xref: /openbmc/linux/fs/f2fs/compress.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 };
59 
60 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
61 {
62 	return index & (cc->cluster_size - 1);
63 }
64 
65 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
66 {
67 	return index >> cc->log_cluster_size;
68 }
69 
70 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
71 {
72 	return cc->cluster_idx << cc->log_cluster_size;
73 }
74 
75 bool f2fs_is_compressed_page(struct page *page)
76 {
77 	if (!PagePrivate(page))
78 		return false;
79 	if (!page_private(page))
80 		return false;
81 	if (page_private_nonpointer(page))
82 		return false;
83 
84 	f2fs_bug_on(F2FS_M_SB(page->mapping),
85 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
86 	return true;
87 }
88 
89 static void f2fs_set_compressed_page(struct page *page,
90 		struct inode *inode, pgoff_t index, void *data)
91 {
92 	attach_page_private(page, (void *)data);
93 
94 	/* i_crypto_info and iv index */
95 	page->index = index;
96 	page->mapping = inode->i_mapping;
97 }
98 
99 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
100 {
101 	int i;
102 
103 	for (i = 0; i < len; i++) {
104 		if (!cc->rpages[i])
105 			continue;
106 		if (unlock)
107 			unlock_page(cc->rpages[i]);
108 		else
109 			put_page(cc->rpages[i]);
110 	}
111 }
112 
113 static void f2fs_put_rpages(struct compress_ctx *cc)
114 {
115 	f2fs_drop_rpages(cc, cc->cluster_size, false);
116 }
117 
118 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
119 {
120 	f2fs_drop_rpages(cc, len, true);
121 }
122 
123 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
124 		struct writeback_control *wbc, bool redirty, int unlock)
125 {
126 	unsigned int i;
127 
128 	for (i = 0; i < cc->cluster_size; i++) {
129 		if (!cc->rpages[i])
130 			continue;
131 		if (redirty)
132 			redirty_page_for_writepage(wbc, cc->rpages[i]);
133 		f2fs_put_page(cc->rpages[i], unlock);
134 	}
135 }
136 
137 struct page *f2fs_compress_control_page(struct page *page)
138 {
139 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
140 }
141 
142 int f2fs_init_compress_ctx(struct compress_ctx *cc)
143 {
144 	if (cc->rpages)
145 		return 0;
146 
147 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
148 	return cc->rpages ? 0 : -ENOMEM;
149 }
150 
151 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
152 {
153 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
154 	cc->rpages = NULL;
155 	cc->nr_rpages = 0;
156 	cc->nr_cpages = 0;
157 	cc->valid_nr_cpages = 0;
158 	if (!reuse)
159 		cc->cluster_idx = NULL_CLUSTER;
160 }
161 
162 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
163 {
164 	unsigned int cluster_ofs;
165 
166 	if (!f2fs_cluster_can_merge_page(cc, page->index))
167 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
168 
169 	cluster_ofs = offset_in_cluster(cc, page->index);
170 	cc->rpages[cluster_ofs] = page;
171 	cc->nr_rpages++;
172 	cc->cluster_idx = cluster_idx(cc, page->index);
173 }
174 
175 #ifdef CONFIG_F2FS_FS_LZO
176 static int lzo_init_compress_ctx(struct compress_ctx *cc)
177 {
178 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
179 				LZO1X_MEM_COMPRESS, GFP_NOFS);
180 	if (!cc->private)
181 		return -ENOMEM;
182 
183 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
184 	return 0;
185 }
186 
187 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
188 {
189 	kvfree(cc->private);
190 	cc->private = NULL;
191 }
192 
193 static int lzo_compress_pages(struct compress_ctx *cc)
194 {
195 	int ret;
196 
197 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
198 					&cc->clen, cc->private);
199 	if (ret != LZO_E_OK) {
200 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
201 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
202 		return -EIO;
203 	}
204 	return 0;
205 }
206 
207 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
208 {
209 	int ret;
210 
211 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
212 						dic->rbuf, &dic->rlen);
213 	if (ret != LZO_E_OK) {
214 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
215 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
216 		return -EIO;
217 	}
218 
219 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
220 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
221 					"expected:%lu\n", KERN_ERR,
222 					F2FS_I_SB(dic->inode)->sb->s_id,
223 					dic->rlen,
224 					PAGE_SIZE << dic->log_cluster_size);
225 		return -EIO;
226 	}
227 	return 0;
228 }
229 
230 static const struct f2fs_compress_ops f2fs_lzo_ops = {
231 	.init_compress_ctx	= lzo_init_compress_ctx,
232 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
233 	.compress_pages		= lzo_compress_pages,
234 	.decompress_pages	= lzo_decompress_pages,
235 };
236 #endif
237 
238 #ifdef CONFIG_F2FS_FS_LZ4
239 static int lz4_init_compress_ctx(struct compress_ctx *cc)
240 {
241 	unsigned int size = LZ4_MEM_COMPRESS;
242 
243 #ifdef CONFIG_F2FS_FS_LZ4HC
244 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
245 		size = LZ4HC_MEM_COMPRESS;
246 #endif
247 
248 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
249 	if (!cc->private)
250 		return -ENOMEM;
251 
252 	/*
253 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
254 	 * adapt worst compress case, because lz4 compressor can handle
255 	 * output budget properly.
256 	 */
257 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
258 	return 0;
259 }
260 
261 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
262 {
263 	kvfree(cc->private);
264 	cc->private = NULL;
265 }
266 
267 #ifdef CONFIG_F2FS_FS_LZ4HC
268 static int lz4hc_compress_pages(struct compress_ctx *cc)
269 {
270 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
271 						COMPRESS_LEVEL_OFFSET;
272 	int len;
273 
274 	if (level)
275 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276 					cc->clen, level, cc->private);
277 	else
278 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 						cc->clen, cc->private);
280 	if (!len)
281 		return -EAGAIN;
282 
283 	cc->clen = len;
284 	return 0;
285 }
286 #endif
287 
288 static int lz4_compress_pages(struct compress_ctx *cc)
289 {
290 	int len;
291 
292 #ifdef CONFIG_F2FS_FS_LZ4HC
293 	return lz4hc_compress_pages(cc);
294 #endif
295 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
296 						cc->clen, cc->private);
297 	if (!len)
298 		return -EAGAIN;
299 
300 	cc->clen = len;
301 	return 0;
302 }
303 
304 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
305 {
306 	int ret;
307 
308 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
309 						dic->clen, dic->rlen);
310 	if (ret < 0) {
311 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
312 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
313 		return -EIO;
314 	}
315 
316 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
317 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
318 					"expected:%lu\n", KERN_ERR,
319 					F2FS_I_SB(dic->inode)->sb->s_id, ret,
320 					PAGE_SIZE << dic->log_cluster_size);
321 		return -EIO;
322 	}
323 	return 0;
324 }
325 
326 static const struct f2fs_compress_ops f2fs_lz4_ops = {
327 	.init_compress_ctx	= lz4_init_compress_ctx,
328 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
329 	.compress_pages		= lz4_compress_pages,
330 	.decompress_pages	= lz4_decompress_pages,
331 };
332 #endif
333 
334 #ifdef CONFIG_F2FS_FS_ZSTD
335 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
336 
337 static int zstd_init_compress_ctx(struct compress_ctx *cc)
338 {
339 	zstd_parameters params;
340 	zstd_cstream *stream;
341 	void *workspace;
342 	unsigned int workspace_size;
343 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
344 						COMPRESS_LEVEL_OFFSET;
345 
346 	if (!level)
347 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
348 
349 	params = zstd_get_params(level, cc->rlen);
350 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
351 
352 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
353 					workspace_size, GFP_NOFS);
354 	if (!workspace)
355 		return -ENOMEM;
356 
357 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
358 	if (!stream) {
359 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
360 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
361 				__func__);
362 		kvfree(workspace);
363 		return -EIO;
364 	}
365 
366 	cc->private = workspace;
367 	cc->private2 = stream;
368 
369 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
370 	return 0;
371 }
372 
373 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
374 {
375 	kvfree(cc->private);
376 	cc->private = NULL;
377 	cc->private2 = NULL;
378 }
379 
380 static int zstd_compress_pages(struct compress_ctx *cc)
381 {
382 	zstd_cstream *stream = cc->private2;
383 	zstd_in_buffer inbuf;
384 	zstd_out_buffer outbuf;
385 	int src_size = cc->rlen;
386 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
387 	int ret;
388 
389 	inbuf.pos = 0;
390 	inbuf.src = cc->rbuf;
391 	inbuf.size = src_size;
392 
393 	outbuf.pos = 0;
394 	outbuf.dst = cc->cbuf->cdata;
395 	outbuf.size = dst_size;
396 
397 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
398 	if (zstd_is_error(ret)) {
399 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
400 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
401 				__func__, zstd_get_error_code(ret));
402 		return -EIO;
403 	}
404 
405 	ret = zstd_end_stream(stream, &outbuf);
406 	if (zstd_is_error(ret)) {
407 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
408 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
409 				__func__, zstd_get_error_code(ret));
410 		return -EIO;
411 	}
412 
413 	/*
414 	 * there is compressed data remained in intermediate buffer due to
415 	 * no more space in cbuf.cdata
416 	 */
417 	if (ret)
418 		return -EAGAIN;
419 
420 	cc->clen = outbuf.pos;
421 	return 0;
422 }
423 
424 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
425 {
426 	zstd_dstream *stream;
427 	void *workspace;
428 	unsigned int workspace_size;
429 	unsigned int max_window_size =
430 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
431 
432 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
433 
434 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
435 					workspace_size, GFP_NOFS);
436 	if (!workspace)
437 		return -ENOMEM;
438 
439 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
440 	if (!stream) {
441 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
442 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
443 				__func__);
444 		kvfree(workspace);
445 		return -EIO;
446 	}
447 
448 	dic->private = workspace;
449 	dic->private2 = stream;
450 
451 	return 0;
452 }
453 
454 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
455 {
456 	kvfree(dic->private);
457 	dic->private = NULL;
458 	dic->private2 = NULL;
459 }
460 
461 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
462 {
463 	zstd_dstream *stream = dic->private2;
464 	zstd_in_buffer inbuf;
465 	zstd_out_buffer outbuf;
466 	int ret;
467 
468 	inbuf.pos = 0;
469 	inbuf.src = dic->cbuf->cdata;
470 	inbuf.size = dic->clen;
471 
472 	outbuf.pos = 0;
473 	outbuf.dst = dic->rbuf;
474 	outbuf.size = dic->rlen;
475 
476 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
477 	if (zstd_is_error(ret)) {
478 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
479 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
480 				__func__, zstd_get_error_code(ret));
481 		return -EIO;
482 	}
483 
484 	if (dic->rlen != outbuf.pos) {
485 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
486 				"expected:%lu\n", KERN_ERR,
487 				F2FS_I_SB(dic->inode)->sb->s_id,
488 				__func__, dic->rlen,
489 				PAGE_SIZE << dic->log_cluster_size);
490 		return -EIO;
491 	}
492 
493 	return 0;
494 }
495 
496 static const struct f2fs_compress_ops f2fs_zstd_ops = {
497 	.init_compress_ctx	= zstd_init_compress_ctx,
498 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
499 	.compress_pages		= zstd_compress_pages,
500 	.init_decompress_ctx	= zstd_init_decompress_ctx,
501 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
502 	.decompress_pages	= zstd_decompress_pages,
503 };
504 #endif
505 
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 	int ret;
511 
512 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 					&cc->clen, cc->private);
514 	if (ret != LZO_E_OK) {
515 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 		return -EIO;
518 	}
519 	return 0;
520 }
521 
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 	.init_compress_ctx	= lzo_init_compress_ctx,
524 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525 	.compress_pages		= lzorle_compress_pages,
526 	.decompress_pages	= lzo_decompress_pages,
527 };
528 #endif
529 #endif
530 
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 	&f2fs_lzo_ops,
534 #else
535 	NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 	&f2fs_lz4_ops,
539 #else
540 	NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 	&f2fs_zstd_ops,
544 #else
545 	NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 	&f2fs_lzorle_ops,
549 #else
550 	NULL,
551 #endif
552 };
553 
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 	if (!f2fs_compressed_file(inode))
557 		return true;
558 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560 
561 static mempool_t *compress_page_pool;
562 static int num_compress_pages = 512;
563 module_param(num_compress_pages, uint, 0444);
564 MODULE_PARM_DESC(num_compress_pages,
565 		"Number of intermediate compress pages to preallocate");
566 
567 int f2fs_init_compress_mempool(void)
568 {
569 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
570 	return compress_page_pool ? 0 : -ENOMEM;
571 }
572 
573 void f2fs_destroy_compress_mempool(void)
574 {
575 	mempool_destroy(compress_page_pool);
576 }
577 
578 static struct page *f2fs_compress_alloc_page(void)
579 {
580 	struct page *page;
581 
582 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
583 	lock_page(page);
584 
585 	return page;
586 }
587 
588 static void f2fs_compress_free_page(struct page *page)
589 {
590 	if (!page)
591 		return;
592 	detach_page_private(page);
593 	page->mapping = NULL;
594 	unlock_page(page);
595 	mempool_free(page, compress_page_pool);
596 }
597 
598 #define MAX_VMAP_RETRIES	3
599 
600 static void *f2fs_vmap(struct page **pages, unsigned int count)
601 {
602 	int i;
603 	void *buf = NULL;
604 
605 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
606 		buf = vm_map_ram(pages, count, -1);
607 		if (buf)
608 			break;
609 		vm_unmap_aliases();
610 	}
611 	return buf;
612 }
613 
614 static int f2fs_compress_pages(struct compress_ctx *cc)
615 {
616 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
617 	const struct f2fs_compress_ops *cops =
618 				f2fs_cops[fi->i_compress_algorithm];
619 	unsigned int max_len, new_nr_cpages;
620 	u32 chksum = 0;
621 	int i, ret;
622 
623 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
624 				cc->cluster_size, fi->i_compress_algorithm);
625 
626 	if (cops->init_compress_ctx) {
627 		ret = cops->init_compress_ctx(cc);
628 		if (ret)
629 			goto out;
630 	}
631 
632 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
633 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
634 	cc->valid_nr_cpages = cc->nr_cpages;
635 
636 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
637 	if (!cc->cpages) {
638 		ret = -ENOMEM;
639 		goto destroy_compress_ctx;
640 	}
641 
642 	for (i = 0; i < cc->nr_cpages; i++) {
643 		cc->cpages[i] = f2fs_compress_alloc_page();
644 		if (!cc->cpages[i]) {
645 			ret = -ENOMEM;
646 			goto out_free_cpages;
647 		}
648 	}
649 
650 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
651 	if (!cc->rbuf) {
652 		ret = -ENOMEM;
653 		goto out_free_cpages;
654 	}
655 
656 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
657 	if (!cc->cbuf) {
658 		ret = -ENOMEM;
659 		goto out_vunmap_rbuf;
660 	}
661 
662 	ret = cops->compress_pages(cc);
663 	if (ret)
664 		goto out_vunmap_cbuf;
665 
666 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
667 
668 	if (cc->clen > max_len) {
669 		ret = -EAGAIN;
670 		goto out_vunmap_cbuf;
671 	}
672 
673 	cc->cbuf->clen = cpu_to_le32(cc->clen);
674 
675 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
676 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
677 					cc->cbuf->cdata, cc->clen);
678 	cc->cbuf->chksum = cpu_to_le32(chksum);
679 
680 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
681 		cc->cbuf->reserved[i] = cpu_to_le32(0);
682 
683 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
684 
685 	/* zero out any unused part of the last page */
686 	memset(&cc->cbuf->cdata[cc->clen], 0,
687 			(new_nr_cpages * PAGE_SIZE) -
688 			(cc->clen + COMPRESS_HEADER_SIZE));
689 
690 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
691 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
692 
693 	for (i = 0; i < cc->nr_cpages; i++) {
694 		if (i < new_nr_cpages)
695 			continue;
696 		f2fs_compress_free_page(cc->cpages[i]);
697 		cc->cpages[i] = NULL;
698 	}
699 
700 	if (cops->destroy_compress_ctx)
701 		cops->destroy_compress_ctx(cc);
702 
703 	cc->valid_nr_cpages = new_nr_cpages;
704 
705 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
706 							cc->clen, ret);
707 	return 0;
708 
709 out_vunmap_cbuf:
710 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
711 out_vunmap_rbuf:
712 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
713 out_free_cpages:
714 	for (i = 0; i < cc->nr_cpages; i++) {
715 		if (cc->cpages[i])
716 			f2fs_compress_free_page(cc->cpages[i]);
717 	}
718 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
719 	cc->cpages = NULL;
720 destroy_compress_ctx:
721 	if (cops->destroy_compress_ctx)
722 		cops->destroy_compress_ctx(cc);
723 out:
724 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
725 							cc->clen, ret);
726 	return ret;
727 }
728 
729 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
730 		bool pre_alloc);
731 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
732 		bool bypass_destroy_callback, bool pre_alloc);
733 
734 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
735 {
736 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
737 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
738 	const struct f2fs_compress_ops *cops =
739 			f2fs_cops[fi->i_compress_algorithm];
740 	bool bypass_callback = false;
741 	int ret;
742 
743 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
744 				dic->cluster_size, fi->i_compress_algorithm);
745 
746 	if (dic->failed) {
747 		ret = -EIO;
748 		goto out_end_io;
749 	}
750 
751 	ret = f2fs_prepare_decomp_mem(dic, false);
752 	if (ret) {
753 		bypass_callback = true;
754 		goto out_release;
755 	}
756 
757 	dic->clen = le32_to_cpu(dic->cbuf->clen);
758 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
759 
760 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
761 		ret = -EFSCORRUPTED;
762 		f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
763 		goto out_release;
764 	}
765 
766 	ret = cops->decompress_pages(dic);
767 
768 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
769 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
770 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
771 
772 		if (provided != calculated) {
773 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
774 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
775 				printk_ratelimited(
776 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
777 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
778 					provided, calculated);
779 			}
780 			set_sbi_flag(sbi, SBI_NEED_FSCK);
781 		}
782 	}
783 
784 out_release:
785 	f2fs_release_decomp_mem(dic, bypass_callback, false);
786 
787 out_end_io:
788 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
789 							dic->clen, ret);
790 	f2fs_decompress_end_io(dic, ret, in_task);
791 }
792 
793 /*
794  * This is called when a page of a compressed cluster has been read from disk
795  * (or failed to be read from disk).  It checks whether this page was the last
796  * page being waited on in the cluster, and if so, it decompresses the cluster
797  * (or in the case of a failure, cleans up without actually decompressing).
798  */
799 void f2fs_end_read_compressed_page(struct page *page, bool failed,
800 		block_t blkaddr, bool in_task)
801 {
802 	struct decompress_io_ctx *dic =
803 			(struct decompress_io_ctx *)page_private(page);
804 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
805 
806 	dec_page_count(sbi, F2FS_RD_DATA);
807 
808 	if (failed)
809 		WRITE_ONCE(dic->failed, true);
810 	else if (blkaddr && in_task)
811 		f2fs_cache_compressed_page(sbi, page,
812 					dic->inode->i_ino, blkaddr);
813 
814 	if (atomic_dec_and_test(&dic->remaining_pages))
815 		f2fs_decompress_cluster(dic, in_task);
816 }
817 
818 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
819 {
820 	if (cc->cluster_idx == NULL_CLUSTER)
821 		return true;
822 	return cc->cluster_idx == cluster_idx(cc, index);
823 }
824 
825 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
826 {
827 	return cc->nr_rpages == 0;
828 }
829 
830 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
831 {
832 	return cc->cluster_size == cc->nr_rpages;
833 }
834 
835 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
836 {
837 	if (f2fs_cluster_is_empty(cc))
838 		return true;
839 	return is_page_in_cluster(cc, index);
840 }
841 
842 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
843 				int index, int nr_pages, bool uptodate)
844 {
845 	unsigned long pgidx = pages[index]->index;
846 	int i = uptodate ? 0 : 1;
847 
848 	/*
849 	 * when uptodate set to true, try to check all pages in cluster is
850 	 * uptodate or not.
851 	 */
852 	if (uptodate && (pgidx % cc->cluster_size))
853 		return false;
854 
855 	if (nr_pages - index < cc->cluster_size)
856 		return false;
857 
858 	for (; i < cc->cluster_size; i++) {
859 		if (pages[index + i]->index != pgidx + i)
860 			return false;
861 		if (uptodate && !PageUptodate(pages[index + i]))
862 			return false;
863 	}
864 
865 	return true;
866 }
867 
868 static bool cluster_has_invalid_data(struct compress_ctx *cc)
869 {
870 	loff_t i_size = i_size_read(cc->inode);
871 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
872 	int i;
873 
874 	for (i = 0; i < cc->cluster_size; i++) {
875 		struct page *page = cc->rpages[i];
876 
877 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
878 
879 		/* beyond EOF */
880 		if (page->index >= nr_pages)
881 			return true;
882 	}
883 	return false;
884 }
885 
886 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
887 {
888 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
889 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
890 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
891 	int cluster_end = 0;
892 	int i;
893 	char *reason = "";
894 
895 	if (!compressed)
896 		return false;
897 
898 	/* [..., COMPR_ADDR, ...] */
899 	if (dn->ofs_in_node % cluster_size) {
900 		reason = "[*|C|*|*]";
901 		goto out;
902 	}
903 
904 	for (i = 1; i < cluster_size; i++) {
905 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
906 							dn->ofs_in_node + i);
907 
908 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
909 		if (blkaddr == COMPRESS_ADDR) {
910 			reason = "[C|*|C|*]";
911 			goto out;
912 		}
913 		if (!__is_valid_data_blkaddr(blkaddr)) {
914 			if (!cluster_end)
915 				cluster_end = i;
916 			continue;
917 		}
918 		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
919 		if (cluster_end) {
920 			reason = "[C|N|N|V]";
921 			goto out;
922 		}
923 	}
924 	return false;
925 out:
926 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
927 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
928 	set_sbi_flag(sbi, SBI_NEED_FSCK);
929 	return true;
930 }
931 
932 static int __f2fs_cluster_blocks(struct inode *inode,
933 				unsigned int cluster_idx, bool compr)
934 {
935 	struct dnode_of_data dn;
936 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
937 	unsigned int start_idx = cluster_idx <<
938 				F2FS_I(inode)->i_log_cluster_size;
939 	int ret;
940 
941 	set_new_dnode(&dn, inode, NULL, NULL, 0);
942 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
943 	if (ret) {
944 		if (ret == -ENOENT)
945 			ret = 0;
946 		goto fail;
947 	}
948 
949 	if (f2fs_sanity_check_cluster(&dn)) {
950 		ret = -EFSCORRUPTED;
951 		f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
952 		goto fail;
953 	}
954 
955 	if (dn.data_blkaddr == COMPRESS_ADDR) {
956 		int i;
957 
958 		ret = 1;
959 		for (i = 1; i < cluster_size; i++) {
960 			block_t blkaddr;
961 
962 			blkaddr = data_blkaddr(dn.inode,
963 					dn.node_page, dn.ofs_in_node + i);
964 			if (compr) {
965 				if (__is_valid_data_blkaddr(blkaddr))
966 					ret++;
967 			} else {
968 				if (blkaddr != NULL_ADDR)
969 					ret++;
970 			}
971 		}
972 
973 		f2fs_bug_on(F2FS_I_SB(inode),
974 			!compr && ret != cluster_size &&
975 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
976 	}
977 fail:
978 	f2fs_put_dnode(&dn);
979 	return ret;
980 }
981 
982 /* return # of compressed blocks in compressed cluster */
983 static int f2fs_compressed_blocks(struct compress_ctx *cc)
984 {
985 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
986 }
987 
988 /* return # of valid blocks in compressed cluster */
989 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
990 {
991 	return __f2fs_cluster_blocks(inode,
992 		index >> F2FS_I(inode)->i_log_cluster_size,
993 		false);
994 }
995 
996 static bool cluster_may_compress(struct compress_ctx *cc)
997 {
998 	if (!f2fs_need_compress_data(cc->inode))
999 		return false;
1000 	if (f2fs_is_atomic_file(cc->inode))
1001 		return false;
1002 	if (!f2fs_cluster_is_full(cc))
1003 		return false;
1004 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1005 		return false;
1006 	return !cluster_has_invalid_data(cc);
1007 }
1008 
1009 static void set_cluster_writeback(struct compress_ctx *cc)
1010 {
1011 	int i;
1012 
1013 	for (i = 0; i < cc->cluster_size; i++) {
1014 		if (cc->rpages[i])
1015 			set_page_writeback(cc->rpages[i]);
1016 	}
1017 }
1018 
1019 static void set_cluster_dirty(struct compress_ctx *cc)
1020 {
1021 	int i;
1022 
1023 	for (i = 0; i < cc->cluster_size; i++)
1024 		if (cc->rpages[i])
1025 			set_page_dirty(cc->rpages[i]);
1026 }
1027 
1028 static int prepare_compress_overwrite(struct compress_ctx *cc,
1029 		struct page **pagep, pgoff_t index, void **fsdata)
1030 {
1031 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1032 	struct address_space *mapping = cc->inode->i_mapping;
1033 	struct page *page;
1034 	sector_t last_block_in_bio;
1035 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1036 	pgoff_t start_idx = start_idx_of_cluster(cc);
1037 	int i, ret;
1038 
1039 retry:
1040 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1041 	if (ret <= 0)
1042 		return ret;
1043 
1044 	ret = f2fs_init_compress_ctx(cc);
1045 	if (ret)
1046 		return ret;
1047 
1048 	/* keep page reference to avoid page reclaim */
1049 	for (i = 0; i < cc->cluster_size; i++) {
1050 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1051 							fgp_flag, GFP_NOFS);
1052 		if (!page) {
1053 			ret = -ENOMEM;
1054 			goto unlock_pages;
1055 		}
1056 
1057 		if (PageUptodate(page))
1058 			f2fs_put_page(page, 1);
1059 		else
1060 			f2fs_compress_ctx_add_page(cc, page);
1061 	}
1062 
1063 	if (!f2fs_cluster_is_empty(cc)) {
1064 		struct bio *bio = NULL;
1065 
1066 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1067 					&last_block_in_bio, false, true);
1068 		f2fs_put_rpages(cc);
1069 		f2fs_destroy_compress_ctx(cc, true);
1070 		if (ret)
1071 			goto out;
1072 		if (bio)
1073 			f2fs_submit_bio(sbi, bio, DATA);
1074 
1075 		ret = f2fs_init_compress_ctx(cc);
1076 		if (ret)
1077 			goto out;
1078 	}
1079 
1080 	for (i = 0; i < cc->cluster_size; i++) {
1081 		f2fs_bug_on(sbi, cc->rpages[i]);
1082 
1083 		page = find_lock_page(mapping, start_idx + i);
1084 		if (!page) {
1085 			/* page can be truncated */
1086 			goto release_and_retry;
1087 		}
1088 
1089 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1090 		f2fs_compress_ctx_add_page(cc, page);
1091 
1092 		if (!PageUptodate(page)) {
1093 release_and_retry:
1094 			f2fs_put_rpages(cc);
1095 			f2fs_unlock_rpages(cc, i + 1);
1096 			f2fs_destroy_compress_ctx(cc, true);
1097 			goto retry;
1098 		}
1099 	}
1100 
1101 	if (likely(!ret)) {
1102 		*fsdata = cc->rpages;
1103 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1104 		return cc->cluster_size;
1105 	}
1106 
1107 unlock_pages:
1108 	f2fs_put_rpages(cc);
1109 	f2fs_unlock_rpages(cc, i);
1110 	f2fs_destroy_compress_ctx(cc, true);
1111 out:
1112 	return ret;
1113 }
1114 
1115 int f2fs_prepare_compress_overwrite(struct inode *inode,
1116 		struct page **pagep, pgoff_t index, void **fsdata)
1117 {
1118 	struct compress_ctx cc = {
1119 		.inode = inode,
1120 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1121 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1122 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1123 		.rpages = NULL,
1124 		.nr_rpages = 0,
1125 	};
1126 
1127 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1128 }
1129 
1130 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1131 					pgoff_t index, unsigned copied)
1132 
1133 {
1134 	struct compress_ctx cc = {
1135 		.inode = inode,
1136 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1137 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1138 		.rpages = fsdata,
1139 	};
1140 	bool first_index = (index == cc.rpages[0]->index);
1141 
1142 	if (copied)
1143 		set_cluster_dirty(&cc);
1144 
1145 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1146 	f2fs_destroy_compress_ctx(&cc, false);
1147 
1148 	return first_index;
1149 }
1150 
1151 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1152 {
1153 	void *fsdata = NULL;
1154 	struct page *pagep;
1155 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1156 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1157 							log_cluster_size;
1158 	int err;
1159 
1160 	err = f2fs_is_compressed_cluster(inode, start_idx);
1161 	if (err < 0)
1162 		return err;
1163 
1164 	/* truncate normal cluster */
1165 	if (!err)
1166 		return f2fs_do_truncate_blocks(inode, from, lock);
1167 
1168 	/* truncate compressed cluster */
1169 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1170 						start_idx, &fsdata);
1171 
1172 	/* should not be a normal cluster */
1173 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1174 
1175 	if (err <= 0)
1176 		return err;
1177 
1178 	if (err > 0) {
1179 		struct page **rpages = fsdata;
1180 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1181 		int i;
1182 
1183 		for (i = cluster_size - 1; i >= 0; i--) {
1184 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1185 
1186 			if (from <= start) {
1187 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1188 			} else {
1189 				zero_user_segment(rpages[i], from - start,
1190 								PAGE_SIZE);
1191 				break;
1192 			}
1193 		}
1194 
1195 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1196 	}
1197 	return 0;
1198 }
1199 
1200 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1201 					int *submitted,
1202 					struct writeback_control *wbc,
1203 					enum iostat_type io_type)
1204 {
1205 	struct inode *inode = cc->inode;
1206 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207 	struct f2fs_inode_info *fi = F2FS_I(inode);
1208 	struct f2fs_io_info fio = {
1209 		.sbi = sbi,
1210 		.ino = cc->inode->i_ino,
1211 		.type = DATA,
1212 		.op = REQ_OP_WRITE,
1213 		.op_flags = wbc_to_write_flags(wbc),
1214 		.old_blkaddr = NEW_ADDR,
1215 		.page = NULL,
1216 		.encrypted_page = NULL,
1217 		.compressed_page = NULL,
1218 		.submitted = false,
1219 		.io_type = io_type,
1220 		.io_wbc = wbc,
1221 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1222 	};
1223 	struct dnode_of_data dn;
1224 	struct node_info ni;
1225 	struct compress_io_ctx *cic;
1226 	pgoff_t start_idx = start_idx_of_cluster(cc);
1227 	unsigned int last_index = cc->cluster_size - 1;
1228 	loff_t psize;
1229 	int i, err;
1230 
1231 	/* we should bypass data pages to proceed the kworkder jobs */
1232 	if (unlikely(f2fs_cp_error(sbi))) {
1233 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1234 		goto out_free;
1235 	}
1236 
1237 	if (IS_NOQUOTA(inode)) {
1238 		/*
1239 		 * We need to wait for node_write to avoid block allocation during
1240 		 * checkpoint. This can only happen to quota writes which can cause
1241 		 * the below discard race condition.
1242 		 */
1243 		f2fs_down_read(&sbi->node_write);
1244 	} else if (!f2fs_trylock_op(sbi)) {
1245 		goto out_free;
1246 	}
1247 
1248 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1249 
1250 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1251 	if (err)
1252 		goto out_unlock_op;
1253 
1254 	for (i = 0; i < cc->cluster_size; i++) {
1255 		if (data_blkaddr(dn.inode, dn.node_page,
1256 					dn.ofs_in_node + i) == NULL_ADDR)
1257 			goto out_put_dnode;
1258 	}
1259 
1260 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1261 
1262 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1263 	if (err)
1264 		goto out_put_dnode;
1265 
1266 	fio.version = ni.version;
1267 
1268 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1269 	if (!cic)
1270 		goto out_put_dnode;
1271 
1272 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1273 	cic->inode = inode;
1274 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1275 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1276 	if (!cic->rpages)
1277 		goto out_put_cic;
1278 
1279 	cic->nr_rpages = cc->cluster_size;
1280 
1281 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1282 		f2fs_set_compressed_page(cc->cpages[i], inode,
1283 					cc->rpages[i + 1]->index, cic);
1284 		fio.compressed_page = cc->cpages[i];
1285 
1286 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1287 						dn.ofs_in_node + i + 1);
1288 
1289 		/* wait for GCed page writeback via META_MAPPING */
1290 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1291 
1292 		if (fio.encrypted) {
1293 			fio.page = cc->rpages[i + 1];
1294 			err = f2fs_encrypt_one_page(&fio);
1295 			if (err)
1296 				goto out_destroy_crypt;
1297 			cc->cpages[i] = fio.encrypted_page;
1298 		}
1299 	}
1300 
1301 	set_cluster_writeback(cc);
1302 
1303 	for (i = 0; i < cc->cluster_size; i++)
1304 		cic->rpages[i] = cc->rpages[i];
1305 
1306 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1307 		block_t blkaddr;
1308 
1309 		blkaddr = f2fs_data_blkaddr(&dn);
1310 		fio.page = cc->rpages[i];
1311 		fio.old_blkaddr = blkaddr;
1312 
1313 		/* cluster header */
1314 		if (i == 0) {
1315 			if (blkaddr == COMPRESS_ADDR)
1316 				fio.compr_blocks++;
1317 			if (__is_valid_data_blkaddr(blkaddr))
1318 				f2fs_invalidate_blocks(sbi, blkaddr);
1319 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1320 			goto unlock_continue;
1321 		}
1322 
1323 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1324 			fio.compr_blocks++;
1325 
1326 		if (i > cc->valid_nr_cpages) {
1327 			if (__is_valid_data_blkaddr(blkaddr)) {
1328 				f2fs_invalidate_blocks(sbi, blkaddr);
1329 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1330 			}
1331 			goto unlock_continue;
1332 		}
1333 
1334 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1335 
1336 		if (fio.encrypted)
1337 			fio.encrypted_page = cc->cpages[i - 1];
1338 		else
1339 			fio.compressed_page = cc->cpages[i - 1];
1340 
1341 		cc->cpages[i - 1] = NULL;
1342 		f2fs_outplace_write_data(&dn, &fio);
1343 		(*submitted)++;
1344 unlock_continue:
1345 		inode_dec_dirty_pages(cc->inode);
1346 		unlock_page(fio.page);
1347 	}
1348 
1349 	if (fio.compr_blocks)
1350 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1351 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1352 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1353 
1354 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1355 	if (cc->cluster_idx == 0)
1356 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1357 
1358 	f2fs_put_dnode(&dn);
1359 	if (IS_NOQUOTA(inode))
1360 		f2fs_up_read(&sbi->node_write);
1361 	else
1362 		f2fs_unlock_op(sbi);
1363 
1364 	spin_lock(&fi->i_size_lock);
1365 	if (fi->last_disk_size < psize)
1366 		fi->last_disk_size = psize;
1367 	spin_unlock(&fi->i_size_lock);
1368 
1369 	f2fs_put_rpages(cc);
1370 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1371 	cc->cpages = NULL;
1372 	f2fs_destroy_compress_ctx(cc, false);
1373 	return 0;
1374 
1375 out_destroy_crypt:
1376 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1377 
1378 	for (--i; i >= 0; i--)
1379 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1380 out_put_cic:
1381 	kmem_cache_free(cic_entry_slab, cic);
1382 out_put_dnode:
1383 	f2fs_put_dnode(&dn);
1384 out_unlock_op:
1385 	if (IS_NOQUOTA(inode))
1386 		f2fs_up_read(&sbi->node_write);
1387 	else
1388 		f2fs_unlock_op(sbi);
1389 out_free:
1390 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1391 		f2fs_compress_free_page(cc->cpages[i]);
1392 		cc->cpages[i] = NULL;
1393 	}
1394 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1395 	cc->cpages = NULL;
1396 	return -EAGAIN;
1397 }
1398 
1399 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1400 {
1401 	struct f2fs_sb_info *sbi = bio->bi_private;
1402 	struct compress_io_ctx *cic =
1403 			(struct compress_io_ctx *)page_private(page);
1404 	int i;
1405 
1406 	if (unlikely(bio->bi_status))
1407 		mapping_set_error(cic->inode->i_mapping, -EIO);
1408 
1409 	f2fs_compress_free_page(page);
1410 
1411 	dec_page_count(sbi, F2FS_WB_DATA);
1412 
1413 	if (atomic_dec_return(&cic->pending_pages))
1414 		return;
1415 
1416 	for (i = 0; i < cic->nr_rpages; i++) {
1417 		WARN_ON(!cic->rpages[i]);
1418 		clear_page_private_gcing(cic->rpages[i]);
1419 		end_page_writeback(cic->rpages[i]);
1420 	}
1421 
1422 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1423 	kmem_cache_free(cic_entry_slab, cic);
1424 }
1425 
1426 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1427 					int *submitted,
1428 					struct writeback_control *wbc,
1429 					enum iostat_type io_type)
1430 {
1431 	struct address_space *mapping = cc->inode->i_mapping;
1432 	int _submitted, compr_blocks, ret, i;
1433 
1434 	compr_blocks = f2fs_compressed_blocks(cc);
1435 
1436 	for (i = 0; i < cc->cluster_size; i++) {
1437 		if (!cc->rpages[i])
1438 			continue;
1439 
1440 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1441 		unlock_page(cc->rpages[i]);
1442 	}
1443 
1444 	if (compr_blocks < 0)
1445 		return compr_blocks;
1446 
1447 	for (i = 0; i < cc->cluster_size; i++) {
1448 		if (!cc->rpages[i])
1449 			continue;
1450 retry_write:
1451 		lock_page(cc->rpages[i]);
1452 
1453 		if (cc->rpages[i]->mapping != mapping) {
1454 continue_unlock:
1455 			unlock_page(cc->rpages[i]);
1456 			continue;
1457 		}
1458 
1459 		if (!PageDirty(cc->rpages[i]))
1460 			goto continue_unlock;
1461 
1462 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1463 			goto continue_unlock;
1464 
1465 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1466 						NULL, NULL, wbc, io_type,
1467 						compr_blocks, false);
1468 		if (ret) {
1469 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1470 				unlock_page(cc->rpages[i]);
1471 				ret = 0;
1472 			} else if (ret == -EAGAIN) {
1473 				/*
1474 				 * for quota file, just redirty left pages to
1475 				 * avoid deadlock caused by cluster update race
1476 				 * from foreground operation.
1477 				 */
1478 				if (IS_NOQUOTA(cc->inode))
1479 					return 0;
1480 				ret = 0;
1481 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1482 				goto retry_write;
1483 			}
1484 			return ret;
1485 		}
1486 
1487 		*submitted += _submitted;
1488 	}
1489 
1490 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1491 
1492 	return 0;
1493 }
1494 
1495 int f2fs_write_multi_pages(struct compress_ctx *cc,
1496 					int *submitted,
1497 					struct writeback_control *wbc,
1498 					enum iostat_type io_type)
1499 {
1500 	int err;
1501 
1502 	*submitted = 0;
1503 	if (cluster_may_compress(cc)) {
1504 		err = f2fs_compress_pages(cc);
1505 		if (err == -EAGAIN) {
1506 			add_compr_block_stat(cc->inode, cc->cluster_size);
1507 			goto write;
1508 		} else if (err) {
1509 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1510 			goto destroy_out;
1511 		}
1512 
1513 		err = f2fs_write_compressed_pages(cc, submitted,
1514 							wbc, io_type);
1515 		if (!err)
1516 			return 0;
1517 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1518 	}
1519 write:
1520 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1521 
1522 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1523 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1524 destroy_out:
1525 	f2fs_destroy_compress_ctx(cc, false);
1526 	return err;
1527 }
1528 
1529 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1530 		bool pre_alloc)
1531 {
1532 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1533 }
1534 
1535 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1536 		bool pre_alloc)
1537 {
1538 	const struct f2fs_compress_ops *cops =
1539 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1540 	int i;
1541 
1542 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1543 		return 0;
1544 
1545 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1546 	if (!dic->tpages)
1547 		return -ENOMEM;
1548 
1549 	for (i = 0; i < dic->cluster_size; i++) {
1550 		if (dic->rpages[i]) {
1551 			dic->tpages[i] = dic->rpages[i];
1552 			continue;
1553 		}
1554 
1555 		dic->tpages[i] = f2fs_compress_alloc_page();
1556 		if (!dic->tpages[i])
1557 			return -ENOMEM;
1558 	}
1559 
1560 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1561 	if (!dic->rbuf)
1562 		return -ENOMEM;
1563 
1564 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1565 	if (!dic->cbuf)
1566 		return -ENOMEM;
1567 
1568 	if (cops->init_decompress_ctx)
1569 		return cops->init_decompress_ctx(dic);
1570 
1571 	return 0;
1572 }
1573 
1574 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1575 		bool bypass_destroy_callback, bool pre_alloc)
1576 {
1577 	const struct f2fs_compress_ops *cops =
1578 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1579 
1580 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1581 		return;
1582 
1583 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1584 		cops->destroy_decompress_ctx(dic);
1585 
1586 	if (dic->cbuf)
1587 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1588 
1589 	if (dic->rbuf)
1590 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1591 }
1592 
1593 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1594 		bool bypass_destroy_callback);
1595 
1596 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1597 {
1598 	struct decompress_io_ctx *dic;
1599 	pgoff_t start_idx = start_idx_of_cluster(cc);
1600 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1601 	int i, ret;
1602 
1603 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1604 	if (!dic)
1605 		return ERR_PTR(-ENOMEM);
1606 
1607 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1608 	if (!dic->rpages) {
1609 		kmem_cache_free(dic_entry_slab, dic);
1610 		return ERR_PTR(-ENOMEM);
1611 	}
1612 
1613 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1614 	dic->inode = cc->inode;
1615 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1616 	dic->cluster_idx = cc->cluster_idx;
1617 	dic->cluster_size = cc->cluster_size;
1618 	dic->log_cluster_size = cc->log_cluster_size;
1619 	dic->nr_cpages = cc->nr_cpages;
1620 	refcount_set(&dic->refcnt, 1);
1621 	dic->failed = false;
1622 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1623 
1624 	for (i = 0; i < dic->cluster_size; i++)
1625 		dic->rpages[i] = cc->rpages[i];
1626 	dic->nr_rpages = cc->cluster_size;
1627 
1628 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1629 	if (!dic->cpages) {
1630 		ret = -ENOMEM;
1631 		goto out_free;
1632 	}
1633 
1634 	for (i = 0; i < dic->nr_cpages; i++) {
1635 		struct page *page;
1636 
1637 		page = f2fs_compress_alloc_page();
1638 		if (!page) {
1639 			ret = -ENOMEM;
1640 			goto out_free;
1641 		}
1642 
1643 		f2fs_set_compressed_page(page, cc->inode,
1644 					start_idx + i + 1, dic);
1645 		dic->cpages[i] = page;
1646 	}
1647 
1648 	ret = f2fs_prepare_decomp_mem(dic, true);
1649 	if (ret)
1650 		goto out_free;
1651 
1652 	return dic;
1653 
1654 out_free:
1655 	f2fs_free_dic(dic, true);
1656 	return ERR_PTR(ret);
1657 }
1658 
1659 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1660 		bool bypass_destroy_callback)
1661 {
1662 	int i;
1663 
1664 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1665 
1666 	if (dic->tpages) {
1667 		for (i = 0; i < dic->cluster_size; i++) {
1668 			if (dic->rpages[i])
1669 				continue;
1670 			if (!dic->tpages[i])
1671 				continue;
1672 			f2fs_compress_free_page(dic->tpages[i]);
1673 		}
1674 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1675 	}
1676 
1677 	if (dic->cpages) {
1678 		for (i = 0; i < dic->nr_cpages; i++) {
1679 			if (!dic->cpages[i])
1680 				continue;
1681 			f2fs_compress_free_page(dic->cpages[i]);
1682 		}
1683 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1684 	}
1685 
1686 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1687 	kmem_cache_free(dic_entry_slab, dic);
1688 }
1689 
1690 static void f2fs_late_free_dic(struct work_struct *work)
1691 {
1692 	struct decompress_io_ctx *dic =
1693 		container_of(work, struct decompress_io_ctx, free_work);
1694 
1695 	f2fs_free_dic(dic, false);
1696 }
1697 
1698 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1699 {
1700 	if (refcount_dec_and_test(&dic->refcnt)) {
1701 		if (in_task) {
1702 			f2fs_free_dic(dic, false);
1703 		} else {
1704 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1705 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1706 					&dic->free_work);
1707 		}
1708 	}
1709 }
1710 
1711 static void f2fs_verify_cluster(struct work_struct *work)
1712 {
1713 	struct decompress_io_ctx *dic =
1714 		container_of(work, struct decompress_io_ctx, verity_work);
1715 	int i;
1716 
1717 	/* Verify, update, and unlock the decompressed pages. */
1718 	for (i = 0; i < dic->cluster_size; i++) {
1719 		struct page *rpage = dic->rpages[i];
1720 
1721 		if (!rpage)
1722 			continue;
1723 
1724 		if (fsverity_verify_page(rpage))
1725 			SetPageUptodate(rpage);
1726 		else
1727 			ClearPageUptodate(rpage);
1728 		unlock_page(rpage);
1729 	}
1730 
1731 	f2fs_put_dic(dic, true);
1732 }
1733 
1734 /*
1735  * This is called when a compressed cluster has been decompressed
1736  * (or failed to be read and/or decompressed).
1737  */
1738 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1739 				bool in_task)
1740 {
1741 	int i;
1742 
1743 	if (!failed && dic->need_verity) {
1744 		/*
1745 		 * Note that to avoid deadlocks, the verity work can't be done
1746 		 * on the decompression workqueue.  This is because verifying
1747 		 * the data pages can involve reading metadata pages from the
1748 		 * file, and these metadata pages may be compressed.
1749 		 */
1750 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1751 		fsverity_enqueue_verify_work(&dic->verity_work);
1752 		return;
1753 	}
1754 
1755 	/* Update and unlock the cluster's pagecache pages. */
1756 	for (i = 0; i < dic->cluster_size; i++) {
1757 		struct page *rpage = dic->rpages[i];
1758 
1759 		if (!rpage)
1760 			continue;
1761 
1762 		if (failed)
1763 			ClearPageUptodate(rpage);
1764 		else
1765 			SetPageUptodate(rpage);
1766 		unlock_page(rpage);
1767 	}
1768 
1769 	/*
1770 	 * Release the reference to the decompress_io_ctx that was being held
1771 	 * for I/O completion.
1772 	 */
1773 	f2fs_put_dic(dic, in_task);
1774 }
1775 
1776 /*
1777  * Put a reference to a compressed page's decompress_io_ctx.
1778  *
1779  * This is called when the page is no longer needed and can be freed.
1780  */
1781 void f2fs_put_page_dic(struct page *page, bool in_task)
1782 {
1783 	struct decompress_io_ctx *dic =
1784 			(struct decompress_io_ctx *)page_private(page);
1785 
1786 	f2fs_put_dic(dic, in_task);
1787 }
1788 
1789 /*
1790  * check whether cluster blocks are contiguous, and add extent cache entry
1791  * only if cluster blocks are logically and physically contiguous.
1792  */
1793 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1794 {
1795 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1796 	int i = compressed ? 1 : 0;
1797 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1798 						dn->ofs_in_node + i);
1799 
1800 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1801 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1802 						dn->ofs_in_node + i);
1803 
1804 		if (!__is_valid_data_blkaddr(blkaddr))
1805 			break;
1806 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1807 			return 0;
1808 	}
1809 
1810 	return compressed ? i - 1 : i;
1811 }
1812 
1813 const struct address_space_operations f2fs_compress_aops = {
1814 	.release_folio = f2fs_release_folio,
1815 	.invalidate_folio = f2fs_invalidate_folio,
1816 };
1817 
1818 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1819 {
1820 	return sbi->compress_inode->i_mapping;
1821 }
1822 
1823 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1824 {
1825 	if (!sbi->compress_inode)
1826 		return;
1827 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1828 }
1829 
1830 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1831 						nid_t ino, block_t blkaddr)
1832 {
1833 	struct page *cpage;
1834 	int ret;
1835 
1836 	if (!test_opt(sbi, COMPRESS_CACHE))
1837 		return;
1838 
1839 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1840 		return;
1841 
1842 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1843 		return;
1844 
1845 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1846 	if (cpage) {
1847 		f2fs_put_page(cpage, 0);
1848 		return;
1849 	}
1850 
1851 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1852 	if (!cpage)
1853 		return;
1854 
1855 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1856 						blkaddr, GFP_NOFS);
1857 	if (ret) {
1858 		f2fs_put_page(cpage, 0);
1859 		return;
1860 	}
1861 
1862 	set_page_private_data(cpage, ino);
1863 
1864 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1865 		goto out;
1866 
1867 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1868 	SetPageUptodate(cpage);
1869 out:
1870 	f2fs_put_page(cpage, 1);
1871 }
1872 
1873 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1874 								block_t blkaddr)
1875 {
1876 	struct page *cpage;
1877 	bool hitted = false;
1878 
1879 	if (!test_opt(sbi, COMPRESS_CACHE))
1880 		return false;
1881 
1882 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1883 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1884 	if (cpage) {
1885 		if (PageUptodate(cpage)) {
1886 			atomic_inc(&sbi->compress_page_hit);
1887 			memcpy(page_address(page),
1888 				page_address(cpage), PAGE_SIZE);
1889 			hitted = true;
1890 		}
1891 		f2fs_put_page(cpage, 1);
1892 	}
1893 
1894 	return hitted;
1895 }
1896 
1897 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1898 {
1899 	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1900 	struct folio_batch fbatch;
1901 	pgoff_t index = 0;
1902 	pgoff_t end = MAX_BLKADDR(sbi);
1903 
1904 	if (!mapping->nrpages)
1905 		return;
1906 
1907 	folio_batch_init(&fbatch);
1908 
1909 	do {
1910 		unsigned int nr, i;
1911 
1912 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1913 		if (!nr)
1914 			break;
1915 
1916 		for (i = 0; i < nr; i++) {
1917 			struct folio *folio = fbatch.folios[i];
1918 
1919 			folio_lock(folio);
1920 			if (folio->mapping != mapping) {
1921 				folio_unlock(folio);
1922 				continue;
1923 			}
1924 
1925 			if (ino != get_page_private_data(&folio->page)) {
1926 				folio_unlock(folio);
1927 				continue;
1928 			}
1929 
1930 			generic_error_remove_page(mapping, &folio->page);
1931 			folio_unlock(folio);
1932 		}
1933 		folio_batch_release(&fbatch);
1934 		cond_resched();
1935 	} while (index < end);
1936 }
1937 
1938 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1939 {
1940 	struct inode *inode;
1941 
1942 	if (!test_opt(sbi, COMPRESS_CACHE))
1943 		return 0;
1944 
1945 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1946 	if (IS_ERR(inode))
1947 		return PTR_ERR(inode);
1948 	sbi->compress_inode = inode;
1949 
1950 	sbi->compress_percent = COMPRESS_PERCENT;
1951 	sbi->compress_watermark = COMPRESS_WATERMARK;
1952 
1953 	atomic_set(&sbi->compress_page_hit, 0);
1954 
1955 	return 0;
1956 }
1957 
1958 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1959 {
1960 	if (!sbi->compress_inode)
1961 		return;
1962 	iput(sbi->compress_inode);
1963 	sbi->compress_inode = NULL;
1964 }
1965 
1966 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1967 {
1968 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1969 	char slab_name[32];
1970 
1971 	if (!f2fs_sb_has_compression(sbi))
1972 		return 0;
1973 
1974 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1975 
1976 	sbi->page_array_slab_size = sizeof(struct page *) <<
1977 					F2FS_OPTION(sbi).compress_log_size;
1978 
1979 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1980 					sbi->page_array_slab_size);
1981 	return sbi->page_array_slab ? 0 : -ENOMEM;
1982 }
1983 
1984 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1985 {
1986 	kmem_cache_destroy(sbi->page_array_slab);
1987 }
1988 
1989 int __init f2fs_init_compress_cache(void)
1990 {
1991 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1992 					sizeof(struct compress_io_ctx));
1993 	if (!cic_entry_slab)
1994 		return -ENOMEM;
1995 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1996 					sizeof(struct decompress_io_ctx));
1997 	if (!dic_entry_slab)
1998 		goto free_cic;
1999 	return 0;
2000 free_cic:
2001 	kmem_cache_destroy(cic_entry_slab);
2002 	return -ENOMEM;
2003 }
2004 
2005 void f2fs_destroy_compress_cache(void)
2006 {
2007 	kmem_cache_destroy(dic_entry_slab);
2008 	kmem_cache_destroy(cic_entry_slab);
2009 }
2010