xref: /openbmc/linux/fs/f2fs/data.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27 
28 #define NUM_PREALLOC_POST_READ_CTXS	128
29 
30 static struct kmem_cache *bio_post_read_ctx_cache;
31 static mempool_t *bio_post_read_ctx_pool;
32 
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 	struct address_space *mapping = page->mapping;
36 	struct inode *inode;
37 	struct f2fs_sb_info *sbi;
38 
39 	if (!mapping)
40 		return false;
41 
42 	inode = mapping->host;
43 	sbi = F2FS_I_SB(inode);
44 
45 	if (inode->i_ino == F2FS_META_INO(sbi) ||
46 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47 			S_ISDIR(inode->i_mode) ||
48 			(S_ISREG(inode->i_mode) &&
49 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
50 			is_cold_data(page))
51 		return true;
52 	return false;
53 }
54 
55 static enum count_type __read_io_type(struct page *page)
56 {
57 	struct address_space *mapping = page->mapping;
58 
59 	if (mapping) {
60 		struct inode *inode = mapping->host;
61 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
62 
63 		if (inode->i_ino == F2FS_META_INO(sbi))
64 			return F2FS_RD_META;
65 
66 		if (inode->i_ino == F2FS_NODE_INO(sbi))
67 			return F2FS_RD_NODE;
68 	}
69 	return F2FS_RD_DATA;
70 }
71 
72 /* postprocessing steps for read bios */
73 enum bio_post_read_step {
74 	STEP_INITIAL = 0,
75 	STEP_DECRYPT,
76 };
77 
78 struct bio_post_read_ctx {
79 	struct bio *bio;
80 	struct work_struct work;
81 	unsigned int cur_step;
82 	unsigned int enabled_steps;
83 };
84 
85 static void __read_end_io(struct bio *bio)
86 {
87 	struct page *page;
88 	struct bio_vec *bv;
89 	struct bvec_iter_all iter_all;
90 
91 	bio_for_each_segment_all(bv, bio, iter_all) {
92 		page = bv->bv_page;
93 
94 		/* PG_error was set if any post_read step failed */
95 		if (bio->bi_status || PageError(page)) {
96 			ClearPageUptodate(page);
97 			/* will re-read again later */
98 			ClearPageError(page);
99 		} else {
100 			SetPageUptodate(page);
101 		}
102 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
103 		unlock_page(page);
104 	}
105 	if (bio->bi_private)
106 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
107 	bio_put(bio);
108 }
109 
110 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
111 
112 static void decrypt_work(struct work_struct *work)
113 {
114 	struct bio_post_read_ctx *ctx =
115 		container_of(work, struct bio_post_read_ctx, work);
116 
117 	fscrypt_decrypt_bio(ctx->bio);
118 
119 	bio_post_read_processing(ctx);
120 }
121 
122 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
123 {
124 	switch (++ctx->cur_step) {
125 	case STEP_DECRYPT:
126 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
127 			INIT_WORK(&ctx->work, decrypt_work);
128 			fscrypt_enqueue_decrypt_work(&ctx->work);
129 			return;
130 		}
131 		ctx->cur_step++;
132 		/* fall-through */
133 	default:
134 		__read_end_io(ctx->bio);
135 	}
136 }
137 
138 static bool f2fs_bio_post_read_required(struct bio *bio)
139 {
140 	return bio->bi_private && !bio->bi_status;
141 }
142 
143 static void f2fs_read_end_io(struct bio *bio)
144 {
145 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
146 						FAULT_READ_IO)) {
147 		f2fs_show_injection_info(FAULT_READ_IO);
148 		bio->bi_status = BLK_STS_IOERR;
149 	}
150 
151 	if (f2fs_bio_post_read_required(bio)) {
152 		struct bio_post_read_ctx *ctx = bio->bi_private;
153 
154 		ctx->cur_step = STEP_INITIAL;
155 		bio_post_read_processing(ctx);
156 		return;
157 	}
158 
159 	__read_end_io(bio);
160 }
161 
162 static void f2fs_write_end_io(struct bio *bio)
163 {
164 	struct f2fs_sb_info *sbi = bio->bi_private;
165 	struct bio_vec *bvec;
166 	struct bvec_iter_all iter_all;
167 
168 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
169 		f2fs_show_injection_info(FAULT_WRITE_IO);
170 		bio->bi_status = BLK_STS_IOERR;
171 	}
172 
173 	bio_for_each_segment_all(bvec, bio, iter_all) {
174 		struct page *page = bvec->bv_page;
175 		enum count_type type = WB_DATA_TYPE(page);
176 
177 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
178 			set_page_private(page, (unsigned long)NULL);
179 			ClearPagePrivate(page);
180 			unlock_page(page);
181 			mempool_free(page, sbi->write_io_dummy);
182 
183 			if (unlikely(bio->bi_status))
184 				f2fs_stop_checkpoint(sbi, true);
185 			continue;
186 		}
187 
188 		fscrypt_pullback_bio_page(&page, true);
189 
190 		if (unlikely(bio->bi_status)) {
191 			mapping_set_error(page->mapping, -EIO);
192 			if (type == F2FS_WB_CP_DATA)
193 				f2fs_stop_checkpoint(sbi, true);
194 		}
195 
196 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
197 					page->index != nid_of_node(page));
198 
199 		dec_page_count(sbi, type);
200 		if (f2fs_in_warm_node_list(sbi, page))
201 			f2fs_del_fsync_node_entry(sbi, page);
202 		clear_cold_data(page);
203 		end_page_writeback(page);
204 	}
205 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
206 				wq_has_sleeper(&sbi->cp_wait))
207 		wake_up(&sbi->cp_wait);
208 
209 	bio_put(bio);
210 }
211 
212 /*
213  * Return true, if pre_bio's bdev is same as its target device.
214  */
215 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
216 				block_t blk_addr, struct bio *bio)
217 {
218 	struct block_device *bdev = sbi->sb->s_bdev;
219 	int i;
220 
221 	if (f2fs_is_multi_device(sbi)) {
222 		for (i = 0; i < sbi->s_ndevs; i++) {
223 			if (FDEV(i).start_blk <= blk_addr &&
224 			    FDEV(i).end_blk >= blk_addr) {
225 				blk_addr -= FDEV(i).start_blk;
226 				bdev = FDEV(i).bdev;
227 				break;
228 			}
229 		}
230 	}
231 	if (bio) {
232 		bio_set_dev(bio, bdev);
233 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
234 	}
235 	return bdev;
236 }
237 
238 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
239 {
240 	int i;
241 
242 	if (!f2fs_is_multi_device(sbi))
243 		return 0;
244 
245 	for (i = 0; i < sbi->s_ndevs; i++)
246 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
247 			return i;
248 	return 0;
249 }
250 
251 static bool __same_bdev(struct f2fs_sb_info *sbi,
252 				block_t blk_addr, struct bio *bio)
253 {
254 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
255 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
256 }
257 
258 /*
259  * Low-level block read/write IO operations.
260  */
261 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
262 				struct writeback_control *wbc,
263 				int npages, bool is_read,
264 				enum page_type type, enum temp_type temp)
265 {
266 	struct bio *bio;
267 
268 	bio = f2fs_bio_alloc(sbi, npages, true);
269 
270 	f2fs_target_device(sbi, blk_addr, bio);
271 	if (is_read) {
272 		bio->bi_end_io = f2fs_read_end_io;
273 		bio->bi_private = NULL;
274 	} else {
275 		bio->bi_end_io = f2fs_write_end_io;
276 		bio->bi_private = sbi;
277 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
278 	}
279 	if (wbc)
280 		wbc_init_bio(wbc, bio);
281 
282 	return bio;
283 }
284 
285 static inline void __submit_bio(struct f2fs_sb_info *sbi,
286 				struct bio *bio, enum page_type type)
287 {
288 	if (!is_read_io(bio_op(bio))) {
289 		unsigned int start;
290 
291 		if (type != DATA && type != NODE)
292 			goto submit_io;
293 
294 		if (test_opt(sbi, LFS) && current->plug)
295 			blk_finish_plug(current->plug);
296 
297 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
298 		start %= F2FS_IO_SIZE(sbi);
299 
300 		if (start == 0)
301 			goto submit_io;
302 
303 		/* fill dummy pages */
304 		for (; start < F2FS_IO_SIZE(sbi); start++) {
305 			struct page *page =
306 				mempool_alloc(sbi->write_io_dummy,
307 					      GFP_NOIO | __GFP_NOFAIL);
308 			f2fs_bug_on(sbi, !page);
309 
310 			zero_user_segment(page, 0, PAGE_SIZE);
311 			SetPagePrivate(page);
312 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
313 			lock_page(page);
314 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
315 				f2fs_bug_on(sbi, 1);
316 		}
317 		/*
318 		 * In the NODE case, we lose next block address chain. So, we
319 		 * need to do checkpoint in f2fs_sync_file.
320 		 */
321 		if (type == NODE)
322 			set_sbi_flag(sbi, SBI_NEED_CP);
323 	}
324 submit_io:
325 	if (is_read_io(bio_op(bio)))
326 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
327 	else
328 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
329 	submit_bio(bio);
330 }
331 
332 static void __submit_merged_bio(struct f2fs_bio_info *io)
333 {
334 	struct f2fs_io_info *fio = &io->fio;
335 
336 	if (!io->bio)
337 		return;
338 
339 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
340 
341 	if (is_read_io(fio->op))
342 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
343 	else
344 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
345 
346 	__submit_bio(io->sbi, io->bio, fio->type);
347 	io->bio = NULL;
348 }
349 
350 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
351 						struct page *page, nid_t ino)
352 {
353 	struct bio_vec *bvec;
354 	struct page *target;
355 	struct bvec_iter_all iter_all;
356 
357 	if (!io->bio)
358 		return false;
359 
360 	if (!inode && !page && !ino)
361 		return true;
362 
363 	bio_for_each_segment_all(bvec, io->bio, iter_all) {
364 
365 		if (bvec->bv_page->mapping)
366 			target = bvec->bv_page;
367 		else
368 			target = fscrypt_control_page(bvec->bv_page);
369 
370 		if (inode && inode == target->mapping->host)
371 			return true;
372 		if (page && page == target)
373 			return true;
374 		if (ino && ino == ino_of_node(target))
375 			return true;
376 	}
377 
378 	return false;
379 }
380 
381 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
382 				enum page_type type, enum temp_type temp)
383 {
384 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
385 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
386 
387 	down_write(&io->io_rwsem);
388 
389 	/* change META to META_FLUSH in the checkpoint procedure */
390 	if (type >= META_FLUSH) {
391 		io->fio.type = META_FLUSH;
392 		io->fio.op = REQ_OP_WRITE;
393 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
394 		if (!test_opt(sbi, NOBARRIER))
395 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
396 	}
397 	__submit_merged_bio(io);
398 	up_write(&io->io_rwsem);
399 }
400 
401 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
402 				struct inode *inode, struct page *page,
403 				nid_t ino, enum page_type type, bool force)
404 {
405 	enum temp_type temp;
406 	bool ret = true;
407 
408 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
409 		if (!force)	{
410 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
411 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
412 
413 			down_read(&io->io_rwsem);
414 			ret = __has_merged_page(io, inode, page, ino);
415 			up_read(&io->io_rwsem);
416 		}
417 		if (ret)
418 			__f2fs_submit_merged_write(sbi, type, temp);
419 
420 		/* TODO: use HOT temp only for meta pages now. */
421 		if (type >= META)
422 			break;
423 	}
424 }
425 
426 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
427 {
428 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
429 }
430 
431 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
432 				struct inode *inode, struct page *page,
433 				nid_t ino, enum page_type type)
434 {
435 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
436 }
437 
438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
439 {
440 	f2fs_submit_merged_write(sbi, DATA);
441 	f2fs_submit_merged_write(sbi, NODE);
442 	f2fs_submit_merged_write(sbi, META);
443 }
444 
445 /*
446  * Fill the locked page with data located in the block address.
447  * A caller needs to unlock the page on failure.
448  */
449 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
450 {
451 	struct bio *bio;
452 	struct page *page = fio->encrypted_page ?
453 			fio->encrypted_page : fio->page;
454 
455 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
456 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
457 			META_GENERIC : DATA_GENERIC_ENHANCE)))
458 		return -EFAULT;
459 
460 	trace_f2fs_submit_page_bio(page, fio);
461 	f2fs_trace_ios(fio, 0);
462 
463 	/* Allocate a new bio */
464 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
465 				1, is_read_io(fio->op), fio->type, fio->temp);
466 
467 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
468 		bio_put(bio);
469 		return -EFAULT;
470 	}
471 
472 	if (fio->io_wbc && !is_read_io(fio->op))
473 		wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
474 
475 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
476 
477 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
478 			__read_io_type(page): WB_DATA_TYPE(fio->page));
479 
480 	__submit_bio(fio->sbi, bio, fio->type);
481 	return 0;
482 }
483 
484 void f2fs_submit_page_write(struct f2fs_io_info *fio)
485 {
486 	struct f2fs_sb_info *sbi = fio->sbi;
487 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
488 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
489 	struct page *bio_page;
490 
491 	f2fs_bug_on(sbi, is_read_io(fio->op));
492 
493 	down_write(&io->io_rwsem);
494 next:
495 	if (fio->in_list) {
496 		spin_lock(&io->io_lock);
497 		if (list_empty(&io->io_list)) {
498 			spin_unlock(&io->io_lock);
499 			goto out;
500 		}
501 		fio = list_first_entry(&io->io_list,
502 						struct f2fs_io_info, list);
503 		list_del(&fio->list);
504 		spin_unlock(&io->io_lock);
505 	}
506 
507 	verify_fio_blkaddr(fio);
508 
509 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
510 
511 	/* set submitted = true as a return value */
512 	fio->submitted = true;
513 
514 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
515 
516 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
517 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
518 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
519 		__submit_merged_bio(io);
520 alloc_new:
521 	if (io->bio == NULL) {
522 		if ((fio->type == DATA || fio->type == NODE) &&
523 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
524 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
525 			fio->retry = true;
526 			goto skip;
527 		}
528 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
529 						BIO_MAX_PAGES, false,
530 						fio->type, fio->temp);
531 		io->fio = *fio;
532 	}
533 
534 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
535 		__submit_merged_bio(io);
536 		goto alloc_new;
537 	}
538 
539 	if (fio->io_wbc)
540 		wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
541 
542 	io->last_block_in_bio = fio->new_blkaddr;
543 	f2fs_trace_ios(fio, 0);
544 
545 	trace_f2fs_submit_page_write(fio->page, fio);
546 skip:
547 	if (fio->in_list)
548 		goto next;
549 out:
550 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
551 				f2fs_is_checkpoint_ready(sbi))
552 		__submit_merged_bio(io);
553 	up_write(&io->io_rwsem);
554 }
555 
556 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
557 					unsigned nr_pages, unsigned op_flag)
558 {
559 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
560 	struct bio *bio;
561 	struct bio_post_read_ctx *ctx;
562 	unsigned int post_read_steps = 0;
563 
564 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
565 	if (!bio)
566 		return ERR_PTR(-ENOMEM);
567 	f2fs_target_device(sbi, blkaddr, bio);
568 	bio->bi_end_io = f2fs_read_end_io;
569 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
570 
571 	if (f2fs_encrypted_file(inode))
572 		post_read_steps |= 1 << STEP_DECRYPT;
573 	if (post_read_steps) {
574 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
575 		if (!ctx) {
576 			bio_put(bio);
577 			return ERR_PTR(-ENOMEM);
578 		}
579 		ctx->bio = bio;
580 		ctx->enabled_steps = post_read_steps;
581 		bio->bi_private = ctx;
582 	}
583 
584 	return bio;
585 }
586 
587 /* This can handle encryption stuffs */
588 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
589 							block_t blkaddr)
590 {
591 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
592 	struct bio *bio;
593 
594 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
595 	if (IS_ERR(bio))
596 		return PTR_ERR(bio);
597 
598 	/* wait for GCed page writeback via META_MAPPING */
599 	f2fs_wait_on_block_writeback(inode, blkaddr);
600 
601 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
602 		bio_put(bio);
603 		return -EFAULT;
604 	}
605 	ClearPageError(page);
606 	inc_page_count(sbi, F2FS_RD_DATA);
607 	__submit_bio(sbi, bio, DATA);
608 	return 0;
609 }
610 
611 static void __set_data_blkaddr(struct dnode_of_data *dn)
612 {
613 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
614 	__le32 *addr_array;
615 	int base = 0;
616 
617 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
618 		base = get_extra_isize(dn->inode);
619 
620 	/* Get physical address of data block */
621 	addr_array = blkaddr_in_node(rn);
622 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
623 }
624 
625 /*
626  * Lock ordering for the change of data block address:
627  * ->data_page
628  *  ->node_page
629  *    update block addresses in the node page
630  */
631 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
632 {
633 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
634 	__set_data_blkaddr(dn);
635 	if (set_page_dirty(dn->node_page))
636 		dn->node_changed = true;
637 }
638 
639 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
640 {
641 	dn->data_blkaddr = blkaddr;
642 	f2fs_set_data_blkaddr(dn);
643 	f2fs_update_extent_cache(dn);
644 }
645 
646 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
647 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
648 {
649 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
650 	int err;
651 
652 	if (!count)
653 		return 0;
654 
655 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
656 		return -EPERM;
657 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
658 		return err;
659 
660 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
661 						dn->ofs_in_node, count);
662 
663 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
664 
665 	for (; count > 0; dn->ofs_in_node++) {
666 		block_t blkaddr = datablock_addr(dn->inode,
667 					dn->node_page, dn->ofs_in_node);
668 		if (blkaddr == NULL_ADDR) {
669 			dn->data_blkaddr = NEW_ADDR;
670 			__set_data_blkaddr(dn);
671 			count--;
672 		}
673 	}
674 
675 	if (set_page_dirty(dn->node_page))
676 		dn->node_changed = true;
677 	return 0;
678 }
679 
680 /* Should keep dn->ofs_in_node unchanged */
681 int f2fs_reserve_new_block(struct dnode_of_data *dn)
682 {
683 	unsigned int ofs_in_node = dn->ofs_in_node;
684 	int ret;
685 
686 	ret = f2fs_reserve_new_blocks(dn, 1);
687 	dn->ofs_in_node = ofs_in_node;
688 	return ret;
689 }
690 
691 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
692 {
693 	bool need_put = dn->inode_page ? false : true;
694 	int err;
695 
696 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
697 	if (err)
698 		return err;
699 
700 	if (dn->data_blkaddr == NULL_ADDR)
701 		err = f2fs_reserve_new_block(dn);
702 	if (err || need_put)
703 		f2fs_put_dnode(dn);
704 	return err;
705 }
706 
707 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
708 {
709 	struct extent_info ei  = {0,0,0};
710 	struct inode *inode = dn->inode;
711 
712 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
713 		dn->data_blkaddr = ei.blk + index - ei.fofs;
714 		return 0;
715 	}
716 
717 	return f2fs_reserve_block(dn, index);
718 }
719 
720 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
721 						int op_flags, bool for_write)
722 {
723 	struct address_space *mapping = inode->i_mapping;
724 	struct dnode_of_data dn;
725 	struct page *page;
726 	struct extent_info ei = {0,0,0};
727 	int err;
728 
729 	page = f2fs_grab_cache_page(mapping, index, for_write);
730 	if (!page)
731 		return ERR_PTR(-ENOMEM);
732 
733 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
734 		dn.data_blkaddr = ei.blk + index - ei.fofs;
735 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
736 						DATA_GENERIC_ENHANCE_READ)) {
737 			err = -EFAULT;
738 			goto put_err;
739 		}
740 		goto got_it;
741 	}
742 
743 	set_new_dnode(&dn, inode, NULL, NULL, 0);
744 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
745 	if (err)
746 		goto put_err;
747 	f2fs_put_dnode(&dn);
748 
749 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
750 		err = -ENOENT;
751 		goto put_err;
752 	}
753 	if (dn.data_blkaddr != NEW_ADDR &&
754 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
755 						dn.data_blkaddr,
756 						DATA_GENERIC_ENHANCE)) {
757 		err = -EFAULT;
758 		goto put_err;
759 	}
760 got_it:
761 	if (PageUptodate(page)) {
762 		unlock_page(page);
763 		return page;
764 	}
765 
766 	/*
767 	 * A new dentry page is allocated but not able to be written, since its
768 	 * new inode page couldn't be allocated due to -ENOSPC.
769 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
770 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
771 	 * f2fs_init_inode_metadata.
772 	 */
773 	if (dn.data_blkaddr == NEW_ADDR) {
774 		zero_user_segment(page, 0, PAGE_SIZE);
775 		if (!PageUptodate(page))
776 			SetPageUptodate(page);
777 		unlock_page(page);
778 		return page;
779 	}
780 
781 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
782 	if (err)
783 		goto put_err;
784 	return page;
785 
786 put_err:
787 	f2fs_put_page(page, 1);
788 	return ERR_PTR(err);
789 }
790 
791 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
792 {
793 	struct address_space *mapping = inode->i_mapping;
794 	struct page *page;
795 
796 	page = find_get_page(mapping, index);
797 	if (page && PageUptodate(page))
798 		return page;
799 	f2fs_put_page(page, 0);
800 
801 	page = f2fs_get_read_data_page(inode, index, 0, false);
802 	if (IS_ERR(page))
803 		return page;
804 
805 	if (PageUptodate(page))
806 		return page;
807 
808 	wait_on_page_locked(page);
809 	if (unlikely(!PageUptodate(page))) {
810 		f2fs_put_page(page, 0);
811 		return ERR_PTR(-EIO);
812 	}
813 	return page;
814 }
815 
816 /*
817  * If it tries to access a hole, return an error.
818  * Because, the callers, functions in dir.c and GC, should be able to know
819  * whether this page exists or not.
820  */
821 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
822 							bool for_write)
823 {
824 	struct address_space *mapping = inode->i_mapping;
825 	struct page *page;
826 repeat:
827 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
828 	if (IS_ERR(page))
829 		return page;
830 
831 	/* wait for read completion */
832 	lock_page(page);
833 	if (unlikely(page->mapping != mapping)) {
834 		f2fs_put_page(page, 1);
835 		goto repeat;
836 	}
837 	if (unlikely(!PageUptodate(page))) {
838 		f2fs_put_page(page, 1);
839 		return ERR_PTR(-EIO);
840 	}
841 	return page;
842 }
843 
844 /*
845  * Caller ensures that this data page is never allocated.
846  * A new zero-filled data page is allocated in the page cache.
847  *
848  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
849  * f2fs_unlock_op().
850  * Note that, ipage is set only by make_empty_dir, and if any error occur,
851  * ipage should be released by this function.
852  */
853 struct page *f2fs_get_new_data_page(struct inode *inode,
854 		struct page *ipage, pgoff_t index, bool new_i_size)
855 {
856 	struct address_space *mapping = inode->i_mapping;
857 	struct page *page;
858 	struct dnode_of_data dn;
859 	int err;
860 
861 	page = f2fs_grab_cache_page(mapping, index, true);
862 	if (!page) {
863 		/*
864 		 * before exiting, we should make sure ipage will be released
865 		 * if any error occur.
866 		 */
867 		f2fs_put_page(ipage, 1);
868 		return ERR_PTR(-ENOMEM);
869 	}
870 
871 	set_new_dnode(&dn, inode, ipage, NULL, 0);
872 	err = f2fs_reserve_block(&dn, index);
873 	if (err) {
874 		f2fs_put_page(page, 1);
875 		return ERR_PTR(err);
876 	}
877 	if (!ipage)
878 		f2fs_put_dnode(&dn);
879 
880 	if (PageUptodate(page))
881 		goto got_it;
882 
883 	if (dn.data_blkaddr == NEW_ADDR) {
884 		zero_user_segment(page, 0, PAGE_SIZE);
885 		if (!PageUptodate(page))
886 			SetPageUptodate(page);
887 	} else {
888 		f2fs_put_page(page, 1);
889 
890 		/* if ipage exists, blkaddr should be NEW_ADDR */
891 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
892 		page = f2fs_get_lock_data_page(inode, index, true);
893 		if (IS_ERR(page))
894 			return page;
895 	}
896 got_it:
897 	if (new_i_size && i_size_read(inode) <
898 				((loff_t)(index + 1) << PAGE_SHIFT))
899 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
900 	return page;
901 }
902 
903 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
904 {
905 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
906 	struct f2fs_summary sum;
907 	struct node_info ni;
908 	block_t old_blkaddr;
909 	blkcnt_t count = 1;
910 	int err;
911 
912 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
913 		return -EPERM;
914 
915 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
916 	if (err)
917 		return err;
918 
919 	dn->data_blkaddr = datablock_addr(dn->inode,
920 				dn->node_page, dn->ofs_in_node);
921 	if (dn->data_blkaddr != NULL_ADDR)
922 		goto alloc;
923 
924 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
925 		return err;
926 
927 alloc:
928 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
929 	old_blkaddr = dn->data_blkaddr;
930 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
931 					&sum, seg_type, NULL, false);
932 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
933 		invalidate_mapping_pages(META_MAPPING(sbi),
934 					old_blkaddr, old_blkaddr);
935 	f2fs_set_data_blkaddr(dn);
936 
937 	/*
938 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
939 	 * data from unwritten block via dio_read.
940 	 */
941 	return 0;
942 }
943 
944 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
945 {
946 	struct inode *inode = file_inode(iocb->ki_filp);
947 	struct f2fs_map_blocks map;
948 	int flag;
949 	int err = 0;
950 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
951 
952 	/* convert inline data for Direct I/O*/
953 	if (direct_io) {
954 		err = f2fs_convert_inline_inode(inode);
955 		if (err)
956 			return err;
957 	}
958 
959 	if (direct_io && allow_outplace_dio(inode, iocb, from))
960 		return 0;
961 
962 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
963 		return 0;
964 
965 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
966 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
967 	if (map.m_len > map.m_lblk)
968 		map.m_len -= map.m_lblk;
969 	else
970 		map.m_len = 0;
971 
972 	map.m_next_pgofs = NULL;
973 	map.m_next_extent = NULL;
974 	map.m_seg_type = NO_CHECK_TYPE;
975 	map.m_may_create = true;
976 
977 	if (direct_io) {
978 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
979 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
980 					F2FS_GET_BLOCK_PRE_AIO :
981 					F2FS_GET_BLOCK_PRE_DIO;
982 		goto map_blocks;
983 	}
984 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
985 		err = f2fs_convert_inline_inode(inode);
986 		if (err)
987 			return err;
988 	}
989 	if (f2fs_has_inline_data(inode))
990 		return err;
991 
992 	flag = F2FS_GET_BLOCK_PRE_AIO;
993 
994 map_blocks:
995 	err = f2fs_map_blocks(inode, &map, 1, flag);
996 	if (map.m_len > 0 && err == -ENOSPC) {
997 		if (!direct_io)
998 			set_inode_flag(inode, FI_NO_PREALLOC);
999 		err = 0;
1000 	}
1001 	return err;
1002 }
1003 
1004 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1005 {
1006 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1007 		if (lock)
1008 			down_read(&sbi->node_change);
1009 		else
1010 			up_read(&sbi->node_change);
1011 	} else {
1012 		if (lock)
1013 			f2fs_lock_op(sbi);
1014 		else
1015 			f2fs_unlock_op(sbi);
1016 	}
1017 }
1018 
1019 /*
1020  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1021  * f2fs_map_blocks structure.
1022  * If original data blocks are allocated, then give them to blockdev.
1023  * Otherwise,
1024  *     a. preallocate requested block addresses
1025  *     b. do not use extent cache for better performance
1026  *     c. give the block addresses to blockdev
1027  */
1028 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1029 						int create, int flag)
1030 {
1031 	unsigned int maxblocks = map->m_len;
1032 	struct dnode_of_data dn;
1033 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1035 	pgoff_t pgofs, end_offset, end;
1036 	int err = 0, ofs = 1;
1037 	unsigned int ofs_in_node, last_ofs_in_node;
1038 	blkcnt_t prealloc;
1039 	struct extent_info ei = {0,0,0};
1040 	block_t blkaddr;
1041 	unsigned int start_pgofs;
1042 
1043 	if (!maxblocks)
1044 		return 0;
1045 
1046 	map->m_len = 0;
1047 	map->m_flags = 0;
1048 
1049 	/* it only supports block size == page size */
1050 	pgofs =	(pgoff_t)map->m_lblk;
1051 	end = pgofs + maxblocks;
1052 
1053 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1054 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1055 							map->m_may_create)
1056 			goto next_dnode;
1057 
1058 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1059 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1060 		map->m_flags = F2FS_MAP_MAPPED;
1061 		if (map->m_next_extent)
1062 			*map->m_next_extent = pgofs + map->m_len;
1063 
1064 		/* for hardware encryption, but to avoid potential issue in future */
1065 		if (flag == F2FS_GET_BLOCK_DIO)
1066 			f2fs_wait_on_block_writeback_range(inode,
1067 						map->m_pblk, map->m_len);
1068 		goto out;
1069 	}
1070 
1071 next_dnode:
1072 	if (map->m_may_create)
1073 		__do_map_lock(sbi, flag, true);
1074 
1075 	/* When reading holes, we need its node page */
1076 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1077 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1078 	if (err) {
1079 		if (flag == F2FS_GET_BLOCK_BMAP)
1080 			map->m_pblk = 0;
1081 		if (err == -ENOENT) {
1082 			err = 0;
1083 			if (map->m_next_pgofs)
1084 				*map->m_next_pgofs =
1085 					f2fs_get_next_page_offset(&dn, pgofs);
1086 			if (map->m_next_extent)
1087 				*map->m_next_extent =
1088 					f2fs_get_next_page_offset(&dn, pgofs);
1089 		}
1090 		goto unlock_out;
1091 	}
1092 
1093 	start_pgofs = pgofs;
1094 	prealloc = 0;
1095 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1096 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097 
1098 next_block:
1099 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1100 
1101 	if (__is_valid_data_blkaddr(blkaddr) &&
1102 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1103 		err = -EFAULT;
1104 		goto sync_out;
1105 	}
1106 
1107 	if (__is_valid_data_blkaddr(blkaddr)) {
1108 		/* use out-place-update for driect IO under LFS mode */
1109 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1110 							map->m_may_create) {
1111 			err = __allocate_data_block(&dn, map->m_seg_type);
1112 			if (!err) {
1113 				blkaddr = dn.data_blkaddr;
1114 				set_inode_flag(inode, FI_APPEND_WRITE);
1115 			}
1116 		}
1117 	} else {
1118 		if (create) {
1119 			if (unlikely(f2fs_cp_error(sbi))) {
1120 				err = -EIO;
1121 				goto sync_out;
1122 			}
1123 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1124 				if (blkaddr == NULL_ADDR) {
1125 					prealloc++;
1126 					last_ofs_in_node = dn.ofs_in_node;
1127 				}
1128 			} else {
1129 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1130 					flag != F2FS_GET_BLOCK_DIO);
1131 				err = __allocate_data_block(&dn,
1132 							map->m_seg_type);
1133 				if (!err)
1134 					set_inode_flag(inode, FI_APPEND_WRITE);
1135 			}
1136 			if (err)
1137 				goto sync_out;
1138 			map->m_flags |= F2FS_MAP_NEW;
1139 			blkaddr = dn.data_blkaddr;
1140 		} else {
1141 			if (flag == F2FS_GET_BLOCK_BMAP) {
1142 				map->m_pblk = 0;
1143 				goto sync_out;
1144 			}
1145 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1146 				goto sync_out;
1147 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1148 						blkaddr == NULL_ADDR) {
1149 				if (map->m_next_pgofs)
1150 					*map->m_next_pgofs = pgofs + 1;
1151 				goto sync_out;
1152 			}
1153 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1154 				/* for defragment case */
1155 				if (map->m_next_pgofs)
1156 					*map->m_next_pgofs = pgofs + 1;
1157 				goto sync_out;
1158 			}
1159 		}
1160 	}
1161 
1162 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1163 		goto skip;
1164 
1165 	if (map->m_len == 0) {
1166 		/* preallocated unwritten block should be mapped for fiemap. */
1167 		if (blkaddr == NEW_ADDR)
1168 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1169 		map->m_flags |= F2FS_MAP_MAPPED;
1170 
1171 		map->m_pblk = blkaddr;
1172 		map->m_len = 1;
1173 	} else if ((map->m_pblk != NEW_ADDR &&
1174 			blkaddr == (map->m_pblk + ofs)) ||
1175 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1176 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1177 		ofs++;
1178 		map->m_len++;
1179 	} else {
1180 		goto sync_out;
1181 	}
1182 
1183 skip:
1184 	dn.ofs_in_node++;
1185 	pgofs++;
1186 
1187 	/* preallocate blocks in batch for one dnode page */
1188 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1189 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1190 
1191 		dn.ofs_in_node = ofs_in_node;
1192 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1193 		if (err)
1194 			goto sync_out;
1195 
1196 		map->m_len += dn.ofs_in_node - ofs_in_node;
1197 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1198 			err = -ENOSPC;
1199 			goto sync_out;
1200 		}
1201 		dn.ofs_in_node = end_offset;
1202 	}
1203 
1204 	if (pgofs >= end)
1205 		goto sync_out;
1206 	else if (dn.ofs_in_node < end_offset)
1207 		goto next_block;
1208 
1209 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1210 		if (map->m_flags & F2FS_MAP_MAPPED) {
1211 			unsigned int ofs = start_pgofs - map->m_lblk;
1212 
1213 			f2fs_update_extent_cache_range(&dn,
1214 				start_pgofs, map->m_pblk + ofs,
1215 				map->m_len - ofs);
1216 		}
1217 	}
1218 
1219 	f2fs_put_dnode(&dn);
1220 
1221 	if (map->m_may_create) {
1222 		__do_map_lock(sbi, flag, false);
1223 		f2fs_balance_fs(sbi, dn.node_changed);
1224 	}
1225 	goto next_dnode;
1226 
1227 sync_out:
1228 
1229 	/* for hardware encryption, but to avoid potential issue in future */
1230 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1231 		f2fs_wait_on_block_writeback_range(inode,
1232 						map->m_pblk, map->m_len);
1233 
1234 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1235 		if (map->m_flags & F2FS_MAP_MAPPED) {
1236 			unsigned int ofs = start_pgofs - map->m_lblk;
1237 
1238 			f2fs_update_extent_cache_range(&dn,
1239 				start_pgofs, map->m_pblk + ofs,
1240 				map->m_len - ofs);
1241 		}
1242 		if (map->m_next_extent)
1243 			*map->m_next_extent = pgofs + 1;
1244 	}
1245 	f2fs_put_dnode(&dn);
1246 unlock_out:
1247 	if (map->m_may_create) {
1248 		__do_map_lock(sbi, flag, false);
1249 		f2fs_balance_fs(sbi, dn.node_changed);
1250 	}
1251 out:
1252 	trace_f2fs_map_blocks(inode, map, err);
1253 	return err;
1254 }
1255 
1256 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1257 {
1258 	struct f2fs_map_blocks map;
1259 	block_t last_lblk;
1260 	int err;
1261 
1262 	if (pos + len > i_size_read(inode))
1263 		return false;
1264 
1265 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1266 	map.m_next_pgofs = NULL;
1267 	map.m_next_extent = NULL;
1268 	map.m_seg_type = NO_CHECK_TYPE;
1269 	map.m_may_create = false;
1270 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1271 
1272 	while (map.m_lblk < last_lblk) {
1273 		map.m_len = last_lblk - map.m_lblk;
1274 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1275 		if (err || map.m_len == 0)
1276 			return false;
1277 		map.m_lblk += map.m_len;
1278 	}
1279 	return true;
1280 }
1281 
1282 static int __get_data_block(struct inode *inode, sector_t iblock,
1283 			struct buffer_head *bh, int create, int flag,
1284 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1285 {
1286 	struct f2fs_map_blocks map;
1287 	int err;
1288 
1289 	map.m_lblk = iblock;
1290 	map.m_len = bh->b_size >> inode->i_blkbits;
1291 	map.m_next_pgofs = next_pgofs;
1292 	map.m_next_extent = NULL;
1293 	map.m_seg_type = seg_type;
1294 	map.m_may_create = may_write;
1295 
1296 	err = f2fs_map_blocks(inode, &map, create, flag);
1297 	if (!err) {
1298 		map_bh(bh, inode->i_sb, map.m_pblk);
1299 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1300 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1301 	}
1302 	return err;
1303 }
1304 
1305 static int get_data_block(struct inode *inode, sector_t iblock,
1306 			struct buffer_head *bh_result, int create, int flag,
1307 			pgoff_t *next_pgofs)
1308 {
1309 	return __get_data_block(inode, iblock, bh_result, create,
1310 							flag, next_pgofs,
1311 							NO_CHECK_TYPE, create);
1312 }
1313 
1314 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1315 			struct buffer_head *bh_result, int create)
1316 {
1317 	return __get_data_block(inode, iblock, bh_result, create,
1318 				F2FS_GET_BLOCK_DIO, NULL,
1319 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1320 				true);
1321 }
1322 
1323 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1324 			struct buffer_head *bh_result, int create)
1325 {
1326 	return __get_data_block(inode, iblock, bh_result, create,
1327 				F2FS_GET_BLOCK_DIO, NULL,
1328 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1329 				false);
1330 }
1331 
1332 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1333 			struct buffer_head *bh_result, int create)
1334 {
1335 	/* Block number less than F2FS MAX BLOCKS */
1336 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1337 		return -EFBIG;
1338 
1339 	return __get_data_block(inode, iblock, bh_result, create,
1340 						F2FS_GET_BLOCK_BMAP, NULL,
1341 						NO_CHECK_TYPE, create);
1342 }
1343 
1344 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1345 {
1346 	return (offset >> inode->i_blkbits);
1347 }
1348 
1349 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1350 {
1351 	return (blk << inode->i_blkbits);
1352 }
1353 
1354 static int f2fs_xattr_fiemap(struct inode *inode,
1355 				struct fiemap_extent_info *fieinfo)
1356 {
1357 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1358 	struct page *page;
1359 	struct node_info ni;
1360 	__u64 phys = 0, len;
1361 	__u32 flags;
1362 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1363 	int err = 0;
1364 
1365 	if (f2fs_has_inline_xattr(inode)) {
1366 		int offset;
1367 
1368 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1369 						inode->i_ino, false);
1370 		if (!page)
1371 			return -ENOMEM;
1372 
1373 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1374 		if (err) {
1375 			f2fs_put_page(page, 1);
1376 			return err;
1377 		}
1378 
1379 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1380 		offset = offsetof(struct f2fs_inode, i_addr) +
1381 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1382 					get_inline_xattr_addrs(inode));
1383 
1384 		phys += offset;
1385 		len = inline_xattr_size(inode);
1386 
1387 		f2fs_put_page(page, 1);
1388 
1389 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1390 
1391 		if (!xnid)
1392 			flags |= FIEMAP_EXTENT_LAST;
1393 
1394 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1395 		if (err || err == 1)
1396 			return err;
1397 	}
1398 
1399 	if (xnid) {
1400 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1401 		if (!page)
1402 			return -ENOMEM;
1403 
1404 		err = f2fs_get_node_info(sbi, xnid, &ni);
1405 		if (err) {
1406 			f2fs_put_page(page, 1);
1407 			return err;
1408 		}
1409 
1410 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1411 		len = inode->i_sb->s_blocksize;
1412 
1413 		f2fs_put_page(page, 1);
1414 
1415 		flags = FIEMAP_EXTENT_LAST;
1416 	}
1417 
1418 	if (phys)
1419 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1420 
1421 	return (err < 0 ? err : 0);
1422 }
1423 
1424 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1425 		u64 start, u64 len)
1426 {
1427 	struct buffer_head map_bh;
1428 	sector_t start_blk, last_blk;
1429 	pgoff_t next_pgofs;
1430 	u64 logical = 0, phys = 0, size = 0;
1431 	u32 flags = 0;
1432 	int ret = 0;
1433 
1434 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1435 		ret = f2fs_precache_extents(inode);
1436 		if (ret)
1437 			return ret;
1438 	}
1439 
1440 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1441 	if (ret)
1442 		return ret;
1443 
1444 	inode_lock(inode);
1445 
1446 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1447 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1448 		goto out;
1449 	}
1450 
1451 	if (f2fs_has_inline_data(inode)) {
1452 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1453 		if (ret != -EAGAIN)
1454 			goto out;
1455 	}
1456 
1457 	if (logical_to_blk(inode, len) == 0)
1458 		len = blk_to_logical(inode, 1);
1459 
1460 	start_blk = logical_to_blk(inode, start);
1461 	last_blk = logical_to_blk(inode, start + len - 1);
1462 
1463 next:
1464 	memset(&map_bh, 0, sizeof(struct buffer_head));
1465 	map_bh.b_size = len;
1466 
1467 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1468 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1469 	if (ret)
1470 		goto out;
1471 
1472 	/* HOLE */
1473 	if (!buffer_mapped(&map_bh)) {
1474 		start_blk = next_pgofs;
1475 
1476 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1477 					F2FS_I_SB(inode)->max_file_blocks))
1478 			goto prep_next;
1479 
1480 		flags |= FIEMAP_EXTENT_LAST;
1481 	}
1482 
1483 	if (size) {
1484 		if (IS_ENCRYPTED(inode))
1485 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1486 
1487 		ret = fiemap_fill_next_extent(fieinfo, logical,
1488 				phys, size, flags);
1489 	}
1490 
1491 	if (start_blk > last_blk || ret)
1492 		goto out;
1493 
1494 	logical = blk_to_logical(inode, start_blk);
1495 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1496 	size = map_bh.b_size;
1497 	flags = 0;
1498 	if (buffer_unwritten(&map_bh))
1499 		flags = FIEMAP_EXTENT_UNWRITTEN;
1500 
1501 	start_blk += logical_to_blk(inode, size);
1502 
1503 prep_next:
1504 	cond_resched();
1505 	if (fatal_signal_pending(current))
1506 		ret = -EINTR;
1507 	else
1508 		goto next;
1509 out:
1510 	if (ret == 1)
1511 		ret = 0;
1512 
1513 	inode_unlock(inode);
1514 	return ret;
1515 }
1516 
1517 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1518 					unsigned nr_pages,
1519 					struct f2fs_map_blocks *map,
1520 					struct bio **bio_ret,
1521 					sector_t *last_block_in_bio,
1522 					bool is_readahead)
1523 {
1524 	struct bio *bio = *bio_ret;
1525 	const unsigned blkbits = inode->i_blkbits;
1526 	const unsigned blocksize = 1 << blkbits;
1527 	sector_t block_in_file;
1528 	sector_t last_block;
1529 	sector_t last_block_in_file;
1530 	sector_t block_nr;
1531 	int ret = 0;
1532 
1533 	block_in_file = (sector_t)page->index;
1534 	last_block = block_in_file + nr_pages;
1535 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1536 							blkbits;
1537 	if (last_block > last_block_in_file)
1538 		last_block = last_block_in_file;
1539 
1540 	/* just zeroing out page which is beyond EOF */
1541 	if (block_in_file >= last_block)
1542 		goto zero_out;
1543 	/*
1544 	 * Map blocks using the previous result first.
1545 	 */
1546 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1547 			block_in_file > map->m_lblk &&
1548 			block_in_file < (map->m_lblk + map->m_len))
1549 		goto got_it;
1550 
1551 	/*
1552 	 * Then do more f2fs_map_blocks() calls until we are
1553 	 * done with this page.
1554 	 */
1555 	map->m_lblk = block_in_file;
1556 	map->m_len = last_block - block_in_file;
1557 
1558 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1559 	if (ret)
1560 		goto out;
1561 got_it:
1562 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
1563 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
1564 		SetPageMappedToDisk(page);
1565 
1566 		if (!PageUptodate(page) && !cleancache_get_page(page)) {
1567 			SetPageUptodate(page);
1568 			goto confused;
1569 		}
1570 
1571 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1572 						DATA_GENERIC_ENHANCE_READ)) {
1573 			ret = -EFAULT;
1574 			goto out;
1575 		}
1576 	} else {
1577 zero_out:
1578 		zero_user_segment(page, 0, PAGE_SIZE);
1579 		if (!PageUptodate(page))
1580 			SetPageUptodate(page);
1581 		unlock_page(page);
1582 		goto out;
1583 	}
1584 
1585 	/*
1586 	 * This page will go to BIO.  Do we need to send this
1587 	 * BIO off first?
1588 	 */
1589 	if (bio && (*last_block_in_bio != block_nr - 1 ||
1590 		!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1591 submit_and_realloc:
1592 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1593 		bio = NULL;
1594 	}
1595 	if (bio == NULL) {
1596 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1597 				is_readahead ? REQ_RAHEAD : 0);
1598 		if (IS_ERR(bio)) {
1599 			ret = PTR_ERR(bio);
1600 			bio = NULL;
1601 			goto out;
1602 		}
1603 	}
1604 
1605 	/*
1606 	 * If the page is under writeback, we need to wait for
1607 	 * its completion to see the correct decrypted data.
1608 	 */
1609 	f2fs_wait_on_block_writeback(inode, block_nr);
1610 
1611 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1612 		goto submit_and_realloc;
1613 
1614 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1615 	ClearPageError(page);
1616 	*last_block_in_bio = block_nr;
1617 	goto out;
1618 confused:
1619 	if (bio) {
1620 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1621 		bio = NULL;
1622 	}
1623 	unlock_page(page);
1624 out:
1625 	*bio_ret = bio;
1626 	return ret;
1627 }
1628 
1629 /*
1630  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1631  * Major change was from block_size == page_size in f2fs by default.
1632  *
1633  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1634  * this function ever deviates from doing just read-ahead, it should either
1635  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1636  * from read-ahead.
1637  */
1638 static int f2fs_mpage_readpages(struct address_space *mapping,
1639 			struct list_head *pages, struct page *page,
1640 			unsigned nr_pages, bool is_readahead)
1641 {
1642 	struct bio *bio = NULL;
1643 	sector_t last_block_in_bio = 0;
1644 	struct inode *inode = mapping->host;
1645 	struct f2fs_map_blocks map;
1646 	int ret = 0;
1647 
1648 	map.m_pblk = 0;
1649 	map.m_lblk = 0;
1650 	map.m_len = 0;
1651 	map.m_flags = 0;
1652 	map.m_next_pgofs = NULL;
1653 	map.m_next_extent = NULL;
1654 	map.m_seg_type = NO_CHECK_TYPE;
1655 	map.m_may_create = false;
1656 
1657 	for (; nr_pages; nr_pages--) {
1658 		if (pages) {
1659 			page = list_last_entry(pages, struct page, lru);
1660 
1661 			prefetchw(&page->flags);
1662 			list_del(&page->lru);
1663 			if (add_to_page_cache_lru(page, mapping,
1664 						  page->index,
1665 						  readahead_gfp_mask(mapping)))
1666 				goto next_page;
1667 		}
1668 
1669 		ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1670 					&last_block_in_bio, is_readahead);
1671 		if (ret) {
1672 			SetPageError(page);
1673 			zero_user_segment(page, 0, PAGE_SIZE);
1674 			unlock_page(page);
1675 		}
1676 next_page:
1677 		if (pages)
1678 			put_page(page);
1679 	}
1680 	BUG_ON(pages && !list_empty(pages));
1681 	if (bio)
1682 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1683 	return pages ? 0 : ret;
1684 }
1685 
1686 static int f2fs_read_data_page(struct file *file, struct page *page)
1687 {
1688 	struct inode *inode = page->mapping->host;
1689 	int ret = -EAGAIN;
1690 
1691 	trace_f2fs_readpage(page, DATA);
1692 
1693 	/* If the file has inline data, try to read it directly */
1694 	if (f2fs_has_inline_data(inode))
1695 		ret = f2fs_read_inline_data(inode, page);
1696 	if (ret == -EAGAIN)
1697 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1698 	return ret;
1699 }
1700 
1701 static int f2fs_read_data_pages(struct file *file,
1702 			struct address_space *mapping,
1703 			struct list_head *pages, unsigned nr_pages)
1704 {
1705 	struct inode *inode = mapping->host;
1706 	struct page *page = list_last_entry(pages, struct page, lru);
1707 
1708 	trace_f2fs_readpages(inode, page, nr_pages);
1709 
1710 	/* If the file has inline data, skip readpages */
1711 	if (f2fs_has_inline_data(inode))
1712 		return 0;
1713 
1714 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1715 }
1716 
1717 static int encrypt_one_page(struct f2fs_io_info *fio)
1718 {
1719 	struct inode *inode = fio->page->mapping->host;
1720 	struct page *mpage;
1721 	gfp_t gfp_flags = GFP_NOFS;
1722 
1723 	if (!f2fs_encrypted_file(inode))
1724 		return 0;
1725 
1726 	/* wait for GCed page writeback via META_MAPPING */
1727 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1728 
1729 retry_encrypt:
1730 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1731 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1732 	if (IS_ERR(fio->encrypted_page)) {
1733 		/* flush pending IOs and wait for a while in the ENOMEM case */
1734 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1735 			f2fs_flush_merged_writes(fio->sbi);
1736 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1737 			gfp_flags |= __GFP_NOFAIL;
1738 			goto retry_encrypt;
1739 		}
1740 		return PTR_ERR(fio->encrypted_page);
1741 	}
1742 
1743 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1744 	if (mpage) {
1745 		if (PageUptodate(mpage))
1746 			memcpy(page_address(mpage),
1747 				page_address(fio->encrypted_page), PAGE_SIZE);
1748 		f2fs_put_page(mpage, 1);
1749 	}
1750 	return 0;
1751 }
1752 
1753 static inline bool check_inplace_update_policy(struct inode *inode,
1754 				struct f2fs_io_info *fio)
1755 {
1756 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1757 	unsigned int policy = SM_I(sbi)->ipu_policy;
1758 
1759 	if (policy & (0x1 << F2FS_IPU_FORCE))
1760 		return true;
1761 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1762 		return true;
1763 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1764 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1765 		return true;
1766 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1767 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1768 		return true;
1769 
1770 	/*
1771 	 * IPU for rewrite async pages
1772 	 */
1773 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1774 			fio && fio->op == REQ_OP_WRITE &&
1775 			!(fio->op_flags & REQ_SYNC) &&
1776 			!IS_ENCRYPTED(inode))
1777 		return true;
1778 
1779 	/* this is only set during fdatasync */
1780 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1781 			is_inode_flag_set(inode, FI_NEED_IPU))
1782 		return true;
1783 
1784 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1785 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1786 		return true;
1787 
1788 	return false;
1789 }
1790 
1791 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1792 {
1793 	if (f2fs_is_pinned_file(inode))
1794 		return true;
1795 
1796 	/* if this is cold file, we should overwrite to avoid fragmentation */
1797 	if (file_is_cold(inode))
1798 		return true;
1799 
1800 	return check_inplace_update_policy(inode, fio);
1801 }
1802 
1803 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1804 {
1805 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1806 
1807 	if (test_opt(sbi, LFS))
1808 		return true;
1809 	if (S_ISDIR(inode->i_mode))
1810 		return true;
1811 	if (IS_NOQUOTA(inode))
1812 		return true;
1813 	if (f2fs_is_atomic_file(inode))
1814 		return true;
1815 	if (fio) {
1816 		if (is_cold_data(fio->page))
1817 			return true;
1818 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1819 			return true;
1820 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1821 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1822 			return true;
1823 	}
1824 	return false;
1825 }
1826 
1827 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1828 {
1829 	struct inode *inode = fio->page->mapping->host;
1830 
1831 	if (f2fs_should_update_outplace(inode, fio))
1832 		return false;
1833 
1834 	return f2fs_should_update_inplace(inode, fio);
1835 }
1836 
1837 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1838 {
1839 	struct page *page = fio->page;
1840 	struct inode *inode = page->mapping->host;
1841 	struct dnode_of_data dn;
1842 	struct extent_info ei = {0,0,0};
1843 	struct node_info ni;
1844 	bool ipu_force = false;
1845 	int err = 0;
1846 
1847 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1848 	if (need_inplace_update(fio) &&
1849 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1850 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1851 
1852 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1853 						DATA_GENERIC_ENHANCE))
1854 			return -EFAULT;
1855 
1856 		ipu_force = true;
1857 		fio->need_lock = LOCK_DONE;
1858 		goto got_it;
1859 	}
1860 
1861 	/* Deadlock due to between page->lock and f2fs_lock_op */
1862 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1863 		return -EAGAIN;
1864 
1865 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1866 	if (err)
1867 		goto out;
1868 
1869 	fio->old_blkaddr = dn.data_blkaddr;
1870 
1871 	/* This page is already truncated */
1872 	if (fio->old_blkaddr == NULL_ADDR) {
1873 		ClearPageUptodate(page);
1874 		clear_cold_data(page);
1875 		goto out_writepage;
1876 	}
1877 got_it:
1878 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1879 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1880 						DATA_GENERIC_ENHANCE)) {
1881 		err = -EFAULT;
1882 		goto out_writepage;
1883 	}
1884 	/*
1885 	 * If current allocation needs SSR,
1886 	 * it had better in-place writes for updated data.
1887 	 */
1888 	if (ipu_force ||
1889 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
1890 					need_inplace_update(fio))) {
1891 		err = encrypt_one_page(fio);
1892 		if (err)
1893 			goto out_writepage;
1894 
1895 		set_page_writeback(page);
1896 		ClearPageError(page);
1897 		f2fs_put_dnode(&dn);
1898 		if (fio->need_lock == LOCK_REQ)
1899 			f2fs_unlock_op(fio->sbi);
1900 		err = f2fs_inplace_write_data(fio);
1901 		if (err) {
1902 			if (f2fs_encrypted_file(inode))
1903 				fscrypt_pullback_bio_page(&fio->encrypted_page,
1904 									true);
1905 			if (PageWriteback(page))
1906 				end_page_writeback(page);
1907 		} else {
1908 			set_inode_flag(inode, FI_UPDATE_WRITE);
1909 		}
1910 		trace_f2fs_do_write_data_page(fio->page, IPU);
1911 		return err;
1912 	}
1913 
1914 	if (fio->need_lock == LOCK_RETRY) {
1915 		if (!f2fs_trylock_op(fio->sbi)) {
1916 			err = -EAGAIN;
1917 			goto out_writepage;
1918 		}
1919 		fio->need_lock = LOCK_REQ;
1920 	}
1921 
1922 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1923 	if (err)
1924 		goto out_writepage;
1925 
1926 	fio->version = ni.version;
1927 
1928 	err = encrypt_one_page(fio);
1929 	if (err)
1930 		goto out_writepage;
1931 
1932 	set_page_writeback(page);
1933 	ClearPageError(page);
1934 
1935 	/* LFS mode write path */
1936 	f2fs_outplace_write_data(&dn, fio);
1937 	trace_f2fs_do_write_data_page(page, OPU);
1938 	set_inode_flag(inode, FI_APPEND_WRITE);
1939 	if (page->index == 0)
1940 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1941 out_writepage:
1942 	f2fs_put_dnode(&dn);
1943 out:
1944 	if (fio->need_lock == LOCK_REQ)
1945 		f2fs_unlock_op(fio->sbi);
1946 	return err;
1947 }
1948 
1949 static int __write_data_page(struct page *page, bool *submitted,
1950 				struct writeback_control *wbc,
1951 				enum iostat_type io_type)
1952 {
1953 	struct inode *inode = page->mapping->host;
1954 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1955 	loff_t i_size = i_size_read(inode);
1956 	const pgoff_t end_index = ((unsigned long long) i_size)
1957 							>> PAGE_SHIFT;
1958 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1959 	unsigned offset = 0;
1960 	bool need_balance_fs = false;
1961 	int err = 0;
1962 	struct f2fs_io_info fio = {
1963 		.sbi = sbi,
1964 		.ino = inode->i_ino,
1965 		.type = DATA,
1966 		.op = REQ_OP_WRITE,
1967 		.op_flags = wbc_to_write_flags(wbc),
1968 		.old_blkaddr = NULL_ADDR,
1969 		.page = page,
1970 		.encrypted_page = NULL,
1971 		.submitted = false,
1972 		.need_lock = LOCK_RETRY,
1973 		.io_type = io_type,
1974 		.io_wbc = wbc,
1975 	};
1976 
1977 	trace_f2fs_writepage(page, DATA);
1978 
1979 	/* we should bypass data pages to proceed the kworkder jobs */
1980 	if (unlikely(f2fs_cp_error(sbi))) {
1981 		mapping_set_error(page->mapping, -EIO);
1982 		/*
1983 		 * don't drop any dirty dentry pages for keeping lastest
1984 		 * directory structure.
1985 		 */
1986 		if (S_ISDIR(inode->i_mode))
1987 			goto redirty_out;
1988 		goto out;
1989 	}
1990 
1991 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1992 		goto redirty_out;
1993 
1994 	if (page->index < end_index)
1995 		goto write;
1996 
1997 	/*
1998 	 * If the offset is out-of-range of file size,
1999 	 * this page does not have to be written to disk.
2000 	 */
2001 	offset = i_size & (PAGE_SIZE - 1);
2002 	if ((page->index >= end_index + 1) || !offset)
2003 		goto out;
2004 
2005 	zero_user_segment(page, offset, PAGE_SIZE);
2006 write:
2007 	if (f2fs_is_drop_cache(inode))
2008 		goto out;
2009 	/* we should not write 0'th page having journal header */
2010 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2011 			(!wbc->for_reclaim &&
2012 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2013 		goto redirty_out;
2014 
2015 	/* Dentry blocks are controlled by checkpoint */
2016 	if (S_ISDIR(inode->i_mode)) {
2017 		fio.need_lock = LOCK_DONE;
2018 		err = f2fs_do_write_data_page(&fio);
2019 		goto done;
2020 	}
2021 
2022 	if (!wbc->for_reclaim)
2023 		need_balance_fs = true;
2024 	else if (has_not_enough_free_secs(sbi, 0, 0))
2025 		goto redirty_out;
2026 	else
2027 		set_inode_flag(inode, FI_HOT_DATA);
2028 
2029 	err = -EAGAIN;
2030 	if (f2fs_has_inline_data(inode)) {
2031 		err = f2fs_write_inline_data(inode, page);
2032 		if (!err)
2033 			goto out;
2034 	}
2035 
2036 	if (err == -EAGAIN) {
2037 		err = f2fs_do_write_data_page(&fio);
2038 		if (err == -EAGAIN) {
2039 			fio.need_lock = LOCK_REQ;
2040 			err = f2fs_do_write_data_page(&fio);
2041 		}
2042 	}
2043 
2044 	if (err) {
2045 		file_set_keep_isize(inode);
2046 	} else {
2047 		down_write(&F2FS_I(inode)->i_sem);
2048 		if (F2FS_I(inode)->last_disk_size < psize)
2049 			F2FS_I(inode)->last_disk_size = psize;
2050 		up_write(&F2FS_I(inode)->i_sem);
2051 	}
2052 
2053 done:
2054 	if (err && err != -ENOENT)
2055 		goto redirty_out;
2056 
2057 out:
2058 	inode_dec_dirty_pages(inode);
2059 	if (err) {
2060 		ClearPageUptodate(page);
2061 		clear_cold_data(page);
2062 	}
2063 
2064 	if (wbc->for_reclaim) {
2065 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2066 		clear_inode_flag(inode, FI_HOT_DATA);
2067 		f2fs_remove_dirty_inode(inode);
2068 		submitted = NULL;
2069 	}
2070 
2071 	unlock_page(page);
2072 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2073 					!F2FS_I(inode)->cp_task)
2074 		f2fs_balance_fs(sbi, need_balance_fs);
2075 
2076 	if (unlikely(f2fs_cp_error(sbi))) {
2077 		f2fs_submit_merged_write(sbi, DATA);
2078 		submitted = NULL;
2079 	}
2080 
2081 	if (submitted)
2082 		*submitted = fio.submitted;
2083 
2084 	return 0;
2085 
2086 redirty_out:
2087 	redirty_page_for_writepage(wbc, page);
2088 	/*
2089 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2090 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2091 	 * file_write_and_wait_range() will see EIO error, which is critical
2092 	 * to return value of fsync() followed by atomic_write failure to user.
2093 	 */
2094 	if (!err || wbc->for_reclaim)
2095 		return AOP_WRITEPAGE_ACTIVATE;
2096 	unlock_page(page);
2097 	return err;
2098 }
2099 
2100 static int f2fs_write_data_page(struct page *page,
2101 					struct writeback_control *wbc)
2102 {
2103 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2104 }
2105 
2106 /*
2107  * This function was copied from write_cche_pages from mm/page-writeback.c.
2108  * The major change is making write step of cold data page separately from
2109  * warm/hot data page.
2110  */
2111 static int f2fs_write_cache_pages(struct address_space *mapping,
2112 					struct writeback_control *wbc,
2113 					enum iostat_type io_type)
2114 {
2115 	int ret = 0;
2116 	int done = 0;
2117 	struct pagevec pvec;
2118 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119 	int nr_pages;
2120 	pgoff_t uninitialized_var(writeback_index);
2121 	pgoff_t index;
2122 	pgoff_t end;		/* Inclusive */
2123 	pgoff_t done_index;
2124 	int cycled;
2125 	int range_whole = 0;
2126 	xa_mark_t tag;
2127 	int nwritten = 0;
2128 
2129 	pagevec_init(&pvec);
2130 
2131 	if (get_dirty_pages(mapping->host) <=
2132 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2133 		set_inode_flag(mapping->host, FI_HOT_DATA);
2134 	else
2135 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2136 
2137 	if (wbc->range_cyclic) {
2138 		writeback_index = mapping->writeback_index; /* prev offset */
2139 		index = writeback_index;
2140 		if (index == 0)
2141 			cycled = 1;
2142 		else
2143 			cycled = 0;
2144 		end = -1;
2145 	} else {
2146 		index = wbc->range_start >> PAGE_SHIFT;
2147 		end = wbc->range_end >> PAGE_SHIFT;
2148 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2149 			range_whole = 1;
2150 		cycled = 1; /* ignore range_cyclic tests */
2151 	}
2152 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2153 		tag = PAGECACHE_TAG_TOWRITE;
2154 	else
2155 		tag = PAGECACHE_TAG_DIRTY;
2156 retry:
2157 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2158 		tag_pages_for_writeback(mapping, index, end);
2159 	done_index = index;
2160 	while (!done && (index <= end)) {
2161 		int i;
2162 
2163 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2164 				tag);
2165 		if (nr_pages == 0)
2166 			break;
2167 
2168 		for (i = 0; i < nr_pages; i++) {
2169 			struct page *page = pvec.pages[i];
2170 			bool submitted = false;
2171 
2172 			/* give a priority to WB_SYNC threads */
2173 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2174 					wbc->sync_mode == WB_SYNC_NONE) {
2175 				done = 1;
2176 				break;
2177 			}
2178 
2179 			done_index = page->index;
2180 retry_write:
2181 			lock_page(page);
2182 
2183 			if (unlikely(page->mapping != mapping)) {
2184 continue_unlock:
2185 				unlock_page(page);
2186 				continue;
2187 			}
2188 
2189 			if (!PageDirty(page)) {
2190 				/* someone wrote it for us */
2191 				goto continue_unlock;
2192 			}
2193 
2194 			if (PageWriteback(page)) {
2195 				if (wbc->sync_mode != WB_SYNC_NONE)
2196 					f2fs_wait_on_page_writeback(page,
2197 							DATA, true, true);
2198 				else
2199 					goto continue_unlock;
2200 			}
2201 
2202 			if (!clear_page_dirty_for_io(page))
2203 				goto continue_unlock;
2204 
2205 			ret = __write_data_page(page, &submitted, wbc, io_type);
2206 			if (unlikely(ret)) {
2207 				/*
2208 				 * keep nr_to_write, since vfs uses this to
2209 				 * get # of written pages.
2210 				 */
2211 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2212 					unlock_page(page);
2213 					ret = 0;
2214 					continue;
2215 				} else if (ret == -EAGAIN) {
2216 					ret = 0;
2217 					if (wbc->sync_mode == WB_SYNC_ALL) {
2218 						cond_resched();
2219 						congestion_wait(BLK_RW_ASYNC,
2220 									HZ/50);
2221 						goto retry_write;
2222 					}
2223 					continue;
2224 				}
2225 				done_index = page->index + 1;
2226 				done = 1;
2227 				break;
2228 			} else if (submitted) {
2229 				nwritten++;
2230 			}
2231 
2232 			if (--wbc->nr_to_write <= 0 &&
2233 					wbc->sync_mode == WB_SYNC_NONE) {
2234 				done = 1;
2235 				break;
2236 			}
2237 		}
2238 		pagevec_release(&pvec);
2239 		cond_resched();
2240 	}
2241 
2242 	if (!cycled && !done) {
2243 		cycled = 1;
2244 		index = 0;
2245 		end = writeback_index - 1;
2246 		goto retry;
2247 	}
2248 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2249 		mapping->writeback_index = done_index;
2250 
2251 	if (nwritten)
2252 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2253 								NULL, 0, DATA);
2254 
2255 	return ret;
2256 }
2257 
2258 static inline bool __should_serialize_io(struct inode *inode,
2259 					struct writeback_control *wbc)
2260 {
2261 	if (!S_ISREG(inode->i_mode))
2262 		return false;
2263 	if (IS_NOQUOTA(inode))
2264 		return false;
2265 	if (wbc->sync_mode != WB_SYNC_ALL)
2266 		return true;
2267 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2268 		return true;
2269 	return false;
2270 }
2271 
2272 static int __f2fs_write_data_pages(struct address_space *mapping,
2273 						struct writeback_control *wbc,
2274 						enum iostat_type io_type)
2275 {
2276 	struct inode *inode = mapping->host;
2277 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2278 	struct blk_plug plug;
2279 	int ret;
2280 	bool locked = false;
2281 
2282 	/* deal with chardevs and other special file */
2283 	if (!mapping->a_ops->writepage)
2284 		return 0;
2285 
2286 	/* skip writing if there is no dirty page in this inode */
2287 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2288 		return 0;
2289 
2290 	/* during POR, we don't need to trigger writepage at all. */
2291 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2292 		goto skip_write;
2293 
2294 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2295 			wbc->sync_mode == WB_SYNC_NONE &&
2296 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2297 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2298 		goto skip_write;
2299 
2300 	/* skip writing during file defragment */
2301 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2302 		goto skip_write;
2303 
2304 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2305 
2306 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2307 	if (wbc->sync_mode == WB_SYNC_ALL)
2308 		atomic_inc(&sbi->wb_sync_req[DATA]);
2309 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2310 		goto skip_write;
2311 
2312 	if (__should_serialize_io(inode, wbc)) {
2313 		mutex_lock(&sbi->writepages);
2314 		locked = true;
2315 	}
2316 
2317 	blk_start_plug(&plug);
2318 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2319 	blk_finish_plug(&plug);
2320 
2321 	if (locked)
2322 		mutex_unlock(&sbi->writepages);
2323 
2324 	if (wbc->sync_mode == WB_SYNC_ALL)
2325 		atomic_dec(&sbi->wb_sync_req[DATA]);
2326 	/*
2327 	 * if some pages were truncated, we cannot guarantee its mapping->host
2328 	 * to detect pending bios.
2329 	 */
2330 
2331 	f2fs_remove_dirty_inode(inode);
2332 	return ret;
2333 
2334 skip_write:
2335 	wbc->pages_skipped += get_dirty_pages(inode);
2336 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2337 	return 0;
2338 }
2339 
2340 static int f2fs_write_data_pages(struct address_space *mapping,
2341 			    struct writeback_control *wbc)
2342 {
2343 	struct inode *inode = mapping->host;
2344 
2345 	return __f2fs_write_data_pages(mapping, wbc,
2346 			F2FS_I(inode)->cp_task == current ?
2347 			FS_CP_DATA_IO : FS_DATA_IO);
2348 }
2349 
2350 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2351 {
2352 	struct inode *inode = mapping->host;
2353 	loff_t i_size = i_size_read(inode);
2354 
2355 	if (to > i_size) {
2356 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2357 		down_write(&F2FS_I(inode)->i_mmap_sem);
2358 
2359 		truncate_pagecache(inode, i_size);
2360 		if (!IS_NOQUOTA(inode))
2361 			f2fs_truncate_blocks(inode, i_size, true);
2362 
2363 		up_write(&F2FS_I(inode)->i_mmap_sem);
2364 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2365 	}
2366 }
2367 
2368 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2369 			struct page *page, loff_t pos, unsigned len,
2370 			block_t *blk_addr, bool *node_changed)
2371 {
2372 	struct inode *inode = page->mapping->host;
2373 	pgoff_t index = page->index;
2374 	struct dnode_of_data dn;
2375 	struct page *ipage;
2376 	bool locked = false;
2377 	struct extent_info ei = {0,0,0};
2378 	int err = 0;
2379 	int flag;
2380 
2381 	/*
2382 	 * we already allocated all the blocks, so we don't need to get
2383 	 * the block addresses when there is no need to fill the page.
2384 	 */
2385 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2386 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2387 		return 0;
2388 
2389 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2390 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2391 		flag = F2FS_GET_BLOCK_DEFAULT;
2392 	else
2393 		flag = F2FS_GET_BLOCK_PRE_AIO;
2394 
2395 	if (f2fs_has_inline_data(inode) ||
2396 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2397 		__do_map_lock(sbi, flag, true);
2398 		locked = true;
2399 	}
2400 restart:
2401 	/* check inline_data */
2402 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2403 	if (IS_ERR(ipage)) {
2404 		err = PTR_ERR(ipage);
2405 		goto unlock_out;
2406 	}
2407 
2408 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2409 
2410 	if (f2fs_has_inline_data(inode)) {
2411 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2412 			f2fs_do_read_inline_data(page, ipage);
2413 			set_inode_flag(inode, FI_DATA_EXIST);
2414 			if (inode->i_nlink)
2415 				set_inline_node(ipage);
2416 		} else {
2417 			err = f2fs_convert_inline_page(&dn, page);
2418 			if (err)
2419 				goto out;
2420 			if (dn.data_blkaddr == NULL_ADDR)
2421 				err = f2fs_get_block(&dn, index);
2422 		}
2423 	} else if (locked) {
2424 		err = f2fs_get_block(&dn, index);
2425 	} else {
2426 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2427 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2428 		} else {
2429 			/* hole case */
2430 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2431 			if (err || dn.data_blkaddr == NULL_ADDR) {
2432 				f2fs_put_dnode(&dn);
2433 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2434 								true);
2435 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2436 				locked = true;
2437 				goto restart;
2438 			}
2439 		}
2440 	}
2441 
2442 	/* convert_inline_page can make node_changed */
2443 	*blk_addr = dn.data_blkaddr;
2444 	*node_changed = dn.node_changed;
2445 out:
2446 	f2fs_put_dnode(&dn);
2447 unlock_out:
2448 	if (locked)
2449 		__do_map_lock(sbi, flag, false);
2450 	return err;
2451 }
2452 
2453 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2454 		loff_t pos, unsigned len, unsigned flags,
2455 		struct page **pagep, void **fsdata)
2456 {
2457 	struct inode *inode = mapping->host;
2458 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2459 	struct page *page = NULL;
2460 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2461 	bool need_balance = false, drop_atomic = false;
2462 	block_t blkaddr = NULL_ADDR;
2463 	int err = 0;
2464 
2465 	trace_f2fs_write_begin(inode, pos, len, flags);
2466 
2467 	err = f2fs_is_checkpoint_ready(sbi);
2468 	if (err)
2469 		goto fail;
2470 
2471 	if ((f2fs_is_atomic_file(inode) &&
2472 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2473 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2474 		err = -ENOMEM;
2475 		drop_atomic = true;
2476 		goto fail;
2477 	}
2478 
2479 	/*
2480 	 * We should check this at this moment to avoid deadlock on inode page
2481 	 * and #0 page. The locking rule for inline_data conversion should be:
2482 	 * lock_page(page #0) -> lock_page(inode_page)
2483 	 */
2484 	if (index != 0) {
2485 		err = f2fs_convert_inline_inode(inode);
2486 		if (err)
2487 			goto fail;
2488 	}
2489 repeat:
2490 	/*
2491 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2492 	 * wait_for_stable_page. Will wait that below with our IO control.
2493 	 */
2494 	page = f2fs_pagecache_get_page(mapping, index,
2495 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2496 	if (!page) {
2497 		err = -ENOMEM;
2498 		goto fail;
2499 	}
2500 
2501 	*pagep = page;
2502 
2503 	err = prepare_write_begin(sbi, page, pos, len,
2504 					&blkaddr, &need_balance);
2505 	if (err)
2506 		goto fail;
2507 
2508 	if (need_balance && !IS_NOQUOTA(inode) &&
2509 			has_not_enough_free_secs(sbi, 0, 0)) {
2510 		unlock_page(page);
2511 		f2fs_balance_fs(sbi, true);
2512 		lock_page(page);
2513 		if (page->mapping != mapping) {
2514 			/* The page got truncated from under us */
2515 			f2fs_put_page(page, 1);
2516 			goto repeat;
2517 		}
2518 	}
2519 
2520 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2521 
2522 	if (len == PAGE_SIZE || PageUptodate(page))
2523 		return 0;
2524 
2525 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2526 		zero_user_segment(page, len, PAGE_SIZE);
2527 		return 0;
2528 	}
2529 
2530 	if (blkaddr == NEW_ADDR) {
2531 		zero_user_segment(page, 0, PAGE_SIZE);
2532 		SetPageUptodate(page);
2533 	} else {
2534 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2535 				DATA_GENERIC_ENHANCE_READ)) {
2536 			err = -EFAULT;
2537 			goto fail;
2538 		}
2539 		err = f2fs_submit_page_read(inode, page, blkaddr);
2540 		if (err)
2541 			goto fail;
2542 
2543 		lock_page(page);
2544 		if (unlikely(page->mapping != mapping)) {
2545 			f2fs_put_page(page, 1);
2546 			goto repeat;
2547 		}
2548 		if (unlikely(!PageUptodate(page))) {
2549 			err = -EIO;
2550 			goto fail;
2551 		}
2552 	}
2553 	return 0;
2554 
2555 fail:
2556 	f2fs_put_page(page, 1);
2557 	f2fs_write_failed(mapping, pos + len);
2558 	if (drop_atomic)
2559 		f2fs_drop_inmem_pages_all(sbi, false);
2560 	return err;
2561 }
2562 
2563 static int f2fs_write_end(struct file *file,
2564 			struct address_space *mapping,
2565 			loff_t pos, unsigned len, unsigned copied,
2566 			struct page *page, void *fsdata)
2567 {
2568 	struct inode *inode = page->mapping->host;
2569 
2570 	trace_f2fs_write_end(inode, pos, len, copied);
2571 
2572 	/*
2573 	 * This should be come from len == PAGE_SIZE, and we expect copied
2574 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2575 	 * let generic_perform_write() try to copy data again through copied=0.
2576 	 */
2577 	if (!PageUptodate(page)) {
2578 		if (unlikely(copied != len))
2579 			copied = 0;
2580 		else
2581 			SetPageUptodate(page);
2582 	}
2583 	if (!copied)
2584 		goto unlock_out;
2585 
2586 	set_page_dirty(page);
2587 
2588 	if (pos + copied > i_size_read(inode))
2589 		f2fs_i_size_write(inode, pos + copied);
2590 unlock_out:
2591 	f2fs_put_page(page, 1);
2592 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2593 	return copied;
2594 }
2595 
2596 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2597 			   loff_t offset)
2598 {
2599 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2600 	unsigned blkbits = i_blkbits;
2601 	unsigned blocksize_mask = (1 << blkbits) - 1;
2602 	unsigned long align = offset | iov_iter_alignment(iter);
2603 	struct block_device *bdev = inode->i_sb->s_bdev;
2604 
2605 	if (align & blocksize_mask) {
2606 		if (bdev)
2607 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2608 		blocksize_mask = (1 << blkbits) - 1;
2609 		if (align & blocksize_mask)
2610 			return -EINVAL;
2611 		return 1;
2612 	}
2613 	return 0;
2614 }
2615 
2616 static void f2fs_dio_end_io(struct bio *bio)
2617 {
2618 	struct f2fs_private_dio *dio = bio->bi_private;
2619 
2620 	dec_page_count(F2FS_I_SB(dio->inode),
2621 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2622 
2623 	bio->bi_private = dio->orig_private;
2624 	bio->bi_end_io = dio->orig_end_io;
2625 
2626 	kvfree(dio);
2627 
2628 	bio_endio(bio);
2629 }
2630 
2631 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2632 							loff_t file_offset)
2633 {
2634 	struct f2fs_private_dio *dio;
2635 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2636 
2637 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2638 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2639 	if (!dio)
2640 		goto out;
2641 
2642 	dio->inode = inode;
2643 	dio->orig_end_io = bio->bi_end_io;
2644 	dio->orig_private = bio->bi_private;
2645 	dio->write = write;
2646 
2647 	bio->bi_end_io = f2fs_dio_end_io;
2648 	bio->bi_private = dio;
2649 
2650 	inc_page_count(F2FS_I_SB(inode),
2651 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2652 
2653 	submit_bio(bio);
2654 	return;
2655 out:
2656 	bio->bi_status = BLK_STS_IOERR;
2657 	bio_endio(bio);
2658 }
2659 
2660 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2661 {
2662 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2663 	struct inode *inode = mapping->host;
2664 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2665 	struct f2fs_inode_info *fi = F2FS_I(inode);
2666 	size_t count = iov_iter_count(iter);
2667 	loff_t offset = iocb->ki_pos;
2668 	int rw = iov_iter_rw(iter);
2669 	int err;
2670 	enum rw_hint hint = iocb->ki_hint;
2671 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2672 	bool do_opu;
2673 
2674 	err = check_direct_IO(inode, iter, offset);
2675 	if (err)
2676 		return err < 0 ? err : 0;
2677 
2678 	if (f2fs_force_buffered_io(inode, iocb, iter))
2679 		return 0;
2680 
2681 	do_opu = allow_outplace_dio(inode, iocb, iter);
2682 
2683 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2684 
2685 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2686 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2687 
2688 	if (iocb->ki_flags & IOCB_NOWAIT) {
2689 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2690 			iocb->ki_hint = hint;
2691 			err = -EAGAIN;
2692 			goto out;
2693 		}
2694 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2695 			up_read(&fi->i_gc_rwsem[rw]);
2696 			iocb->ki_hint = hint;
2697 			err = -EAGAIN;
2698 			goto out;
2699 		}
2700 	} else {
2701 		down_read(&fi->i_gc_rwsem[rw]);
2702 		if (do_opu)
2703 			down_read(&fi->i_gc_rwsem[READ]);
2704 	}
2705 
2706 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2707 			iter, rw == WRITE ? get_data_block_dio_write :
2708 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2709 			DIO_LOCKING | DIO_SKIP_HOLES);
2710 
2711 	if (do_opu)
2712 		up_read(&fi->i_gc_rwsem[READ]);
2713 
2714 	up_read(&fi->i_gc_rwsem[rw]);
2715 
2716 	if (rw == WRITE) {
2717 		if (whint_mode == WHINT_MODE_OFF)
2718 			iocb->ki_hint = hint;
2719 		if (err > 0) {
2720 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2721 									err);
2722 			if (!do_opu)
2723 				set_inode_flag(inode, FI_UPDATE_WRITE);
2724 		} else if (err < 0) {
2725 			f2fs_write_failed(mapping, offset + count);
2726 		}
2727 	}
2728 
2729 out:
2730 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2731 
2732 	return err;
2733 }
2734 
2735 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2736 							unsigned int length)
2737 {
2738 	struct inode *inode = page->mapping->host;
2739 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740 
2741 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2742 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2743 		return;
2744 
2745 	if (PageDirty(page)) {
2746 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2747 			dec_page_count(sbi, F2FS_DIRTY_META);
2748 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2749 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2750 		} else {
2751 			inode_dec_dirty_pages(inode);
2752 			f2fs_remove_dirty_inode(inode);
2753 		}
2754 	}
2755 
2756 	clear_cold_data(page);
2757 
2758 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2759 		return f2fs_drop_inmem_page(inode, page);
2760 
2761 	f2fs_clear_page_private(page);
2762 }
2763 
2764 int f2fs_release_page(struct page *page, gfp_t wait)
2765 {
2766 	/* If this is dirty page, keep PagePrivate */
2767 	if (PageDirty(page))
2768 		return 0;
2769 
2770 	/* This is atomic written page, keep Private */
2771 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2772 		return 0;
2773 
2774 	clear_cold_data(page);
2775 	f2fs_clear_page_private(page);
2776 	return 1;
2777 }
2778 
2779 static int f2fs_set_data_page_dirty(struct page *page)
2780 {
2781 	struct address_space *mapping = page->mapping;
2782 	struct inode *inode = mapping->host;
2783 
2784 	trace_f2fs_set_page_dirty(page, DATA);
2785 
2786 	if (!PageUptodate(page))
2787 		SetPageUptodate(page);
2788 
2789 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2790 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2791 			f2fs_register_inmem_page(inode, page);
2792 			return 1;
2793 		}
2794 		/*
2795 		 * Previously, this page has been registered, we just
2796 		 * return here.
2797 		 */
2798 		return 0;
2799 	}
2800 
2801 	if (!PageDirty(page)) {
2802 		__set_page_dirty_nobuffers(page);
2803 		f2fs_update_dirty_page(inode, page);
2804 		return 1;
2805 	}
2806 	return 0;
2807 }
2808 
2809 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2810 {
2811 	struct inode *inode = mapping->host;
2812 
2813 	if (f2fs_has_inline_data(inode))
2814 		return 0;
2815 
2816 	/* make sure allocating whole blocks */
2817 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2818 		filemap_write_and_wait(mapping);
2819 
2820 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2821 }
2822 
2823 #ifdef CONFIG_MIGRATION
2824 #include <linux/migrate.h>
2825 
2826 int f2fs_migrate_page(struct address_space *mapping,
2827 		struct page *newpage, struct page *page, enum migrate_mode mode)
2828 {
2829 	int rc, extra_count;
2830 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2831 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2832 
2833 	BUG_ON(PageWriteback(page));
2834 
2835 	/* migrating an atomic written page is safe with the inmem_lock hold */
2836 	if (atomic_written) {
2837 		if (mode != MIGRATE_SYNC)
2838 			return -EBUSY;
2839 		if (!mutex_trylock(&fi->inmem_lock))
2840 			return -EAGAIN;
2841 	}
2842 
2843 	/* one extra reference was held for atomic_write page */
2844 	extra_count = atomic_written ? 1 : 0;
2845 	rc = migrate_page_move_mapping(mapping, newpage,
2846 				page, mode, extra_count);
2847 	if (rc != MIGRATEPAGE_SUCCESS) {
2848 		if (atomic_written)
2849 			mutex_unlock(&fi->inmem_lock);
2850 		return rc;
2851 	}
2852 
2853 	if (atomic_written) {
2854 		struct inmem_pages *cur;
2855 		list_for_each_entry(cur, &fi->inmem_pages, list)
2856 			if (cur->page == page) {
2857 				cur->page = newpage;
2858 				break;
2859 			}
2860 		mutex_unlock(&fi->inmem_lock);
2861 		put_page(page);
2862 		get_page(newpage);
2863 	}
2864 
2865 	if (PagePrivate(page)) {
2866 		f2fs_set_page_private(newpage, page_private(page));
2867 		f2fs_clear_page_private(page);
2868 	}
2869 
2870 	if (mode != MIGRATE_SYNC_NO_COPY)
2871 		migrate_page_copy(newpage, page);
2872 	else
2873 		migrate_page_states(newpage, page);
2874 
2875 	return MIGRATEPAGE_SUCCESS;
2876 }
2877 #endif
2878 
2879 const struct address_space_operations f2fs_dblock_aops = {
2880 	.readpage	= f2fs_read_data_page,
2881 	.readpages	= f2fs_read_data_pages,
2882 	.writepage	= f2fs_write_data_page,
2883 	.writepages	= f2fs_write_data_pages,
2884 	.write_begin	= f2fs_write_begin,
2885 	.write_end	= f2fs_write_end,
2886 	.set_page_dirty	= f2fs_set_data_page_dirty,
2887 	.invalidatepage	= f2fs_invalidate_page,
2888 	.releasepage	= f2fs_release_page,
2889 	.direct_IO	= f2fs_direct_IO,
2890 	.bmap		= f2fs_bmap,
2891 #ifdef CONFIG_MIGRATION
2892 	.migratepage    = f2fs_migrate_page,
2893 #endif
2894 };
2895 
2896 void f2fs_clear_page_cache_dirty_tag(struct page *page)
2897 {
2898 	struct address_space *mapping = page_mapping(page);
2899 	unsigned long flags;
2900 
2901 	xa_lock_irqsave(&mapping->i_pages, flags);
2902 	__xa_clear_mark(&mapping->i_pages, page_index(page),
2903 						PAGECACHE_TAG_DIRTY);
2904 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2905 }
2906 
2907 int __init f2fs_init_post_read_processing(void)
2908 {
2909 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2910 	if (!bio_post_read_ctx_cache)
2911 		goto fail;
2912 	bio_post_read_ctx_pool =
2913 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2914 					 bio_post_read_ctx_cache);
2915 	if (!bio_post_read_ctx_pool)
2916 		goto fail_free_cache;
2917 	return 0;
2918 
2919 fail_free_cache:
2920 	kmem_cache_destroy(bio_post_read_ctx_cache);
2921 fail:
2922 	return -ENOMEM;
2923 }
2924 
2925 void __exit f2fs_destroy_post_read_processing(void)
2926 {
2927 	mempool_destroy(bio_post_read_ctx_pool);
2928 	kmem_cache_destroy(bio_post_read_ctx_cache);
2929 }
2930