true; 1750 1751 return false; 1752 } 1753 1754 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1755 { 1756 if (f2fs_is_pinned_file(inode)) 1757 return true; 1758 1759 /* if this is cold file, we should overwrite to avoid fragmentation */ 1760 if (file_is_cold(inode)) 1761 return true; 1762 1763 return check_inplace_update_policy(inode, fio); 1764 } 1765 1766 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1767 { 1768 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1769 1770 if (test_opt(sbi, LFS)) 1771 return true; 1772 if (S_ISDIR(inode->i_mode)) 1773 return true; 1774 if (IS_NOQUOTA(inode)) 1775 return true; 1776 if (f2fs_is_atomic_file(inode)) 1777 return true; 1778 if (fio) { 1779 if (is_cold_data(fio->page)) 1780 return true; 1781 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1782 return true; 1783 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1784 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1785 return true; 1786 } 1787 return false; 1788 } 1789 1790 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1791 { 1792 struct inode *inode = fio->page->mapping->host; 1793 1794 if (f2fs_should_update_outplace(inode, fio)) 1795 return false; 1796 1797 return f2fs_should_update_inplace(inode, fio); 1798 } 1799 1800 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 1801 { 1802 struct page *page = fio->page; 1803 struct inode *inode = page->mapping->host; 1804 struct dnode_of_data dn; 1805 struct extent_info ei = {0,0,0}; 1806 struct node_info ni; 1807 bool ipu_force = false; 1808 int err = 0; 1809 1810 set_new_dnode(&dn, inode, NULL, NULL, 0); 1811 if (need_inplace_update(fio) && 1812 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1813 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1814 1815 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1816 DATA_GENERIC)) 1817 return -EFAULT; 1818 1819 ipu_force = true; 1820 fio->need_lock = LOCK_DONE; 1821 goto got_it; 1822 } 1823 1824 /* Deadlock due to between page->lock and f2fs_lock_op */ 1825 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1826 return -EAGAIN; 1827 1828 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1829 if (err) 1830 goto out; 1831 1832 fio->old_blkaddr = dn.data_blkaddr; 1833 1834 /* This page is already truncated */ 1835 if (fio->old_blkaddr == NULL_ADDR) { 1836 ClearPageUptodate(page); 1837 clear_cold_data(page); 1838 goto out_writepage; 1839 } 1840 got_it: 1841 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 1842 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1843 DATA_GENERIC)) { 1844 err = -EFAULT; 1845 goto out_writepage; 1846 } 1847 /* 1848 * If current allocation needs SSR, 1849 * it had better in-place writes for updated data. 1850 */ 1851 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) && 1852 need_inplace_update(fio))) { 1853 err = encrypt_one_page(fio); 1854 if (err) 1855 goto out_writepage; 1856 1857 set_page_writeback(page); 1858 ClearPageError(page); 1859 f2fs_put_dnode(&dn); 1860 if (fio->need_lock == LOCK_REQ) 1861 f2fs_unlock_op(fio->sbi); 1862 err = f2fs_inplace_write_data(fio); 1863 if (err && PageWriteback(page)) 1864 end_page_writeback(page); 1865 trace_f2fs_do_write_data_page(fio->page, IPU); 1866 set_inode_flag(inode, FI_UPDATE_WRITE); 1867 return err; 1868 } 1869 1870 if (fio->need_lock == LOCK_RETRY) { 1871 if (!f2fs_trylock_op(fio->sbi)) { 1872 err = -EAGAIN; 1873 goto out_writepage; 1874 } 1875 fio->need_lock = LOCK_REQ; 1876 } 1877 1878 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 1879 if (err) 1880 goto out_writepage; 1881 1882 fio->version = ni.version; 1883 1884 err = encrypt_one_page(fio); 1885 if (err) 1886 goto out_writepage; 1887 1888 set_page_writeback(page); 1889 ClearPageError(page); 1890 1891 /* LFS mode write path */ 1892 f2fs_outplace_write_data(&dn, fio); 1893 trace_f2fs_do_write_data_page(page, OPU); 1894 set_inode_flag(inode, FI_APPEND_WRITE); 1895 if (page->index == 0) 1896 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1897 out_writepage: 1898 f2fs_put_dnode(&dn); 1899 out: 1900 if (fio->need_lock == LOCK_REQ) 1901 f2fs_unlock_op(fio->sbi); 1902 return err; 1903 } 1904 1905 static int __write_data_page(struct page *page, bool *submitted, 1906 struct writeback_control *wbc, 1907 enum iostat_type io_type) 1908 { 1909 struct inode *inode = page->mapping->host; 1910 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1911 loff_t i_size = i_size_read(inode); 1912 const pgoff_t end_index = ((unsigned long long) i_size) 1913 >> PAGE_SHIFT; 1914 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1915 unsigned offset = 0; 1916 bool need_balance_fs = false; 1917 int err = 0; 1918 struct f2fs_io_info fio = { 1919 .sbi = sbi, 1920 .ino = inode->i_ino, 1921 .type = DATA, 1922 .op = REQ_OP_WRITE, 1923 .op_flags = wbc_to_write_flags(wbc), 1924 .old_blkaddr = NULL_ADDR, 1925 .page = page, 1926 .encrypted_page = NULL, 1927 .submitted = false, 1928 .need_lock = LOCK_RETRY, 1929 .io_type = io_type, 1930 .io_wbc = wbc, 1931 }; 1932 1933 trace_f2fs_writepage(page, DATA); 1934 1935 /* we should bypass data pages to proceed the kworkder jobs */ 1936 if (unlikely(f2fs_cp_error(sbi))) { 1937 mapping_set_error(page->mapping, -EIO); 1938 /* 1939 * don't drop any dirty dentry pages for keeping lastest 1940 * directory structure. 1941 */ 1942 if (S_ISDIR(inode->i_mode)) 1943 goto redirty_out; 1944 goto out; 1945 } 1946 1947 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1948 goto redirty_out; 1949 1950 if (page->index < end_index) 1951 goto write; 1952 1953 /* 1954 * If the offset is out-of-range of file size, 1955 * this page does not have to be written to disk. 1956 */ 1957 offset = i_size & (PAGE_SIZE - 1); 1958 if ((page->index >= end_index + 1) || !offset) 1959 goto out; 1960 1961 zero_user_segment(page, offset, PAGE_SIZE); 1962 write: 1963 if (f2fs_is_drop_cache(inode)) 1964 goto out; 1965 /* we should not write 0'th page having journal header */ 1966 if (f2fs_is_volatile_file(inode) && (!page->index || 1967 (!wbc->for_reclaim && 1968 f2fs_available_free_memory(sbi, BASE_CHECK)))) 1969 goto redirty_out; 1970 1971 /* Dentry blocks are controlled by checkpoint */ 1972 if (S_ISDIR(inode->i_mode)) { 1973 fio.need_lock = LOCK_DONE; 1974 err = f2fs_do_write_data_page(&fio); 1975 goto done; 1976 } 1977 1978 if (!wbc->for_reclaim) 1979 need_balance_fs = true; 1980 else if (has_not_enough_free_secs(sbi, 0, 0)) 1981 goto redirty_out; 1982 else 1983 set_inode_flag(inode, FI_HOT_DATA); 1984 1985 err = -EAGAIN; 1986 if (f2fs_has_inline_data(inode)) { 1987 err = f2fs_write_inline_data(inode, page); 1988 if (!err) 1989 goto out; 1990 } 1991 1992 if (err == -EAGAIN) { 1993 err = f2fs_do_write_data_page(&fio); 1994 if (err == -EAGAIN) { 1995 fio.need_lock = LOCK_REQ; 1996 err = f2fs_do_write_data_page(&fio); 1997 } 1998 } 1999 2000 if (err) { 2001 file_set_keep_isize(inode); 2002 } else { 2003 down_write(&F2FS_I(inode)->i_sem); 2004 if (F2FS_I(inode)->last_disk_size < psize) 2005 F2FS_I(inode)->last_disk_size = psize; 2006 up_write(&F2FS_I(inode)->i_sem); 2007 } 2008 2009 done: 2010 if (err && err != -ENOENT) 2011 goto redirty_out; 2012 2013 out: 2014 inode_dec_dirty_pages(inode); 2015 if (err) { 2016 ClearPageUptodate(page); 2017 clear_cold_data(page); 2018 } 2019 2020 if (wbc->for_reclaim) { 2021 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2022 clear_inode_flag(inode, FI_HOT_DATA); 2023 f2fs_remove_dirty_inode(inode); 2024 submitted = NULL; 2025 } 2026 2027 unlock_page(page); 2028 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode)) 2029 f2fs_balance_fs(sbi, need_balance_fs); 2030 2031 if (unlikely(f2fs_cp_error(sbi))) { 2032 f2fs_submit_merged_write(sbi, DATA); 2033 submitted = NULL; 2034 } 2035 2036 if (submitted) 2037 *submitted = fio.submitted; 2038 2039 return 0; 2040 2041 redirty_out: 2042 redirty_page_for_writepage(wbc, page); 2043 /* 2044 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2045 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2046 * file_write_and_wait_range() will see EIO error, which is critical 2047 * to return value of fsync() followed by atomic_write failure to user. 2048 */ 2049 if (!err || wbc->for_reclaim) 2050 return AOP_WRITEPAGE_ACTIVATE; 2051 unlock_page(page); 2052 return err; 2053 } 2054 2055 static int f2fs_write_data_page(struct page *page, 2056 struct writeback_control *wbc) 2057 { 2058 return __write_data_page(page, NULL, wbc, FS_DATA_IO); 2059 } 2060 2061 /* 2062 * This function was copied from write_cche_pages from mm/page-writeback.c. 2063 * The major change is making write step of cold data page separately from 2064 * warm/hot data page. 2065 */ 2066 static int f2fs_write_cache_pages(struct address_space *mapping, 2067 struct writeback_control *wbc, 2068 enum iostat_type io_type) 2069 { 2070 int ret = 0; 2071 int done = 0; 2072 struct pagevec pvec; 2073 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2074 int nr_pages; 2075 pgoff_t uninitialized_var(writeback_index); 2076 pgoff_t index; 2077 pgoff_t end; /* Inclusive */ 2078 pgoff_t done_index; 2079 int cycled; 2080 int range_whole = 0; 2081 xa_mark_t tag; 2082 int nwritten = 0; 2083 2084 pagevec_init(&pvec); 2085 2086 if (get_dirty_pages(mapping->host) <= 2087 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2088 set_inode_flag(mapping->host, FI_HOT_DATA); 2089 else 2090 clear_inode_flag(mapping->host, FI_HOT_DATA); 2091 2092 if (wbc->range_cyclic) { 2093 writeback_index = mapping->writeback_index; /* prev offset */ 2094 index = writeback_index; 2095 if (index == 0) 2096 cycled = 1; 2097 else 2098 cycled = 0; 2099 end = -1; 2100 } else { 2101 index = wbc->range_start >> PAGE_SHIFT; 2102 end = wbc->range_end >> PAGE_SHIFT; 2103 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2104 range_whole = 1; 2105 cycled = 1; /* ignore range_cyclic tests */ 2106 } 2107 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2108 tag = PAGECACHE_TAG_TOWRITE; 2109 else 2110 tag = PAGECACHE_TAG_DIRTY; 2111 retry: 2112 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2113 tag_pages_for_writeback(mapping, index, end); 2114 done_index = index; 2115 while (!done && (index <= end)) { 2116 int i; 2117 2118 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2119 tag); 2120 if (nr_pages == 0) 2121 break; 2122 2123 for (i = 0; i < nr_pages; i++) { 2124 struct page *page = pvec.pages[i]; 2125 bool submitted = false; 2126 2127 /* give a priority to WB_SYNC threads */ 2128 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2129 wbc->sync_mode == WB_SYNC_NONE) { 2130 done = 1; 2131 break; 2132 } 2133 2134 done_index = page->index; 2135 retry_write: 2136 lock_page(page); 2137 2138 if (unlikely(page->mapping != mapping)) { 2139 continue_unlock: 2140 unlock_page(page); 2141 continue; 2142 } 2143 2144 if (!PageDirty(page)) { 2145 /* someone wrote it for us */ 2146 goto continue_unlock; 2147 } 2148 2149 if (PageWriteback(page)) { 2150 if (wbc->sync_mode != WB_SYNC_NONE) 2151 f2fs_wait_on_page_writeback(page, 2152 DATA, true, true); 2153 else 2154 goto continue_unlock; 2155 } 2156 2157 if (!clear_page_dirty_for_io(page)) 2158 goto continue_unlock; 2159 2160 ret = __write_data_page(page, &submitted, wbc, io_type); 2161 if (unlikely(ret)) { 2162 /* 2163 * keep nr_to_write, since vfs uses this to 2164 * get # of written pages. 2165 */ 2166 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2167 unlock_page(page); 2168 ret = 0; 2169 continue; 2170 } else if (ret == -EAGAIN) { 2171 ret = 0; 2172 if (wbc->sync_mode == WB_SYNC_ALL) { 2173 cond_resched(); 2174 congestion_wait(BLK_RW_ASYNC, 2175 HZ/50); 2176 goto retry_write; 2177 } 2178 continue; 2179 } 2180 done_index = page->index + 1; 2181 done = 1; 2182 break; 2183 } else if (submitted) { 2184 nwritten++; 2185 } 2186 2187 if (--wbc->nr_to_write <= 0 && 2188 wbc->sync_mode == WB_SYNC_NONE) { 2189 done = 1; 2190 break; 2191 } 2192 } 2193 pagevec_release(&pvec); 2194 cond_resched(); 2195 } 2196 2197 if (!cycled && !done) { 2198 cycled = 1; 2199 index = 0; 2200 end = writeback_index - 1; 2201 goto retry; 2202 } 2203 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2204 mapping->writeback_index = done_index; 2205 2206 if (nwritten) 2207 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 2208 NULL, 0, DATA); 2209 2210 return ret; 2211 } 2212 2213 static inline bool __should_serialize_io(struct inode *inode, 2214 struct writeback_control *wbc) 2215 { 2216 if (!S_ISREG(inode->i_mode)) 2217 return false; 2218 if (IS_NOQUOTA(inode)) 2219 return false; 2220 if (wbc->sync_mode != WB_SYNC_ALL) 2221 return true; 2222 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 2223 return true; 2224 return false; 2225 } 2226 2227 static int __f2fs_write_data_pages(struct address_space *mapping, 2228 struct writeback_control *wbc, 2229 enum iostat_type io_type) 2230 { 2231 struct inode *inode = mapping->host; 2232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2233 struct blk_plug plug; 2234 int ret; 2235 bool locked = false; 2236 2237 /* deal with chardevs and other special file */ 2238 if (!mapping->a_ops->writepage) 2239 return 0; 2240 2241 /* skip writing if there is no dirty page in this inode */ 2242 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2243 return 0; 2244 2245 /* during POR, we don't need to trigger writepage at all. */ 2246 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2247 goto skip_write; 2248 2249 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 2250 wbc->sync_mode == WB_SYNC_NONE && 2251 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2252 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 2253 goto skip_write; 2254 2255 /* skip writing during file defragment */ 2256 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2257 goto skip_write; 2258 2259 trace_f2fs_writepages(mapping->host, wbc, DATA); 2260 2261 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2262 if (wbc->sync_mode == WB_SYNC_ALL) 2263 atomic_inc(&sbi->wb_sync_req[DATA]); 2264 else if (atomic_read(&sbi->wb_sync_req[DATA])) 2265 goto skip_write; 2266 2267 if (__should_serialize_io(inode, wbc)) { 2268 mutex_lock(&sbi->writepages); 2269 locked = true; 2270 } 2271 2272 blk_start_plug(&plug); 2273 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2274 blk_finish_plug(&plug); 2275 2276 if (locked) 2277 mutex_unlock(&sbi->writepages); 2278 2279 if (wbc->sync_mode == WB_SYNC_ALL) 2280 atomic_dec(&sbi->wb_sync_req[DATA]); 2281 /* 2282 * if some pages were truncated, we cannot guarantee its mapping->host 2283 * to detect pending bios. 2284 */ 2285 2286 f2fs_remove_dirty_inode(inode); 2287 return ret; 2288 2289 skip_write: 2290 wbc->pages_skipped += get_dirty_pages(inode); 2291 trace_f2fs_writepages(mapping->host, wbc, DATA); 2292 return 0; 2293 } 2294 2295 static int f2fs_write_data_pages(struct address_space *mapping, 2296 struct writeback_control *wbc) 2297 { 2298 struct inode *inode = mapping->host; 2299 2300 return __f2fs_write_data_pages(mapping, wbc, 2301 F2FS_I(inode)->cp_task == current ? 2302 FS_CP_DATA_IO : FS_DATA_IO); 2303 } 2304 2305 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2306 { 2307 struct inode *inode = mapping->host; 2308 loff_t i_size = i_size_read(inode); 2309 2310 if (to > i_size) { 2311 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2312 down_write(&F2FS_I(inode)->i_mmap_sem); 2313 2314 truncate_pagecache(inode, i_size); 2315 f2fs_truncate_blocks(inode, i_size, true, true); 2316 2317 up_write(&F2FS_I(inode)->i_mmap_sem); 2318 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2319 } 2320 } 2321 2322 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2323 struct page *page, loff_t pos, unsigned len, 2324 block_t *blk_addr, bool *node_changed) 2325 { 2326 struct inode *inode = page->mapping->host; 2327 pgoff_t index = page->index; 2328 struct dnode_of_data dn; 2329 struct page *ipage; 2330 bool locked = false; 2331 struct extent_info ei = {0,0,0}; 2332 int err = 0; 2333 int flag; 2334 2335 /* 2336 * we already allocated all the blocks, so we don't need to get 2337 * the block addresses when there is no need to fill the page. 2338 */ 2339 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2340 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 2341 return 0; 2342 2343 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 2344 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 2345 flag = F2FS_GET_BLOCK_DEFAULT; 2346 else 2347 flag = F2FS_GET_BLOCK_PRE_AIO; 2348 2349 if (f2fs_has_inline_data(inode) || 2350 (pos & PAGE_MASK) >= i_size_read(inode)) { 2351 __do_map_lock(sbi, flag, true); 2352 locked = true; 2353 } 2354 restart: 2355 /* check inline_data */ 2356 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2357 if (IS_ERR(ipage)) { 2358 err = PTR_ERR(ipage); 2359 goto unlock_out; 2360 } 2361 2362 set_new_dnode(&dn, inode, ipage, ipage, 0); 2363 2364 if (f2fs_has_inline_data(inode)) { 2365 if (pos + len <= MAX_INLINE_DATA(inode)) { 2366 f2fs_do_read_inline_data(page, ipage); 2367 set_inode_flag(inode, FI_DATA_EXIST); 2368 if (inode->i_nlink) 2369 set_inline_node(ipage); 2370 } else { 2371 err = f2fs_convert_inline_page(&dn, page); 2372 if (err) 2373 goto out; 2374 if (dn.data_blkaddr == NULL_ADDR) 2375 err = f2fs_get_block(&dn, index); 2376 } 2377 } else if (locked) { 2378 err = f2fs_get_block(&dn, index); 2379 } else { 2380 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2381 dn.data_blkaddr = ei.blk + index - ei.fofs; 2382 } else { 2383 /* hole case */ 2384 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 2385 if (err || dn.data_blkaddr == NULL_ADDR) { 2386 f2fs_put_dnode(&dn); 2387 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2388 true); 2389 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 2390 locked = true; 2391 goto restart; 2392 } 2393 } 2394 } 2395 2396 /* convert_inline_page can make node_changed */ 2397 *blk_addr = dn.data_blkaddr; 2398 *node_changed = dn.node_changed; 2399 out: 2400 f2fs_put_dnode(&dn); 2401 unlock_out: 2402 if (locked) 2403 __do_map_lock(sbi, flag, false); 2404 return err; 2405 } 2406 2407 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2408 loff_t pos, unsigned len, unsigned flags, 2409 struct page **pagep, void **fsdata) 2410 { 2411 struct inode *inode = mapping->host; 2412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2413 struct page *page = NULL; 2414 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2415 bool need_balance = false, drop_atomic = false; 2416 block_t blkaddr = NULL_ADDR; 2417 int err = 0; 2418 2419 trace_f2fs_write_begin(inode, pos, len, flags); 2420 2421 err = f2fs_is_checkpoint_ready(sbi); 2422 if (err) 2423 goto fail; 2424 2425 if ((f2fs_is_atomic_file(inode) && 2426 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 2427 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2428 err = -ENOMEM; 2429 drop_atomic = true; 2430 goto fail; 2431 } 2432 2433 /* 2434 * We should check this at this moment to avoid deadlock on inode page 2435 * and #0 page. The locking rule for inline_data conversion should be: 2436 * lock_page(page #0) -> lock_page(inode_page) 2437 */ 2438 if (index != 0) { 2439 err = f2fs_convert_inline_inode(inode); 2440 if (err) 2441 goto fail; 2442 } 2443 repeat: 2444 /* 2445 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2446 * wait_for_stable_page. Will wait that below with our IO control. 2447 */ 2448 page = f2fs_pagecache_get_page(mapping, index, 2449 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2450 if (!page) { 2451 err = -ENOMEM; 2452 goto fail; 2453 } 2454 2455 *pagep = page; 2456 2457 err = prepare_write_begin(sbi, page, pos, len, 2458 &blkaddr, &need_balance); 2459 if (err) 2460 goto fail; 2461 2462 if (need_balance && !IS_NOQUOTA(inode) && 2463 has_not_enough_free_secs(sbi, 0, 0)) { 2464 unlock_page(page); 2465 f2fs_balance_fs(sbi, true); 2466 lock_page(page); 2467 if (page->mapping != mapping) { 2468 /* The page got truncated from under us */ 2469 f2fs_put_page(page, 1); 2470 goto repeat; 2471 } 2472 } 2473 2474 f2fs_wait_on_page_writeback(page, DATA, false, true); 2475 2476 if (len == PAGE_SIZE || PageUptodate(page)) 2477 return 0; 2478 2479 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 2480 zero_user_segment(page, len, PAGE_SIZE); 2481 return 0; 2482 } 2483 2484 if (blkaddr == NEW_ADDR) { 2485 zero_user_segment(page, 0, PAGE_SIZE); 2486 SetPageUptodate(page); 2487 } else { 2488 err = f2fs_submit_page_read(inode, page, blkaddr); 2489 if (err) 2490 goto fail; 2491 2492 lock_page(page); 2493 if (unlikely(page->mapping != mapping)) { 2494 f2fs_put_page(page, 1); 2495 goto repeat; 2496 } 2497 if (unlikely(!PageUptodate(page))) { 2498 err = -EIO; 2499 goto fail; 2500 } 2501 } 2502 return 0; 2503 2504 fail: 2505 f2fs_put_page(page, 1); 2506 f2fs_write_failed(mapping, pos + len); 2507 if (drop_atomic) 2508 f2fs_drop_inmem_pages_all(sbi, false); 2509 return err; 2510 } 2511 2512 static int f2fs_write_end(struct file *file, 2513 struct address_space *mapping, 2514 loff_t pos, unsigned len, unsigned copied, 2515 struct page *page, void *fsdata) 2516 { 2517 struct inode *inode = page->mapping->host; 2518 2519 trace_f2fs_write_end(inode, pos, len, copied); 2520 2521 /* 2522 * This should be come from len == PAGE_SIZE, and we expect copied 2523 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2524 * let generic_perform_write() try to copy data again through copied=0. 2525 */ 2526 if (!PageUptodate(page)) { 2527 if (unlikely(copied != len)) 2528 copied = 0; 2529 else 2530 SetPageUptodate(page); 2531 } 2532 if (!copied) 2533 goto unlock_out; 2534 2535 set_page_dirty(page); 2536 2537 if (pos + copied > i_size_read(inode)) 2538 f2fs_i_size_write(inode, pos + copied); 2539 unlock_out: 2540 f2fs_put_page(page, 1); 2541 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2542 return copied; 2543 } 2544 2545 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2546 loff_t offset) 2547 { 2548 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 2549 unsigned blkbits = i_blkbits; 2550 unsigned blocksize_mask = (1 << blkbits) - 1; 2551 unsigned long align = offset | iov_iter_alignment(iter); 2552 struct block_device *bdev = inode->i_sb->s_bdev; 2553 2554 if (align & blocksize_mask) { 2555 if (bdev) 2556 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 2557 blocksize_mask = (1 << blkbits) - 1; 2558 if (align & blocksize_mask) 2559 return -EINVAL; 2560 return 1; 2561 } 2562 return 0; 2563 } 2564 2565 static void f2fs_dio_end_io(struct bio *bio) 2566 { 2567 struct f2fs_private_dio *dio = bio->bi_private; 2568 2569 dec_page_count(F2FS_I_SB(dio->inode), 2570 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2571 2572 bio->bi_private = dio->orig_private; 2573 bio->bi_end_io = dio->orig_end_io; 2574 2575 kvfree(dio); 2576 2577 bio_endio(bio); 2578 } 2579 2580 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 2581 loff_t file_offset) 2582 { 2583 struct f2fs_private_dio *dio; 2584 bool write = (bio_op(bio) == REQ_OP_WRITE); 2585 int err; 2586 2587 dio = f2fs_kzalloc(F2FS_I_SB(inode), 2588 sizeof(struct f2fs_private_dio), GFP_NOFS); 2589 if (!dio) { 2590 err = -ENOMEM; 2591 goto out; 2592 } 2593 2594 dio->inode = inode; 2595 dio->orig_end_io = bio->bi_end_io; 2596 dio->orig_private = bio->bi_private; 2597 dio->write = write; 2598 2599 bio->bi_end_io = f2fs_dio_end_io; 2600 bio->bi_private = dio; 2601 2602 inc_page_count(F2FS_I_SB(inode), 2603 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2604 2605 submit_bio(bio); 2606 return; 2607 out: 2608 bio->bi_status = BLK_STS_IOERR; 2609 bio_endio(bio); 2610 } 2611 2612 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2613 { 2614 struct address_space *mapping = iocb->ki_filp->f_mapping; 2615 struct inode *inode = mapping->host; 2616 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2617 struct f2fs_inode_info *fi = F2FS_I(inode); 2618 size_t count = iov_iter_count(iter); 2619 loff_t offset = iocb->ki_pos; 2620 int rw = iov_iter_rw(iter); 2621 int err; 2622 enum rw_hint hint = iocb->ki_hint; 2623 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2624 bool do_opu; 2625 2626 err = check_direct_IO(inode, iter, offset); 2627 if (err) 2628 return err < 0 ? err : 0; 2629 2630 if (f2fs_force_buffered_io(inode, iocb, iter)) 2631 return 0; 2632 2633 do_opu = allow_outplace_dio(inode, iocb, iter); 2634 2635 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2636 2637 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2638 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2639 2640 if (iocb->ki_flags & IOCB_NOWAIT) { 2641 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 2642 iocb->ki_hint = hint; 2643 err = -EAGAIN; 2644 goto out; 2645 } 2646 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 2647 up_read(&fi->i_gc_rwsem[rw]); 2648 iocb->ki_hint = hint; 2649 err = -EAGAIN; 2650 goto out; 2651 } 2652 } else { 2653 down_read(&fi->i_gc_rwsem[rw]); 2654 if (do_opu) 2655 down_read(&fi->i_gc_rwsem[READ]); 2656 } 2657 2658 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2659 iter, rw == WRITE ? get_data_block_dio_write : 2660 get_data_block_dio, NULL, f2fs_dio_submit_bio, 2661 DIO_LOCKING | DIO_SKIP_HOLES); 2662 2663 if (do_opu) 2664 up_read(&fi->i_gc_rwsem[READ]); 2665 2666 up_read(&fi->i_gc_rwsem[rw]); 2667 2668 if (rw == WRITE) { 2669 if (whint_mode == WHINT_MODE_OFF) 2670 iocb->ki_hint = hint; 2671 if (err > 0) { 2672 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2673 err); 2674 if (!do_opu) 2675 set_inode_flag(inode, FI_UPDATE_WRITE); 2676 } else if (err < 0) { 2677 f2fs_write_failed(mapping, offset + count); 2678 } 2679 } 2680 2681 out: 2682 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2683 2684 return err; 2685 } 2686 2687 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2688 unsigned int length) 2689 { 2690 struct inode *inode = page->mapping->host; 2691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2692 2693 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2694 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2695 return; 2696 2697 if (PageDirty(page)) { 2698 if (inode->i_ino == F2FS_META_INO(sbi)) { 2699 dec_page_count(sbi, F2FS_DIRTY_META); 2700 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2701 dec_page_count(sbi, F2FS_DIRTY_NODES); 2702 } else { 2703 inode_dec_dirty_pages(inode); 2704 f2fs_remove_dirty_inode(inode); 2705 } 2706 } 2707 2708 clear_cold_data(page); 2709 2710 /* This is atomic written page, keep Private */ 2711 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2712 return f2fs_drop_inmem_page(inode, page); 2713 2714 set_page_private(page, 0); 2715 ClearPagePrivate(page); 2716 } 2717 2718 int f2fs_release_page(struct page *page, gfp_t wait) 2719 { 2720 /* If this is dirty page, keep PagePrivate */ 2721 if (PageDirty(page)) 2722 return 0; 2723 2724 /* This is atomic written page, keep Private */ 2725 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2726 return 0; 2727 2728 clear_cold_data(page); 2729 set_page_private(page, 0); 2730 ClearPagePrivate(page); 2731 return 1; 2732 } 2733 2734 static int f2fs_set_data_page_dirty(struct page *page) 2735 { 2736 struct address_space *mapping = page->mapping; 2737 struct inode *inode = mapping->host; 2738 2739 trace_f2fs_set_page_dirty(page, DATA); 2740 2741 if (!PageUptodate(page)) 2742 SetPageUptodate(page); 2743 2744 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2745 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2746 f2fs_register_inmem_page(inode, page); 2747 return 1; 2748 } 2749 /* 2750 * Previously, this page has been registered, we just 2751 * return here. 2752 */ 2753 return 0; 2754 } 2755 2756 if (!PageDirty(page)) { 2757 __set_page_dirty_nobuffers(page); 2758 f2fs_update_dirty_page(inode, page); 2759 return 1; 2760 } 2761 return 0; 2762 } 2763 2764 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2765 { 2766 struct inode *inode = mapping->host; 2767 2768 if (f2fs_has_inline_data(inode)) 2769 return 0; 2770 2771 /* make sure allocating whole blocks */ 2772 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2773 filemap_write_and_wait(mapping); 2774 2775 return generic_block_bmap(mapping, block, get_data_block_bmap); 2776 } 2777 2778 #ifdef CONFIG_MIGRATION 2779 #include <linux/migrate.h> 2780 2781 int f2fs_migrate_page(struct address_space *mapping, 2782 struct page *newpage, struct page *page, enum migrate_mode mode) 2783 { 2784 int rc, extra_count; 2785 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2786 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2787 2788 BUG_ON(PageWriteback(page)); 2789 2790 /* migrating an atomic written page is safe with the inmem_lock hold */ 2791 if (atomic_written) { 2792 if (mode != MIGRATE_SYNC) 2793 return -EBUSY; 2794 if (!mutex_trylock(&fi->inmem_lock)) 2795 return -EAGAIN; 2796 } 2797 2798 /* 2799 * A reference is expected if PagePrivate set when move mapping, 2800 * however F2FS breaks this for maintaining dirty page counts when 2801 * truncating pages. So here adjusting the 'extra_count' make it work. 2802 */ 2803 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 2804 rc = migrate_page_move_mapping(mapping, newpage, 2805 page, mode, extra_count); 2806 if (rc != MIGRATEPAGE_SUCCESS) { 2807 if (atomic_written) 2808 mutex_unlock(&fi->inmem_lock); 2809 return rc; 2810 } 2811 2812 if (atomic_written) { 2813 struct inmem_pages *cur; 2814 list_for_each_entry(cur, &fi->inmem_pages, list) 2815 if (cur->page == page) { 2816 cur->page = newpage; 2817 break; 2818 } 2819 mutex_unlock(&fi->inmem_lock); 2820 put_page(page); 2821 get_page(newpage); 2822 } 2823 2824 if (PagePrivate(page)) 2825 SetPagePrivate(newpage); 2826 set_page_private(newpage, page_private(page)); 2827 2828 if (mode != MIGRATE_SYNC_NO_COPY) 2829 migrate_page_copy(newpage, page); 2830 else 2831 migrate_page_states(newpage, page); 2832 2833 return MIGRATEPAGE_SUCCESS; 2834 } 2835 #endif 2836 2837 const struct address_space_operations f2fs_dblock_aops = { 2838 .readpage = f2fs_read_data_page, 2839 .readpages = f2fs_read_data_pages, 2840 .writepage = f2fs_write_data_page, 2841 .writepages = f2fs_write_data_pages, 2842 .write_begin = f2fs_write_begin, 2843 .write_end = f2fs_write_end, 2844 .set_page_dirty = f2fs_set_data_page_dirty, 2845 .invalidatepage = f2fs_invalidate_page, 2846 .releasepage = f2fs_release_page, 2847 .direct_IO = f2fs_direct_IO, 2848 .bmap = f2fs_bmap, 2849 #ifdef CONFIG_MIGRATION 2850 .migratepage = f2fs_migrate_page, 2851 #endif 2852 }; 2853 2854 void f2fs_clear_page_cache_dirty_tag(struct page *page) 2855 { 2856 struct address_space *mapping = page_mapping(page); 2857 unsigned long flags; 2858 2859 xa_lock_irqsave(&mapping->i_pages, flags); 2860 __xa_clear_mark(&mapping->i_pages, page_index(page), 2861 PAGECACHE_TAG_DIRTY); 2862 xa_unlock_irqrestore(&mapping->i_pages, flags); 2863 } 2864 2865 int __init f2fs_init_post_read_processing(void) 2866 { 2867 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0); 2868 if (!bio_post_read_ctx_cache) 2869 goto fail; 2870 bio_post_read_ctx_pool = 2871 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 2872 bio_post_read_ctx_cache); 2873 if (!bio_post_read_ctx_pool) 2874 goto fail_free_cache; 2875 return 0; 2876 2877 fail_free_cache: 2878 kmem_cache_destroy(bio_post_read_ctx_cache); 2879 fail: 2880 return -ENOMEM; 2881 } 2882 2883 void __exit f2fs_destroy_post_read_processing(void) 2884 { 2885 mempool_destroy(bio_post_read_ctx_pool); 2886 kmem_cache_destroy(bio_post_read_ctx_cache); 2887 } 2888