xref: /openbmc/linux/fs/f2fs/data.c (revision 110e6f26)
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29 
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32 	struct bio_vec *bvec;
33 	int i;
34 
35 	if (f2fs_bio_encrypted(bio)) {
36 		if (bio->bi_error) {
37 			fscrypt_release_ctx(bio->bi_private);
38 		} else {
39 			fscrypt_decrypt_bio_pages(bio->bi_private, bio);
40 			return;
41 		}
42 	}
43 
44 	bio_for_each_segment_all(bvec, bio, i) {
45 		struct page *page = bvec->bv_page;
46 
47 		if (!bio->bi_error) {
48 			SetPageUptodate(page);
49 		} else {
50 			ClearPageUptodate(page);
51 			SetPageError(page);
52 		}
53 		unlock_page(page);
54 	}
55 	bio_put(bio);
56 }
57 
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60 	struct f2fs_sb_info *sbi = bio->bi_private;
61 	struct bio_vec *bvec;
62 	int i;
63 
64 	bio_for_each_segment_all(bvec, bio, i) {
65 		struct page *page = bvec->bv_page;
66 
67 		fscrypt_pullback_bio_page(&page, true);
68 
69 		if (unlikely(bio->bi_error)) {
70 			set_bit(AS_EIO, &page->mapping->flags);
71 			f2fs_stop_checkpoint(sbi);
72 		}
73 		end_page_writeback(page);
74 		dec_page_count(sbi, F2FS_WRITEBACK);
75 	}
76 
77 	if (!get_pages(sbi, F2FS_WRITEBACK) && wq_has_sleeper(&sbi->cp_wait))
78 		wake_up(&sbi->cp_wait);
79 
80 	bio_put(bio);
81 }
82 
83 /*
84  * Low-level block read/write IO operations.
85  */
86 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
87 				int npages, bool is_read)
88 {
89 	struct bio *bio;
90 
91 	bio = f2fs_bio_alloc(npages);
92 
93 	bio->bi_bdev = sbi->sb->s_bdev;
94 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
95 	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
96 	bio->bi_private = is_read ? NULL : sbi;
97 
98 	return bio;
99 }
100 
101 static void __submit_merged_bio(struct f2fs_bio_info *io)
102 {
103 	struct f2fs_io_info *fio = &io->fio;
104 
105 	if (!io->bio)
106 		return;
107 
108 	if (is_read_io(fio->rw))
109 		trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
110 	else
111 		trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
112 
113 	submit_bio(fio->rw, io->bio);
114 	io->bio = NULL;
115 }
116 
117 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
118 						struct page *page, nid_t ino)
119 {
120 	struct bio_vec *bvec;
121 	struct page *target;
122 	int i;
123 
124 	if (!io->bio)
125 		return false;
126 
127 	if (!inode && !page && !ino)
128 		return true;
129 
130 	bio_for_each_segment_all(bvec, io->bio, i) {
131 
132 		if (bvec->bv_page->mapping)
133 			target = bvec->bv_page;
134 		else
135 			target = fscrypt_control_page(bvec->bv_page);
136 
137 		if (inode && inode == target->mapping->host)
138 			return true;
139 		if (page && page == target)
140 			return true;
141 		if (ino && ino == ino_of_node(target))
142 			return true;
143 	}
144 
145 	return false;
146 }
147 
148 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
149 						struct page *page, nid_t ino,
150 						enum page_type type)
151 {
152 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
153 	struct f2fs_bio_info *io = &sbi->write_io[btype];
154 	bool ret;
155 
156 	down_read(&io->io_rwsem);
157 	ret = __has_merged_page(io, inode, page, ino);
158 	up_read(&io->io_rwsem);
159 	return ret;
160 }
161 
162 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
163 				struct inode *inode, struct page *page,
164 				nid_t ino, enum page_type type, int rw)
165 {
166 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
167 	struct f2fs_bio_info *io;
168 
169 	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
170 
171 	down_write(&io->io_rwsem);
172 
173 	if (!__has_merged_page(io, inode, page, ino))
174 		goto out;
175 
176 	/* change META to META_FLUSH in the checkpoint procedure */
177 	if (type >= META_FLUSH) {
178 		io->fio.type = META_FLUSH;
179 		if (test_opt(sbi, NOBARRIER))
180 			io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
181 		else
182 			io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
183 	}
184 	__submit_merged_bio(io);
185 out:
186 	up_write(&io->io_rwsem);
187 }
188 
189 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
190 									int rw)
191 {
192 	__f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
193 }
194 
195 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
196 				struct inode *inode, struct page *page,
197 				nid_t ino, enum page_type type, int rw)
198 {
199 	if (has_merged_page(sbi, inode, page, ino, type))
200 		__f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
201 }
202 
203 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
204 {
205 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
206 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
207 	f2fs_submit_merged_bio(sbi, META, WRITE);
208 }
209 
210 /*
211  * Fill the locked page with data located in the block address.
212  * Return unlocked page.
213  */
214 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
215 {
216 	struct bio *bio;
217 	struct page *page = fio->encrypted_page ?
218 			fio->encrypted_page : fio->page;
219 
220 	trace_f2fs_submit_page_bio(page, fio);
221 	f2fs_trace_ios(fio, 0);
222 
223 	/* Allocate a new bio */
224 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
225 
226 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
227 		bio_put(bio);
228 		return -EFAULT;
229 	}
230 
231 	submit_bio(fio->rw, bio);
232 	return 0;
233 }
234 
235 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
236 {
237 	struct f2fs_sb_info *sbi = fio->sbi;
238 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
239 	struct f2fs_bio_info *io;
240 	bool is_read = is_read_io(fio->rw);
241 	struct page *bio_page;
242 
243 	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
244 
245 	if (fio->old_blkaddr != NEW_ADDR)
246 		verify_block_addr(sbi, fio->old_blkaddr);
247 	verify_block_addr(sbi, fio->new_blkaddr);
248 
249 	down_write(&io->io_rwsem);
250 
251 	if (!is_read)
252 		inc_page_count(sbi, F2FS_WRITEBACK);
253 
254 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
255 						io->fio.rw != fio->rw))
256 		__submit_merged_bio(io);
257 alloc_new:
258 	if (io->bio == NULL) {
259 		int bio_blocks = MAX_BIO_BLOCKS(sbi);
260 
261 		io->bio = __bio_alloc(sbi, fio->new_blkaddr,
262 						bio_blocks, is_read);
263 		io->fio = *fio;
264 	}
265 
266 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
267 
268 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
269 							PAGE_SIZE) {
270 		__submit_merged_bio(io);
271 		goto alloc_new;
272 	}
273 
274 	io->last_block_in_bio = fio->new_blkaddr;
275 	f2fs_trace_ios(fio, 0);
276 
277 	up_write(&io->io_rwsem);
278 	trace_f2fs_submit_page_mbio(fio->page, fio);
279 }
280 
281 /*
282  * Lock ordering for the change of data block address:
283  * ->data_page
284  *  ->node_page
285  *    update block addresses in the node page
286  */
287 void set_data_blkaddr(struct dnode_of_data *dn)
288 {
289 	struct f2fs_node *rn;
290 	__le32 *addr_array;
291 	struct page *node_page = dn->node_page;
292 	unsigned int ofs_in_node = dn->ofs_in_node;
293 
294 	f2fs_wait_on_page_writeback(node_page, NODE, true);
295 
296 	rn = F2FS_NODE(node_page);
297 
298 	/* Get physical address of data block */
299 	addr_array = blkaddr_in_node(rn);
300 	addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
301 	if (set_page_dirty(node_page))
302 		dn->node_changed = true;
303 }
304 
305 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
306 {
307 	dn->data_blkaddr = blkaddr;
308 	set_data_blkaddr(dn);
309 	f2fs_update_extent_cache(dn);
310 }
311 
312 int reserve_new_block(struct dnode_of_data *dn)
313 {
314 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
315 
316 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
317 		return -EPERM;
318 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
319 		return -ENOSPC;
320 
321 	trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
322 
323 	dn->data_blkaddr = NEW_ADDR;
324 	set_data_blkaddr(dn);
325 	mark_inode_dirty(dn->inode);
326 	sync_inode_page(dn);
327 	return 0;
328 }
329 
330 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
331 {
332 	bool need_put = dn->inode_page ? false : true;
333 	int err;
334 
335 	err = get_dnode_of_data(dn, index, ALLOC_NODE);
336 	if (err)
337 		return err;
338 
339 	if (dn->data_blkaddr == NULL_ADDR)
340 		err = reserve_new_block(dn);
341 	if (err || need_put)
342 		f2fs_put_dnode(dn);
343 	return err;
344 }
345 
346 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
347 {
348 	struct extent_info ei;
349 	struct inode *inode = dn->inode;
350 
351 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
352 		dn->data_blkaddr = ei.blk + index - ei.fofs;
353 		return 0;
354 	}
355 
356 	return f2fs_reserve_block(dn, index);
357 }
358 
359 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
360 						int rw, bool for_write)
361 {
362 	struct address_space *mapping = inode->i_mapping;
363 	struct dnode_of_data dn;
364 	struct page *page;
365 	struct extent_info ei;
366 	int err;
367 	struct f2fs_io_info fio = {
368 		.sbi = F2FS_I_SB(inode),
369 		.type = DATA,
370 		.rw = rw,
371 		.encrypted_page = NULL,
372 	};
373 
374 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
375 		return read_mapping_page(mapping, index, NULL);
376 
377 	page = f2fs_grab_cache_page(mapping, index, for_write);
378 	if (!page)
379 		return ERR_PTR(-ENOMEM);
380 
381 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
382 		dn.data_blkaddr = ei.blk + index - ei.fofs;
383 		goto got_it;
384 	}
385 
386 	set_new_dnode(&dn, inode, NULL, NULL, 0);
387 	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
388 	if (err)
389 		goto put_err;
390 	f2fs_put_dnode(&dn);
391 
392 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
393 		err = -ENOENT;
394 		goto put_err;
395 	}
396 got_it:
397 	if (PageUptodate(page)) {
398 		unlock_page(page);
399 		return page;
400 	}
401 
402 	/*
403 	 * A new dentry page is allocated but not able to be written, since its
404 	 * new inode page couldn't be allocated due to -ENOSPC.
405 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
406 	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
407 	 */
408 	if (dn.data_blkaddr == NEW_ADDR) {
409 		zero_user_segment(page, 0, PAGE_SIZE);
410 		SetPageUptodate(page);
411 		unlock_page(page);
412 		return page;
413 	}
414 
415 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
416 	fio.page = page;
417 	err = f2fs_submit_page_bio(&fio);
418 	if (err)
419 		goto put_err;
420 	return page;
421 
422 put_err:
423 	f2fs_put_page(page, 1);
424 	return ERR_PTR(err);
425 }
426 
427 struct page *find_data_page(struct inode *inode, pgoff_t index)
428 {
429 	struct address_space *mapping = inode->i_mapping;
430 	struct page *page;
431 
432 	page = find_get_page(mapping, index);
433 	if (page && PageUptodate(page))
434 		return page;
435 	f2fs_put_page(page, 0);
436 
437 	page = get_read_data_page(inode, index, READ_SYNC, false);
438 	if (IS_ERR(page))
439 		return page;
440 
441 	if (PageUptodate(page))
442 		return page;
443 
444 	wait_on_page_locked(page);
445 	if (unlikely(!PageUptodate(page))) {
446 		f2fs_put_page(page, 0);
447 		return ERR_PTR(-EIO);
448 	}
449 	return page;
450 }
451 
452 /*
453  * If it tries to access a hole, return an error.
454  * Because, the callers, functions in dir.c and GC, should be able to know
455  * whether this page exists or not.
456  */
457 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
458 							bool for_write)
459 {
460 	struct address_space *mapping = inode->i_mapping;
461 	struct page *page;
462 repeat:
463 	page = get_read_data_page(inode, index, READ_SYNC, for_write);
464 	if (IS_ERR(page))
465 		return page;
466 
467 	/* wait for read completion */
468 	lock_page(page);
469 	if (unlikely(!PageUptodate(page))) {
470 		f2fs_put_page(page, 1);
471 		return ERR_PTR(-EIO);
472 	}
473 	if (unlikely(page->mapping != mapping)) {
474 		f2fs_put_page(page, 1);
475 		goto repeat;
476 	}
477 	return page;
478 }
479 
480 /*
481  * Caller ensures that this data page is never allocated.
482  * A new zero-filled data page is allocated in the page cache.
483  *
484  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
485  * f2fs_unlock_op().
486  * Note that, ipage is set only by make_empty_dir, and if any error occur,
487  * ipage should be released by this function.
488  */
489 struct page *get_new_data_page(struct inode *inode,
490 		struct page *ipage, pgoff_t index, bool new_i_size)
491 {
492 	struct address_space *mapping = inode->i_mapping;
493 	struct page *page;
494 	struct dnode_of_data dn;
495 	int err;
496 
497 	page = f2fs_grab_cache_page(mapping, index, true);
498 	if (!page) {
499 		/*
500 		 * before exiting, we should make sure ipage will be released
501 		 * if any error occur.
502 		 */
503 		f2fs_put_page(ipage, 1);
504 		return ERR_PTR(-ENOMEM);
505 	}
506 
507 	set_new_dnode(&dn, inode, ipage, NULL, 0);
508 	err = f2fs_reserve_block(&dn, index);
509 	if (err) {
510 		f2fs_put_page(page, 1);
511 		return ERR_PTR(err);
512 	}
513 	if (!ipage)
514 		f2fs_put_dnode(&dn);
515 
516 	if (PageUptodate(page))
517 		goto got_it;
518 
519 	if (dn.data_blkaddr == NEW_ADDR) {
520 		zero_user_segment(page, 0, PAGE_SIZE);
521 		SetPageUptodate(page);
522 	} else {
523 		f2fs_put_page(page, 1);
524 
525 		/* if ipage exists, blkaddr should be NEW_ADDR */
526 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
527 		page = get_lock_data_page(inode, index, true);
528 		if (IS_ERR(page))
529 			return page;
530 	}
531 got_it:
532 	if (new_i_size && i_size_read(inode) <
533 				((loff_t)(index + 1) << PAGE_SHIFT)) {
534 		i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
535 		/* Only the directory inode sets new_i_size */
536 		set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
537 	}
538 	return page;
539 }
540 
541 static int __allocate_data_block(struct dnode_of_data *dn)
542 {
543 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
544 	struct f2fs_summary sum;
545 	struct node_info ni;
546 	int seg = CURSEG_WARM_DATA;
547 	pgoff_t fofs;
548 
549 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
550 		return -EPERM;
551 
552 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
553 	if (dn->data_blkaddr == NEW_ADDR)
554 		goto alloc;
555 
556 	if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
557 		return -ENOSPC;
558 
559 alloc:
560 	get_node_info(sbi, dn->nid, &ni);
561 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
562 
563 	if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
564 		seg = CURSEG_DIRECT_IO;
565 
566 	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
567 								&sum, seg);
568 	set_data_blkaddr(dn);
569 
570 	/* update i_size */
571 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
572 							dn->ofs_in_node;
573 	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
574 		i_size_write(dn->inode,
575 				((loff_t)(fofs + 1) << PAGE_SHIFT));
576 	return 0;
577 }
578 
579 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
580 {
581 	struct inode *inode = file_inode(iocb->ki_filp);
582 	struct f2fs_map_blocks map;
583 	ssize_t ret = 0;
584 
585 	map.m_lblk = F2FS_BYTES_TO_BLK(iocb->ki_pos);
586 	map.m_len = F2FS_BLK_ALIGN(iov_iter_count(from));
587 	map.m_next_pgofs = NULL;
588 
589 	if (f2fs_encrypted_inode(inode))
590 		return 0;
591 
592 	if (iocb->ki_flags & IOCB_DIRECT) {
593 		ret = f2fs_convert_inline_inode(inode);
594 		if (ret)
595 			return ret;
596 		return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
597 	}
598 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
599 		ret = f2fs_convert_inline_inode(inode);
600 		if (ret)
601 			return ret;
602 	}
603 	if (!f2fs_has_inline_data(inode))
604 		return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
605 	return ret;
606 }
607 
608 /*
609  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
610  * f2fs_map_blocks structure.
611  * If original data blocks are allocated, then give them to blockdev.
612  * Otherwise,
613  *     a. preallocate requested block addresses
614  *     b. do not use extent cache for better performance
615  *     c. give the block addresses to blockdev
616  */
617 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
618 						int create, int flag)
619 {
620 	unsigned int maxblocks = map->m_len;
621 	struct dnode_of_data dn;
622 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
623 	int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
624 	pgoff_t pgofs, end_offset;
625 	int err = 0, ofs = 1;
626 	struct extent_info ei;
627 	bool allocated = false;
628 	block_t blkaddr;
629 
630 	map->m_len = 0;
631 	map->m_flags = 0;
632 
633 	/* it only supports block size == page size */
634 	pgofs =	(pgoff_t)map->m_lblk;
635 
636 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
637 		map->m_pblk = ei.blk + pgofs - ei.fofs;
638 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
639 		map->m_flags = F2FS_MAP_MAPPED;
640 		goto out;
641 	}
642 
643 next_dnode:
644 	if (create)
645 		f2fs_lock_op(sbi);
646 
647 	/* When reading holes, we need its node page */
648 	set_new_dnode(&dn, inode, NULL, NULL, 0);
649 	err = get_dnode_of_data(&dn, pgofs, mode);
650 	if (err) {
651 		if (err == -ENOENT) {
652 			err = 0;
653 			if (map->m_next_pgofs)
654 				*map->m_next_pgofs =
655 					get_next_page_offset(&dn, pgofs);
656 		}
657 		goto unlock_out;
658 	}
659 
660 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
661 
662 next_block:
663 	blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
664 
665 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
666 		if (create) {
667 			if (unlikely(f2fs_cp_error(sbi))) {
668 				err = -EIO;
669 				goto sync_out;
670 			}
671 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
672 				if (blkaddr == NULL_ADDR)
673 					err = reserve_new_block(&dn);
674 			} else {
675 				err = __allocate_data_block(&dn);
676 			}
677 			if (err)
678 				goto sync_out;
679 			allocated = true;
680 			map->m_flags = F2FS_MAP_NEW;
681 			blkaddr = dn.data_blkaddr;
682 		} else {
683 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
684 						blkaddr == NULL_ADDR) {
685 				if (map->m_next_pgofs)
686 					*map->m_next_pgofs = pgofs + 1;
687 			}
688 			if (flag != F2FS_GET_BLOCK_FIEMAP ||
689 						blkaddr != NEW_ADDR) {
690 				if (flag == F2FS_GET_BLOCK_BMAP)
691 					err = -ENOENT;
692 				goto sync_out;
693 			}
694 		}
695 	}
696 
697 	if (map->m_len == 0) {
698 		/* preallocated unwritten block should be mapped for fiemap. */
699 		if (blkaddr == NEW_ADDR)
700 			map->m_flags |= F2FS_MAP_UNWRITTEN;
701 		map->m_flags |= F2FS_MAP_MAPPED;
702 
703 		map->m_pblk = blkaddr;
704 		map->m_len = 1;
705 	} else if ((map->m_pblk != NEW_ADDR &&
706 			blkaddr == (map->m_pblk + ofs)) ||
707 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
708 			flag == F2FS_GET_BLOCK_PRE_DIO ||
709 			flag == F2FS_GET_BLOCK_PRE_AIO) {
710 		ofs++;
711 		map->m_len++;
712 	} else {
713 		goto sync_out;
714 	}
715 
716 	dn.ofs_in_node++;
717 	pgofs++;
718 
719 	if (map->m_len < maxblocks) {
720 		if (dn.ofs_in_node < end_offset)
721 			goto next_block;
722 
723 		if (allocated)
724 			sync_inode_page(&dn);
725 		f2fs_put_dnode(&dn);
726 
727 		if (create) {
728 			f2fs_unlock_op(sbi);
729 			f2fs_balance_fs(sbi, allocated);
730 		}
731 		allocated = false;
732 		goto next_dnode;
733 	}
734 
735 sync_out:
736 	if (allocated)
737 		sync_inode_page(&dn);
738 	f2fs_put_dnode(&dn);
739 unlock_out:
740 	if (create) {
741 		f2fs_unlock_op(sbi);
742 		f2fs_balance_fs(sbi, allocated);
743 	}
744 out:
745 	trace_f2fs_map_blocks(inode, map, err);
746 	return err;
747 }
748 
749 static int __get_data_block(struct inode *inode, sector_t iblock,
750 			struct buffer_head *bh, int create, int flag,
751 			pgoff_t *next_pgofs)
752 {
753 	struct f2fs_map_blocks map;
754 	int ret;
755 
756 	map.m_lblk = iblock;
757 	map.m_len = bh->b_size >> inode->i_blkbits;
758 	map.m_next_pgofs = next_pgofs;
759 
760 	ret = f2fs_map_blocks(inode, &map, create, flag);
761 	if (!ret) {
762 		map_bh(bh, inode->i_sb, map.m_pblk);
763 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
764 		bh->b_size = map.m_len << inode->i_blkbits;
765 	}
766 	return ret;
767 }
768 
769 static int get_data_block(struct inode *inode, sector_t iblock,
770 			struct buffer_head *bh_result, int create, int flag,
771 			pgoff_t *next_pgofs)
772 {
773 	return __get_data_block(inode, iblock, bh_result, create,
774 							flag, next_pgofs);
775 }
776 
777 static int get_data_block_dio(struct inode *inode, sector_t iblock,
778 			struct buffer_head *bh_result, int create)
779 {
780 	return __get_data_block(inode, iblock, bh_result, create,
781 						F2FS_GET_BLOCK_DIO, NULL);
782 }
783 
784 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
785 			struct buffer_head *bh_result, int create)
786 {
787 	/* Block number less than F2FS MAX BLOCKS */
788 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
789 		return -EFBIG;
790 
791 	return __get_data_block(inode, iblock, bh_result, create,
792 						F2FS_GET_BLOCK_BMAP, NULL);
793 }
794 
795 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
796 {
797 	return (offset >> inode->i_blkbits);
798 }
799 
800 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
801 {
802 	return (blk << inode->i_blkbits);
803 }
804 
805 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
806 		u64 start, u64 len)
807 {
808 	struct buffer_head map_bh;
809 	sector_t start_blk, last_blk;
810 	pgoff_t next_pgofs;
811 	loff_t isize;
812 	u64 logical = 0, phys = 0, size = 0;
813 	u32 flags = 0;
814 	int ret = 0;
815 
816 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
817 	if (ret)
818 		return ret;
819 
820 	if (f2fs_has_inline_data(inode)) {
821 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
822 		if (ret != -EAGAIN)
823 			return ret;
824 	}
825 
826 	inode_lock(inode);
827 
828 	isize = i_size_read(inode);
829 	if (start >= isize)
830 		goto out;
831 
832 	if (start + len > isize)
833 		len = isize - start;
834 
835 	if (logical_to_blk(inode, len) == 0)
836 		len = blk_to_logical(inode, 1);
837 
838 	start_blk = logical_to_blk(inode, start);
839 	last_blk = logical_to_blk(inode, start + len - 1);
840 
841 next:
842 	memset(&map_bh, 0, sizeof(struct buffer_head));
843 	map_bh.b_size = len;
844 
845 	ret = get_data_block(inode, start_blk, &map_bh, 0,
846 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
847 	if (ret)
848 		goto out;
849 
850 	/* HOLE */
851 	if (!buffer_mapped(&map_bh)) {
852 		start_blk = next_pgofs;
853 		/* Go through holes util pass the EOF */
854 		if (blk_to_logical(inode, start_blk) < isize)
855 			goto prep_next;
856 		/* Found a hole beyond isize means no more extents.
857 		 * Note that the premise is that filesystems don't
858 		 * punch holes beyond isize and keep size unchanged.
859 		 */
860 		flags |= FIEMAP_EXTENT_LAST;
861 	}
862 
863 	if (size) {
864 		if (f2fs_encrypted_inode(inode))
865 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
866 
867 		ret = fiemap_fill_next_extent(fieinfo, logical,
868 				phys, size, flags);
869 	}
870 
871 	if (start_blk > last_blk || ret)
872 		goto out;
873 
874 	logical = blk_to_logical(inode, start_blk);
875 	phys = blk_to_logical(inode, map_bh.b_blocknr);
876 	size = map_bh.b_size;
877 	flags = 0;
878 	if (buffer_unwritten(&map_bh))
879 		flags = FIEMAP_EXTENT_UNWRITTEN;
880 
881 	start_blk += logical_to_blk(inode, size);
882 
883 prep_next:
884 	cond_resched();
885 	if (fatal_signal_pending(current))
886 		ret = -EINTR;
887 	else
888 		goto next;
889 out:
890 	if (ret == 1)
891 		ret = 0;
892 
893 	inode_unlock(inode);
894 	return ret;
895 }
896 
897 /*
898  * This function was originally taken from fs/mpage.c, and customized for f2fs.
899  * Major change was from block_size == page_size in f2fs by default.
900  */
901 static int f2fs_mpage_readpages(struct address_space *mapping,
902 			struct list_head *pages, struct page *page,
903 			unsigned nr_pages)
904 {
905 	struct bio *bio = NULL;
906 	unsigned page_idx;
907 	sector_t last_block_in_bio = 0;
908 	struct inode *inode = mapping->host;
909 	const unsigned blkbits = inode->i_blkbits;
910 	const unsigned blocksize = 1 << blkbits;
911 	sector_t block_in_file;
912 	sector_t last_block;
913 	sector_t last_block_in_file;
914 	sector_t block_nr;
915 	struct block_device *bdev = inode->i_sb->s_bdev;
916 	struct f2fs_map_blocks map;
917 
918 	map.m_pblk = 0;
919 	map.m_lblk = 0;
920 	map.m_len = 0;
921 	map.m_flags = 0;
922 	map.m_next_pgofs = NULL;
923 
924 	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
925 
926 		prefetchw(&page->flags);
927 		if (pages) {
928 			page = list_entry(pages->prev, struct page, lru);
929 			list_del(&page->lru);
930 			if (add_to_page_cache_lru(page, mapping,
931 						  page->index, GFP_KERNEL))
932 				goto next_page;
933 		}
934 
935 		block_in_file = (sector_t)page->index;
936 		last_block = block_in_file + nr_pages;
937 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
938 								blkbits;
939 		if (last_block > last_block_in_file)
940 			last_block = last_block_in_file;
941 
942 		/*
943 		 * Map blocks using the previous result first.
944 		 */
945 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
946 				block_in_file > map.m_lblk &&
947 				block_in_file < (map.m_lblk + map.m_len))
948 			goto got_it;
949 
950 		/*
951 		 * Then do more f2fs_map_blocks() calls until we are
952 		 * done with this page.
953 		 */
954 		map.m_flags = 0;
955 
956 		if (block_in_file < last_block) {
957 			map.m_lblk = block_in_file;
958 			map.m_len = last_block - block_in_file;
959 
960 			if (f2fs_map_blocks(inode, &map, 0,
961 						F2FS_GET_BLOCK_READ))
962 				goto set_error_page;
963 		}
964 got_it:
965 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
966 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
967 			SetPageMappedToDisk(page);
968 
969 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
970 				SetPageUptodate(page);
971 				goto confused;
972 			}
973 		} else {
974 			zero_user_segment(page, 0, PAGE_SIZE);
975 			SetPageUptodate(page);
976 			unlock_page(page);
977 			goto next_page;
978 		}
979 
980 		/*
981 		 * This page will go to BIO.  Do we need to send this
982 		 * BIO off first?
983 		 */
984 		if (bio && (last_block_in_bio != block_nr - 1)) {
985 submit_and_realloc:
986 			submit_bio(READ, bio);
987 			bio = NULL;
988 		}
989 		if (bio == NULL) {
990 			struct fscrypt_ctx *ctx = NULL;
991 
992 			if (f2fs_encrypted_inode(inode) &&
993 					S_ISREG(inode->i_mode)) {
994 
995 				ctx = fscrypt_get_ctx(inode);
996 				if (IS_ERR(ctx))
997 					goto set_error_page;
998 
999 				/* wait the page to be moved by cleaning */
1000 				f2fs_wait_on_encrypted_page_writeback(
1001 						F2FS_I_SB(inode), block_nr);
1002 			}
1003 
1004 			bio = bio_alloc(GFP_KERNEL,
1005 				min_t(int, nr_pages, BIO_MAX_PAGES));
1006 			if (!bio) {
1007 				if (ctx)
1008 					fscrypt_release_ctx(ctx);
1009 				goto set_error_page;
1010 			}
1011 			bio->bi_bdev = bdev;
1012 			bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1013 			bio->bi_end_io = f2fs_read_end_io;
1014 			bio->bi_private = ctx;
1015 		}
1016 
1017 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1018 			goto submit_and_realloc;
1019 
1020 		last_block_in_bio = block_nr;
1021 		goto next_page;
1022 set_error_page:
1023 		SetPageError(page);
1024 		zero_user_segment(page, 0, PAGE_SIZE);
1025 		unlock_page(page);
1026 		goto next_page;
1027 confused:
1028 		if (bio) {
1029 			submit_bio(READ, bio);
1030 			bio = NULL;
1031 		}
1032 		unlock_page(page);
1033 next_page:
1034 		if (pages)
1035 			put_page(page);
1036 	}
1037 	BUG_ON(pages && !list_empty(pages));
1038 	if (bio)
1039 		submit_bio(READ, bio);
1040 	return 0;
1041 }
1042 
1043 static int f2fs_read_data_page(struct file *file, struct page *page)
1044 {
1045 	struct inode *inode = page->mapping->host;
1046 	int ret = -EAGAIN;
1047 
1048 	trace_f2fs_readpage(page, DATA);
1049 
1050 	/* If the file has inline data, try to read it directly */
1051 	if (f2fs_has_inline_data(inode))
1052 		ret = f2fs_read_inline_data(inode, page);
1053 	if (ret == -EAGAIN)
1054 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1055 	return ret;
1056 }
1057 
1058 static int f2fs_read_data_pages(struct file *file,
1059 			struct address_space *mapping,
1060 			struct list_head *pages, unsigned nr_pages)
1061 {
1062 	struct inode *inode = file->f_mapping->host;
1063 	struct page *page = list_entry(pages->prev, struct page, lru);
1064 
1065 	trace_f2fs_readpages(inode, page, nr_pages);
1066 
1067 	/* If the file has inline data, skip readpages */
1068 	if (f2fs_has_inline_data(inode))
1069 		return 0;
1070 
1071 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1072 }
1073 
1074 int do_write_data_page(struct f2fs_io_info *fio)
1075 {
1076 	struct page *page = fio->page;
1077 	struct inode *inode = page->mapping->host;
1078 	struct dnode_of_data dn;
1079 	int err = 0;
1080 
1081 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1082 	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1083 	if (err)
1084 		return err;
1085 
1086 	fio->old_blkaddr = dn.data_blkaddr;
1087 
1088 	/* This page is already truncated */
1089 	if (fio->old_blkaddr == NULL_ADDR) {
1090 		ClearPageUptodate(page);
1091 		goto out_writepage;
1092 	}
1093 
1094 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1095 
1096 		/* wait for GCed encrypted page writeback */
1097 		f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1098 							fio->old_blkaddr);
1099 
1100 		fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page);
1101 		if (IS_ERR(fio->encrypted_page)) {
1102 			err = PTR_ERR(fio->encrypted_page);
1103 			goto out_writepage;
1104 		}
1105 	}
1106 
1107 	set_page_writeback(page);
1108 
1109 	/*
1110 	 * If current allocation needs SSR,
1111 	 * it had better in-place writes for updated data.
1112 	 */
1113 	if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1114 			!is_cold_data(page) &&
1115 			!IS_ATOMIC_WRITTEN_PAGE(page) &&
1116 			need_inplace_update(inode))) {
1117 		rewrite_data_page(fio);
1118 		set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1119 		trace_f2fs_do_write_data_page(page, IPU);
1120 	} else {
1121 		write_data_page(&dn, fio);
1122 		trace_f2fs_do_write_data_page(page, OPU);
1123 		set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1124 		if (page->index == 0)
1125 			set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1126 	}
1127 out_writepage:
1128 	f2fs_put_dnode(&dn);
1129 	return err;
1130 }
1131 
1132 static int f2fs_write_data_page(struct page *page,
1133 					struct writeback_control *wbc)
1134 {
1135 	struct inode *inode = page->mapping->host;
1136 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1137 	loff_t i_size = i_size_read(inode);
1138 	const pgoff_t end_index = ((unsigned long long) i_size)
1139 							>> PAGE_SHIFT;
1140 	unsigned offset = 0;
1141 	bool need_balance_fs = false;
1142 	int err = 0;
1143 	struct f2fs_io_info fio = {
1144 		.sbi = sbi,
1145 		.type = DATA,
1146 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1147 		.page = page,
1148 		.encrypted_page = NULL,
1149 	};
1150 
1151 	trace_f2fs_writepage(page, DATA);
1152 
1153 	if (page->index < end_index)
1154 		goto write;
1155 
1156 	/*
1157 	 * If the offset is out-of-range of file size,
1158 	 * this page does not have to be written to disk.
1159 	 */
1160 	offset = i_size & (PAGE_SIZE - 1);
1161 	if ((page->index >= end_index + 1) || !offset)
1162 		goto out;
1163 
1164 	zero_user_segment(page, offset, PAGE_SIZE);
1165 write:
1166 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1167 		goto redirty_out;
1168 	if (f2fs_is_drop_cache(inode))
1169 		goto out;
1170 	if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1171 			available_free_memory(sbi, BASE_CHECK))
1172 		goto redirty_out;
1173 
1174 	/* Dentry blocks are controlled by checkpoint */
1175 	if (S_ISDIR(inode->i_mode)) {
1176 		if (unlikely(f2fs_cp_error(sbi)))
1177 			goto redirty_out;
1178 		err = do_write_data_page(&fio);
1179 		goto done;
1180 	}
1181 
1182 	/* we should bypass data pages to proceed the kworkder jobs */
1183 	if (unlikely(f2fs_cp_error(sbi))) {
1184 		SetPageError(page);
1185 		goto out;
1186 	}
1187 
1188 	if (!wbc->for_reclaim)
1189 		need_balance_fs = true;
1190 	else if (has_not_enough_free_secs(sbi, 0))
1191 		goto redirty_out;
1192 
1193 	err = -EAGAIN;
1194 	f2fs_lock_op(sbi);
1195 	if (f2fs_has_inline_data(inode))
1196 		err = f2fs_write_inline_data(inode, page);
1197 	if (err == -EAGAIN)
1198 		err = do_write_data_page(&fio);
1199 	f2fs_unlock_op(sbi);
1200 done:
1201 	if (err && err != -ENOENT)
1202 		goto redirty_out;
1203 
1204 	clear_cold_data(page);
1205 out:
1206 	inode_dec_dirty_pages(inode);
1207 	if (err)
1208 		ClearPageUptodate(page);
1209 
1210 	if (wbc->for_reclaim) {
1211 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1212 		remove_dirty_inode(inode);
1213 	}
1214 
1215 	unlock_page(page);
1216 	f2fs_balance_fs(sbi, need_balance_fs);
1217 
1218 	if (unlikely(f2fs_cp_error(sbi)))
1219 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
1220 
1221 	return 0;
1222 
1223 redirty_out:
1224 	redirty_page_for_writepage(wbc, page);
1225 	return AOP_WRITEPAGE_ACTIVATE;
1226 }
1227 
1228 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1229 			void *data)
1230 {
1231 	struct address_space *mapping = data;
1232 	int ret = mapping->a_ops->writepage(page, wbc);
1233 	mapping_set_error(mapping, ret);
1234 	return ret;
1235 }
1236 
1237 /*
1238  * This function was copied from write_cche_pages from mm/page-writeback.c.
1239  * The major change is making write step of cold data page separately from
1240  * warm/hot data page.
1241  */
1242 static int f2fs_write_cache_pages(struct address_space *mapping,
1243 			struct writeback_control *wbc, writepage_t writepage,
1244 			void *data)
1245 {
1246 	int ret = 0;
1247 	int done = 0;
1248 	struct pagevec pvec;
1249 	int nr_pages;
1250 	pgoff_t uninitialized_var(writeback_index);
1251 	pgoff_t index;
1252 	pgoff_t end;		/* Inclusive */
1253 	pgoff_t done_index;
1254 	int cycled;
1255 	int range_whole = 0;
1256 	int tag;
1257 	int step = 0;
1258 
1259 	pagevec_init(&pvec, 0);
1260 next:
1261 	if (wbc->range_cyclic) {
1262 		writeback_index = mapping->writeback_index; /* prev offset */
1263 		index = writeback_index;
1264 		if (index == 0)
1265 			cycled = 1;
1266 		else
1267 			cycled = 0;
1268 		end = -1;
1269 	} else {
1270 		index = wbc->range_start >> PAGE_SHIFT;
1271 		end = wbc->range_end >> PAGE_SHIFT;
1272 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1273 			range_whole = 1;
1274 		cycled = 1; /* ignore range_cyclic tests */
1275 	}
1276 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1277 		tag = PAGECACHE_TAG_TOWRITE;
1278 	else
1279 		tag = PAGECACHE_TAG_DIRTY;
1280 retry:
1281 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1282 		tag_pages_for_writeback(mapping, index, end);
1283 	done_index = index;
1284 	while (!done && (index <= end)) {
1285 		int i;
1286 
1287 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1288 			      min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1289 		if (nr_pages == 0)
1290 			break;
1291 
1292 		for (i = 0; i < nr_pages; i++) {
1293 			struct page *page = pvec.pages[i];
1294 
1295 			if (page->index > end) {
1296 				done = 1;
1297 				break;
1298 			}
1299 
1300 			done_index = page->index;
1301 
1302 			lock_page(page);
1303 
1304 			if (unlikely(page->mapping != mapping)) {
1305 continue_unlock:
1306 				unlock_page(page);
1307 				continue;
1308 			}
1309 
1310 			if (!PageDirty(page)) {
1311 				/* someone wrote it for us */
1312 				goto continue_unlock;
1313 			}
1314 
1315 			if (step == is_cold_data(page))
1316 				goto continue_unlock;
1317 
1318 			if (PageWriteback(page)) {
1319 				if (wbc->sync_mode != WB_SYNC_NONE)
1320 					f2fs_wait_on_page_writeback(page,
1321 								DATA, true);
1322 				else
1323 					goto continue_unlock;
1324 			}
1325 
1326 			BUG_ON(PageWriteback(page));
1327 			if (!clear_page_dirty_for_io(page))
1328 				goto continue_unlock;
1329 
1330 			ret = (*writepage)(page, wbc, data);
1331 			if (unlikely(ret)) {
1332 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1333 					unlock_page(page);
1334 					ret = 0;
1335 				} else {
1336 					done_index = page->index + 1;
1337 					done = 1;
1338 					break;
1339 				}
1340 			}
1341 
1342 			if (--wbc->nr_to_write <= 0 &&
1343 			    wbc->sync_mode == WB_SYNC_NONE) {
1344 				done = 1;
1345 				break;
1346 			}
1347 		}
1348 		pagevec_release(&pvec);
1349 		cond_resched();
1350 	}
1351 
1352 	if (step < 1) {
1353 		step++;
1354 		goto next;
1355 	}
1356 
1357 	if (!cycled && !done) {
1358 		cycled = 1;
1359 		index = 0;
1360 		end = writeback_index - 1;
1361 		goto retry;
1362 	}
1363 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1364 		mapping->writeback_index = done_index;
1365 
1366 	return ret;
1367 }
1368 
1369 static int f2fs_write_data_pages(struct address_space *mapping,
1370 			    struct writeback_control *wbc)
1371 {
1372 	struct inode *inode = mapping->host;
1373 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1374 	bool locked = false;
1375 	int ret;
1376 	long diff;
1377 
1378 	/* deal with chardevs and other special file */
1379 	if (!mapping->a_ops->writepage)
1380 		return 0;
1381 
1382 	/* skip writing if there is no dirty page in this inode */
1383 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1384 		return 0;
1385 
1386 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1387 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1388 			available_free_memory(sbi, DIRTY_DENTS))
1389 		goto skip_write;
1390 
1391 	/* skip writing during file defragment */
1392 	if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
1393 		goto skip_write;
1394 
1395 	/* during POR, we don't need to trigger writepage at all. */
1396 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1397 		goto skip_write;
1398 
1399 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1400 
1401 	diff = nr_pages_to_write(sbi, DATA, wbc);
1402 
1403 	if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) {
1404 		mutex_lock(&sbi->writepages);
1405 		locked = true;
1406 	}
1407 	ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1408 	f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
1409 	if (locked)
1410 		mutex_unlock(&sbi->writepages);
1411 
1412 	remove_dirty_inode(inode);
1413 
1414 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1415 	return ret;
1416 
1417 skip_write:
1418 	wbc->pages_skipped += get_dirty_pages(inode);
1419 	trace_f2fs_writepages(mapping->host, wbc, DATA);
1420 	return 0;
1421 }
1422 
1423 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1424 {
1425 	struct inode *inode = mapping->host;
1426 	loff_t i_size = i_size_read(inode);
1427 
1428 	if (to > i_size) {
1429 		truncate_pagecache(inode, i_size);
1430 		truncate_blocks(inode, i_size, true);
1431 	}
1432 }
1433 
1434 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1435 			struct page *page, loff_t pos, unsigned len,
1436 			block_t *blk_addr, bool *node_changed)
1437 {
1438 	struct inode *inode = page->mapping->host;
1439 	pgoff_t index = page->index;
1440 	struct dnode_of_data dn;
1441 	struct page *ipage;
1442 	bool locked = false;
1443 	struct extent_info ei;
1444 	int err = 0;
1445 
1446 	/*
1447 	 * we already allocated all the blocks, so we don't need to get
1448 	 * the block addresses when there is no need to fill the page.
1449 	 */
1450 	if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1451 					len == PAGE_SIZE)
1452 		return 0;
1453 
1454 	if (f2fs_has_inline_data(inode) ||
1455 			(pos & PAGE_MASK) >= i_size_read(inode)) {
1456 		f2fs_lock_op(sbi);
1457 		locked = true;
1458 	}
1459 restart:
1460 	/* check inline_data */
1461 	ipage = get_node_page(sbi, inode->i_ino);
1462 	if (IS_ERR(ipage)) {
1463 		err = PTR_ERR(ipage);
1464 		goto unlock_out;
1465 	}
1466 
1467 	set_new_dnode(&dn, inode, ipage, ipage, 0);
1468 
1469 	if (f2fs_has_inline_data(inode)) {
1470 		if (pos + len <= MAX_INLINE_DATA) {
1471 			read_inline_data(page, ipage);
1472 			set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1473 			set_inline_node(ipage);
1474 		} else {
1475 			err = f2fs_convert_inline_page(&dn, page);
1476 			if (err)
1477 				goto out;
1478 			if (dn.data_blkaddr == NULL_ADDR)
1479 				err = f2fs_get_block(&dn, index);
1480 		}
1481 	} else if (locked) {
1482 		err = f2fs_get_block(&dn, index);
1483 	} else {
1484 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1485 			dn.data_blkaddr = ei.blk + index - ei.fofs;
1486 		} else {
1487 			/* hole case */
1488 			err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1489 			if (err || (!err && dn.data_blkaddr == NULL_ADDR)) {
1490 				f2fs_put_dnode(&dn);
1491 				f2fs_lock_op(sbi);
1492 				locked = true;
1493 				goto restart;
1494 			}
1495 		}
1496 	}
1497 
1498 	/* convert_inline_page can make node_changed */
1499 	*blk_addr = dn.data_blkaddr;
1500 	*node_changed = dn.node_changed;
1501 out:
1502 	f2fs_put_dnode(&dn);
1503 unlock_out:
1504 	if (locked)
1505 		f2fs_unlock_op(sbi);
1506 	return err;
1507 }
1508 
1509 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1510 		loff_t pos, unsigned len, unsigned flags,
1511 		struct page **pagep, void **fsdata)
1512 {
1513 	struct inode *inode = mapping->host;
1514 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1515 	struct page *page = NULL;
1516 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1517 	bool need_balance = false;
1518 	block_t blkaddr = NULL_ADDR;
1519 	int err = 0;
1520 
1521 	trace_f2fs_write_begin(inode, pos, len, flags);
1522 
1523 	/*
1524 	 * We should check this at this moment to avoid deadlock on inode page
1525 	 * and #0 page. The locking rule for inline_data conversion should be:
1526 	 * lock_page(page #0) -> lock_page(inode_page)
1527 	 */
1528 	if (index != 0) {
1529 		err = f2fs_convert_inline_inode(inode);
1530 		if (err)
1531 			goto fail;
1532 	}
1533 repeat:
1534 	page = grab_cache_page_write_begin(mapping, index, flags);
1535 	if (!page) {
1536 		err = -ENOMEM;
1537 		goto fail;
1538 	}
1539 
1540 	*pagep = page;
1541 
1542 	err = prepare_write_begin(sbi, page, pos, len,
1543 					&blkaddr, &need_balance);
1544 	if (err)
1545 		goto fail;
1546 
1547 	if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1548 		unlock_page(page);
1549 		f2fs_balance_fs(sbi, true);
1550 		lock_page(page);
1551 		if (page->mapping != mapping) {
1552 			/* The page got truncated from under us */
1553 			f2fs_put_page(page, 1);
1554 			goto repeat;
1555 		}
1556 	}
1557 
1558 	f2fs_wait_on_page_writeback(page, DATA, false);
1559 
1560 	/* wait for GCed encrypted page writeback */
1561 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1562 		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1563 
1564 	if (len == PAGE_SIZE)
1565 		goto out_update;
1566 	if (PageUptodate(page))
1567 		goto out_clear;
1568 
1569 	if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1570 		unsigned start = pos & (PAGE_SIZE - 1);
1571 		unsigned end = start + len;
1572 
1573 		/* Reading beyond i_size is simple: memset to zero */
1574 		zero_user_segments(page, 0, start, end, PAGE_SIZE);
1575 		goto out_update;
1576 	}
1577 
1578 	if (blkaddr == NEW_ADDR) {
1579 		zero_user_segment(page, 0, PAGE_SIZE);
1580 	} else {
1581 		struct f2fs_io_info fio = {
1582 			.sbi = sbi,
1583 			.type = DATA,
1584 			.rw = READ_SYNC,
1585 			.old_blkaddr = blkaddr,
1586 			.new_blkaddr = blkaddr,
1587 			.page = page,
1588 			.encrypted_page = NULL,
1589 		};
1590 		err = f2fs_submit_page_bio(&fio);
1591 		if (err)
1592 			goto fail;
1593 
1594 		lock_page(page);
1595 		if (unlikely(!PageUptodate(page))) {
1596 			err = -EIO;
1597 			goto fail;
1598 		}
1599 		if (unlikely(page->mapping != mapping)) {
1600 			f2fs_put_page(page, 1);
1601 			goto repeat;
1602 		}
1603 
1604 		/* avoid symlink page */
1605 		if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1606 			err = fscrypt_decrypt_page(page);
1607 			if (err)
1608 				goto fail;
1609 		}
1610 	}
1611 out_update:
1612 	SetPageUptodate(page);
1613 out_clear:
1614 	clear_cold_data(page);
1615 	return 0;
1616 
1617 fail:
1618 	f2fs_put_page(page, 1);
1619 	f2fs_write_failed(mapping, pos + len);
1620 	return err;
1621 }
1622 
1623 static int f2fs_write_end(struct file *file,
1624 			struct address_space *mapping,
1625 			loff_t pos, unsigned len, unsigned copied,
1626 			struct page *page, void *fsdata)
1627 {
1628 	struct inode *inode = page->mapping->host;
1629 
1630 	trace_f2fs_write_end(inode, pos, len, copied);
1631 
1632 	set_page_dirty(page);
1633 
1634 	if (pos + copied > i_size_read(inode)) {
1635 		i_size_write(inode, pos + copied);
1636 		mark_inode_dirty(inode);
1637 	}
1638 
1639 	f2fs_put_page(page, 1);
1640 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1641 	return copied;
1642 }
1643 
1644 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1645 			   loff_t offset)
1646 {
1647 	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1648 
1649 	if (offset & blocksize_mask)
1650 		return -EINVAL;
1651 
1652 	if (iov_iter_alignment(iter) & blocksize_mask)
1653 		return -EINVAL;
1654 
1655 	return 0;
1656 }
1657 
1658 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1659 			      loff_t offset)
1660 {
1661 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1662 	struct inode *inode = mapping->host;
1663 	size_t count = iov_iter_count(iter);
1664 	int err;
1665 
1666 	err = check_direct_IO(inode, iter, offset);
1667 	if (err)
1668 		return err;
1669 
1670 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1671 		return 0;
1672 
1673 	trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1674 
1675 	err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1676 	if (err < 0 && iov_iter_rw(iter) == WRITE)
1677 		f2fs_write_failed(mapping, offset + count);
1678 
1679 	trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1680 
1681 	return err;
1682 }
1683 
1684 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1685 							unsigned int length)
1686 {
1687 	struct inode *inode = page->mapping->host;
1688 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1689 
1690 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1691 		(offset % PAGE_SIZE || length != PAGE_SIZE))
1692 		return;
1693 
1694 	if (PageDirty(page)) {
1695 		if (inode->i_ino == F2FS_META_INO(sbi))
1696 			dec_page_count(sbi, F2FS_DIRTY_META);
1697 		else if (inode->i_ino == F2FS_NODE_INO(sbi))
1698 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1699 		else
1700 			inode_dec_dirty_pages(inode);
1701 	}
1702 
1703 	/* This is atomic written page, keep Private */
1704 	if (IS_ATOMIC_WRITTEN_PAGE(page))
1705 		return;
1706 
1707 	ClearPagePrivate(page);
1708 }
1709 
1710 int f2fs_release_page(struct page *page, gfp_t wait)
1711 {
1712 	/* If this is dirty page, keep PagePrivate */
1713 	if (PageDirty(page))
1714 		return 0;
1715 
1716 	/* This is atomic written page, keep Private */
1717 	if (IS_ATOMIC_WRITTEN_PAGE(page))
1718 		return 0;
1719 
1720 	ClearPagePrivate(page);
1721 	return 1;
1722 }
1723 
1724 static int f2fs_set_data_page_dirty(struct page *page)
1725 {
1726 	struct address_space *mapping = page->mapping;
1727 	struct inode *inode = mapping->host;
1728 
1729 	trace_f2fs_set_page_dirty(page, DATA);
1730 
1731 	SetPageUptodate(page);
1732 
1733 	if (f2fs_is_atomic_file(inode)) {
1734 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1735 			register_inmem_page(inode, page);
1736 			return 1;
1737 		}
1738 		/*
1739 		 * Previously, this page has been registered, we just
1740 		 * return here.
1741 		 */
1742 		return 0;
1743 	}
1744 
1745 	if (!PageDirty(page)) {
1746 		__set_page_dirty_nobuffers(page);
1747 		update_dirty_page(inode, page);
1748 		return 1;
1749 	}
1750 	return 0;
1751 }
1752 
1753 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1754 {
1755 	struct inode *inode = mapping->host;
1756 
1757 	if (f2fs_has_inline_data(inode))
1758 		return 0;
1759 
1760 	/* make sure allocating whole blocks */
1761 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1762 		filemap_write_and_wait(mapping);
1763 
1764 	return generic_block_bmap(mapping, block, get_data_block_bmap);
1765 }
1766 
1767 const struct address_space_operations f2fs_dblock_aops = {
1768 	.readpage	= f2fs_read_data_page,
1769 	.readpages	= f2fs_read_data_pages,
1770 	.writepage	= f2fs_write_data_page,
1771 	.writepages	= f2fs_write_data_pages,
1772 	.write_begin	= f2fs_write_begin,
1773 	.write_end	= f2fs_write_end,
1774 	.set_page_dirty	= f2fs_set_data_page_dirty,
1775 	.invalidatepage	= f2fs_invalidate_page,
1776 	.releasepage	= f2fs_release_page,
1777 	.direct_IO	= f2fs_direct_IO,
1778 	.bmap		= f2fs_bmap,
1779 };
1780