1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/backing-dev.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/cleancache.h> 21 #include <linux/sched/signal.h> 22 23 #include "f2fs.h" 24 #include "node.h" 25 #include "segment.h" 26 #include "trace.h" 27 #include <trace/events/f2fs.h> 28 29 #define NUM_PREALLOC_POST_READ_CTXS 128 30 31 static struct kmem_cache *bio_post_read_ctx_cache; 32 static mempool_t *bio_post_read_ctx_pool; 33 34 static bool __is_cp_guaranteed(struct page *page) 35 { 36 struct address_space *mapping = page->mapping; 37 struct inode *inode; 38 struct f2fs_sb_info *sbi; 39 40 if (!mapping) 41 return false; 42 43 inode = mapping->host; 44 sbi = F2FS_I_SB(inode); 45 46 if (inode->i_ino == F2FS_META_INO(sbi) || 47 inode->i_ino == F2FS_NODE_INO(sbi) || 48 S_ISDIR(inode->i_mode) || 49 (S_ISREG(inode->i_mode) && 50 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 51 is_cold_data(page)) 52 return true; 53 return false; 54 } 55 56 static enum count_type __read_io_type(struct page *page) 57 { 58 struct address_space *mapping = page_file_mapping(page); 59 60 if (mapping) { 61 struct inode *inode = mapping->host; 62 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 63 64 if (inode->i_ino == F2FS_META_INO(sbi)) 65 return F2FS_RD_META; 66 67 if (inode->i_ino == F2FS_NODE_INO(sbi)) 68 return F2FS_RD_NODE; 69 } 70 return F2FS_RD_DATA; 71 } 72 73 /* postprocessing steps for read bios */ 74 enum bio_post_read_step { 75 STEP_INITIAL = 0, 76 STEP_DECRYPT, 77 }; 78 79 struct bio_post_read_ctx { 80 struct bio *bio; 81 struct work_struct work; 82 unsigned int cur_step; 83 unsigned int enabled_steps; 84 }; 85 86 static void __read_end_io(struct bio *bio) 87 { 88 struct page *page; 89 struct bio_vec *bv; 90 struct bvec_iter_all iter_all; 91 92 bio_for_each_segment_all(bv, bio, iter_all) { 93 page = bv->bv_page; 94 95 /* PG_error was set if any post_read step failed */ 96 if (bio->bi_status || PageError(page)) { 97 ClearPageUptodate(page); 98 /* will re-read again later */ 99 ClearPageError(page); 100 } else { 101 SetPageUptodate(page); 102 } 103 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 104 unlock_page(page); 105 } 106 if (bio->bi_private) 107 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 108 bio_put(bio); 109 } 110 111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx); 112 113 static void decrypt_work(struct work_struct *work) 114 { 115 struct bio_post_read_ctx *ctx = 116 container_of(work, struct bio_post_read_ctx, work); 117 118 fscrypt_decrypt_bio(ctx->bio); 119 120 bio_post_read_processing(ctx); 121 } 122 123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx) 124 { 125 switch (++ctx->cur_step) { 126 case STEP_DECRYPT: 127 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { 128 INIT_WORK(&ctx->work, decrypt_work); 129 fscrypt_enqueue_decrypt_work(&ctx->work); 130 return; 131 } 132 ctx->cur_step++; 133 /* fall-through */ 134 default: 135 __read_end_io(ctx->bio); 136 } 137 } 138 139 static bool f2fs_bio_post_read_required(struct bio *bio) 140 { 141 return bio->bi_private && !bio->bi_status; 142 } 143 144 static void f2fs_read_end_io(struct bio *bio) 145 { 146 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), 147 FAULT_READ_IO)) { 148 f2fs_show_injection_info(FAULT_READ_IO); 149 bio->bi_status = BLK_STS_IOERR; 150 } 151 152 if (f2fs_bio_post_read_required(bio)) { 153 struct bio_post_read_ctx *ctx = bio->bi_private; 154 155 ctx->cur_step = STEP_INITIAL; 156 bio_post_read_processing(ctx); 157 return; 158 } 159 160 __read_end_io(bio); 161 } 162 163 static void f2fs_write_end_io(struct bio *bio) 164 { 165 struct f2fs_sb_info *sbi = bio->bi_private; 166 struct bio_vec *bvec; 167 struct bvec_iter_all iter_all; 168 169 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 170 f2fs_show_injection_info(FAULT_WRITE_IO); 171 bio->bi_status = BLK_STS_IOERR; 172 } 173 174 bio_for_each_segment_all(bvec, bio, iter_all) { 175 struct page *page = bvec->bv_page; 176 enum count_type type = WB_DATA_TYPE(page); 177 178 if (IS_DUMMY_WRITTEN_PAGE(page)) { 179 set_page_private(page, (unsigned long)NULL); 180 ClearPagePrivate(page); 181 unlock_page(page); 182 mempool_free(page, sbi->write_io_dummy); 183 184 if (unlikely(bio->bi_status)) 185 f2fs_stop_checkpoint(sbi, true); 186 continue; 187 } 188 189 fscrypt_finalize_bounce_page(&page); 190 191 if (unlikely(bio->bi_status)) { 192 mapping_set_error(page->mapping, -EIO); 193 if (type == F2FS_WB_CP_DATA) 194 f2fs_stop_checkpoint(sbi, true); 195 } 196 197 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 198 page->index != nid_of_node(page)); 199 200 dec_page_count(sbi, type); 201 if (f2fs_in_warm_node_list(sbi, page)) 202 f2fs_del_fsync_node_entry(sbi, page); 203 clear_cold_data(page); 204 end_page_writeback(page); 205 } 206 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 207 wq_has_sleeper(&sbi->cp_wait)) 208 wake_up(&sbi->cp_wait); 209 210 bio_put(bio); 211 } 212 213 /* 214 * Return true, if pre_bio's bdev is same as its target device. 215 */ 216 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 217 block_t blk_addr, struct bio *bio) 218 { 219 struct block_device *bdev = sbi->sb->s_bdev; 220 int i; 221 222 if (f2fs_is_multi_device(sbi)) { 223 for (i = 0; i < sbi->s_ndevs; i++) { 224 if (FDEV(i).start_blk <= blk_addr && 225 FDEV(i).end_blk >= blk_addr) { 226 blk_addr -= FDEV(i).start_blk; 227 bdev = FDEV(i).bdev; 228 break; 229 } 230 } 231 } 232 if (bio) { 233 bio_set_dev(bio, bdev); 234 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 235 } 236 return bdev; 237 } 238 239 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 240 { 241 int i; 242 243 if (!f2fs_is_multi_device(sbi)) 244 return 0; 245 246 for (i = 0; i < sbi->s_ndevs; i++) 247 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 248 return i; 249 return 0; 250 } 251 252 static bool __same_bdev(struct f2fs_sb_info *sbi, 253 block_t blk_addr, struct bio *bio) 254 { 255 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL); 256 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno; 257 } 258 259 /* 260 * Low-level block read/write IO operations. 261 */ 262 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 263 struct writeback_control *wbc, 264 int npages, bool is_read, 265 enum page_type type, enum temp_type temp) 266 { 267 struct bio *bio; 268 269 bio = f2fs_bio_alloc(sbi, npages, true); 270 271 f2fs_target_device(sbi, blk_addr, bio); 272 if (is_read) { 273 bio->bi_end_io = f2fs_read_end_io; 274 bio->bi_private = NULL; 275 } else { 276 bio->bi_end_io = f2fs_write_end_io; 277 bio->bi_private = sbi; 278 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp); 279 } 280 if (wbc) 281 wbc_init_bio(wbc, bio); 282 283 return bio; 284 } 285 286 static inline void __submit_bio(struct f2fs_sb_info *sbi, 287 struct bio *bio, enum page_type type) 288 { 289 if (!is_read_io(bio_op(bio))) { 290 unsigned int start; 291 292 if (type != DATA && type != NODE) 293 goto submit_io; 294 295 if (test_opt(sbi, LFS) && current->plug) 296 blk_finish_plug(current->plug); 297 298 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 299 start %= F2FS_IO_SIZE(sbi); 300 301 if (start == 0) 302 goto submit_io; 303 304 /* fill dummy pages */ 305 for (; start < F2FS_IO_SIZE(sbi); start++) { 306 struct page *page = 307 mempool_alloc(sbi->write_io_dummy, 308 GFP_NOIO | __GFP_NOFAIL); 309 f2fs_bug_on(sbi, !page); 310 311 zero_user_segment(page, 0, PAGE_SIZE); 312 SetPagePrivate(page); 313 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE); 314 lock_page(page); 315 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 316 f2fs_bug_on(sbi, 1); 317 } 318 /* 319 * In the NODE case, we lose next block address chain. So, we 320 * need to do checkpoint in f2fs_sync_file. 321 */ 322 if (type == NODE) 323 set_sbi_flag(sbi, SBI_NEED_CP); 324 } 325 submit_io: 326 if (is_read_io(bio_op(bio))) 327 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 328 else 329 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 330 submit_bio(bio); 331 } 332 333 static void __submit_merged_bio(struct f2fs_bio_info *io) 334 { 335 struct f2fs_io_info *fio = &io->fio; 336 337 if (!io->bio) 338 return; 339 340 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 341 342 if (is_read_io(fio->op)) 343 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 344 else 345 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 346 347 __submit_bio(io->sbi, io->bio, fio->type); 348 io->bio = NULL; 349 } 350 351 static bool __has_merged_page(struct bio *bio, struct inode *inode, 352 struct page *page, nid_t ino) 353 { 354 struct bio_vec *bvec; 355 struct page *target; 356 struct bvec_iter_all iter_all; 357 358 if (!bio) 359 return false; 360 361 if (!inode && !page && !ino) 362 return true; 363 364 bio_for_each_segment_all(bvec, bio, iter_all) { 365 366 target = bvec->bv_page; 367 if (fscrypt_is_bounce_page(target)) 368 target = fscrypt_pagecache_page(target); 369 370 if (inode && inode == target->mapping->host) 371 return true; 372 if (page && page == target) 373 return true; 374 if (ino && ino == ino_of_node(target)) 375 return true; 376 } 377 378 return false; 379 } 380 381 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 382 enum page_type type, enum temp_type temp) 383 { 384 enum page_type btype = PAGE_TYPE_OF_BIO(type); 385 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 386 387 down_write(&io->io_rwsem); 388 389 /* change META to META_FLUSH in the checkpoint procedure */ 390 if (type >= META_FLUSH) { 391 io->fio.type = META_FLUSH; 392 io->fio.op = REQ_OP_WRITE; 393 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC; 394 if (!test_opt(sbi, NOBARRIER)) 395 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 396 } 397 __submit_merged_bio(io); 398 up_write(&io->io_rwsem); 399 } 400 401 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 402 struct inode *inode, struct page *page, 403 nid_t ino, enum page_type type, bool force) 404 { 405 enum temp_type temp; 406 bool ret = true; 407 408 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 409 if (!force) { 410 enum page_type btype = PAGE_TYPE_OF_BIO(type); 411 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 412 413 down_read(&io->io_rwsem); 414 ret = __has_merged_page(io->bio, inode, page, ino); 415 up_read(&io->io_rwsem); 416 } 417 if (ret) 418 __f2fs_submit_merged_write(sbi, type, temp); 419 420 /* TODO: use HOT temp only for meta pages now. */ 421 if (type >= META) 422 break; 423 } 424 } 425 426 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 427 { 428 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 429 } 430 431 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 432 struct inode *inode, struct page *page, 433 nid_t ino, enum page_type type) 434 { 435 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 436 } 437 438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 439 { 440 f2fs_submit_merged_write(sbi, DATA); 441 f2fs_submit_merged_write(sbi, NODE); 442 f2fs_submit_merged_write(sbi, META); 443 } 444 445 /* 446 * Fill the locked page with data located in the block address. 447 * A caller needs to unlock the page on failure. 448 */ 449 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 450 { 451 struct bio *bio; 452 struct page *page = fio->encrypted_page ? 453 fio->encrypted_page : fio->page; 454 455 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 456 fio->is_por ? META_POR : (__is_meta_io(fio) ? 457 META_GENERIC : DATA_GENERIC_ENHANCE))) 458 return -EFSCORRUPTED; 459 460 trace_f2fs_submit_page_bio(page, fio); 461 f2fs_trace_ios(fio, 0); 462 463 /* Allocate a new bio */ 464 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 465 1, is_read_io(fio->op), fio->type, fio->temp); 466 467 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 468 bio_put(bio); 469 return -EFAULT; 470 } 471 472 if (fio->io_wbc && !is_read_io(fio->op)) 473 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 474 475 bio_set_op_attrs(bio, fio->op, fio->op_flags); 476 477 inc_page_count(fio->sbi, is_read_io(fio->op) ? 478 __read_io_type(page): WB_DATA_TYPE(fio->page)); 479 480 __submit_bio(fio->sbi, bio, fio->type); 481 return 0; 482 } 483 484 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 485 { 486 struct bio *bio = *fio->bio; 487 struct page *page = fio->encrypted_page ? 488 fio->encrypted_page : fio->page; 489 490 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 491 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 492 return -EFSCORRUPTED; 493 494 trace_f2fs_submit_page_bio(page, fio); 495 f2fs_trace_ios(fio, 0); 496 497 if (bio && (*fio->last_block + 1 != fio->new_blkaddr || 498 !__same_bdev(fio->sbi, fio->new_blkaddr, bio))) { 499 __submit_bio(fio->sbi, bio, fio->type); 500 bio = NULL; 501 } 502 alloc_new: 503 if (!bio) { 504 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc, 505 BIO_MAX_PAGES, false, fio->type, fio->temp); 506 bio_set_op_attrs(bio, fio->op, fio->op_flags); 507 } 508 509 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 510 __submit_bio(fio->sbi, bio, fio->type); 511 bio = NULL; 512 goto alloc_new; 513 } 514 515 if (fio->io_wbc) 516 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 517 518 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 519 520 *fio->last_block = fio->new_blkaddr; 521 *fio->bio = bio; 522 523 return 0; 524 } 525 526 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio, 527 struct page *page) 528 { 529 if (!bio) 530 return; 531 532 if (!__has_merged_page(*bio, NULL, page, 0)) 533 return; 534 535 __submit_bio(sbi, *bio, DATA); 536 *bio = NULL; 537 } 538 539 void f2fs_submit_page_write(struct f2fs_io_info *fio) 540 { 541 struct f2fs_sb_info *sbi = fio->sbi; 542 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 543 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 544 struct page *bio_page; 545 546 f2fs_bug_on(sbi, is_read_io(fio->op)); 547 548 down_write(&io->io_rwsem); 549 next: 550 if (fio->in_list) { 551 spin_lock(&io->io_lock); 552 if (list_empty(&io->io_list)) { 553 spin_unlock(&io->io_lock); 554 goto out; 555 } 556 fio = list_first_entry(&io->io_list, 557 struct f2fs_io_info, list); 558 list_del(&fio->list); 559 spin_unlock(&io->io_lock); 560 } 561 562 verify_fio_blkaddr(fio); 563 564 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 565 566 /* set submitted = true as a return value */ 567 fio->submitted = true; 568 569 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 570 571 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 572 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) || 573 !__same_bdev(sbi, fio->new_blkaddr, io->bio))) 574 __submit_merged_bio(io); 575 alloc_new: 576 if (io->bio == NULL) { 577 if ((fio->type == DATA || fio->type == NODE) && 578 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 579 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 580 fio->retry = true; 581 goto skip; 582 } 583 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc, 584 BIO_MAX_PAGES, false, 585 fio->type, fio->temp); 586 io->fio = *fio; 587 } 588 589 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 590 __submit_merged_bio(io); 591 goto alloc_new; 592 } 593 594 if (fio->io_wbc) 595 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 596 597 io->last_block_in_bio = fio->new_blkaddr; 598 f2fs_trace_ios(fio, 0); 599 600 trace_f2fs_submit_page_write(fio->page, fio); 601 skip: 602 if (fio->in_list) 603 goto next; 604 out: 605 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 606 f2fs_is_checkpoint_ready(sbi)) 607 __submit_merged_bio(io); 608 up_write(&io->io_rwsem); 609 } 610 611 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 612 unsigned nr_pages, unsigned op_flag) 613 { 614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 615 struct bio *bio; 616 struct bio_post_read_ctx *ctx; 617 unsigned int post_read_steps = 0; 618 619 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false); 620 if (!bio) 621 return ERR_PTR(-ENOMEM); 622 f2fs_target_device(sbi, blkaddr, bio); 623 bio->bi_end_io = f2fs_read_end_io; 624 bio_set_op_attrs(bio, REQ_OP_READ, op_flag); 625 626 if (f2fs_encrypted_file(inode)) 627 post_read_steps |= 1 << STEP_DECRYPT; 628 if (post_read_steps) { 629 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 630 if (!ctx) { 631 bio_put(bio); 632 return ERR_PTR(-ENOMEM); 633 } 634 ctx->bio = bio; 635 ctx->enabled_steps = post_read_steps; 636 bio->bi_private = ctx; 637 } 638 639 return bio; 640 } 641 642 /* This can handle encryption stuffs */ 643 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 644 block_t blkaddr) 645 { 646 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 647 struct bio *bio; 648 649 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0); 650 if (IS_ERR(bio)) 651 return PTR_ERR(bio); 652 653 /* wait for GCed page writeback via META_MAPPING */ 654 f2fs_wait_on_block_writeback(inode, blkaddr); 655 656 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 657 bio_put(bio); 658 return -EFAULT; 659 } 660 ClearPageError(page); 661 inc_page_count(sbi, F2FS_RD_DATA); 662 __submit_bio(sbi, bio, DATA); 663 return 0; 664 } 665 666 static void __set_data_blkaddr(struct dnode_of_data *dn) 667 { 668 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 669 __le32 *addr_array; 670 int base = 0; 671 672 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 673 base = get_extra_isize(dn->inode); 674 675 /* Get physical address of data block */ 676 addr_array = blkaddr_in_node(rn); 677 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 678 } 679 680 /* 681 * Lock ordering for the change of data block address: 682 * ->data_page 683 * ->node_page 684 * update block addresses in the node page 685 */ 686 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 687 { 688 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 689 __set_data_blkaddr(dn); 690 if (set_page_dirty(dn->node_page)) 691 dn->node_changed = true; 692 } 693 694 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 695 { 696 dn->data_blkaddr = blkaddr; 697 f2fs_set_data_blkaddr(dn); 698 f2fs_update_extent_cache(dn); 699 } 700 701 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 702 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 703 { 704 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 705 int err; 706 707 if (!count) 708 return 0; 709 710 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 711 return -EPERM; 712 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 713 return err; 714 715 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 716 dn->ofs_in_node, count); 717 718 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 719 720 for (; count > 0; dn->ofs_in_node++) { 721 block_t blkaddr = datablock_addr(dn->inode, 722 dn->node_page, dn->ofs_in_node); 723 if (blkaddr == NULL_ADDR) { 724 dn->data_blkaddr = NEW_ADDR; 725 __set_data_blkaddr(dn); 726 count--; 727 } 728 } 729 730 if (set_page_dirty(dn->node_page)) 731 dn->node_changed = true; 732 return 0; 733 } 734 735 /* Should keep dn->ofs_in_node unchanged */ 736 int f2fs_reserve_new_block(struct dnode_of_data *dn) 737 { 738 unsigned int ofs_in_node = dn->ofs_in_node; 739 int ret; 740 741 ret = f2fs_reserve_new_blocks(dn, 1); 742 dn->ofs_in_node = ofs_in_node; 743 return ret; 744 } 745 746 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 747 { 748 bool need_put = dn->inode_page ? false : true; 749 int err; 750 751 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 752 if (err) 753 return err; 754 755 if (dn->data_blkaddr == NULL_ADDR) 756 err = f2fs_reserve_new_block(dn); 757 if (err || need_put) 758 f2fs_put_dnode(dn); 759 return err; 760 } 761 762 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 763 { 764 struct extent_info ei = {0,0,0}; 765 struct inode *inode = dn->inode; 766 767 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 768 dn->data_blkaddr = ei.blk + index - ei.fofs; 769 return 0; 770 } 771 772 return f2fs_reserve_block(dn, index); 773 } 774 775 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 776 int op_flags, bool for_write) 777 { 778 struct address_space *mapping = inode->i_mapping; 779 struct dnode_of_data dn; 780 struct page *page; 781 struct extent_info ei = {0,0,0}; 782 int err; 783 784 page = f2fs_grab_cache_page(mapping, index, for_write); 785 if (!page) 786 return ERR_PTR(-ENOMEM); 787 788 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 789 dn.data_blkaddr = ei.blk + index - ei.fofs; 790 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 791 DATA_GENERIC_ENHANCE_READ)) { 792 err = -EFSCORRUPTED; 793 goto put_err; 794 } 795 goto got_it; 796 } 797 798 set_new_dnode(&dn, inode, NULL, NULL, 0); 799 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 800 if (err) 801 goto put_err; 802 f2fs_put_dnode(&dn); 803 804 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 805 err = -ENOENT; 806 goto put_err; 807 } 808 if (dn.data_blkaddr != NEW_ADDR && 809 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 810 dn.data_blkaddr, 811 DATA_GENERIC_ENHANCE)) { 812 err = -EFSCORRUPTED; 813 goto put_err; 814 } 815 got_it: 816 if (PageUptodate(page)) { 817 unlock_page(page); 818 return page; 819 } 820 821 /* 822 * A new dentry page is allocated but not able to be written, since its 823 * new inode page couldn't be allocated due to -ENOSPC. 824 * In such the case, its blkaddr can be remained as NEW_ADDR. 825 * see, f2fs_add_link -> f2fs_get_new_data_page -> 826 * f2fs_init_inode_metadata. 827 */ 828 if (dn.data_blkaddr == NEW_ADDR) { 829 zero_user_segment(page, 0, PAGE_SIZE); 830 if (!PageUptodate(page)) 831 SetPageUptodate(page); 832 unlock_page(page); 833 return page; 834 } 835 836 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr); 837 if (err) 838 goto put_err; 839 return page; 840 841 put_err: 842 f2fs_put_page(page, 1); 843 return ERR_PTR(err); 844 } 845 846 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 847 { 848 struct address_space *mapping = inode->i_mapping; 849 struct page *page; 850 851 page = find_get_page(mapping, index); 852 if (page && PageUptodate(page)) 853 return page; 854 f2fs_put_page(page, 0); 855 856 page = f2fs_get_read_data_page(inode, index, 0, false); 857 if (IS_ERR(page)) 858 return page; 859 860 if (PageUptodate(page)) 861 return page; 862 863 wait_on_page_locked(page); 864 if (unlikely(!PageUptodate(page))) { 865 f2fs_put_page(page, 0); 866 return ERR_PTR(-EIO); 867 } 868 return page; 869 } 870 871 /* 872 * If it tries to access a hole, return an error. 873 * Because, the callers, functions in dir.c and GC, should be able to know 874 * whether this page exists or not. 875 */ 876 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 877 bool for_write) 878 { 879 struct address_space *mapping = inode->i_mapping; 880 struct page *page; 881 repeat: 882 page = f2fs_get_read_data_page(inode, index, 0, for_write); 883 if (IS_ERR(page)) 884 return page; 885 886 /* wait for read completion */ 887 lock_page(page); 888 if (unlikely(page->mapping != mapping)) { 889 f2fs_put_page(page, 1); 890 goto repeat; 891 } 892 if (unlikely(!PageUptodate(page))) { 893 f2fs_put_page(page, 1); 894 return ERR_PTR(-EIO); 895 } 896 return page; 897 } 898 899 /* 900 * Caller ensures that this data page is never allocated. 901 * A new zero-filled data page is allocated in the page cache. 902 * 903 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 904 * f2fs_unlock_op(). 905 * Note that, ipage is set only by make_empty_dir, and if any error occur, 906 * ipage should be released by this function. 907 */ 908 struct page *f2fs_get_new_data_page(struct inode *inode, 909 struct page *ipage, pgoff_t index, bool new_i_size) 910 { 911 struct address_space *mapping = inode->i_mapping; 912 struct page *page; 913 struct dnode_of_data dn; 914 int err; 915 916 page = f2fs_grab_cache_page(mapping, index, true); 917 if (!page) { 918 /* 919 * before exiting, we should make sure ipage will be released 920 * if any error occur. 921 */ 922 f2fs_put_page(ipage, 1); 923 return ERR_PTR(-ENOMEM); 924 } 925 926 set_new_dnode(&dn, inode, ipage, NULL, 0); 927 err = f2fs_reserve_block(&dn, index); 928 if (err) { 929 f2fs_put_page(page, 1); 930 return ERR_PTR(err); 931 } 932 if (!ipage) 933 f2fs_put_dnode(&dn); 934 935 if (PageUptodate(page)) 936 goto got_it; 937 938 if (dn.data_blkaddr == NEW_ADDR) { 939 zero_user_segment(page, 0, PAGE_SIZE); 940 if (!PageUptodate(page)) 941 SetPageUptodate(page); 942 } else { 943 f2fs_put_page(page, 1); 944 945 /* if ipage exists, blkaddr should be NEW_ADDR */ 946 f2fs_bug_on(F2FS_I_SB(inode), ipage); 947 page = f2fs_get_lock_data_page(inode, index, true); 948 if (IS_ERR(page)) 949 return page; 950 } 951 got_it: 952 if (new_i_size && i_size_read(inode) < 953 ((loff_t)(index + 1) << PAGE_SHIFT)) 954 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 955 return page; 956 } 957 958 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 959 { 960 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 961 struct f2fs_summary sum; 962 struct node_info ni; 963 block_t old_blkaddr; 964 blkcnt_t count = 1; 965 int err; 966 967 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 968 return -EPERM; 969 970 err = f2fs_get_node_info(sbi, dn->nid, &ni); 971 if (err) 972 return err; 973 974 dn->data_blkaddr = datablock_addr(dn->inode, 975 dn->node_page, dn->ofs_in_node); 976 if (dn->data_blkaddr != NULL_ADDR) 977 goto alloc; 978 979 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 980 return err; 981 982 alloc: 983 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 984 old_blkaddr = dn->data_blkaddr; 985 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 986 &sum, seg_type, NULL, false); 987 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 988 invalidate_mapping_pages(META_MAPPING(sbi), 989 old_blkaddr, old_blkaddr); 990 f2fs_set_data_blkaddr(dn); 991 992 /* 993 * i_size will be updated by direct_IO. Otherwise, we'll get stale 994 * data from unwritten block via dio_read. 995 */ 996 return 0; 997 } 998 999 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 1000 { 1001 struct inode *inode = file_inode(iocb->ki_filp); 1002 struct f2fs_map_blocks map; 1003 int flag; 1004 int err = 0; 1005 bool direct_io = iocb->ki_flags & IOCB_DIRECT; 1006 1007 /* convert inline data for Direct I/O*/ 1008 if (direct_io) { 1009 err = f2fs_convert_inline_inode(inode); 1010 if (err) 1011 return err; 1012 } 1013 1014 if (direct_io && allow_outplace_dio(inode, iocb, from)) 1015 return 0; 1016 1017 if (is_inode_flag_set(inode, FI_NO_PREALLOC)) 1018 return 0; 1019 1020 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 1021 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 1022 if (map.m_len > map.m_lblk) 1023 map.m_len -= map.m_lblk; 1024 else 1025 map.m_len = 0; 1026 1027 map.m_next_pgofs = NULL; 1028 map.m_next_extent = NULL; 1029 map.m_seg_type = NO_CHECK_TYPE; 1030 map.m_may_create = true; 1031 1032 if (direct_io) { 1033 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint); 1034 flag = f2fs_force_buffered_io(inode, iocb, from) ? 1035 F2FS_GET_BLOCK_PRE_AIO : 1036 F2FS_GET_BLOCK_PRE_DIO; 1037 goto map_blocks; 1038 } 1039 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) { 1040 err = f2fs_convert_inline_inode(inode); 1041 if (err) 1042 return err; 1043 } 1044 if (f2fs_has_inline_data(inode)) 1045 return err; 1046 1047 flag = F2FS_GET_BLOCK_PRE_AIO; 1048 1049 map_blocks: 1050 err = f2fs_map_blocks(inode, &map, 1, flag); 1051 if (map.m_len > 0 && err == -ENOSPC) { 1052 if (!direct_io) 1053 set_inode_flag(inode, FI_NO_PREALLOC); 1054 err = 0; 1055 } 1056 return err; 1057 } 1058 1059 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1060 { 1061 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1062 if (lock) 1063 down_read(&sbi->node_change); 1064 else 1065 up_read(&sbi->node_change); 1066 } else { 1067 if (lock) 1068 f2fs_lock_op(sbi); 1069 else 1070 f2fs_unlock_op(sbi); 1071 } 1072 } 1073 1074 /* 1075 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 1076 * f2fs_map_blocks structure. 1077 * If original data blocks are allocated, then give them to blockdev. 1078 * Otherwise, 1079 * a. preallocate requested block addresses 1080 * b. do not use extent cache for better performance 1081 * c. give the block addresses to blockdev 1082 */ 1083 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1084 int create, int flag) 1085 { 1086 unsigned int maxblocks = map->m_len; 1087 struct dnode_of_data dn; 1088 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1089 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1090 pgoff_t pgofs, end_offset, end; 1091 int err = 0, ofs = 1; 1092 unsigned int ofs_in_node, last_ofs_in_node; 1093 blkcnt_t prealloc; 1094 struct extent_info ei = {0,0,0}; 1095 block_t blkaddr; 1096 unsigned int start_pgofs; 1097 1098 if (!maxblocks) 1099 return 0; 1100 1101 map->m_len = 0; 1102 map->m_flags = 0; 1103 1104 /* it only supports block size == page size */ 1105 pgofs = (pgoff_t)map->m_lblk; 1106 end = pgofs + maxblocks; 1107 1108 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1109 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1110 map->m_may_create) 1111 goto next_dnode; 1112 1113 map->m_pblk = ei.blk + pgofs - ei.fofs; 1114 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1115 map->m_flags = F2FS_MAP_MAPPED; 1116 if (map->m_next_extent) 1117 *map->m_next_extent = pgofs + map->m_len; 1118 1119 /* for hardware encryption, but to avoid potential issue in future */ 1120 if (flag == F2FS_GET_BLOCK_DIO) 1121 f2fs_wait_on_block_writeback_range(inode, 1122 map->m_pblk, map->m_len); 1123 goto out; 1124 } 1125 1126 next_dnode: 1127 if (map->m_may_create) 1128 __do_map_lock(sbi, flag, true); 1129 1130 /* When reading holes, we need its node page */ 1131 set_new_dnode(&dn, inode, NULL, NULL, 0); 1132 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1133 if (err) { 1134 if (flag == F2FS_GET_BLOCK_BMAP) 1135 map->m_pblk = 0; 1136 if (err == -ENOENT) { 1137 err = 0; 1138 if (map->m_next_pgofs) 1139 *map->m_next_pgofs = 1140 f2fs_get_next_page_offset(&dn, pgofs); 1141 if (map->m_next_extent) 1142 *map->m_next_extent = 1143 f2fs_get_next_page_offset(&dn, pgofs); 1144 } 1145 goto unlock_out; 1146 } 1147 1148 start_pgofs = pgofs; 1149 prealloc = 0; 1150 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1151 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1152 1153 next_block: 1154 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node); 1155 1156 if (__is_valid_data_blkaddr(blkaddr) && 1157 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1158 err = -EFSCORRUPTED; 1159 goto sync_out; 1160 } 1161 1162 if (__is_valid_data_blkaddr(blkaddr)) { 1163 /* use out-place-update for driect IO under LFS mode */ 1164 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO && 1165 map->m_may_create) { 1166 err = __allocate_data_block(&dn, map->m_seg_type); 1167 if (!err) { 1168 blkaddr = dn.data_blkaddr; 1169 set_inode_flag(inode, FI_APPEND_WRITE); 1170 } 1171 } 1172 } else { 1173 if (create) { 1174 if (unlikely(f2fs_cp_error(sbi))) { 1175 err = -EIO; 1176 goto sync_out; 1177 } 1178 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1179 if (blkaddr == NULL_ADDR) { 1180 prealloc++; 1181 last_ofs_in_node = dn.ofs_in_node; 1182 } 1183 } else { 1184 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1185 flag != F2FS_GET_BLOCK_DIO); 1186 err = __allocate_data_block(&dn, 1187 map->m_seg_type); 1188 if (!err) 1189 set_inode_flag(inode, FI_APPEND_WRITE); 1190 } 1191 if (err) 1192 goto sync_out; 1193 map->m_flags |= F2FS_MAP_NEW; 1194 blkaddr = dn.data_blkaddr; 1195 } else { 1196 if (flag == F2FS_GET_BLOCK_BMAP) { 1197 map->m_pblk = 0; 1198 goto sync_out; 1199 } 1200 if (flag == F2FS_GET_BLOCK_PRECACHE) 1201 goto sync_out; 1202 if (flag == F2FS_GET_BLOCK_FIEMAP && 1203 blkaddr == NULL_ADDR) { 1204 if (map->m_next_pgofs) 1205 *map->m_next_pgofs = pgofs + 1; 1206 goto sync_out; 1207 } 1208 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1209 /* for defragment case */ 1210 if (map->m_next_pgofs) 1211 *map->m_next_pgofs = pgofs + 1; 1212 goto sync_out; 1213 } 1214 } 1215 } 1216 1217 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1218 goto skip; 1219 1220 if (map->m_len == 0) { 1221 /* preallocated unwritten block should be mapped for fiemap. */ 1222 if (blkaddr == NEW_ADDR) 1223 map->m_flags |= F2FS_MAP_UNWRITTEN; 1224 map->m_flags |= F2FS_MAP_MAPPED; 1225 1226 map->m_pblk = blkaddr; 1227 map->m_len = 1; 1228 } else if ((map->m_pblk != NEW_ADDR && 1229 blkaddr == (map->m_pblk + ofs)) || 1230 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1231 flag == F2FS_GET_BLOCK_PRE_DIO) { 1232 ofs++; 1233 map->m_len++; 1234 } else { 1235 goto sync_out; 1236 } 1237 1238 skip: 1239 dn.ofs_in_node++; 1240 pgofs++; 1241 1242 /* preallocate blocks in batch for one dnode page */ 1243 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1244 (pgofs == end || dn.ofs_in_node == end_offset)) { 1245 1246 dn.ofs_in_node = ofs_in_node; 1247 err = f2fs_reserve_new_blocks(&dn, prealloc); 1248 if (err) 1249 goto sync_out; 1250 1251 map->m_len += dn.ofs_in_node - ofs_in_node; 1252 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1253 err = -ENOSPC; 1254 goto sync_out; 1255 } 1256 dn.ofs_in_node = end_offset; 1257 } 1258 1259 if (pgofs >= end) 1260 goto sync_out; 1261 else if (dn.ofs_in_node < end_offset) 1262 goto next_block; 1263 1264 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1265 if (map->m_flags & F2FS_MAP_MAPPED) { 1266 unsigned int ofs = start_pgofs - map->m_lblk; 1267 1268 f2fs_update_extent_cache_range(&dn, 1269 start_pgofs, map->m_pblk + ofs, 1270 map->m_len - ofs); 1271 } 1272 } 1273 1274 f2fs_put_dnode(&dn); 1275 1276 if (map->m_may_create) { 1277 __do_map_lock(sbi, flag, false); 1278 f2fs_balance_fs(sbi, dn.node_changed); 1279 } 1280 goto next_dnode; 1281 1282 sync_out: 1283 1284 /* for hardware encryption, but to avoid potential issue in future */ 1285 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) 1286 f2fs_wait_on_block_writeback_range(inode, 1287 map->m_pblk, map->m_len); 1288 1289 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1290 if (map->m_flags & F2FS_MAP_MAPPED) { 1291 unsigned int ofs = start_pgofs - map->m_lblk; 1292 1293 f2fs_update_extent_cache_range(&dn, 1294 start_pgofs, map->m_pblk + ofs, 1295 map->m_len - ofs); 1296 } 1297 if (map->m_next_extent) 1298 *map->m_next_extent = pgofs + 1; 1299 } 1300 f2fs_put_dnode(&dn); 1301 unlock_out: 1302 if (map->m_may_create) { 1303 __do_map_lock(sbi, flag, false); 1304 f2fs_balance_fs(sbi, dn.node_changed); 1305 } 1306 out: 1307 trace_f2fs_map_blocks(inode, map, err); 1308 return err; 1309 } 1310 1311 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1312 { 1313 struct f2fs_map_blocks map; 1314 block_t last_lblk; 1315 int err; 1316 1317 if (pos + len > i_size_read(inode)) 1318 return false; 1319 1320 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1321 map.m_next_pgofs = NULL; 1322 map.m_next_extent = NULL; 1323 map.m_seg_type = NO_CHECK_TYPE; 1324 map.m_may_create = false; 1325 last_lblk = F2FS_BLK_ALIGN(pos + len); 1326 1327 while (map.m_lblk < last_lblk) { 1328 map.m_len = last_lblk - map.m_lblk; 1329 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1330 if (err || map.m_len == 0) 1331 return false; 1332 map.m_lblk += map.m_len; 1333 } 1334 return true; 1335 } 1336 1337 static int __get_data_block(struct inode *inode, sector_t iblock, 1338 struct buffer_head *bh, int create, int flag, 1339 pgoff_t *next_pgofs, int seg_type, bool may_write) 1340 { 1341 struct f2fs_map_blocks map; 1342 int err; 1343 1344 map.m_lblk = iblock; 1345 map.m_len = bh->b_size >> inode->i_blkbits; 1346 map.m_next_pgofs = next_pgofs; 1347 map.m_next_extent = NULL; 1348 map.m_seg_type = seg_type; 1349 map.m_may_create = may_write; 1350 1351 err = f2fs_map_blocks(inode, &map, create, flag); 1352 if (!err) { 1353 map_bh(bh, inode->i_sb, map.m_pblk); 1354 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 1355 bh->b_size = (u64)map.m_len << inode->i_blkbits; 1356 } 1357 return err; 1358 } 1359 1360 static int get_data_block(struct inode *inode, sector_t iblock, 1361 struct buffer_head *bh_result, int create, int flag, 1362 pgoff_t *next_pgofs) 1363 { 1364 return __get_data_block(inode, iblock, bh_result, create, 1365 flag, next_pgofs, 1366 NO_CHECK_TYPE, create); 1367 } 1368 1369 static int get_data_block_dio_write(struct inode *inode, sector_t iblock, 1370 struct buffer_head *bh_result, int create) 1371 { 1372 return __get_data_block(inode, iblock, bh_result, create, 1373 F2FS_GET_BLOCK_DIO, NULL, 1374 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1375 true); 1376 } 1377 1378 static int get_data_block_dio(struct inode *inode, sector_t iblock, 1379 struct buffer_head *bh_result, int create) 1380 { 1381 return __get_data_block(inode, iblock, bh_result, create, 1382 F2FS_GET_BLOCK_DIO, NULL, 1383 f2fs_rw_hint_to_seg_type(inode->i_write_hint), 1384 false); 1385 } 1386 1387 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 1388 struct buffer_head *bh_result, int create) 1389 { 1390 /* Block number less than F2FS MAX BLOCKS */ 1391 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 1392 return -EFBIG; 1393 1394 return __get_data_block(inode, iblock, bh_result, create, 1395 F2FS_GET_BLOCK_BMAP, NULL, 1396 NO_CHECK_TYPE, create); 1397 } 1398 1399 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 1400 { 1401 return (offset >> inode->i_blkbits); 1402 } 1403 1404 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 1405 { 1406 return (blk << inode->i_blkbits); 1407 } 1408 1409 static int f2fs_xattr_fiemap(struct inode *inode, 1410 struct fiemap_extent_info *fieinfo) 1411 { 1412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1413 struct page *page; 1414 struct node_info ni; 1415 __u64 phys = 0, len; 1416 __u32 flags; 1417 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1418 int err = 0; 1419 1420 if (f2fs_has_inline_xattr(inode)) { 1421 int offset; 1422 1423 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1424 inode->i_ino, false); 1425 if (!page) 1426 return -ENOMEM; 1427 1428 err = f2fs_get_node_info(sbi, inode->i_ino, &ni); 1429 if (err) { 1430 f2fs_put_page(page, 1); 1431 return err; 1432 } 1433 1434 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1435 offset = offsetof(struct f2fs_inode, i_addr) + 1436 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1437 get_inline_xattr_addrs(inode)); 1438 1439 phys += offset; 1440 len = inline_xattr_size(inode); 1441 1442 f2fs_put_page(page, 1); 1443 1444 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1445 1446 if (!xnid) 1447 flags |= FIEMAP_EXTENT_LAST; 1448 1449 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1450 if (err || err == 1) 1451 return err; 1452 } 1453 1454 if (xnid) { 1455 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1456 if (!page) 1457 return -ENOMEM; 1458 1459 err = f2fs_get_node_info(sbi, xnid, &ni); 1460 if (err) { 1461 f2fs_put_page(page, 1); 1462 return err; 1463 } 1464 1465 phys = (__u64)blk_to_logical(inode, ni.blk_addr); 1466 len = inode->i_sb->s_blocksize; 1467 1468 f2fs_put_page(page, 1); 1469 1470 flags = FIEMAP_EXTENT_LAST; 1471 } 1472 1473 if (phys) 1474 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1475 1476 return (err < 0 ? err : 0); 1477 } 1478 1479 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1480 u64 start, u64 len) 1481 { 1482 struct buffer_head map_bh; 1483 sector_t start_blk, last_blk; 1484 pgoff_t next_pgofs; 1485 u64 logical = 0, phys = 0, size = 0; 1486 u32 flags = 0; 1487 int ret = 0; 1488 1489 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1490 ret = f2fs_precache_extents(inode); 1491 if (ret) 1492 return ret; 1493 } 1494 1495 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR); 1496 if (ret) 1497 return ret; 1498 1499 inode_lock(inode); 1500 1501 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1502 ret = f2fs_xattr_fiemap(inode, fieinfo); 1503 goto out; 1504 } 1505 1506 if (f2fs_has_inline_data(inode)) { 1507 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1508 if (ret != -EAGAIN) 1509 goto out; 1510 } 1511 1512 if (logical_to_blk(inode, len) == 0) 1513 len = blk_to_logical(inode, 1); 1514 1515 start_blk = logical_to_blk(inode, start); 1516 last_blk = logical_to_blk(inode, start + len - 1); 1517 1518 next: 1519 memset(&map_bh, 0, sizeof(struct buffer_head)); 1520 map_bh.b_size = len; 1521 1522 ret = get_data_block(inode, start_blk, &map_bh, 0, 1523 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 1524 if (ret) 1525 goto out; 1526 1527 /* HOLE */ 1528 if (!buffer_mapped(&map_bh)) { 1529 start_blk = next_pgofs; 1530 1531 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode, 1532 F2FS_I_SB(inode)->max_file_blocks)) 1533 goto prep_next; 1534 1535 flags |= FIEMAP_EXTENT_LAST; 1536 } 1537 1538 if (size) { 1539 if (IS_ENCRYPTED(inode)) 1540 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1541 1542 ret = fiemap_fill_next_extent(fieinfo, logical, 1543 phys, size, flags); 1544 } 1545 1546 if (start_blk > last_blk || ret) 1547 goto out; 1548 1549 logical = blk_to_logical(inode, start_blk); 1550 phys = blk_to_logical(inode, map_bh.b_blocknr); 1551 size = map_bh.b_size; 1552 flags = 0; 1553 if (buffer_unwritten(&map_bh)) 1554 flags = FIEMAP_EXTENT_UNWRITTEN; 1555 1556 start_blk += logical_to_blk(inode, size); 1557 1558 prep_next: 1559 cond_resched(); 1560 if (fatal_signal_pending(current)) 1561 ret = -EINTR; 1562 else 1563 goto next; 1564 out: 1565 if (ret == 1) 1566 ret = 0; 1567 1568 inode_unlock(inode); 1569 return ret; 1570 } 1571 1572 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1573 unsigned nr_pages, 1574 struct f2fs_map_blocks *map, 1575 struct bio **bio_ret, 1576 sector_t *last_block_in_bio, 1577 bool is_readahead) 1578 { 1579 struct bio *bio = *bio_ret; 1580 const unsigned blkbits = inode->i_blkbits; 1581 const unsigned blocksize = 1 << blkbits; 1582 sector_t block_in_file; 1583 sector_t last_block; 1584 sector_t last_block_in_file; 1585 sector_t block_nr; 1586 int ret = 0; 1587 1588 block_in_file = (sector_t)page_index(page); 1589 last_block = block_in_file + nr_pages; 1590 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1591 blkbits; 1592 if (last_block > last_block_in_file) 1593 last_block = last_block_in_file; 1594 1595 /* just zeroing out page which is beyond EOF */ 1596 if (block_in_file >= last_block) 1597 goto zero_out; 1598 /* 1599 * Map blocks using the previous result first. 1600 */ 1601 if ((map->m_flags & F2FS_MAP_MAPPED) && 1602 block_in_file > map->m_lblk && 1603 block_in_file < (map->m_lblk + map->m_len)) 1604 goto got_it; 1605 1606 /* 1607 * Then do more f2fs_map_blocks() calls until we are 1608 * done with this page. 1609 */ 1610 map->m_lblk = block_in_file; 1611 map->m_len = last_block - block_in_file; 1612 1613 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 1614 if (ret) 1615 goto out; 1616 got_it: 1617 if ((map->m_flags & F2FS_MAP_MAPPED)) { 1618 block_nr = map->m_pblk + block_in_file - map->m_lblk; 1619 SetPageMappedToDisk(page); 1620 1621 if (!PageUptodate(page) && (!PageSwapCache(page) && 1622 !cleancache_get_page(page))) { 1623 SetPageUptodate(page); 1624 goto confused; 1625 } 1626 1627 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 1628 DATA_GENERIC_ENHANCE_READ)) { 1629 ret = -EFSCORRUPTED; 1630 goto out; 1631 } 1632 } else { 1633 zero_out: 1634 zero_user_segment(page, 0, PAGE_SIZE); 1635 if (!PageUptodate(page)) 1636 SetPageUptodate(page); 1637 unlock_page(page); 1638 goto out; 1639 } 1640 1641 /* 1642 * This page will go to BIO. Do we need to send this 1643 * BIO off first? 1644 */ 1645 if (bio && (*last_block_in_bio != block_nr - 1 || 1646 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) { 1647 submit_and_realloc: 1648 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1649 bio = NULL; 1650 } 1651 if (bio == NULL) { 1652 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 1653 is_readahead ? REQ_RAHEAD : 0); 1654 if (IS_ERR(bio)) { 1655 ret = PTR_ERR(bio); 1656 bio = NULL; 1657 goto out; 1658 } 1659 } 1660 1661 /* 1662 * If the page is under writeback, we need to wait for 1663 * its completion to see the correct decrypted data. 1664 */ 1665 f2fs_wait_on_block_writeback(inode, block_nr); 1666 1667 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1668 goto submit_and_realloc; 1669 1670 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 1671 ClearPageError(page); 1672 *last_block_in_bio = block_nr; 1673 goto out; 1674 confused: 1675 if (bio) { 1676 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1677 bio = NULL; 1678 } 1679 unlock_page(page); 1680 out: 1681 *bio_ret = bio; 1682 return ret; 1683 } 1684 1685 /* 1686 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1687 * Major change was from block_size == page_size in f2fs by default. 1688 * 1689 * Note that the aops->readpages() function is ONLY used for read-ahead. If 1690 * this function ever deviates from doing just read-ahead, it should either 1691 * use ->readpage() or do the necessary surgery to decouple ->readpages() 1692 * from read-ahead. 1693 */ 1694 static int f2fs_mpage_readpages(struct address_space *mapping, 1695 struct list_head *pages, struct page *page, 1696 unsigned nr_pages, bool is_readahead) 1697 { 1698 struct bio *bio = NULL; 1699 sector_t last_block_in_bio = 0; 1700 struct inode *inode = mapping->host; 1701 struct f2fs_map_blocks map; 1702 int ret = 0; 1703 1704 map.m_pblk = 0; 1705 map.m_lblk = 0; 1706 map.m_len = 0; 1707 map.m_flags = 0; 1708 map.m_next_pgofs = NULL; 1709 map.m_next_extent = NULL; 1710 map.m_seg_type = NO_CHECK_TYPE; 1711 map.m_may_create = false; 1712 1713 for (; nr_pages; nr_pages--) { 1714 if (pages) { 1715 page = list_last_entry(pages, struct page, lru); 1716 1717 prefetchw(&page->flags); 1718 list_del(&page->lru); 1719 if (add_to_page_cache_lru(page, mapping, 1720 page_index(page), 1721 readahead_gfp_mask(mapping))) 1722 goto next_page; 1723 } 1724 1725 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio, 1726 &last_block_in_bio, is_readahead); 1727 if (ret) { 1728 SetPageError(page); 1729 zero_user_segment(page, 0, PAGE_SIZE); 1730 unlock_page(page); 1731 } 1732 next_page: 1733 if (pages) 1734 put_page(page); 1735 } 1736 BUG_ON(pages && !list_empty(pages)); 1737 if (bio) 1738 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1739 return pages ? 0 : ret; 1740 } 1741 1742 static int f2fs_read_data_page(struct file *file, struct page *page) 1743 { 1744 struct inode *inode = page_file_mapping(page)->host; 1745 int ret = -EAGAIN; 1746 1747 trace_f2fs_readpage(page, DATA); 1748 1749 /* If the file has inline data, try to read it directly */ 1750 if (f2fs_has_inline_data(inode)) 1751 ret = f2fs_read_inline_data(inode, page); 1752 if (ret == -EAGAIN) 1753 ret = f2fs_mpage_readpages(page_file_mapping(page), 1754 NULL, page, 1, false); 1755 return ret; 1756 } 1757 1758 static int f2fs_read_data_pages(struct file *file, 1759 struct address_space *mapping, 1760 struct list_head *pages, unsigned nr_pages) 1761 { 1762 struct inode *inode = mapping->host; 1763 struct page *page = list_last_entry(pages, struct page, lru); 1764 1765 trace_f2fs_readpages(inode, page, nr_pages); 1766 1767 /* If the file has inline data, skip readpages */ 1768 if (f2fs_has_inline_data(inode)) 1769 return 0; 1770 1771 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true); 1772 } 1773 1774 static int encrypt_one_page(struct f2fs_io_info *fio) 1775 { 1776 struct inode *inode = fio->page->mapping->host; 1777 struct page *mpage; 1778 gfp_t gfp_flags = GFP_NOFS; 1779 1780 if (!f2fs_encrypted_file(inode)) 1781 return 0; 1782 1783 /* wait for GCed page writeback via META_MAPPING */ 1784 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 1785 1786 retry_encrypt: 1787 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page, 1788 PAGE_SIZE, 0, 1789 gfp_flags); 1790 if (IS_ERR(fio->encrypted_page)) { 1791 /* flush pending IOs and wait for a while in the ENOMEM case */ 1792 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 1793 f2fs_flush_merged_writes(fio->sbi); 1794 congestion_wait(BLK_RW_ASYNC, HZ/50); 1795 gfp_flags |= __GFP_NOFAIL; 1796 goto retry_encrypt; 1797 } 1798 return PTR_ERR(fio->encrypted_page); 1799 } 1800 1801 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 1802 if (mpage) { 1803 if (PageUptodate(mpage)) 1804 memcpy(page_address(mpage), 1805 page_address(fio->encrypted_page), PAGE_SIZE); 1806 f2fs_put_page(mpage, 1); 1807 } 1808 return 0; 1809 } 1810 1811 static inline bool check_inplace_update_policy(struct inode *inode, 1812 struct f2fs_io_info *fio) 1813 { 1814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1815 unsigned int policy = SM_I(sbi)->ipu_policy; 1816 1817 if (policy & (0x1 << F2FS_IPU_FORCE)) 1818 return true; 1819 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 1820 return true; 1821 if (policy & (0x1 << F2FS_IPU_UTIL) && 1822 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1823 return true; 1824 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 1825 utilization(sbi) > SM_I(sbi)->min_ipu_util) 1826 return true; 1827 1828 /* 1829 * IPU for rewrite async pages 1830 */ 1831 if (policy & (0x1 << F2FS_IPU_ASYNC) && 1832 fio && fio->op == REQ_OP_WRITE && 1833 !(fio->op_flags & REQ_SYNC) && 1834 !IS_ENCRYPTED(inode)) 1835 return true; 1836 1837 /* this is only set during fdatasync */ 1838 if (policy & (0x1 << F2FS_IPU_FSYNC) && 1839 is_inode_flag_set(inode, FI_NEED_IPU)) 1840 return true; 1841 1842 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1843 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1844 return true; 1845 1846 return false; 1847 } 1848 1849 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 1850 { 1851 if (f2fs_is_pinned_file(inode)) 1852 return true; 1853 1854 /* if this is cold file, we should overwrite to avoid fragmentation */ 1855 if (file_is_cold(inode)) 1856 return true; 1857 1858 return check_inplace_update_policy(inode, fio); 1859 } 1860 1861 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 1862 { 1863 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1864 1865 if (test_opt(sbi, LFS)) 1866 return true; 1867 if (S_ISDIR(inode->i_mode)) 1868 return true; 1869 if (IS_NOQUOTA(inode)) 1870 return true; 1871 if (f2fs_is_atomic_file(inode)) 1872 return true; 1873 if (fio) { 1874 if (is_cold_data(fio->page)) 1875 return true; 1876 if (IS_ATOMIC_WRITTEN_PAGE(fio->page)) 1877 return true; 1878 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1879 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 1880 return true; 1881 } 1882 return false; 1883 } 1884 1885 static inline bool need_inplace_update(struct f2fs_io_info *fio) 1886 { 1887 struct inode *inode = fio->page->mapping->host; 1888 1889 if (f2fs_should_update_outplace(inode, fio)) 1890 return false; 1891 1892 return f2fs_should_update_inplace(inode, fio); 1893 } 1894 1895 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 1896 { 1897 struct page *page = fio->page; 1898 struct inode *inode = page->mapping->host; 1899 struct dnode_of_data dn; 1900 struct extent_info ei = {0,0,0}; 1901 struct node_info ni; 1902 bool ipu_force = false; 1903 int err = 0; 1904 1905 set_new_dnode(&dn, inode, NULL, NULL, 0); 1906 if (need_inplace_update(fio) && 1907 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 1908 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 1909 1910 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1911 DATA_GENERIC_ENHANCE)) 1912 return -EFSCORRUPTED; 1913 1914 ipu_force = true; 1915 fio->need_lock = LOCK_DONE; 1916 goto got_it; 1917 } 1918 1919 /* Deadlock due to between page->lock and f2fs_lock_op */ 1920 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 1921 return -EAGAIN; 1922 1923 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1924 if (err) 1925 goto out; 1926 1927 fio->old_blkaddr = dn.data_blkaddr; 1928 1929 /* This page is already truncated */ 1930 if (fio->old_blkaddr == NULL_ADDR) { 1931 ClearPageUptodate(page); 1932 clear_cold_data(page); 1933 goto out_writepage; 1934 } 1935 got_it: 1936 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 1937 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 1938 DATA_GENERIC_ENHANCE)) { 1939 err = -EFSCORRUPTED; 1940 goto out_writepage; 1941 } 1942 /* 1943 * If current allocation needs SSR, 1944 * it had better in-place writes for updated data. 1945 */ 1946 if (ipu_force || 1947 (__is_valid_data_blkaddr(fio->old_blkaddr) && 1948 need_inplace_update(fio))) { 1949 err = encrypt_one_page(fio); 1950 if (err) 1951 goto out_writepage; 1952 1953 set_page_writeback(page); 1954 ClearPageError(page); 1955 f2fs_put_dnode(&dn); 1956 if (fio->need_lock == LOCK_REQ) 1957 f2fs_unlock_op(fio->sbi); 1958 err = f2fs_inplace_write_data(fio); 1959 if (err) { 1960 if (f2fs_encrypted_file(inode)) 1961 fscrypt_finalize_bounce_page(&fio->encrypted_page); 1962 if (PageWriteback(page)) 1963 end_page_writeback(page); 1964 } else { 1965 set_inode_flag(inode, FI_UPDATE_WRITE); 1966 } 1967 trace_f2fs_do_write_data_page(fio->page, IPU); 1968 return err; 1969 } 1970 1971 if (fio->need_lock == LOCK_RETRY) { 1972 if (!f2fs_trylock_op(fio->sbi)) { 1973 err = -EAGAIN; 1974 goto out_writepage; 1975 } 1976 fio->need_lock = LOCK_REQ; 1977 } 1978 1979 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni); 1980 if (err) 1981 goto out_writepage; 1982 1983 fio->version = ni.version; 1984 1985 err = encrypt_one_page(fio); 1986 if (err) 1987 goto out_writepage; 1988 1989 set_page_writeback(page); 1990 ClearPageError(page); 1991 1992 /* LFS mode write path */ 1993 f2fs_outplace_write_data(&dn, fio); 1994 trace_f2fs_do_write_data_page(page, OPU); 1995 set_inode_flag(inode, FI_APPEND_WRITE); 1996 if (page->index == 0) 1997 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1998 out_writepage: 1999 f2fs_put_dnode(&dn); 2000 out: 2001 if (fio->need_lock == LOCK_REQ) 2002 f2fs_unlock_op(fio->sbi); 2003 return err; 2004 } 2005 2006 static int __write_data_page(struct page *page, bool *submitted, 2007 struct bio **bio, 2008 sector_t *last_block, 2009 struct writeback_control *wbc, 2010 enum iostat_type io_type) 2011 { 2012 struct inode *inode = page->mapping->host; 2013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2014 loff_t i_size = i_size_read(inode); 2015 const pgoff_t end_index = ((unsigned long long) i_size) 2016 >> PAGE_SHIFT; 2017 loff_t psize = (page->index + 1) << PAGE_SHIFT; 2018 unsigned offset = 0; 2019 bool need_balance_fs = false; 2020 int err = 0; 2021 struct f2fs_io_info fio = { 2022 .sbi = sbi, 2023 .ino = inode->i_ino, 2024 .type = DATA, 2025 .op = REQ_OP_WRITE, 2026 .op_flags = wbc_to_write_flags(wbc), 2027 .old_blkaddr = NULL_ADDR, 2028 .page = page, 2029 .encrypted_page = NULL, 2030 .submitted = false, 2031 .need_lock = LOCK_RETRY, 2032 .io_type = io_type, 2033 .io_wbc = wbc, 2034 .bio = bio, 2035 .last_block = last_block, 2036 }; 2037 2038 trace_f2fs_writepage(page, DATA); 2039 2040 /* we should bypass data pages to proceed the kworkder jobs */ 2041 if (unlikely(f2fs_cp_error(sbi))) { 2042 mapping_set_error(page->mapping, -EIO); 2043 /* 2044 * don't drop any dirty dentry pages for keeping lastest 2045 * directory structure. 2046 */ 2047 if (S_ISDIR(inode->i_mode)) 2048 goto redirty_out; 2049 goto out; 2050 } 2051 2052 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2053 goto redirty_out; 2054 2055 if (page->index < end_index) 2056 goto write; 2057 2058 /* 2059 * If the offset is out-of-range of file size, 2060 * this page does not have to be written to disk. 2061 */ 2062 offset = i_size & (PAGE_SIZE - 1); 2063 if ((page->index >= end_index + 1) || !offset) 2064 goto out; 2065 2066 zero_user_segment(page, offset, PAGE_SIZE); 2067 write: 2068 if (f2fs_is_drop_cache(inode)) 2069 goto out; 2070 /* we should not write 0'th page having journal header */ 2071 if (f2fs_is_volatile_file(inode) && (!page->index || 2072 (!wbc->for_reclaim && 2073 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2074 goto redirty_out; 2075 2076 /* Dentry blocks are controlled by checkpoint */ 2077 if (S_ISDIR(inode->i_mode)) { 2078 fio.need_lock = LOCK_DONE; 2079 err = f2fs_do_write_data_page(&fio); 2080 goto done; 2081 } 2082 2083 if (!wbc->for_reclaim) 2084 need_balance_fs = true; 2085 else if (has_not_enough_free_secs(sbi, 0, 0)) 2086 goto redirty_out; 2087 else 2088 set_inode_flag(inode, FI_HOT_DATA); 2089 2090 err = -EAGAIN; 2091 if (f2fs_has_inline_data(inode)) { 2092 err = f2fs_write_inline_data(inode, page); 2093 if (!err) 2094 goto out; 2095 } 2096 2097 if (err == -EAGAIN) { 2098 err = f2fs_do_write_data_page(&fio); 2099 if (err == -EAGAIN) { 2100 fio.need_lock = LOCK_REQ; 2101 err = f2fs_do_write_data_page(&fio); 2102 } 2103 } 2104 2105 if (err) { 2106 file_set_keep_isize(inode); 2107 } else { 2108 down_write(&F2FS_I(inode)->i_sem); 2109 if (F2FS_I(inode)->last_disk_size < psize) 2110 F2FS_I(inode)->last_disk_size = psize; 2111 up_write(&F2FS_I(inode)->i_sem); 2112 } 2113 2114 done: 2115 if (err && err != -ENOENT) 2116 goto redirty_out; 2117 2118 out: 2119 inode_dec_dirty_pages(inode); 2120 if (err) { 2121 ClearPageUptodate(page); 2122 clear_cold_data(page); 2123 } 2124 2125 if (wbc->for_reclaim) { 2126 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2127 clear_inode_flag(inode, FI_HOT_DATA); 2128 f2fs_remove_dirty_inode(inode); 2129 submitted = NULL; 2130 } 2131 2132 unlock_page(page); 2133 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2134 !F2FS_I(inode)->cp_task) { 2135 f2fs_submit_ipu_bio(sbi, bio, page); 2136 f2fs_balance_fs(sbi, need_balance_fs); 2137 } 2138 2139 if (unlikely(f2fs_cp_error(sbi))) { 2140 f2fs_submit_ipu_bio(sbi, bio, page); 2141 f2fs_submit_merged_write(sbi, DATA); 2142 submitted = NULL; 2143 } 2144 2145 if (submitted) 2146 *submitted = fio.submitted; 2147 2148 return 0; 2149 2150 redirty_out: 2151 redirty_page_for_writepage(wbc, page); 2152 /* 2153 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2154 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2155 * file_write_and_wait_range() will see EIO error, which is critical 2156 * to return value of fsync() followed by atomic_write failure to user. 2157 */ 2158 if (!err || wbc->for_reclaim) 2159 return AOP_WRITEPAGE_ACTIVATE; 2160 unlock_page(page); 2161 return err; 2162 } 2163 2164 static int f2fs_write_data_page(struct page *page, 2165 struct writeback_control *wbc) 2166 { 2167 return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO); 2168 } 2169 2170 /* 2171 * This function was copied from write_cche_pages from mm/page-writeback.c. 2172 * The major change is making write step of cold data page separately from 2173 * warm/hot data page. 2174 */ 2175 static int f2fs_write_cache_pages(struct address_space *mapping, 2176 struct writeback_control *wbc, 2177 enum iostat_type io_type) 2178 { 2179 int ret = 0; 2180 int done = 0; 2181 struct pagevec pvec; 2182 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2183 struct bio *bio = NULL; 2184 sector_t last_block; 2185 int nr_pages; 2186 pgoff_t uninitialized_var(writeback_index); 2187 pgoff_t index; 2188 pgoff_t end; /* Inclusive */ 2189 pgoff_t done_index; 2190 int cycled; 2191 int range_whole = 0; 2192 xa_mark_t tag; 2193 int nwritten = 0; 2194 2195 pagevec_init(&pvec); 2196 2197 if (get_dirty_pages(mapping->host) <= 2198 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2199 set_inode_flag(mapping->host, FI_HOT_DATA); 2200 else 2201 clear_inode_flag(mapping->host, FI_HOT_DATA); 2202 2203 if (wbc->range_cyclic) { 2204 writeback_index = mapping->writeback_index; /* prev offset */ 2205 index = writeback_index; 2206 if (index == 0) 2207 cycled = 1; 2208 else 2209 cycled = 0; 2210 end = -1; 2211 } else { 2212 index = wbc->range_start >> PAGE_SHIFT; 2213 end = wbc->range_end >> PAGE_SHIFT; 2214 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2215 range_whole = 1; 2216 cycled = 1; /* ignore range_cyclic tests */ 2217 } 2218 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2219 tag = PAGECACHE_TAG_TOWRITE; 2220 else 2221 tag = PAGECACHE_TAG_DIRTY; 2222 retry: 2223 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2224 tag_pages_for_writeback(mapping, index, end); 2225 done_index = index; 2226 while (!done && (index <= end)) { 2227 int i; 2228 2229 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2230 tag); 2231 if (nr_pages == 0) 2232 break; 2233 2234 for (i = 0; i < nr_pages; i++) { 2235 struct page *page = pvec.pages[i]; 2236 bool submitted = false; 2237 2238 /* give a priority to WB_SYNC threads */ 2239 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2240 wbc->sync_mode == WB_SYNC_NONE) { 2241 done = 1; 2242 break; 2243 } 2244 2245 done_index = page->index; 2246 retry_write: 2247 lock_page(page); 2248 2249 if (unlikely(page->mapping != mapping)) { 2250 continue_unlock: 2251 unlock_page(page); 2252 continue; 2253 } 2254 2255 if (!PageDirty(page)) { 2256 /* someone wrote it for us */ 2257 goto continue_unlock; 2258 } 2259 2260 if (PageWriteback(page)) { 2261 if (wbc->sync_mode != WB_SYNC_NONE) { 2262 f2fs_wait_on_page_writeback(page, 2263 DATA, true, true); 2264 f2fs_submit_ipu_bio(sbi, &bio, page); 2265 } else { 2266 goto continue_unlock; 2267 } 2268 } 2269 2270 if (!clear_page_dirty_for_io(page)) 2271 goto continue_unlock; 2272 2273 ret = __write_data_page(page, &submitted, &bio, 2274 &last_block, wbc, io_type); 2275 if (unlikely(ret)) { 2276 /* 2277 * keep nr_to_write, since vfs uses this to 2278 * get # of written pages. 2279 */ 2280 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2281 unlock_page(page); 2282 ret = 0; 2283 continue; 2284 } else if (ret == -EAGAIN) { 2285 ret = 0; 2286 if (wbc->sync_mode == WB_SYNC_ALL) { 2287 cond_resched(); 2288 congestion_wait(BLK_RW_ASYNC, 2289 HZ/50); 2290 goto retry_write; 2291 } 2292 continue; 2293 } 2294 done_index = page->index + 1; 2295 done = 1; 2296 break; 2297 } else if (submitted) { 2298 nwritten++; 2299 } 2300 2301 if (--wbc->nr_to_write <= 0 && 2302 wbc->sync_mode == WB_SYNC_NONE) { 2303 done = 1; 2304 break; 2305 } 2306 } 2307 pagevec_release(&pvec); 2308 cond_resched(); 2309 } 2310 2311 if (!cycled && !done) { 2312 cycled = 1; 2313 index = 0; 2314 end = writeback_index - 1; 2315 goto retry; 2316 } 2317 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2318 mapping->writeback_index = done_index; 2319 2320 if (nwritten) 2321 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 2322 NULL, 0, DATA); 2323 /* submit cached bio of IPU write */ 2324 if (bio) 2325 __submit_bio(sbi, bio, DATA); 2326 2327 return ret; 2328 } 2329 2330 static inline bool __should_serialize_io(struct inode *inode, 2331 struct writeback_control *wbc) 2332 { 2333 if (!S_ISREG(inode->i_mode)) 2334 return false; 2335 if (IS_NOQUOTA(inode)) 2336 return false; 2337 /* to avoid deadlock in path of data flush */ 2338 if (F2FS_I(inode)->cp_task) 2339 return false; 2340 if (wbc->sync_mode != WB_SYNC_ALL) 2341 return true; 2342 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 2343 return true; 2344 return false; 2345 } 2346 2347 static int __f2fs_write_data_pages(struct address_space *mapping, 2348 struct writeback_control *wbc, 2349 enum iostat_type io_type) 2350 { 2351 struct inode *inode = mapping->host; 2352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2353 struct blk_plug plug; 2354 int ret; 2355 bool locked = false; 2356 2357 /* deal with chardevs and other special file */ 2358 if (!mapping->a_ops->writepage) 2359 return 0; 2360 2361 /* skip writing if there is no dirty page in this inode */ 2362 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 2363 return 0; 2364 2365 /* during POR, we don't need to trigger writepage at all. */ 2366 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2367 goto skip_write; 2368 2369 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 2370 wbc->sync_mode == WB_SYNC_NONE && 2371 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 2372 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 2373 goto skip_write; 2374 2375 /* skip writing during file defragment */ 2376 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 2377 goto skip_write; 2378 2379 trace_f2fs_writepages(mapping->host, wbc, DATA); 2380 2381 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 2382 if (wbc->sync_mode == WB_SYNC_ALL) 2383 atomic_inc(&sbi->wb_sync_req[DATA]); 2384 else if (atomic_read(&sbi->wb_sync_req[DATA])) 2385 goto skip_write; 2386 2387 if (__should_serialize_io(inode, wbc)) { 2388 mutex_lock(&sbi->writepages); 2389 locked = true; 2390 } 2391 2392 blk_start_plug(&plug); 2393 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 2394 blk_finish_plug(&plug); 2395 2396 if (locked) 2397 mutex_unlock(&sbi->writepages); 2398 2399 if (wbc->sync_mode == WB_SYNC_ALL) 2400 atomic_dec(&sbi->wb_sync_req[DATA]); 2401 /* 2402 * if some pages were truncated, we cannot guarantee its mapping->host 2403 * to detect pending bios. 2404 */ 2405 2406 f2fs_remove_dirty_inode(inode); 2407 return ret; 2408 2409 skip_write: 2410 wbc->pages_skipped += get_dirty_pages(inode); 2411 trace_f2fs_writepages(mapping->host, wbc, DATA); 2412 return 0; 2413 } 2414 2415 static int f2fs_write_data_pages(struct address_space *mapping, 2416 struct writeback_control *wbc) 2417 { 2418 struct inode *inode = mapping->host; 2419 2420 return __f2fs_write_data_pages(mapping, wbc, 2421 F2FS_I(inode)->cp_task == current ? 2422 FS_CP_DATA_IO : FS_DATA_IO); 2423 } 2424 2425 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 2426 { 2427 struct inode *inode = mapping->host; 2428 loff_t i_size = i_size_read(inode); 2429 2430 if (to > i_size) { 2431 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2432 down_write(&F2FS_I(inode)->i_mmap_sem); 2433 2434 truncate_pagecache(inode, i_size); 2435 if (!IS_NOQUOTA(inode)) 2436 f2fs_truncate_blocks(inode, i_size, true); 2437 2438 up_write(&F2FS_I(inode)->i_mmap_sem); 2439 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 2440 } 2441 } 2442 2443 static int prepare_write_begin(struct f2fs_sb_info *sbi, 2444 struct page *page, loff_t pos, unsigned len, 2445 block_t *blk_addr, bool *node_changed) 2446 { 2447 struct inode *inode = page->mapping->host; 2448 pgoff_t index = page->index; 2449 struct dnode_of_data dn; 2450 struct page *ipage; 2451 bool locked = false; 2452 struct extent_info ei = {0,0,0}; 2453 int err = 0; 2454 int flag; 2455 2456 /* 2457 * we already allocated all the blocks, so we don't need to get 2458 * the block addresses when there is no need to fill the page. 2459 */ 2460 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE && 2461 !is_inode_flag_set(inode, FI_NO_PREALLOC)) 2462 return 0; 2463 2464 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 2465 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 2466 flag = F2FS_GET_BLOCK_DEFAULT; 2467 else 2468 flag = F2FS_GET_BLOCK_PRE_AIO; 2469 2470 if (f2fs_has_inline_data(inode) || 2471 (pos & PAGE_MASK) >= i_size_read(inode)) { 2472 __do_map_lock(sbi, flag, true); 2473 locked = true; 2474 } 2475 restart: 2476 /* check inline_data */ 2477 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2478 if (IS_ERR(ipage)) { 2479 err = PTR_ERR(ipage); 2480 goto unlock_out; 2481 } 2482 2483 set_new_dnode(&dn, inode, ipage, ipage, 0); 2484 2485 if (f2fs_has_inline_data(inode)) { 2486 if (pos + len <= MAX_INLINE_DATA(inode)) { 2487 f2fs_do_read_inline_data(page, ipage); 2488 set_inode_flag(inode, FI_DATA_EXIST); 2489 if (inode->i_nlink) 2490 set_inline_node(ipage); 2491 } else { 2492 err = f2fs_convert_inline_page(&dn, page); 2493 if (err) 2494 goto out; 2495 if (dn.data_blkaddr == NULL_ADDR) 2496 err = f2fs_get_block(&dn, index); 2497 } 2498 } else if (locked) { 2499 err = f2fs_get_block(&dn, index); 2500 } else { 2501 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 2502 dn.data_blkaddr = ei.blk + index - ei.fofs; 2503 } else { 2504 /* hole case */ 2505 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 2506 if (err || dn.data_blkaddr == NULL_ADDR) { 2507 f2fs_put_dnode(&dn); 2508 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 2509 true); 2510 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 2511 locked = true; 2512 goto restart; 2513 } 2514 } 2515 } 2516 2517 /* convert_inline_page can make node_changed */ 2518 *blk_addr = dn.data_blkaddr; 2519 *node_changed = dn.node_changed; 2520 out: 2521 f2fs_put_dnode(&dn); 2522 unlock_out: 2523 if (locked) 2524 __do_map_lock(sbi, flag, false); 2525 return err; 2526 } 2527 2528 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 2529 loff_t pos, unsigned len, unsigned flags, 2530 struct page **pagep, void **fsdata) 2531 { 2532 struct inode *inode = mapping->host; 2533 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2534 struct page *page = NULL; 2535 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 2536 bool need_balance = false, drop_atomic = false; 2537 block_t blkaddr = NULL_ADDR; 2538 int err = 0; 2539 2540 trace_f2fs_write_begin(inode, pos, len, flags); 2541 2542 err = f2fs_is_checkpoint_ready(sbi); 2543 if (err) 2544 goto fail; 2545 2546 if ((f2fs_is_atomic_file(inode) && 2547 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 2548 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 2549 err = -ENOMEM; 2550 drop_atomic = true; 2551 goto fail; 2552 } 2553 2554 /* 2555 * We should check this at this moment to avoid deadlock on inode page 2556 * and #0 page. The locking rule for inline_data conversion should be: 2557 * lock_page(page #0) -> lock_page(inode_page) 2558 */ 2559 if (index != 0) { 2560 err = f2fs_convert_inline_inode(inode); 2561 if (err) 2562 goto fail; 2563 } 2564 repeat: 2565 /* 2566 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 2567 * wait_for_stable_page. Will wait that below with our IO control. 2568 */ 2569 page = f2fs_pagecache_get_page(mapping, index, 2570 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 2571 if (!page) { 2572 err = -ENOMEM; 2573 goto fail; 2574 } 2575 2576 *pagep = page; 2577 2578 err = prepare_write_begin(sbi, page, pos, len, 2579 &blkaddr, &need_balance); 2580 if (err) 2581 goto fail; 2582 2583 if (need_balance && !IS_NOQUOTA(inode) && 2584 has_not_enough_free_secs(sbi, 0, 0)) { 2585 unlock_page(page); 2586 f2fs_balance_fs(sbi, true); 2587 lock_page(page); 2588 if (page->mapping != mapping) { 2589 /* The page got truncated from under us */ 2590 f2fs_put_page(page, 1); 2591 goto repeat; 2592 } 2593 } 2594 2595 f2fs_wait_on_page_writeback(page, DATA, false, true); 2596 2597 if (len == PAGE_SIZE || PageUptodate(page)) 2598 return 0; 2599 2600 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) { 2601 zero_user_segment(page, len, PAGE_SIZE); 2602 return 0; 2603 } 2604 2605 if (blkaddr == NEW_ADDR) { 2606 zero_user_segment(page, 0, PAGE_SIZE); 2607 SetPageUptodate(page); 2608 } else { 2609 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 2610 DATA_GENERIC_ENHANCE_READ)) { 2611 err = -EFSCORRUPTED; 2612 goto fail; 2613 } 2614 err = f2fs_submit_page_read(inode, page, blkaddr); 2615 if (err) 2616 goto fail; 2617 2618 lock_page(page); 2619 if (unlikely(page->mapping != mapping)) { 2620 f2fs_put_page(page, 1); 2621 goto repeat; 2622 } 2623 if (unlikely(!PageUptodate(page))) { 2624 err = -EIO; 2625 goto fail; 2626 } 2627 } 2628 return 0; 2629 2630 fail: 2631 f2fs_put_page(page, 1); 2632 f2fs_write_failed(mapping, pos + len); 2633 if (drop_atomic) 2634 f2fs_drop_inmem_pages_all(sbi, false); 2635 return err; 2636 } 2637 2638 static int f2fs_write_end(struct file *file, 2639 struct address_space *mapping, 2640 loff_t pos, unsigned len, unsigned copied, 2641 struct page *page, void *fsdata) 2642 { 2643 struct inode *inode = page->mapping->host; 2644 2645 trace_f2fs_write_end(inode, pos, len, copied); 2646 2647 /* 2648 * This should be come from len == PAGE_SIZE, and we expect copied 2649 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 2650 * let generic_perform_write() try to copy data again through copied=0. 2651 */ 2652 if (!PageUptodate(page)) { 2653 if (unlikely(copied != len)) 2654 copied = 0; 2655 else 2656 SetPageUptodate(page); 2657 } 2658 if (!copied) 2659 goto unlock_out; 2660 2661 set_page_dirty(page); 2662 2663 if (pos + copied > i_size_read(inode)) 2664 f2fs_i_size_write(inode, pos + copied); 2665 unlock_out: 2666 f2fs_put_page(page, 1); 2667 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2668 return copied; 2669 } 2670 2671 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 2672 loff_t offset) 2673 { 2674 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 2675 unsigned blkbits = i_blkbits; 2676 unsigned blocksize_mask = (1 << blkbits) - 1; 2677 unsigned long align = offset | iov_iter_alignment(iter); 2678 struct block_device *bdev = inode->i_sb->s_bdev; 2679 2680 if (align & blocksize_mask) { 2681 if (bdev) 2682 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 2683 blocksize_mask = (1 << blkbits) - 1; 2684 if (align & blocksize_mask) 2685 return -EINVAL; 2686 return 1; 2687 } 2688 return 0; 2689 } 2690 2691 static void f2fs_dio_end_io(struct bio *bio) 2692 { 2693 struct f2fs_private_dio *dio = bio->bi_private; 2694 2695 dec_page_count(F2FS_I_SB(dio->inode), 2696 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2697 2698 bio->bi_private = dio->orig_private; 2699 bio->bi_end_io = dio->orig_end_io; 2700 2701 kvfree(dio); 2702 2703 bio_endio(bio); 2704 } 2705 2706 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, 2707 loff_t file_offset) 2708 { 2709 struct f2fs_private_dio *dio; 2710 bool write = (bio_op(bio) == REQ_OP_WRITE); 2711 2712 dio = f2fs_kzalloc(F2FS_I_SB(inode), 2713 sizeof(struct f2fs_private_dio), GFP_NOFS); 2714 if (!dio) 2715 goto out; 2716 2717 dio->inode = inode; 2718 dio->orig_end_io = bio->bi_end_io; 2719 dio->orig_private = bio->bi_private; 2720 dio->write = write; 2721 2722 bio->bi_end_io = f2fs_dio_end_io; 2723 bio->bi_private = dio; 2724 2725 inc_page_count(F2FS_I_SB(inode), 2726 write ? F2FS_DIO_WRITE : F2FS_DIO_READ); 2727 2728 submit_bio(bio); 2729 return; 2730 out: 2731 bio->bi_status = BLK_STS_IOERR; 2732 bio_endio(bio); 2733 } 2734 2735 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2736 { 2737 struct address_space *mapping = iocb->ki_filp->f_mapping; 2738 struct inode *inode = mapping->host; 2739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2740 struct f2fs_inode_info *fi = F2FS_I(inode); 2741 size_t count = iov_iter_count(iter); 2742 loff_t offset = iocb->ki_pos; 2743 int rw = iov_iter_rw(iter); 2744 int err; 2745 enum rw_hint hint = iocb->ki_hint; 2746 int whint_mode = F2FS_OPTION(sbi).whint_mode; 2747 bool do_opu; 2748 2749 err = check_direct_IO(inode, iter, offset); 2750 if (err) 2751 return err < 0 ? err : 0; 2752 2753 if (f2fs_force_buffered_io(inode, iocb, iter)) 2754 return 0; 2755 2756 do_opu = allow_outplace_dio(inode, iocb, iter); 2757 2758 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 2759 2760 if (rw == WRITE && whint_mode == WHINT_MODE_OFF) 2761 iocb->ki_hint = WRITE_LIFE_NOT_SET; 2762 2763 if (iocb->ki_flags & IOCB_NOWAIT) { 2764 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) { 2765 iocb->ki_hint = hint; 2766 err = -EAGAIN; 2767 goto out; 2768 } 2769 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) { 2770 up_read(&fi->i_gc_rwsem[rw]); 2771 iocb->ki_hint = hint; 2772 err = -EAGAIN; 2773 goto out; 2774 } 2775 } else { 2776 down_read(&fi->i_gc_rwsem[rw]); 2777 if (do_opu) 2778 down_read(&fi->i_gc_rwsem[READ]); 2779 } 2780 2781 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2782 iter, rw == WRITE ? get_data_block_dio_write : 2783 get_data_block_dio, NULL, f2fs_dio_submit_bio, 2784 DIO_LOCKING | DIO_SKIP_HOLES); 2785 2786 if (do_opu) 2787 up_read(&fi->i_gc_rwsem[READ]); 2788 2789 up_read(&fi->i_gc_rwsem[rw]); 2790 2791 if (rw == WRITE) { 2792 if (whint_mode == WHINT_MODE_OFF) 2793 iocb->ki_hint = hint; 2794 if (err > 0) { 2795 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO, 2796 err); 2797 if (!do_opu) 2798 set_inode_flag(inode, FI_UPDATE_WRITE); 2799 } else if (err < 0) { 2800 f2fs_write_failed(mapping, offset + count); 2801 } 2802 } 2803 2804 out: 2805 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 2806 2807 return err; 2808 } 2809 2810 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2811 unsigned int length) 2812 { 2813 struct inode *inode = page->mapping->host; 2814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2815 2816 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 2817 (offset % PAGE_SIZE || length != PAGE_SIZE)) 2818 return; 2819 2820 if (PageDirty(page)) { 2821 if (inode->i_ino == F2FS_META_INO(sbi)) { 2822 dec_page_count(sbi, F2FS_DIRTY_META); 2823 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 2824 dec_page_count(sbi, F2FS_DIRTY_NODES); 2825 } else { 2826 inode_dec_dirty_pages(inode); 2827 f2fs_remove_dirty_inode(inode); 2828 } 2829 } 2830 2831 clear_cold_data(page); 2832 2833 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2834 return f2fs_drop_inmem_page(inode, page); 2835 2836 f2fs_clear_page_private(page); 2837 } 2838 2839 int f2fs_release_page(struct page *page, gfp_t wait) 2840 { 2841 /* If this is dirty page, keep PagePrivate */ 2842 if (PageDirty(page)) 2843 return 0; 2844 2845 /* This is atomic written page, keep Private */ 2846 if (IS_ATOMIC_WRITTEN_PAGE(page)) 2847 return 0; 2848 2849 clear_cold_data(page); 2850 f2fs_clear_page_private(page); 2851 return 1; 2852 } 2853 2854 static int f2fs_set_data_page_dirty(struct page *page) 2855 { 2856 struct inode *inode = page_file_mapping(page)->host; 2857 2858 trace_f2fs_set_page_dirty(page, DATA); 2859 2860 if (!PageUptodate(page)) 2861 SetPageUptodate(page); 2862 if (PageSwapCache(page)) 2863 return __set_page_dirty_nobuffers(page); 2864 2865 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 2866 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 2867 f2fs_register_inmem_page(inode, page); 2868 return 1; 2869 } 2870 /* 2871 * Previously, this page has been registered, we just 2872 * return here. 2873 */ 2874 return 0; 2875 } 2876 2877 if (!PageDirty(page)) { 2878 __set_page_dirty_nobuffers(page); 2879 f2fs_update_dirty_page(inode, page); 2880 return 1; 2881 } 2882 return 0; 2883 } 2884 2885 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 2886 { 2887 struct inode *inode = mapping->host; 2888 2889 if (f2fs_has_inline_data(inode)) 2890 return 0; 2891 2892 /* make sure allocating whole blocks */ 2893 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2894 filemap_write_and_wait(mapping); 2895 2896 return generic_block_bmap(mapping, block, get_data_block_bmap); 2897 } 2898 2899 #ifdef CONFIG_MIGRATION 2900 #include <linux/migrate.h> 2901 2902 int f2fs_migrate_page(struct address_space *mapping, 2903 struct page *newpage, struct page *page, enum migrate_mode mode) 2904 { 2905 int rc, extra_count; 2906 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 2907 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 2908 2909 BUG_ON(PageWriteback(page)); 2910 2911 /* migrating an atomic written page is safe with the inmem_lock hold */ 2912 if (atomic_written) { 2913 if (mode != MIGRATE_SYNC) 2914 return -EBUSY; 2915 if (!mutex_trylock(&fi->inmem_lock)) 2916 return -EAGAIN; 2917 } 2918 2919 /* one extra reference was held for atomic_write page */ 2920 extra_count = atomic_written ? 1 : 0; 2921 rc = migrate_page_move_mapping(mapping, newpage, 2922 page, extra_count); 2923 if (rc != MIGRATEPAGE_SUCCESS) { 2924 if (atomic_written) 2925 mutex_unlock(&fi->inmem_lock); 2926 return rc; 2927 } 2928 2929 if (atomic_written) { 2930 struct inmem_pages *cur; 2931 list_for_each_entry(cur, &fi->inmem_pages, list) 2932 if (cur->page == page) { 2933 cur->page = newpage; 2934 break; 2935 } 2936 mutex_unlock(&fi->inmem_lock); 2937 put_page(page); 2938 get_page(newpage); 2939 } 2940 2941 if (PagePrivate(page)) { 2942 f2fs_set_page_private(newpage, page_private(page)); 2943 f2fs_clear_page_private(page); 2944 } 2945 2946 if (mode != MIGRATE_SYNC_NO_COPY) 2947 migrate_page_copy(newpage, page); 2948 else 2949 migrate_page_states(newpage, page); 2950 2951 return MIGRATEPAGE_SUCCESS; 2952 } 2953 #endif 2954 2955 #ifdef CONFIG_SWAP 2956 /* Copied from generic_swapfile_activate() to check any holes */ 2957 static int check_swap_activate(struct file *swap_file, unsigned int max) 2958 { 2959 struct address_space *mapping = swap_file->f_mapping; 2960 struct inode *inode = mapping->host; 2961 unsigned blocks_per_page; 2962 unsigned long page_no; 2963 unsigned blkbits; 2964 sector_t probe_block; 2965 sector_t last_block; 2966 sector_t lowest_block = -1; 2967 sector_t highest_block = 0; 2968 2969 blkbits = inode->i_blkbits; 2970 blocks_per_page = PAGE_SIZE >> blkbits; 2971 2972 /* 2973 * Map all the blocks into the extent list. This code doesn't try 2974 * to be very smart. 2975 */ 2976 probe_block = 0; 2977 page_no = 0; 2978 last_block = i_size_read(inode) >> blkbits; 2979 while ((probe_block + blocks_per_page) <= last_block && page_no < max) { 2980 unsigned block_in_page; 2981 sector_t first_block; 2982 2983 cond_resched(); 2984 2985 first_block = bmap(inode, probe_block); 2986 if (first_block == 0) 2987 goto bad_bmap; 2988 2989 /* 2990 * It must be PAGE_SIZE aligned on-disk 2991 */ 2992 if (first_block & (blocks_per_page - 1)) { 2993 probe_block++; 2994 goto reprobe; 2995 } 2996 2997 for (block_in_page = 1; block_in_page < blocks_per_page; 2998 block_in_page++) { 2999 sector_t block; 3000 3001 block = bmap(inode, probe_block + block_in_page); 3002 if (block == 0) 3003 goto bad_bmap; 3004 if (block != first_block + block_in_page) { 3005 /* Discontiguity */ 3006 probe_block++; 3007 goto reprobe; 3008 } 3009 } 3010 3011 first_block >>= (PAGE_SHIFT - blkbits); 3012 if (page_no) { /* exclude the header page */ 3013 if (first_block < lowest_block) 3014 lowest_block = first_block; 3015 if (first_block > highest_block) 3016 highest_block = first_block; 3017 } 3018 3019 page_no++; 3020 probe_block += blocks_per_page; 3021 reprobe: 3022 continue; 3023 } 3024 return 0; 3025 3026 bad_bmap: 3027 pr_err("swapon: swapfile has holes\n"); 3028 return -EINVAL; 3029 } 3030 3031 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3032 sector_t *span) 3033 { 3034 struct inode *inode = file_inode(file); 3035 int ret; 3036 3037 if (!S_ISREG(inode->i_mode)) 3038 return -EINVAL; 3039 3040 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3041 return -EROFS; 3042 3043 ret = f2fs_convert_inline_inode(inode); 3044 if (ret) 3045 return ret; 3046 3047 ret = check_swap_activate(file, sis->max); 3048 if (ret) 3049 return ret; 3050 3051 set_inode_flag(inode, FI_PIN_FILE); 3052 f2fs_precache_extents(inode); 3053 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3054 return 0; 3055 } 3056 3057 static void f2fs_swap_deactivate(struct file *file) 3058 { 3059 struct inode *inode = file_inode(file); 3060 3061 clear_inode_flag(inode, FI_PIN_FILE); 3062 } 3063 #else 3064 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3065 sector_t *span) 3066 { 3067 return -EOPNOTSUPP; 3068 } 3069 3070 static void f2fs_swap_deactivate(struct file *file) 3071 { 3072 } 3073 #endif 3074 3075 const struct address_space_operations f2fs_dblock_aops = { 3076 .readpage = f2fs_read_data_page, 3077 .readpages = f2fs_read_data_pages, 3078 .writepage = f2fs_write_data_page, 3079 .writepages = f2fs_write_data_pages, 3080 .write_begin = f2fs_write_begin, 3081 .write_end = f2fs_write_end, 3082 .set_page_dirty = f2fs_set_data_page_dirty, 3083 .invalidatepage = f2fs_invalidate_page, 3084 .releasepage = f2fs_release_page, 3085 .direct_IO = f2fs_direct_IO, 3086 .bmap = f2fs_bmap, 3087 .swap_activate = f2fs_swap_activate, 3088 .swap_deactivate = f2fs_swap_deactivate, 3089 #ifdef CONFIG_MIGRATION 3090 .migratepage = f2fs_migrate_page, 3091 #endif 3092 }; 3093 3094 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3095 { 3096 struct address_space *mapping = page_mapping(page); 3097 unsigned long flags; 3098 3099 xa_lock_irqsave(&mapping->i_pages, flags); 3100 __xa_clear_mark(&mapping->i_pages, page_index(page), 3101 PAGECACHE_TAG_DIRTY); 3102 xa_unlock_irqrestore(&mapping->i_pages, flags); 3103 } 3104 3105 int __init f2fs_init_post_read_processing(void) 3106 { 3107 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0); 3108 if (!bio_post_read_ctx_cache) 3109 goto fail; 3110 bio_post_read_ctx_pool = 3111 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3112 bio_post_read_ctx_cache); 3113 if (!bio_post_read_ctx_pool) 3114 goto fail_free_cache; 3115 return 0; 3116 3117 fail_free_cache: 3118 kmem_cache_destroy(bio_post_read_ctx_cache); 3119 fail: 3120 return -ENOMEM; 3121 } 3122 3123 void __exit f2fs_destroy_post_read_processing(void) 3124 { 3125 mempool_destroy(bio_post_read_ctx_pool); 3126 kmem_cache_destroy(bio_post_read_ctx_cache); 3127 } 3128