1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 bool (*is_level_valid)(int level); 59 }; 60 61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index & (cc->cluster_size - 1); 64 } 65 66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 67 { 68 return index >> cc->log_cluster_size; 69 } 70 71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 72 { 73 return cc->cluster_idx << cc->log_cluster_size; 74 } 75 76 bool f2fs_is_compressed_page(struct page *page) 77 { 78 if (!PagePrivate(page)) 79 return false; 80 if (!page_private(page)) 81 return false; 82 if (page_private_nonpointer(page)) 83 return false; 84 85 f2fs_bug_on(F2FS_M_SB(page->mapping), 86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 87 return true; 88 } 89 90 static void f2fs_set_compressed_page(struct page *page, 91 struct inode *inode, pgoff_t index, void *data) 92 { 93 attach_page_private(page, (void *)data); 94 95 /* i_crypto_info and iv index */ 96 page->index = index; 97 page->mapping = inode->i_mapping; 98 } 99 100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 101 { 102 int i; 103 104 for (i = 0; i < len; i++) { 105 if (!cc->rpages[i]) 106 continue; 107 if (unlock) 108 unlock_page(cc->rpages[i]); 109 else 110 put_page(cc->rpages[i]); 111 } 112 } 113 114 static void f2fs_put_rpages(struct compress_ctx *cc) 115 { 116 f2fs_drop_rpages(cc, cc->cluster_size, false); 117 } 118 119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 120 { 121 f2fs_drop_rpages(cc, len, true); 122 } 123 124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 125 struct writeback_control *wbc, bool redirty, int unlock) 126 { 127 unsigned int i; 128 129 for (i = 0; i < cc->cluster_size; i++) { 130 if (!cc->rpages[i]) 131 continue; 132 if (redirty) 133 redirty_page_for_writepage(wbc, cc->rpages[i]); 134 f2fs_put_page(cc->rpages[i], unlock); 135 } 136 } 137 138 struct page *f2fs_compress_control_page(struct page *page) 139 { 140 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 141 } 142 143 int f2fs_init_compress_ctx(struct compress_ctx *cc) 144 { 145 if (cc->rpages) 146 return 0; 147 148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 149 return cc->rpages ? 0 : -ENOMEM; 150 } 151 152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 153 { 154 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 155 cc->rpages = NULL; 156 cc->nr_rpages = 0; 157 cc->nr_cpages = 0; 158 cc->valid_nr_cpages = 0; 159 if (!reuse) 160 cc->cluster_idx = NULL_CLUSTER; 161 } 162 163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 164 { 165 unsigned int cluster_ofs; 166 167 if (!f2fs_cluster_can_merge_page(cc, page->index)) 168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 169 170 cluster_ofs = offset_in_cluster(cc, page->index); 171 cc->rpages[cluster_ofs] = page; 172 cc->nr_rpages++; 173 cc->cluster_idx = cluster_idx(cc, page->index); 174 } 175 176 #ifdef CONFIG_F2FS_FS_LZO 177 static int lzo_init_compress_ctx(struct compress_ctx *cc) 178 { 179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 180 LZO1X_MEM_COMPRESS, GFP_NOFS); 181 if (!cc->private) 182 return -ENOMEM; 183 184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 185 return 0; 186 } 187 188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 189 { 190 kvfree(cc->private); 191 cc->private = NULL; 192 } 193 194 static int lzo_compress_pages(struct compress_ctx *cc) 195 { 196 int ret; 197 198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 199 &cc->clen, cc->private); 200 if (ret != LZO_E_OK) { 201 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 202 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 203 return -EIO; 204 } 205 return 0; 206 } 207 208 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 209 { 210 int ret; 211 212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 213 dic->rbuf, &dic->rlen); 214 if (ret != LZO_E_OK) { 215 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 216 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 217 return -EIO; 218 } 219 220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 221 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 222 "expected:%lu\n", KERN_ERR, 223 F2FS_I_SB(dic->inode)->sb->s_id, 224 dic->rlen, 225 PAGE_SIZE << dic->log_cluster_size); 226 return -EIO; 227 } 228 return 0; 229 } 230 231 static const struct f2fs_compress_ops f2fs_lzo_ops = { 232 .init_compress_ctx = lzo_init_compress_ctx, 233 .destroy_compress_ctx = lzo_destroy_compress_ctx, 234 .compress_pages = lzo_compress_pages, 235 .decompress_pages = lzo_decompress_pages, 236 }; 237 #endif 238 239 #ifdef CONFIG_F2FS_FS_LZ4 240 static int lz4_init_compress_ctx(struct compress_ctx *cc) 241 { 242 unsigned int size = LZ4_MEM_COMPRESS; 243 244 #ifdef CONFIG_F2FS_FS_LZ4HC 245 if (F2FS_I(cc->inode)->i_compress_level) 246 size = LZ4HC_MEM_COMPRESS; 247 #endif 248 249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 250 if (!cc->private) 251 return -ENOMEM; 252 253 /* 254 * we do not change cc->clen to LZ4_compressBound(inputsize) to 255 * adapt worst compress case, because lz4 compressor can handle 256 * output budget properly. 257 */ 258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 259 return 0; 260 } 261 262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 263 { 264 kvfree(cc->private); 265 cc->private = NULL; 266 } 267 268 static int lz4_compress_pages(struct compress_ctx *cc) 269 { 270 int len = -EINVAL; 271 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 272 273 if (!level) 274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 275 cc->clen, cc->private); 276 #ifdef CONFIG_F2FS_FS_LZ4HC 277 else 278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, level, cc->private); 280 #endif 281 if (len < 0) 282 return len; 283 if (!len) 284 return -EAGAIN; 285 286 cc->clen = len; 287 return 0; 288 } 289 290 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 291 { 292 int ret; 293 294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 295 dic->clen, dic->rlen); 296 if (ret < 0) { 297 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 298 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 299 return -EIO; 300 } 301 302 if (ret != PAGE_SIZE << dic->log_cluster_size) { 303 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " 304 "expected:%lu\n", KERN_ERR, 305 F2FS_I_SB(dic->inode)->sb->s_id, ret, 306 PAGE_SIZE << dic->log_cluster_size); 307 return -EIO; 308 } 309 return 0; 310 } 311 312 static bool lz4_is_level_valid(int lvl) 313 { 314 #ifdef CONFIG_F2FS_FS_LZ4HC 315 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL); 316 #else 317 return lvl == 0; 318 #endif 319 } 320 321 static const struct f2fs_compress_ops f2fs_lz4_ops = { 322 .init_compress_ctx = lz4_init_compress_ctx, 323 .destroy_compress_ctx = lz4_destroy_compress_ctx, 324 .compress_pages = lz4_compress_pages, 325 .decompress_pages = lz4_decompress_pages, 326 .is_level_valid = lz4_is_level_valid, 327 }; 328 #endif 329 330 #ifdef CONFIG_F2FS_FS_ZSTD 331 static int zstd_init_compress_ctx(struct compress_ctx *cc) 332 { 333 zstd_parameters params; 334 zstd_cstream *stream; 335 void *workspace; 336 unsigned int workspace_size; 337 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 338 339 /* Need to remain this for backward compatibility */ 340 if (!level) 341 level = F2FS_ZSTD_DEFAULT_CLEVEL; 342 343 params = zstd_get_params(level, cc->rlen); 344 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 345 346 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 347 workspace_size, GFP_NOFS); 348 if (!workspace) 349 return -ENOMEM; 350 351 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 352 if (!stream) { 353 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 354 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 355 __func__); 356 kvfree(workspace); 357 return -EIO; 358 } 359 360 cc->private = workspace; 361 cc->private2 = stream; 362 363 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 364 return 0; 365 } 366 367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 368 { 369 kvfree(cc->private); 370 cc->private = NULL; 371 cc->private2 = NULL; 372 } 373 374 static int zstd_compress_pages(struct compress_ctx *cc) 375 { 376 zstd_cstream *stream = cc->private2; 377 zstd_in_buffer inbuf; 378 zstd_out_buffer outbuf; 379 int src_size = cc->rlen; 380 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 381 int ret; 382 383 inbuf.pos = 0; 384 inbuf.src = cc->rbuf; 385 inbuf.size = src_size; 386 387 outbuf.pos = 0; 388 outbuf.dst = cc->cbuf->cdata; 389 outbuf.size = dst_size; 390 391 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 392 if (zstd_is_error(ret)) { 393 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 394 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 395 __func__, zstd_get_error_code(ret)); 396 return -EIO; 397 } 398 399 ret = zstd_end_stream(stream, &outbuf); 400 if (zstd_is_error(ret)) { 401 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 402 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 403 __func__, zstd_get_error_code(ret)); 404 return -EIO; 405 } 406 407 /* 408 * there is compressed data remained in intermediate buffer due to 409 * no more space in cbuf.cdata 410 */ 411 if (ret) 412 return -EAGAIN; 413 414 cc->clen = outbuf.pos; 415 return 0; 416 } 417 418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 419 { 420 zstd_dstream *stream; 421 void *workspace; 422 unsigned int workspace_size; 423 unsigned int max_window_size = 424 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 425 426 workspace_size = zstd_dstream_workspace_bound(max_window_size); 427 428 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 429 workspace_size, GFP_NOFS); 430 if (!workspace) 431 return -ENOMEM; 432 433 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 434 if (!stream) { 435 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 436 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 437 __func__); 438 kvfree(workspace); 439 return -EIO; 440 } 441 442 dic->private = workspace; 443 dic->private2 = stream; 444 445 return 0; 446 } 447 448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 449 { 450 kvfree(dic->private); 451 dic->private = NULL; 452 dic->private2 = NULL; 453 } 454 455 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 456 { 457 zstd_dstream *stream = dic->private2; 458 zstd_in_buffer inbuf; 459 zstd_out_buffer outbuf; 460 int ret; 461 462 inbuf.pos = 0; 463 inbuf.src = dic->cbuf->cdata; 464 inbuf.size = dic->clen; 465 466 outbuf.pos = 0; 467 outbuf.dst = dic->rbuf; 468 outbuf.size = dic->rlen; 469 470 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 471 if (zstd_is_error(ret)) { 472 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 473 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 474 __func__, zstd_get_error_code(ret)); 475 return -EIO; 476 } 477 478 if (dic->rlen != outbuf.pos) { 479 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 480 "expected:%lu\n", KERN_ERR, 481 F2FS_I_SB(dic->inode)->sb->s_id, 482 __func__, dic->rlen, 483 PAGE_SIZE << dic->log_cluster_size); 484 return -EIO; 485 } 486 487 return 0; 488 } 489 490 static bool zstd_is_level_valid(int lvl) 491 { 492 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel(); 493 } 494 495 static const struct f2fs_compress_ops f2fs_zstd_ops = { 496 .init_compress_ctx = zstd_init_compress_ctx, 497 .destroy_compress_ctx = zstd_destroy_compress_ctx, 498 .compress_pages = zstd_compress_pages, 499 .init_decompress_ctx = zstd_init_decompress_ctx, 500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 501 .decompress_pages = zstd_decompress_pages, 502 .is_level_valid = zstd_is_level_valid, 503 }; 504 #endif 505 506 #ifdef CONFIG_F2FS_FS_LZO 507 #ifdef CONFIG_F2FS_FS_LZORLE 508 static int lzorle_compress_pages(struct compress_ctx *cc) 509 { 510 int ret; 511 512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 513 &cc->clen, cc->private); 514 if (ret != LZO_E_OK) { 515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 517 return -EIO; 518 } 519 return 0; 520 } 521 522 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 523 .init_compress_ctx = lzo_init_compress_ctx, 524 .destroy_compress_ctx = lzo_destroy_compress_ctx, 525 .compress_pages = lzorle_compress_pages, 526 .decompress_pages = lzo_decompress_pages, 527 }; 528 #endif 529 #endif 530 531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 532 #ifdef CONFIG_F2FS_FS_LZO 533 &f2fs_lzo_ops, 534 #else 535 NULL, 536 #endif 537 #ifdef CONFIG_F2FS_FS_LZ4 538 &f2fs_lz4_ops, 539 #else 540 NULL, 541 #endif 542 #ifdef CONFIG_F2FS_FS_ZSTD 543 &f2fs_zstd_ops, 544 #else 545 NULL, 546 #endif 547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 548 &f2fs_lzorle_ops, 549 #else 550 NULL, 551 #endif 552 }; 553 554 bool f2fs_is_compress_backend_ready(struct inode *inode) 555 { 556 if (!f2fs_compressed_file(inode)) 557 return true; 558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 559 } 560 561 bool f2fs_is_compress_level_valid(int alg, int lvl) 562 { 563 const struct f2fs_compress_ops *cops = f2fs_cops[alg]; 564 565 if (cops->is_level_valid) 566 return cops->is_level_valid(lvl); 567 568 return lvl == 0; 569 } 570 571 static mempool_t *compress_page_pool; 572 static int num_compress_pages = 512; 573 module_param(num_compress_pages, uint, 0444); 574 MODULE_PARM_DESC(num_compress_pages, 575 "Number of intermediate compress pages to preallocate"); 576 577 int __init f2fs_init_compress_mempool(void) 578 { 579 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 580 return compress_page_pool ? 0 : -ENOMEM; 581 } 582 583 void f2fs_destroy_compress_mempool(void) 584 { 585 mempool_destroy(compress_page_pool); 586 } 587 588 static struct page *f2fs_compress_alloc_page(void) 589 { 590 struct page *page; 591 592 page = mempool_alloc(compress_page_pool, GFP_NOFS); 593 lock_page(page); 594 595 return page; 596 } 597 598 static void f2fs_compress_free_page(struct page *page) 599 { 600 if (!page) 601 return; 602 detach_page_private(page); 603 page->mapping = NULL; 604 unlock_page(page); 605 mempool_free(page, compress_page_pool); 606 } 607 608 #define MAX_VMAP_RETRIES 3 609 610 static void *f2fs_vmap(struct page **pages, unsigned int count) 611 { 612 int i; 613 void *buf = NULL; 614 615 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 616 buf = vm_map_ram(pages, count, -1); 617 if (buf) 618 break; 619 vm_unmap_aliases(); 620 } 621 return buf; 622 } 623 624 static int f2fs_compress_pages(struct compress_ctx *cc) 625 { 626 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 627 const struct f2fs_compress_ops *cops = 628 f2fs_cops[fi->i_compress_algorithm]; 629 unsigned int max_len, new_nr_cpages; 630 u32 chksum = 0; 631 int i, ret; 632 633 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 634 cc->cluster_size, fi->i_compress_algorithm); 635 636 if (cops->init_compress_ctx) { 637 ret = cops->init_compress_ctx(cc); 638 if (ret) 639 goto out; 640 } 641 642 max_len = COMPRESS_HEADER_SIZE + cc->clen; 643 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 644 cc->valid_nr_cpages = cc->nr_cpages; 645 646 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 647 if (!cc->cpages) { 648 ret = -ENOMEM; 649 goto destroy_compress_ctx; 650 } 651 652 for (i = 0; i < cc->nr_cpages; i++) { 653 cc->cpages[i] = f2fs_compress_alloc_page(); 654 if (!cc->cpages[i]) { 655 ret = -ENOMEM; 656 goto out_free_cpages; 657 } 658 } 659 660 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 661 if (!cc->rbuf) { 662 ret = -ENOMEM; 663 goto out_free_cpages; 664 } 665 666 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 667 if (!cc->cbuf) { 668 ret = -ENOMEM; 669 goto out_vunmap_rbuf; 670 } 671 672 ret = cops->compress_pages(cc); 673 if (ret) 674 goto out_vunmap_cbuf; 675 676 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 677 678 if (cc->clen > max_len) { 679 ret = -EAGAIN; 680 goto out_vunmap_cbuf; 681 } 682 683 cc->cbuf->clen = cpu_to_le32(cc->clen); 684 685 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 686 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 687 cc->cbuf->cdata, cc->clen); 688 cc->cbuf->chksum = cpu_to_le32(chksum); 689 690 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 691 cc->cbuf->reserved[i] = cpu_to_le32(0); 692 693 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 694 695 /* zero out any unused part of the last page */ 696 memset(&cc->cbuf->cdata[cc->clen], 0, 697 (new_nr_cpages * PAGE_SIZE) - 698 (cc->clen + COMPRESS_HEADER_SIZE)); 699 700 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 701 vm_unmap_ram(cc->rbuf, cc->cluster_size); 702 703 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 704 f2fs_compress_free_page(cc->cpages[i]); 705 cc->cpages[i] = NULL; 706 } 707 708 if (cops->destroy_compress_ctx) 709 cops->destroy_compress_ctx(cc); 710 711 cc->valid_nr_cpages = new_nr_cpages; 712 713 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 714 cc->clen, ret); 715 return 0; 716 717 out_vunmap_cbuf: 718 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 719 out_vunmap_rbuf: 720 vm_unmap_ram(cc->rbuf, cc->cluster_size); 721 out_free_cpages: 722 for (i = 0; i < cc->nr_cpages; i++) { 723 if (cc->cpages[i]) 724 f2fs_compress_free_page(cc->cpages[i]); 725 } 726 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 727 cc->cpages = NULL; 728 destroy_compress_ctx: 729 if (cops->destroy_compress_ctx) 730 cops->destroy_compress_ctx(cc); 731 out: 732 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 733 cc->clen, ret); 734 return ret; 735 } 736 737 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 738 bool pre_alloc); 739 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 740 bool bypass_destroy_callback, bool pre_alloc); 741 742 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 743 { 744 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 745 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 746 const struct f2fs_compress_ops *cops = 747 f2fs_cops[fi->i_compress_algorithm]; 748 bool bypass_callback = false; 749 int ret; 750 751 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 752 dic->cluster_size, fi->i_compress_algorithm); 753 754 if (dic->failed) { 755 ret = -EIO; 756 goto out_end_io; 757 } 758 759 ret = f2fs_prepare_decomp_mem(dic, false); 760 if (ret) { 761 bypass_callback = true; 762 goto out_release; 763 } 764 765 dic->clen = le32_to_cpu(dic->cbuf->clen); 766 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 767 768 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 769 ret = -EFSCORRUPTED; 770 771 /* Avoid f2fs_commit_super in irq context */ 772 if (!in_task) 773 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION); 774 else 775 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 776 goto out_release; 777 } 778 779 ret = cops->decompress_pages(dic); 780 781 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 782 u32 provided = le32_to_cpu(dic->cbuf->chksum); 783 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 784 785 if (provided != calculated) { 786 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 787 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 788 printk_ratelimited( 789 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 790 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 791 provided, calculated); 792 } 793 set_sbi_flag(sbi, SBI_NEED_FSCK); 794 } 795 } 796 797 out_release: 798 f2fs_release_decomp_mem(dic, bypass_callback, false); 799 800 out_end_io: 801 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 802 dic->clen, ret); 803 f2fs_decompress_end_io(dic, ret, in_task); 804 } 805 806 /* 807 * This is called when a page of a compressed cluster has been read from disk 808 * (or failed to be read from disk). It checks whether this page was the last 809 * page being waited on in the cluster, and if so, it decompresses the cluster 810 * (or in the case of a failure, cleans up without actually decompressing). 811 */ 812 void f2fs_end_read_compressed_page(struct page *page, bool failed, 813 block_t blkaddr, bool in_task) 814 { 815 struct decompress_io_ctx *dic = 816 (struct decompress_io_ctx *)page_private(page); 817 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 818 819 dec_page_count(sbi, F2FS_RD_DATA); 820 821 if (failed) 822 WRITE_ONCE(dic->failed, true); 823 else if (blkaddr && in_task) 824 f2fs_cache_compressed_page(sbi, page, 825 dic->inode->i_ino, blkaddr); 826 827 if (atomic_dec_and_test(&dic->remaining_pages)) 828 f2fs_decompress_cluster(dic, in_task); 829 } 830 831 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 832 { 833 if (cc->cluster_idx == NULL_CLUSTER) 834 return true; 835 return cc->cluster_idx == cluster_idx(cc, index); 836 } 837 838 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 839 { 840 return cc->nr_rpages == 0; 841 } 842 843 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 844 { 845 return cc->cluster_size == cc->nr_rpages; 846 } 847 848 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 849 { 850 if (f2fs_cluster_is_empty(cc)) 851 return true; 852 return is_page_in_cluster(cc, index); 853 } 854 855 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 856 int index, int nr_pages, bool uptodate) 857 { 858 unsigned long pgidx = pages[index]->index; 859 int i = uptodate ? 0 : 1; 860 861 /* 862 * when uptodate set to true, try to check all pages in cluster is 863 * uptodate or not. 864 */ 865 if (uptodate && (pgidx % cc->cluster_size)) 866 return false; 867 868 if (nr_pages - index < cc->cluster_size) 869 return false; 870 871 for (; i < cc->cluster_size; i++) { 872 if (pages[index + i]->index != pgidx + i) 873 return false; 874 if (uptodate && !PageUptodate(pages[index + i])) 875 return false; 876 } 877 878 return true; 879 } 880 881 static bool cluster_has_invalid_data(struct compress_ctx *cc) 882 { 883 loff_t i_size = i_size_read(cc->inode); 884 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 885 int i; 886 887 for (i = 0; i < cc->cluster_size; i++) { 888 struct page *page = cc->rpages[i]; 889 890 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 891 892 /* beyond EOF */ 893 if (page->index >= nr_pages) 894 return true; 895 } 896 return false; 897 } 898 899 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 900 { 901 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 902 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 903 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 904 int cluster_end = 0; 905 int i; 906 char *reason = ""; 907 908 if (!compressed) 909 return false; 910 911 /* [..., COMPR_ADDR, ...] */ 912 if (dn->ofs_in_node % cluster_size) { 913 reason = "[*|C|*|*]"; 914 goto out; 915 } 916 917 for (i = 1; i < cluster_size; i++) { 918 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 919 dn->ofs_in_node + i); 920 921 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 922 if (blkaddr == COMPRESS_ADDR) { 923 reason = "[C|*|C|*]"; 924 goto out; 925 } 926 if (!__is_valid_data_blkaddr(blkaddr)) { 927 if (!cluster_end) 928 cluster_end = i; 929 continue; 930 } 931 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 932 if (cluster_end) { 933 reason = "[C|N|N|V]"; 934 goto out; 935 } 936 } 937 return false; 938 out: 939 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 940 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 941 set_sbi_flag(sbi, SBI_NEED_FSCK); 942 return true; 943 } 944 945 static int __f2fs_cluster_blocks(struct inode *inode, 946 unsigned int cluster_idx, bool compr) 947 { 948 struct dnode_of_data dn; 949 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 950 unsigned int start_idx = cluster_idx << 951 F2FS_I(inode)->i_log_cluster_size; 952 int ret; 953 954 set_new_dnode(&dn, inode, NULL, NULL, 0); 955 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 956 if (ret) { 957 if (ret == -ENOENT) 958 ret = 0; 959 goto fail; 960 } 961 962 if (f2fs_sanity_check_cluster(&dn)) { 963 ret = -EFSCORRUPTED; 964 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER); 965 goto fail; 966 } 967 968 if (dn.data_blkaddr == COMPRESS_ADDR) { 969 int i; 970 971 ret = 1; 972 for (i = 1; i < cluster_size; i++) { 973 block_t blkaddr; 974 975 blkaddr = data_blkaddr(dn.inode, 976 dn.node_page, dn.ofs_in_node + i); 977 if (compr) { 978 if (__is_valid_data_blkaddr(blkaddr)) 979 ret++; 980 } else { 981 if (blkaddr != NULL_ADDR) 982 ret++; 983 } 984 } 985 986 f2fs_bug_on(F2FS_I_SB(inode), 987 !compr && ret != cluster_size && 988 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 989 } 990 fail: 991 f2fs_put_dnode(&dn); 992 return ret; 993 } 994 995 /* return # of compressed blocks in compressed cluster */ 996 static int f2fs_compressed_blocks(struct compress_ctx *cc) 997 { 998 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 999 } 1000 1001 /* return # of valid blocks in compressed cluster */ 1002 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 1003 { 1004 return __f2fs_cluster_blocks(inode, 1005 index >> F2FS_I(inode)->i_log_cluster_size, 1006 false); 1007 } 1008 1009 static bool cluster_may_compress(struct compress_ctx *cc) 1010 { 1011 if (!f2fs_need_compress_data(cc->inode)) 1012 return false; 1013 if (f2fs_is_atomic_file(cc->inode)) 1014 return false; 1015 if (!f2fs_cluster_is_full(cc)) 1016 return false; 1017 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1018 return false; 1019 return !cluster_has_invalid_data(cc); 1020 } 1021 1022 static void set_cluster_writeback(struct compress_ctx *cc) 1023 { 1024 int i; 1025 1026 for (i = 0; i < cc->cluster_size; i++) { 1027 if (cc->rpages[i]) 1028 set_page_writeback(cc->rpages[i]); 1029 } 1030 } 1031 1032 static void set_cluster_dirty(struct compress_ctx *cc) 1033 { 1034 int i; 1035 1036 for (i = 0; i < cc->cluster_size; i++) 1037 if (cc->rpages[i]) 1038 set_page_dirty(cc->rpages[i]); 1039 } 1040 1041 static int prepare_compress_overwrite(struct compress_ctx *cc, 1042 struct page **pagep, pgoff_t index, void **fsdata) 1043 { 1044 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1045 struct address_space *mapping = cc->inode->i_mapping; 1046 struct page *page; 1047 sector_t last_block_in_bio; 1048 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1049 pgoff_t start_idx = start_idx_of_cluster(cc); 1050 int i, ret; 1051 1052 retry: 1053 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1054 if (ret <= 0) 1055 return ret; 1056 1057 ret = f2fs_init_compress_ctx(cc); 1058 if (ret) 1059 return ret; 1060 1061 /* keep page reference to avoid page reclaim */ 1062 for (i = 0; i < cc->cluster_size; i++) { 1063 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1064 fgp_flag, GFP_NOFS); 1065 if (!page) { 1066 ret = -ENOMEM; 1067 goto unlock_pages; 1068 } 1069 1070 if (PageUptodate(page)) 1071 f2fs_put_page(page, 1); 1072 else 1073 f2fs_compress_ctx_add_page(cc, page); 1074 } 1075 1076 if (!f2fs_cluster_is_empty(cc)) { 1077 struct bio *bio = NULL; 1078 1079 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1080 &last_block_in_bio, false, true); 1081 f2fs_put_rpages(cc); 1082 f2fs_destroy_compress_ctx(cc, true); 1083 if (ret) 1084 goto out; 1085 if (bio) 1086 f2fs_submit_read_bio(sbi, bio, DATA); 1087 1088 ret = f2fs_init_compress_ctx(cc); 1089 if (ret) 1090 goto out; 1091 } 1092 1093 for (i = 0; i < cc->cluster_size; i++) { 1094 f2fs_bug_on(sbi, cc->rpages[i]); 1095 1096 page = find_lock_page(mapping, start_idx + i); 1097 if (!page) { 1098 /* page can be truncated */ 1099 goto release_and_retry; 1100 } 1101 1102 f2fs_wait_on_page_writeback(page, DATA, true, true); 1103 f2fs_compress_ctx_add_page(cc, page); 1104 1105 if (!PageUptodate(page)) { 1106 release_and_retry: 1107 f2fs_put_rpages(cc); 1108 f2fs_unlock_rpages(cc, i + 1); 1109 f2fs_destroy_compress_ctx(cc, true); 1110 goto retry; 1111 } 1112 } 1113 1114 if (likely(!ret)) { 1115 *fsdata = cc->rpages; 1116 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1117 return cc->cluster_size; 1118 } 1119 1120 unlock_pages: 1121 f2fs_put_rpages(cc); 1122 f2fs_unlock_rpages(cc, i); 1123 f2fs_destroy_compress_ctx(cc, true); 1124 out: 1125 return ret; 1126 } 1127 1128 int f2fs_prepare_compress_overwrite(struct inode *inode, 1129 struct page **pagep, pgoff_t index, void **fsdata) 1130 { 1131 struct compress_ctx cc = { 1132 .inode = inode, 1133 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1134 .cluster_size = F2FS_I(inode)->i_cluster_size, 1135 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1136 .rpages = NULL, 1137 .nr_rpages = 0, 1138 }; 1139 1140 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1141 } 1142 1143 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1144 pgoff_t index, unsigned copied) 1145 1146 { 1147 struct compress_ctx cc = { 1148 .inode = inode, 1149 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1150 .cluster_size = F2FS_I(inode)->i_cluster_size, 1151 .rpages = fsdata, 1152 }; 1153 bool first_index = (index == cc.rpages[0]->index); 1154 1155 if (copied) 1156 set_cluster_dirty(&cc); 1157 1158 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1159 f2fs_destroy_compress_ctx(&cc, false); 1160 1161 return first_index; 1162 } 1163 1164 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1165 { 1166 void *fsdata = NULL; 1167 struct page *pagep; 1168 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1169 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1170 log_cluster_size; 1171 int err; 1172 1173 err = f2fs_is_compressed_cluster(inode, start_idx); 1174 if (err < 0) 1175 return err; 1176 1177 /* truncate normal cluster */ 1178 if (!err) 1179 return f2fs_do_truncate_blocks(inode, from, lock); 1180 1181 /* truncate compressed cluster */ 1182 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1183 start_idx, &fsdata); 1184 1185 /* should not be a normal cluster */ 1186 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1187 1188 if (err <= 0) 1189 return err; 1190 1191 if (err > 0) { 1192 struct page **rpages = fsdata; 1193 int cluster_size = F2FS_I(inode)->i_cluster_size; 1194 int i; 1195 1196 for (i = cluster_size - 1; i >= 0; i--) { 1197 loff_t start = rpages[i]->index << PAGE_SHIFT; 1198 1199 if (from <= start) { 1200 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1201 } else { 1202 zero_user_segment(rpages[i], from - start, 1203 PAGE_SIZE); 1204 break; 1205 } 1206 } 1207 1208 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1209 } 1210 return 0; 1211 } 1212 1213 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1214 int *submitted, 1215 struct writeback_control *wbc, 1216 enum iostat_type io_type) 1217 { 1218 struct inode *inode = cc->inode; 1219 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1220 struct f2fs_inode_info *fi = F2FS_I(inode); 1221 struct f2fs_io_info fio = { 1222 .sbi = sbi, 1223 .ino = cc->inode->i_ino, 1224 .type = DATA, 1225 .op = REQ_OP_WRITE, 1226 .op_flags = wbc_to_write_flags(wbc), 1227 .old_blkaddr = NEW_ADDR, 1228 .page = NULL, 1229 .encrypted_page = NULL, 1230 .compressed_page = NULL, 1231 .submitted = 0, 1232 .io_type = io_type, 1233 .io_wbc = wbc, 1234 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1235 1 : 0, 1236 }; 1237 struct dnode_of_data dn; 1238 struct node_info ni; 1239 struct compress_io_ctx *cic; 1240 pgoff_t start_idx = start_idx_of_cluster(cc); 1241 unsigned int last_index = cc->cluster_size - 1; 1242 loff_t psize; 1243 int i, err; 1244 bool quota_inode = IS_NOQUOTA(inode); 1245 1246 /* we should bypass data pages to proceed the kworker jobs */ 1247 if (unlikely(f2fs_cp_error(sbi))) { 1248 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1249 goto out_free; 1250 } 1251 1252 if (quota_inode) { 1253 /* 1254 * We need to wait for node_write to avoid block allocation during 1255 * checkpoint. This can only happen to quota writes which can cause 1256 * the below discard race condition. 1257 */ 1258 f2fs_down_read(&sbi->node_write); 1259 } else if (!f2fs_trylock_op(sbi)) { 1260 goto out_free; 1261 } 1262 1263 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1264 1265 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1266 if (err) 1267 goto out_unlock_op; 1268 1269 for (i = 0; i < cc->cluster_size; i++) { 1270 if (data_blkaddr(dn.inode, dn.node_page, 1271 dn.ofs_in_node + i) == NULL_ADDR) 1272 goto out_put_dnode; 1273 } 1274 1275 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1276 1277 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1278 if (err) 1279 goto out_put_dnode; 1280 1281 fio.version = ni.version; 1282 1283 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1284 if (!cic) 1285 goto out_put_dnode; 1286 1287 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1288 cic->inode = inode; 1289 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1290 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1291 if (!cic->rpages) 1292 goto out_put_cic; 1293 1294 cic->nr_rpages = cc->cluster_size; 1295 1296 for (i = 0; i < cc->valid_nr_cpages; i++) { 1297 f2fs_set_compressed_page(cc->cpages[i], inode, 1298 cc->rpages[i + 1]->index, cic); 1299 fio.compressed_page = cc->cpages[i]; 1300 1301 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1302 dn.ofs_in_node + i + 1); 1303 1304 /* wait for GCed page writeback via META_MAPPING */ 1305 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1306 1307 if (fio.encrypted) { 1308 fio.page = cc->rpages[i + 1]; 1309 err = f2fs_encrypt_one_page(&fio); 1310 if (err) 1311 goto out_destroy_crypt; 1312 cc->cpages[i] = fio.encrypted_page; 1313 } 1314 } 1315 1316 set_cluster_writeback(cc); 1317 1318 for (i = 0; i < cc->cluster_size; i++) 1319 cic->rpages[i] = cc->rpages[i]; 1320 1321 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1322 block_t blkaddr; 1323 1324 blkaddr = f2fs_data_blkaddr(&dn); 1325 fio.page = cc->rpages[i]; 1326 fio.old_blkaddr = blkaddr; 1327 1328 /* cluster header */ 1329 if (i == 0) { 1330 if (blkaddr == COMPRESS_ADDR) 1331 fio.compr_blocks++; 1332 if (__is_valid_data_blkaddr(blkaddr)) 1333 f2fs_invalidate_blocks(sbi, blkaddr); 1334 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1335 goto unlock_continue; 1336 } 1337 1338 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1339 fio.compr_blocks++; 1340 1341 if (i > cc->valid_nr_cpages) { 1342 if (__is_valid_data_blkaddr(blkaddr)) { 1343 f2fs_invalidate_blocks(sbi, blkaddr); 1344 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1345 } 1346 goto unlock_continue; 1347 } 1348 1349 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1350 1351 if (fio.encrypted) 1352 fio.encrypted_page = cc->cpages[i - 1]; 1353 else 1354 fio.compressed_page = cc->cpages[i - 1]; 1355 1356 cc->cpages[i - 1] = NULL; 1357 f2fs_outplace_write_data(&dn, &fio); 1358 (*submitted)++; 1359 unlock_continue: 1360 inode_dec_dirty_pages(cc->inode); 1361 unlock_page(fio.page); 1362 } 1363 1364 if (fio.compr_blocks) 1365 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1366 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1367 add_compr_block_stat(inode, cc->valid_nr_cpages); 1368 1369 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1370 if (cc->cluster_idx == 0) 1371 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1372 1373 f2fs_put_dnode(&dn); 1374 if (quota_inode) 1375 f2fs_up_read(&sbi->node_write); 1376 else 1377 f2fs_unlock_op(sbi); 1378 1379 spin_lock(&fi->i_size_lock); 1380 if (fi->last_disk_size < psize) 1381 fi->last_disk_size = psize; 1382 spin_unlock(&fi->i_size_lock); 1383 1384 f2fs_put_rpages(cc); 1385 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1386 cc->cpages = NULL; 1387 f2fs_destroy_compress_ctx(cc, false); 1388 return 0; 1389 1390 out_destroy_crypt: 1391 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1392 1393 for (--i; i >= 0; i--) 1394 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1395 out_put_cic: 1396 kmem_cache_free(cic_entry_slab, cic); 1397 out_put_dnode: 1398 f2fs_put_dnode(&dn); 1399 out_unlock_op: 1400 if (quota_inode) 1401 f2fs_up_read(&sbi->node_write); 1402 else 1403 f2fs_unlock_op(sbi); 1404 out_free: 1405 for (i = 0; i < cc->valid_nr_cpages; i++) { 1406 f2fs_compress_free_page(cc->cpages[i]); 1407 cc->cpages[i] = NULL; 1408 } 1409 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1410 cc->cpages = NULL; 1411 return -EAGAIN; 1412 } 1413 1414 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1415 { 1416 struct f2fs_sb_info *sbi = bio->bi_private; 1417 struct compress_io_ctx *cic = 1418 (struct compress_io_ctx *)page_private(page); 1419 int i; 1420 1421 if (unlikely(bio->bi_status)) 1422 mapping_set_error(cic->inode->i_mapping, -EIO); 1423 1424 f2fs_compress_free_page(page); 1425 1426 dec_page_count(sbi, F2FS_WB_DATA); 1427 1428 if (atomic_dec_return(&cic->pending_pages)) 1429 return; 1430 1431 for (i = 0; i < cic->nr_rpages; i++) { 1432 WARN_ON(!cic->rpages[i]); 1433 clear_page_private_gcing(cic->rpages[i]); 1434 end_page_writeback(cic->rpages[i]); 1435 } 1436 1437 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1438 kmem_cache_free(cic_entry_slab, cic); 1439 } 1440 1441 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1442 int *submitted, 1443 struct writeback_control *wbc, 1444 enum iostat_type io_type) 1445 { 1446 struct address_space *mapping = cc->inode->i_mapping; 1447 int _submitted, compr_blocks, ret, i; 1448 1449 compr_blocks = f2fs_compressed_blocks(cc); 1450 1451 for (i = 0; i < cc->cluster_size; i++) { 1452 if (!cc->rpages[i]) 1453 continue; 1454 1455 redirty_page_for_writepage(wbc, cc->rpages[i]); 1456 unlock_page(cc->rpages[i]); 1457 } 1458 1459 if (compr_blocks < 0) 1460 return compr_blocks; 1461 1462 for (i = 0; i < cc->cluster_size; i++) { 1463 if (!cc->rpages[i]) 1464 continue; 1465 retry_write: 1466 lock_page(cc->rpages[i]); 1467 1468 if (cc->rpages[i]->mapping != mapping) { 1469 continue_unlock: 1470 unlock_page(cc->rpages[i]); 1471 continue; 1472 } 1473 1474 if (!PageDirty(cc->rpages[i])) 1475 goto continue_unlock; 1476 1477 if (PageWriteback(cc->rpages[i])) { 1478 if (wbc->sync_mode == WB_SYNC_NONE) 1479 goto continue_unlock; 1480 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1481 } 1482 1483 if (!clear_page_dirty_for_io(cc->rpages[i])) 1484 goto continue_unlock; 1485 1486 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1487 NULL, NULL, wbc, io_type, 1488 compr_blocks, false); 1489 if (ret) { 1490 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1491 unlock_page(cc->rpages[i]); 1492 ret = 0; 1493 } else if (ret == -EAGAIN) { 1494 /* 1495 * for quota file, just redirty left pages to 1496 * avoid deadlock caused by cluster update race 1497 * from foreground operation. 1498 */ 1499 if (IS_NOQUOTA(cc->inode)) 1500 return 0; 1501 ret = 0; 1502 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1503 goto retry_write; 1504 } 1505 return ret; 1506 } 1507 1508 *submitted += _submitted; 1509 } 1510 1511 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1512 1513 return 0; 1514 } 1515 1516 int f2fs_write_multi_pages(struct compress_ctx *cc, 1517 int *submitted, 1518 struct writeback_control *wbc, 1519 enum iostat_type io_type) 1520 { 1521 int err; 1522 1523 *submitted = 0; 1524 if (cluster_may_compress(cc)) { 1525 err = f2fs_compress_pages(cc); 1526 if (err == -EAGAIN) { 1527 add_compr_block_stat(cc->inode, cc->cluster_size); 1528 goto write; 1529 } else if (err) { 1530 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1531 goto destroy_out; 1532 } 1533 1534 err = f2fs_write_compressed_pages(cc, submitted, 1535 wbc, io_type); 1536 if (!err) 1537 return 0; 1538 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1539 } 1540 write: 1541 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1542 1543 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1544 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1545 destroy_out: 1546 f2fs_destroy_compress_ctx(cc, false); 1547 return err; 1548 } 1549 1550 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1551 bool pre_alloc) 1552 { 1553 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1554 } 1555 1556 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1557 bool pre_alloc) 1558 { 1559 const struct f2fs_compress_ops *cops = 1560 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1561 int i; 1562 1563 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1564 return 0; 1565 1566 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1567 if (!dic->tpages) 1568 return -ENOMEM; 1569 1570 for (i = 0; i < dic->cluster_size; i++) { 1571 if (dic->rpages[i]) { 1572 dic->tpages[i] = dic->rpages[i]; 1573 continue; 1574 } 1575 1576 dic->tpages[i] = f2fs_compress_alloc_page(); 1577 if (!dic->tpages[i]) 1578 return -ENOMEM; 1579 } 1580 1581 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1582 if (!dic->rbuf) 1583 return -ENOMEM; 1584 1585 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1586 if (!dic->cbuf) 1587 return -ENOMEM; 1588 1589 if (cops->init_decompress_ctx) 1590 return cops->init_decompress_ctx(dic); 1591 1592 return 0; 1593 } 1594 1595 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1596 bool bypass_destroy_callback, bool pre_alloc) 1597 { 1598 const struct f2fs_compress_ops *cops = 1599 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1600 1601 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1602 return; 1603 1604 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1605 cops->destroy_decompress_ctx(dic); 1606 1607 if (dic->cbuf) 1608 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1609 1610 if (dic->rbuf) 1611 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1612 } 1613 1614 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1615 bool bypass_destroy_callback); 1616 1617 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1618 { 1619 struct decompress_io_ctx *dic; 1620 pgoff_t start_idx = start_idx_of_cluster(cc); 1621 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1622 int i, ret; 1623 1624 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1625 if (!dic) 1626 return ERR_PTR(-ENOMEM); 1627 1628 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1629 if (!dic->rpages) { 1630 kmem_cache_free(dic_entry_slab, dic); 1631 return ERR_PTR(-ENOMEM); 1632 } 1633 1634 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1635 dic->inode = cc->inode; 1636 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1637 dic->cluster_idx = cc->cluster_idx; 1638 dic->cluster_size = cc->cluster_size; 1639 dic->log_cluster_size = cc->log_cluster_size; 1640 dic->nr_cpages = cc->nr_cpages; 1641 refcount_set(&dic->refcnt, 1); 1642 dic->failed = false; 1643 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1644 1645 for (i = 0; i < dic->cluster_size; i++) 1646 dic->rpages[i] = cc->rpages[i]; 1647 dic->nr_rpages = cc->cluster_size; 1648 1649 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1650 if (!dic->cpages) { 1651 ret = -ENOMEM; 1652 goto out_free; 1653 } 1654 1655 for (i = 0; i < dic->nr_cpages; i++) { 1656 struct page *page; 1657 1658 page = f2fs_compress_alloc_page(); 1659 if (!page) { 1660 ret = -ENOMEM; 1661 goto out_free; 1662 } 1663 1664 f2fs_set_compressed_page(page, cc->inode, 1665 start_idx + i + 1, dic); 1666 dic->cpages[i] = page; 1667 } 1668 1669 ret = f2fs_prepare_decomp_mem(dic, true); 1670 if (ret) 1671 goto out_free; 1672 1673 return dic; 1674 1675 out_free: 1676 f2fs_free_dic(dic, true); 1677 return ERR_PTR(ret); 1678 } 1679 1680 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1681 bool bypass_destroy_callback) 1682 { 1683 int i; 1684 1685 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1686 1687 if (dic->tpages) { 1688 for (i = 0; i < dic->cluster_size; i++) { 1689 if (dic->rpages[i]) 1690 continue; 1691 if (!dic->tpages[i]) 1692 continue; 1693 f2fs_compress_free_page(dic->tpages[i]); 1694 } 1695 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1696 } 1697 1698 if (dic->cpages) { 1699 for (i = 0; i < dic->nr_cpages; i++) { 1700 if (!dic->cpages[i]) 1701 continue; 1702 f2fs_compress_free_page(dic->cpages[i]); 1703 } 1704 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1705 } 1706 1707 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1708 kmem_cache_free(dic_entry_slab, dic); 1709 } 1710 1711 static void f2fs_late_free_dic(struct work_struct *work) 1712 { 1713 struct decompress_io_ctx *dic = 1714 container_of(work, struct decompress_io_ctx, free_work); 1715 1716 f2fs_free_dic(dic, false); 1717 } 1718 1719 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1720 { 1721 if (refcount_dec_and_test(&dic->refcnt)) { 1722 if (in_task) { 1723 f2fs_free_dic(dic, false); 1724 } else { 1725 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1726 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1727 &dic->free_work); 1728 } 1729 } 1730 } 1731 1732 static void f2fs_verify_cluster(struct work_struct *work) 1733 { 1734 struct decompress_io_ctx *dic = 1735 container_of(work, struct decompress_io_ctx, verity_work); 1736 int i; 1737 1738 /* Verify, update, and unlock the decompressed pages. */ 1739 for (i = 0; i < dic->cluster_size; i++) { 1740 struct page *rpage = dic->rpages[i]; 1741 1742 if (!rpage) 1743 continue; 1744 1745 if (fsverity_verify_page(rpage)) 1746 SetPageUptodate(rpage); 1747 else 1748 ClearPageUptodate(rpage); 1749 unlock_page(rpage); 1750 } 1751 1752 f2fs_put_dic(dic, true); 1753 } 1754 1755 /* 1756 * This is called when a compressed cluster has been decompressed 1757 * (or failed to be read and/or decompressed). 1758 */ 1759 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1760 bool in_task) 1761 { 1762 int i; 1763 1764 if (!failed && dic->need_verity) { 1765 /* 1766 * Note that to avoid deadlocks, the verity work can't be done 1767 * on the decompression workqueue. This is because verifying 1768 * the data pages can involve reading metadata pages from the 1769 * file, and these metadata pages may be compressed. 1770 */ 1771 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1772 fsverity_enqueue_verify_work(&dic->verity_work); 1773 return; 1774 } 1775 1776 /* Update and unlock the cluster's pagecache pages. */ 1777 for (i = 0; i < dic->cluster_size; i++) { 1778 struct page *rpage = dic->rpages[i]; 1779 1780 if (!rpage) 1781 continue; 1782 1783 if (failed) 1784 ClearPageUptodate(rpage); 1785 else 1786 SetPageUptodate(rpage); 1787 unlock_page(rpage); 1788 } 1789 1790 /* 1791 * Release the reference to the decompress_io_ctx that was being held 1792 * for I/O completion. 1793 */ 1794 f2fs_put_dic(dic, in_task); 1795 } 1796 1797 /* 1798 * Put a reference to a compressed page's decompress_io_ctx. 1799 * 1800 * This is called when the page is no longer needed and can be freed. 1801 */ 1802 void f2fs_put_page_dic(struct page *page, bool in_task) 1803 { 1804 struct decompress_io_ctx *dic = 1805 (struct decompress_io_ctx *)page_private(page); 1806 1807 f2fs_put_dic(dic, in_task); 1808 } 1809 1810 /* 1811 * check whether cluster blocks are contiguous, and add extent cache entry 1812 * only if cluster blocks are logically and physically contiguous. 1813 */ 1814 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) 1815 { 1816 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; 1817 int i = compressed ? 1 : 0; 1818 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1819 dn->ofs_in_node + i); 1820 1821 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1822 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1823 dn->ofs_in_node + i); 1824 1825 if (!__is_valid_data_blkaddr(blkaddr)) 1826 break; 1827 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1828 return 0; 1829 } 1830 1831 return compressed ? i - 1 : i; 1832 } 1833 1834 const struct address_space_operations f2fs_compress_aops = { 1835 .release_folio = f2fs_release_folio, 1836 .invalidate_folio = f2fs_invalidate_folio, 1837 .migrate_folio = filemap_migrate_folio, 1838 }; 1839 1840 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1841 { 1842 return sbi->compress_inode->i_mapping; 1843 } 1844 1845 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1846 { 1847 if (!sbi->compress_inode) 1848 return; 1849 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1850 } 1851 1852 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1853 nid_t ino, block_t blkaddr) 1854 { 1855 struct page *cpage; 1856 int ret; 1857 1858 if (!test_opt(sbi, COMPRESS_CACHE)) 1859 return; 1860 1861 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1862 return; 1863 1864 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1865 return; 1866 1867 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1868 if (cpage) { 1869 f2fs_put_page(cpage, 0); 1870 return; 1871 } 1872 1873 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1874 if (!cpage) 1875 return; 1876 1877 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1878 blkaddr, GFP_NOFS); 1879 if (ret) { 1880 f2fs_put_page(cpage, 0); 1881 return; 1882 } 1883 1884 set_page_private_data(cpage, ino); 1885 1886 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1887 goto out; 1888 1889 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1890 SetPageUptodate(cpage); 1891 out: 1892 f2fs_put_page(cpage, 1); 1893 } 1894 1895 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1896 block_t blkaddr) 1897 { 1898 struct page *cpage; 1899 bool hitted = false; 1900 1901 if (!test_opt(sbi, COMPRESS_CACHE)) 1902 return false; 1903 1904 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1905 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1906 if (cpage) { 1907 if (PageUptodate(cpage)) { 1908 atomic_inc(&sbi->compress_page_hit); 1909 memcpy(page_address(page), 1910 page_address(cpage), PAGE_SIZE); 1911 hitted = true; 1912 } 1913 f2fs_put_page(cpage, 1); 1914 } 1915 1916 return hitted; 1917 } 1918 1919 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1920 { 1921 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1922 struct folio_batch fbatch; 1923 pgoff_t index = 0; 1924 pgoff_t end = MAX_BLKADDR(sbi); 1925 1926 if (!mapping->nrpages) 1927 return; 1928 1929 folio_batch_init(&fbatch); 1930 1931 do { 1932 unsigned int nr, i; 1933 1934 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1935 if (!nr) 1936 break; 1937 1938 for (i = 0; i < nr; i++) { 1939 struct folio *folio = fbatch.folios[i]; 1940 1941 folio_lock(folio); 1942 if (folio->mapping != mapping) { 1943 folio_unlock(folio); 1944 continue; 1945 } 1946 1947 if (ino != get_page_private_data(&folio->page)) { 1948 folio_unlock(folio); 1949 continue; 1950 } 1951 1952 generic_error_remove_page(mapping, &folio->page); 1953 folio_unlock(folio); 1954 } 1955 folio_batch_release(&fbatch); 1956 cond_resched(); 1957 } while (index < end); 1958 } 1959 1960 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1961 { 1962 struct inode *inode; 1963 1964 if (!test_opt(sbi, COMPRESS_CACHE)) 1965 return 0; 1966 1967 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1968 if (IS_ERR(inode)) 1969 return PTR_ERR(inode); 1970 sbi->compress_inode = inode; 1971 1972 sbi->compress_percent = COMPRESS_PERCENT; 1973 sbi->compress_watermark = COMPRESS_WATERMARK; 1974 1975 atomic_set(&sbi->compress_page_hit, 0); 1976 1977 return 0; 1978 } 1979 1980 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1981 { 1982 if (!sbi->compress_inode) 1983 return; 1984 iput(sbi->compress_inode); 1985 sbi->compress_inode = NULL; 1986 } 1987 1988 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1989 { 1990 dev_t dev = sbi->sb->s_bdev->bd_dev; 1991 char slab_name[32]; 1992 1993 if (!f2fs_sb_has_compression(sbi)) 1994 return 0; 1995 1996 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1997 1998 sbi->page_array_slab_size = sizeof(struct page *) << 1999 F2FS_OPTION(sbi).compress_log_size; 2000 2001 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 2002 sbi->page_array_slab_size); 2003 return sbi->page_array_slab ? 0 : -ENOMEM; 2004 } 2005 2006 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 2007 { 2008 kmem_cache_destroy(sbi->page_array_slab); 2009 } 2010 2011 int __init f2fs_init_compress_cache(void) 2012 { 2013 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2014 sizeof(struct compress_io_ctx)); 2015 if (!cic_entry_slab) 2016 return -ENOMEM; 2017 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2018 sizeof(struct decompress_io_ctx)); 2019 if (!dic_entry_slab) 2020 goto free_cic; 2021 return 0; 2022 free_cic: 2023 kmem_cache_destroy(cic_entry_slab); 2024 return -ENOMEM; 2025 } 2026 2027 void f2fs_destroy_compress_cache(void) 2028 { 2029 kmem_cache_destroy(dic_entry_slab); 2030 kmem_cache_destroy(cic_entry_slab); 2031 } 2032