xref: /openbmc/linux/fs/f2fs/compress.c (revision b755c25f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 	bool (*is_level_valid)(int level);
59 };
60 
61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63 	return index & (cc->cluster_size - 1);
64 }
65 
66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68 	return index >> cc->log_cluster_size;
69 }
70 
71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73 	return cc->cluster_idx << cc->log_cluster_size;
74 }
75 
76 bool f2fs_is_compressed_page(struct page *page)
77 {
78 	if (!PagePrivate(page))
79 		return false;
80 	if (!page_private(page))
81 		return false;
82 	if (page_private_nonpointer(page))
83 		return false;
84 
85 	f2fs_bug_on(F2FS_M_SB(page->mapping),
86 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87 	return true;
88 }
89 
90 static void f2fs_set_compressed_page(struct page *page,
91 		struct inode *inode, pgoff_t index, void *data)
92 {
93 	attach_page_private(page, (void *)data);
94 
95 	/* i_crypto_info and iv index */
96 	page->index = index;
97 	page->mapping = inode->i_mapping;
98 }
99 
100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102 	int i;
103 
104 	for (i = 0; i < len; i++) {
105 		if (!cc->rpages[i])
106 			continue;
107 		if (unlock)
108 			unlock_page(cc->rpages[i]);
109 		else
110 			put_page(cc->rpages[i]);
111 	}
112 }
113 
114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116 	f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118 
119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121 	f2fs_drop_rpages(cc, len, true);
122 }
123 
124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125 		struct writeback_control *wbc, bool redirty, int unlock)
126 {
127 	unsigned int i;
128 
129 	for (i = 0; i < cc->cluster_size; i++) {
130 		if (!cc->rpages[i])
131 			continue;
132 		if (redirty)
133 			redirty_page_for_writepage(wbc, cc->rpages[i]);
134 		f2fs_put_page(cc->rpages[i], unlock);
135 	}
136 }
137 
138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142 
143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145 	if (cc->rpages)
146 		return 0;
147 
148 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149 	return cc->rpages ? 0 : -ENOMEM;
150 }
151 
152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155 	cc->rpages = NULL;
156 	cc->nr_rpages = 0;
157 	cc->nr_cpages = 0;
158 	cc->valid_nr_cpages = 0;
159 	if (!reuse)
160 		cc->cluster_idx = NULL_CLUSTER;
161 }
162 
163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165 	unsigned int cluster_ofs;
166 
167 	if (!f2fs_cluster_can_merge_page(cc, page->index))
168 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169 
170 	cluster_ofs = offset_in_cluster(cc, page->index);
171 	cc->rpages[cluster_ofs] = page;
172 	cc->nr_rpages++;
173 	cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175 
176 #ifdef CONFIG_F2FS_FS_LZO
177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180 				LZO1X_MEM_COMPRESS, GFP_NOFS);
181 	if (!cc->private)
182 		return -ENOMEM;
183 
184 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 	return 0;
186 }
187 
188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190 	kvfree(cc->private);
191 	cc->private = NULL;
192 }
193 
194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196 	int ret;
197 
198 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 					&cc->clen, cc->private);
200 	if (ret != LZO_E_OK) {
201 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
202 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
203 		return -EIO;
204 	}
205 	return 0;
206 }
207 
208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210 	int ret;
211 
212 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 						dic->rbuf, &dic->rlen);
214 	if (ret != LZO_E_OK) {
215 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
216 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
217 		return -EIO;
218 	}
219 
220 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
222 					"expected:%lu\n", KERN_ERR,
223 					F2FS_I_SB(dic->inode)->sb->s_id,
224 					dic->rlen,
225 					PAGE_SIZE << dic->log_cluster_size);
226 		return -EIO;
227 	}
228 	return 0;
229 }
230 
231 static const struct f2fs_compress_ops f2fs_lzo_ops = {
232 	.init_compress_ctx	= lzo_init_compress_ctx,
233 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
234 	.compress_pages		= lzo_compress_pages,
235 	.decompress_pages	= lzo_decompress_pages,
236 };
237 #endif
238 
239 #ifdef CONFIG_F2FS_FS_LZ4
240 static int lz4_init_compress_ctx(struct compress_ctx *cc)
241 {
242 	unsigned int size = LZ4_MEM_COMPRESS;
243 
244 #ifdef CONFIG_F2FS_FS_LZ4HC
245 	if (F2FS_I(cc->inode)->i_compress_level)
246 		size = LZ4HC_MEM_COMPRESS;
247 #endif
248 
249 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
250 	if (!cc->private)
251 		return -ENOMEM;
252 
253 	/*
254 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
255 	 * adapt worst compress case, because lz4 compressor can handle
256 	 * output budget properly.
257 	 */
258 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
259 	return 0;
260 }
261 
262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
263 {
264 	kvfree(cc->private);
265 	cc->private = NULL;
266 }
267 
268 static int lz4_compress_pages(struct compress_ctx *cc)
269 {
270 	int len = -EINVAL;
271 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
272 
273 	if (!level)
274 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
275 						cc->clen, cc->private);
276 #ifdef CONFIG_F2FS_FS_LZ4HC
277 	else
278 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
279 					cc->clen, level, cc->private);
280 #endif
281 	if (len < 0)
282 		return len;
283 	if (!len)
284 		return -EAGAIN;
285 
286 	cc->clen = len;
287 	return 0;
288 }
289 
290 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
291 {
292 	int ret;
293 
294 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
295 						dic->clen, dic->rlen);
296 	if (ret < 0) {
297 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
298 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
299 		return -EIO;
300 	}
301 
302 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
303 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
304 					"expected:%lu\n", KERN_ERR,
305 					F2FS_I_SB(dic->inode)->sb->s_id, ret,
306 					PAGE_SIZE << dic->log_cluster_size);
307 		return -EIO;
308 	}
309 	return 0;
310 }
311 
312 static bool lz4_is_level_valid(int lvl)
313 {
314 #ifdef CONFIG_F2FS_FS_LZ4HC
315 	return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
316 #else
317 	return lvl == 0;
318 #endif
319 }
320 
321 static const struct f2fs_compress_ops f2fs_lz4_ops = {
322 	.init_compress_ctx	= lz4_init_compress_ctx,
323 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
324 	.compress_pages		= lz4_compress_pages,
325 	.decompress_pages	= lz4_decompress_pages,
326 	.is_level_valid		= lz4_is_level_valid,
327 };
328 #endif
329 
330 #ifdef CONFIG_F2FS_FS_ZSTD
331 static int zstd_init_compress_ctx(struct compress_ctx *cc)
332 {
333 	zstd_parameters params;
334 	zstd_cstream *stream;
335 	void *workspace;
336 	unsigned int workspace_size;
337 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
338 
339 	/* Need to remain this for backward compatibility */
340 	if (!level)
341 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
342 
343 	params = zstd_get_params(level, cc->rlen);
344 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
345 
346 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
347 					workspace_size, GFP_NOFS);
348 	if (!workspace)
349 		return -ENOMEM;
350 
351 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
352 	if (!stream) {
353 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n",
354 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
355 				__func__);
356 		kvfree(workspace);
357 		return -EIO;
358 	}
359 
360 	cc->private = workspace;
361 	cc->private2 = stream;
362 
363 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
364 	return 0;
365 }
366 
367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
368 {
369 	kvfree(cc->private);
370 	cc->private = NULL;
371 	cc->private2 = NULL;
372 }
373 
374 static int zstd_compress_pages(struct compress_ctx *cc)
375 {
376 	zstd_cstream *stream = cc->private2;
377 	zstd_in_buffer inbuf;
378 	zstd_out_buffer outbuf;
379 	int src_size = cc->rlen;
380 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
381 	int ret;
382 
383 	inbuf.pos = 0;
384 	inbuf.src = cc->rbuf;
385 	inbuf.size = src_size;
386 
387 	outbuf.pos = 0;
388 	outbuf.dst = cc->cbuf->cdata;
389 	outbuf.size = dst_size;
390 
391 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
392 	if (zstd_is_error(ret)) {
393 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n",
394 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
395 				__func__, zstd_get_error_code(ret));
396 		return -EIO;
397 	}
398 
399 	ret = zstd_end_stream(stream, &outbuf);
400 	if (zstd_is_error(ret)) {
401 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n",
402 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
403 				__func__, zstd_get_error_code(ret));
404 		return -EIO;
405 	}
406 
407 	/*
408 	 * there is compressed data remained in intermediate buffer due to
409 	 * no more space in cbuf.cdata
410 	 */
411 	if (ret)
412 		return -EAGAIN;
413 
414 	cc->clen = outbuf.pos;
415 	return 0;
416 }
417 
418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
419 {
420 	zstd_dstream *stream;
421 	void *workspace;
422 	unsigned int workspace_size;
423 	unsigned int max_window_size =
424 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
425 
426 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
427 
428 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
429 					workspace_size, GFP_NOFS);
430 	if (!workspace)
431 		return -ENOMEM;
432 
433 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
434 	if (!stream) {
435 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n",
436 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
437 				__func__);
438 		kvfree(workspace);
439 		return -EIO;
440 	}
441 
442 	dic->private = workspace;
443 	dic->private2 = stream;
444 
445 	return 0;
446 }
447 
448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
449 {
450 	kvfree(dic->private);
451 	dic->private = NULL;
452 	dic->private2 = NULL;
453 }
454 
455 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
456 {
457 	zstd_dstream *stream = dic->private2;
458 	zstd_in_buffer inbuf;
459 	zstd_out_buffer outbuf;
460 	int ret;
461 
462 	inbuf.pos = 0;
463 	inbuf.src = dic->cbuf->cdata;
464 	inbuf.size = dic->clen;
465 
466 	outbuf.pos = 0;
467 	outbuf.dst = dic->rbuf;
468 	outbuf.size = dic->rlen;
469 
470 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
471 	if (zstd_is_error(ret)) {
472 		printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n",
473 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
474 				__func__, zstd_get_error_code(ret));
475 		return -EIO;
476 	}
477 
478 	if (dic->rlen != outbuf.pos) {
479 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
480 				"expected:%lu\n", KERN_ERR,
481 				F2FS_I_SB(dic->inode)->sb->s_id,
482 				__func__, dic->rlen,
483 				PAGE_SIZE << dic->log_cluster_size);
484 		return -EIO;
485 	}
486 
487 	return 0;
488 }
489 
490 static bool zstd_is_level_valid(int lvl)
491 {
492 	return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
493 }
494 
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 	.init_compress_ctx	= zstd_init_compress_ctx,
497 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
498 	.compress_pages		= zstd_compress_pages,
499 	.init_decompress_ctx	= zstd_init_decompress_ctx,
500 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
501 	.decompress_pages	= zstd_decompress_pages,
502 	.is_level_valid		= zstd_is_level_valid,
503 };
504 #endif
505 
506 #ifdef CONFIG_F2FS_FS_LZO
507 #ifdef CONFIG_F2FS_FS_LZORLE
508 static int lzorle_compress_pages(struct compress_ctx *cc)
509 {
510 	int ret;
511 
512 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
513 					&cc->clen, cc->private);
514 	if (ret != LZO_E_OK) {
515 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
516 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
517 		return -EIO;
518 	}
519 	return 0;
520 }
521 
522 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
523 	.init_compress_ctx	= lzo_init_compress_ctx,
524 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
525 	.compress_pages		= lzorle_compress_pages,
526 	.decompress_pages	= lzo_decompress_pages,
527 };
528 #endif
529 #endif
530 
531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
532 #ifdef CONFIG_F2FS_FS_LZO
533 	&f2fs_lzo_ops,
534 #else
535 	NULL,
536 #endif
537 #ifdef CONFIG_F2FS_FS_LZ4
538 	&f2fs_lz4_ops,
539 #else
540 	NULL,
541 #endif
542 #ifdef CONFIG_F2FS_FS_ZSTD
543 	&f2fs_zstd_ops,
544 #else
545 	NULL,
546 #endif
547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
548 	&f2fs_lzorle_ops,
549 #else
550 	NULL,
551 #endif
552 };
553 
554 bool f2fs_is_compress_backend_ready(struct inode *inode)
555 {
556 	if (!f2fs_compressed_file(inode))
557 		return true;
558 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
559 }
560 
561 bool f2fs_is_compress_level_valid(int alg, int lvl)
562 {
563 	const struct f2fs_compress_ops *cops = f2fs_cops[alg];
564 
565 	if (cops->is_level_valid)
566 		return cops->is_level_valid(lvl);
567 
568 	return lvl == 0;
569 }
570 
571 static mempool_t *compress_page_pool;
572 static int num_compress_pages = 512;
573 module_param(num_compress_pages, uint, 0444);
574 MODULE_PARM_DESC(num_compress_pages,
575 		"Number of intermediate compress pages to preallocate");
576 
577 int __init f2fs_init_compress_mempool(void)
578 {
579 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
580 	return compress_page_pool ? 0 : -ENOMEM;
581 }
582 
583 void f2fs_destroy_compress_mempool(void)
584 {
585 	mempool_destroy(compress_page_pool);
586 }
587 
588 static struct page *f2fs_compress_alloc_page(void)
589 {
590 	struct page *page;
591 
592 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
593 	lock_page(page);
594 
595 	return page;
596 }
597 
598 static void f2fs_compress_free_page(struct page *page)
599 {
600 	if (!page)
601 		return;
602 	detach_page_private(page);
603 	page->mapping = NULL;
604 	unlock_page(page);
605 	mempool_free(page, compress_page_pool);
606 }
607 
608 #define MAX_VMAP_RETRIES	3
609 
610 static void *f2fs_vmap(struct page **pages, unsigned int count)
611 {
612 	int i;
613 	void *buf = NULL;
614 
615 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
616 		buf = vm_map_ram(pages, count, -1);
617 		if (buf)
618 			break;
619 		vm_unmap_aliases();
620 	}
621 	return buf;
622 }
623 
624 static int f2fs_compress_pages(struct compress_ctx *cc)
625 {
626 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
627 	const struct f2fs_compress_ops *cops =
628 				f2fs_cops[fi->i_compress_algorithm];
629 	unsigned int max_len, new_nr_cpages;
630 	u32 chksum = 0;
631 	int i, ret;
632 
633 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
634 				cc->cluster_size, fi->i_compress_algorithm);
635 
636 	if (cops->init_compress_ctx) {
637 		ret = cops->init_compress_ctx(cc);
638 		if (ret)
639 			goto out;
640 	}
641 
642 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
643 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
644 	cc->valid_nr_cpages = cc->nr_cpages;
645 
646 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
647 	if (!cc->cpages) {
648 		ret = -ENOMEM;
649 		goto destroy_compress_ctx;
650 	}
651 
652 	for (i = 0; i < cc->nr_cpages; i++) {
653 		cc->cpages[i] = f2fs_compress_alloc_page();
654 		if (!cc->cpages[i]) {
655 			ret = -ENOMEM;
656 			goto out_free_cpages;
657 		}
658 	}
659 
660 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
661 	if (!cc->rbuf) {
662 		ret = -ENOMEM;
663 		goto out_free_cpages;
664 	}
665 
666 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
667 	if (!cc->cbuf) {
668 		ret = -ENOMEM;
669 		goto out_vunmap_rbuf;
670 	}
671 
672 	ret = cops->compress_pages(cc);
673 	if (ret)
674 		goto out_vunmap_cbuf;
675 
676 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
677 
678 	if (cc->clen > max_len) {
679 		ret = -EAGAIN;
680 		goto out_vunmap_cbuf;
681 	}
682 
683 	cc->cbuf->clen = cpu_to_le32(cc->clen);
684 
685 	if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
686 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
687 					cc->cbuf->cdata, cc->clen);
688 	cc->cbuf->chksum = cpu_to_le32(chksum);
689 
690 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
691 		cc->cbuf->reserved[i] = cpu_to_le32(0);
692 
693 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
694 
695 	/* zero out any unused part of the last page */
696 	memset(&cc->cbuf->cdata[cc->clen], 0,
697 			(new_nr_cpages * PAGE_SIZE) -
698 			(cc->clen + COMPRESS_HEADER_SIZE));
699 
700 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
701 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
702 
703 	for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
704 		f2fs_compress_free_page(cc->cpages[i]);
705 		cc->cpages[i] = NULL;
706 	}
707 
708 	if (cops->destroy_compress_ctx)
709 		cops->destroy_compress_ctx(cc);
710 
711 	cc->valid_nr_cpages = new_nr_cpages;
712 
713 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
714 							cc->clen, ret);
715 	return 0;
716 
717 out_vunmap_cbuf:
718 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
719 out_vunmap_rbuf:
720 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
721 out_free_cpages:
722 	for (i = 0; i < cc->nr_cpages; i++) {
723 		if (cc->cpages[i])
724 			f2fs_compress_free_page(cc->cpages[i]);
725 	}
726 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
727 	cc->cpages = NULL;
728 destroy_compress_ctx:
729 	if (cops->destroy_compress_ctx)
730 		cops->destroy_compress_ctx(cc);
731 out:
732 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
733 							cc->clen, ret);
734 	return ret;
735 }
736 
737 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
738 		bool pre_alloc);
739 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
740 		bool bypass_destroy_callback, bool pre_alloc);
741 
742 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
743 {
744 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
745 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
746 	const struct f2fs_compress_ops *cops =
747 			f2fs_cops[fi->i_compress_algorithm];
748 	bool bypass_callback = false;
749 	int ret;
750 
751 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
752 				dic->cluster_size, fi->i_compress_algorithm);
753 
754 	if (dic->failed) {
755 		ret = -EIO;
756 		goto out_end_io;
757 	}
758 
759 	ret = f2fs_prepare_decomp_mem(dic, false);
760 	if (ret) {
761 		bypass_callback = true;
762 		goto out_release;
763 	}
764 
765 	dic->clen = le32_to_cpu(dic->cbuf->clen);
766 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
767 
768 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
769 		ret = -EFSCORRUPTED;
770 
771 		/* Avoid f2fs_commit_super in irq context */
772 		if (!in_task)
773 			f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
774 		else
775 			f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
776 		goto out_release;
777 	}
778 
779 	ret = cops->decompress_pages(dic);
780 
781 	if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
782 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
783 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
784 
785 		if (provided != calculated) {
786 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
787 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
788 				printk_ratelimited(
789 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
790 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
791 					provided, calculated);
792 			}
793 			set_sbi_flag(sbi, SBI_NEED_FSCK);
794 		}
795 	}
796 
797 out_release:
798 	f2fs_release_decomp_mem(dic, bypass_callback, false);
799 
800 out_end_io:
801 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
802 							dic->clen, ret);
803 	f2fs_decompress_end_io(dic, ret, in_task);
804 }
805 
806 /*
807  * This is called when a page of a compressed cluster has been read from disk
808  * (or failed to be read from disk).  It checks whether this page was the last
809  * page being waited on in the cluster, and if so, it decompresses the cluster
810  * (or in the case of a failure, cleans up without actually decompressing).
811  */
812 void f2fs_end_read_compressed_page(struct page *page, bool failed,
813 		block_t blkaddr, bool in_task)
814 {
815 	struct decompress_io_ctx *dic =
816 			(struct decompress_io_ctx *)page_private(page);
817 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
818 
819 	dec_page_count(sbi, F2FS_RD_DATA);
820 
821 	if (failed)
822 		WRITE_ONCE(dic->failed, true);
823 	else if (blkaddr && in_task)
824 		f2fs_cache_compressed_page(sbi, page,
825 					dic->inode->i_ino, blkaddr);
826 
827 	if (atomic_dec_and_test(&dic->remaining_pages))
828 		f2fs_decompress_cluster(dic, in_task);
829 }
830 
831 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
832 {
833 	if (cc->cluster_idx == NULL_CLUSTER)
834 		return true;
835 	return cc->cluster_idx == cluster_idx(cc, index);
836 }
837 
838 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
839 {
840 	return cc->nr_rpages == 0;
841 }
842 
843 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
844 {
845 	return cc->cluster_size == cc->nr_rpages;
846 }
847 
848 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
849 {
850 	if (f2fs_cluster_is_empty(cc))
851 		return true;
852 	return is_page_in_cluster(cc, index);
853 }
854 
855 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
856 				int index, int nr_pages, bool uptodate)
857 {
858 	unsigned long pgidx = pages[index]->index;
859 	int i = uptodate ? 0 : 1;
860 
861 	/*
862 	 * when uptodate set to true, try to check all pages in cluster is
863 	 * uptodate or not.
864 	 */
865 	if (uptodate && (pgidx % cc->cluster_size))
866 		return false;
867 
868 	if (nr_pages - index < cc->cluster_size)
869 		return false;
870 
871 	for (; i < cc->cluster_size; i++) {
872 		if (pages[index + i]->index != pgidx + i)
873 			return false;
874 		if (uptodate && !PageUptodate(pages[index + i]))
875 			return false;
876 	}
877 
878 	return true;
879 }
880 
881 static bool cluster_has_invalid_data(struct compress_ctx *cc)
882 {
883 	loff_t i_size = i_size_read(cc->inode);
884 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
885 	int i;
886 
887 	for (i = 0; i < cc->cluster_size; i++) {
888 		struct page *page = cc->rpages[i];
889 
890 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
891 
892 		/* beyond EOF */
893 		if (page->index >= nr_pages)
894 			return true;
895 	}
896 	return false;
897 }
898 
899 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
900 {
901 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
902 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
903 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
904 	int cluster_end = 0;
905 	int i;
906 	char *reason = "";
907 
908 	if (!compressed)
909 		return false;
910 
911 	/* [..., COMPR_ADDR, ...] */
912 	if (dn->ofs_in_node % cluster_size) {
913 		reason = "[*|C|*|*]";
914 		goto out;
915 	}
916 
917 	for (i = 1; i < cluster_size; i++) {
918 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
919 							dn->ofs_in_node + i);
920 
921 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
922 		if (blkaddr == COMPRESS_ADDR) {
923 			reason = "[C|*|C|*]";
924 			goto out;
925 		}
926 		if (!__is_valid_data_blkaddr(blkaddr)) {
927 			if (!cluster_end)
928 				cluster_end = i;
929 			continue;
930 		}
931 		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
932 		if (cluster_end) {
933 			reason = "[C|N|N|V]";
934 			goto out;
935 		}
936 	}
937 	return false;
938 out:
939 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
940 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
941 	set_sbi_flag(sbi, SBI_NEED_FSCK);
942 	return true;
943 }
944 
945 static int __f2fs_cluster_blocks(struct inode *inode,
946 				unsigned int cluster_idx, bool compr)
947 {
948 	struct dnode_of_data dn;
949 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
950 	unsigned int start_idx = cluster_idx <<
951 				F2FS_I(inode)->i_log_cluster_size;
952 	int ret;
953 
954 	set_new_dnode(&dn, inode, NULL, NULL, 0);
955 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
956 	if (ret) {
957 		if (ret == -ENOENT)
958 			ret = 0;
959 		goto fail;
960 	}
961 
962 	if (f2fs_sanity_check_cluster(&dn)) {
963 		ret = -EFSCORRUPTED;
964 		f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
965 		goto fail;
966 	}
967 
968 	if (dn.data_blkaddr == COMPRESS_ADDR) {
969 		int i;
970 
971 		ret = 1;
972 		for (i = 1; i < cluster_size; i++) {
973 			block_t blkaddr;
974 
975 			blkaddr = data_blkaddr(dn.inode,
976 					dn.node_page, dn.ofs_in_node + i);
977 			if (compr) {
978 				if (__is_valid_data_blkaddr(blkaddr))
979 					ret++;
980 			} else {
981 				if (blkaddr != NULL_ADDR)
982 					ret++;
983 			}
984 		}
985 
986 		f2fs_bug_on(F2FS_I_SB(inode),
987 			!compr && ret != cluster_size &&
988 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
989 	}
990 fail:
991 	f2fs_put_dnode(&dn);
992 	return ret;
993 }
994 
995 /* return # of compressed blocks in compressed cluster */
996 static int f2fs_compressed_blocks(struct compress_ctx *cc)
997 {
998 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
999 }
1000 
1001 /* return # of valid blocks in compressed cluster */
1002 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1003 {
1004 	return __f2fs_cluster_blocks(inode,
1005 		index >> F2FS_I(inode)->i_log_cluster_size,
1006 		false);
1007 }
1008 
1009 static bool cluster_may_compress(struct compress_ctx *cc)
1010 {
1011 	if (!f2fs_need_compress_data(cc->inode))
1012 		return false;
1013 	if (f2fs_is_atomic_file(cc->inode))
1014 		return false;
1015 	if (!f2fs_cluster_is_full(cc))
1016 		return false;
1017 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1018 		return false;
1019 	return !cluster_has_invalid_data(cc);
1020 }
1021 
1022 static void set_cluster_writeback(struct compress_ctx *cc)
1023 {
1024 	int i;
1025 
1026 	for (i = 0; i < cc->cluster_size; i++) {
1027 		if (cc->rpages[i])
1028 			set_page_writeback(cc->rpages[i]);
1029 	}
1030 }
1031 
1032 static void set_cluster_dirty(struct compress_ctx *cc)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < cc->cluster_size; i++)
1037 		if (cc->rpages[i])
1038 			set_page_dirty(cc->rpages[i]);
1039 }
1040 
1041 static int prepare_compress_overwrite(struct compress_ctx *cc,
1042 		struct page **pagep, pgoff_t index, void **fsdata)
1043 {
1044 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1045 	struct address_space *mapping = cc->inode->i_mapping;
1046 	struct page *page;
1047 	sector_t last_block_in_bio;
1048 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1049 	pgoff_t start_idx = start_idx_of_cluster(cc);
1050 	int i, ret;
1051 
1052 retry:
1053 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1054 	if (ret <= 0)
1055 		return ret;
1056 
1057 	ret = f2fs_init_compress_ctx(cc);
1058 	if (ret)
1059 		return ret;
1060 
1061 	/* keep page reference to avoid page reclaim */
1062 	for (i = 0; i < cc->cluster_size; i++) {
1063 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1064 							fgp_flag, GFP_NOFS);
1065 		if (!page) {
1066 			ret = -ENOMEM;
1067 			goto unlock_pages;
1068 		}
1069 
1070 		if (PageUptodate(page))
1071 			f2fs_put_page(page, 1);
1072 		else
1073 			f2fs_compress_ctx_add_page(cc, page);
1074 	}
1075 
1076 	if (!f2fs_cluster_is_empty(cc)) {
1077 		struct bio *bio = NULL;
1078 
1079 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1080 					&last_block_in_bio, false, true);
1081 		f2fs_put_rpages(cc);
1082 		f2fs_destroy_compress_ctx(cc, true);
1083 		if (ret)
1084 			goto out;
1085 		if (bio)
1086 			f2fs_submit_read_bio(sbi, bio, DATA);
1087 
1088 		ret = f2fs_init_compress_ctx(cc);
1089 		if (ret)
1090 			goto out;
1091 	}
1092 
1093 	for (i = 0; i < cc->cluster_size; i++) {
1094 		f2fs_bug_on(sbi, cc->rpages[i]);
1095 
1096 		page = find_lock_page(mapping, start_idx + i);
1097 		if (!page) {
1098 			/* page can be truncated */
1099 			goto release_and_retry;
1100 		}
1101 
1102 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1103 		f2fs_compress_ctx_add_page(cc, page);
1104 
1105 		if (!PageUptodate(page)) {
1106 release_and_retry:
1107 			f2fs_put_rpages(cc);
1108 			f2fs_unlock_rpages(cc, i + 1);
1109 			f2fs_destroy_compress_ctx(cc, true);
1110 			goto retry;
1111 		}
1112 	}
1113 
1114 	if (likely(!ret)) {
1115 		*fsdata = cc->rpages;
1116 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1117 		return cc->cluster_size;
1118 	}
1119 
1120 unlock_pages:
1121 	f2fs_put_rpages(cc);
1122 	f2fs_unlock_rpages(cc, i);
1123 	f2fs_destroy_compress_ctx(cc, true);
1124 out:
1125 	return ret;
1126 }
1127 
1128 int f2fs_prepare_compress_overwrite(struct inode *inode,
1129 		struct page **pagep, pgoff_t index, void **fsdata)
1130 {
1131 	struct compress_ctx cc = {
1132 		.inode = inode,
1133 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1134 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1135 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1136 		.rpages = NULL,
1137 		.nr_rpages = 0,
1138 	};
1139 
1140 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1141 }
1142 
1143 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1144 					pgoff_t index, unsigned copied)
1145 
1146 {
1147 	struct compress_ctx cc = {
1148 		.inode = inode,
1149 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1150 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1151 		.rpages = fsdata,
1152 	};
1153 	bool first_index = (index == cc.rpages[0]->index);
1154 
1155 	if (copied)
1156 		set_cluster_dirty(&cc);
1157 
1158 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1159 	f2fs_destroy_compress_ctx(&cc, false);
1160 
1161 	return first_index;
1162 }
1163 
1164 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1165 {
1166 	void *fsdata = NULL;
1167 	struct page *pagep;
1168 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1169 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1170 							log_cluster_size;
1171 	int err;
1172 
1173 	err = f2fs_is_compressed_cluster(inode, start_idx);
1174 	if (err < 0)
1175 		return err;
1176 
1177 	/* truncate normal cluster */
1178 	if (!err)
1179 		return f2fs_do_truncate_blocks(inode, from, lock);
1180 
1181 	/* truncate compressed cluster */
1182 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1183 						start_idx, &fsdata);
1184 
1185 	/* should not be a normal cluster */
1186 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1187 
1188 	if (err <= 0)
1189 		return err;
1190 
1191 	if (err > 0) {
1192 		struct page **rpages = fsdata;
1193 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1194 		int i;
1195 
1196 		for (i = cluster_size - 1; i >= 0; i--) {
1197 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1198 
1199 			if (from <= start) {
1200 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1201 			} else {
1202 				zero_user_segment(rpages[i], from - start,
1203 								PAGE_SIZE);
1204 				break;
1205 			}
1206 		}
1207 
1208 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1209 	}
1210 	return 0;
1211 }
1212 
1213 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1214 					int *submitted,
1215 					struct writeback_control *wbc,
1216 					enum iostat_type io_type)
1217 {
1218 	struct inode *inode = cc->inode;
1219 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1220 	struct f2fs_inode_info *fi = F2FS_I(inode);
1221 	struct f2fs_io_info fio = {
1222 		.sbi = sbi,
1223 		.ino = cc->inode->i_ino,
1224 		.type = DATA,
1225 		.op = REQ_OP_WRITE,
1226 		.op_flags = wbc_to_write_flags(wbc),
1227 		.old_blkaddr = NEW_ADDR,
1228 		.page = NULL,
1229 		.encrypted_page = NULL,
1230 		.compressed_page = NULL,
1231 		.submitted = 0,
1232 		.io_type = io_type,
1233 		.io_wbc = wbc,
1234 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1235 									1 : 0,
1236 	};
1237 	struct dnode_of_data dn;
1238 	struct node_info ni;
1239 	struct compress_io_ctx *cic;
1240 	pgoff_t start_idx = start_idx_of_cluster(cc);
1241 	unsigned int last_index = cc->cluster_size - 1;
1242 	loff_t psize;
1243 	int i, err;
1244 	bool quota_inode = IS_NOQUOTA(inode);
1245 
1246 	/* we should bypass data pages to proceed the kworker jobs */
1247 	if (unlikely(f2fs_cp_error(sbi))) {
1248 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1249 		goto out_free;
1250 	}
1251 
1252 	if (quota_inode) {
1253 		/*
1254 		 * We need to wait for node_write to avoid block allocation during
1255 		 * checkpoint. This can only happen to quota writes which can cause
1256 		 * the below discard race condition.
1257 		 */
1258 		f2fs_down_read(&sbi->node_write);
1259 	} else if (!f2fs_trylock_op(sbi)) {
1260 		goto out_free;
1261 	}
1262 
1263 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1264 
1265 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1266 	if (err)
1267 		goto out_unlock_op;
1268 
1269 	for (i = 0; i < cc->cluster_size; i++) {
1270 		if (data_blkaddr(dn.inode, dn.node_page,
1271 					dn.ofs_in_node + i) == NULL_ADDR)
1272 			goto out_put_dnode;
1273 	}
1274 
1275 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1276 
1277 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1278 	if (err)
1279 		goto out_put_dnode;
1280 
1281 	fio.version = ni.version;
1282 
1283 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1284 	if (!cic)
1285 		goto out_put_dnode;
1286 
1287 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1288 	cic->inode = inode;
1289 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1290 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1291 	if (!cic->rpages)
1292 		goto out_put_cic;
1293 
1294 	cic->nr_rpages = cc->cluster_size;
1295 
1296 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1297 		f2fs_set_compressed_page(cc->cpages[i], inode,
1298 					cc->rpages[i + 1]->index, cic);
1299 		fio.compressed_page = cc->cpages[i];
1300 
1301 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1302 						dn.ofs_in_node + i + 1);
1303 
1304 		/* wait for GCed page writeback via META_MAPPING */
1305 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1306 
1307 		if (fio.encrypted) {
1308 			fio.page = cc->rpages[i + 1];
1309 			err = f2fs_encrypt_one_page(&fio);
1310 			if (err)
1311 				goto out_destroy_crypt;
1312 			cc->cpages[i] = fio.encrypted_page;
1313 		}
1314 	}
1315 
1316 	set_cluster_writeback(cc);
1317 
1318 	for (i = 0; i < cc->cluster_size; i++)
1319 		cic->rpages[i] = cc->rpages[i];
1320 
1321 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1322 		block_t blkaddr;
1323 
1324 		blkaddr = f2fs_data_blkaddr(&dn);
1325 		fio.page = cc->rpages[i];
1326 		fio.old_blkaddr = blkaddr;
1327 
1328 		/* cluster header */
1329 		if (i == 0) {
1330 			if (blkaddr == COMPRESS_ADDR)
1331 				fio.compr_blocks++;
1332 			if (__is_valid_data_blkaddr(blkaddr))
1333 				f2fs_invalidate_blocks(sbi, blkaddr);
1334 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1335 			goto unlock_continue;
1336 		}
1337 
1338 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1339 			fio.compr_blocks++;
1340 
1341 		if (i > cc->valid_nr_cpages) {
1342 			if (__is_valid_data_blkaddr(blkaddr)) {
1343 				f2fs_invalidate_blocks(sbi, blkaddr);
1344 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1345 			}
1346 			goto unlock_continue;
1347 		}
1348 
1349 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1350 
1351 		if (fio.encrypted)
1352 			fio.encrypted_page = cc->cpages[i - 1];
1353 		else
1354 			fio.compressed_page = cc->cpages[i - 1];
1355 
1356 		cc->cpages[i - 1] = NULL;
1357 		f2fs_outplace_write_data(&dn, &fio);
1358 		(*submitted)++;
1359 unlock_continue:
1360 		inode_dec_dirty_pages(cc->inode);
1361 		unlock_page(fio.page);
1362 	}
1363 
1364 	if (fio.compr_blocks)
1365 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1366 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1367 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1368 
1369 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1370 	if (cc->cluster_idx == 0)
1371 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1372 
1373 	f2fs_put_dnode(&dn);
1374 	if (quota_inode)
1375 		f2fs_up_read(&sbi->node_write);
1376 	else
1377 		f2fs_unlock_op(sbi);
1378 
1379 	spin_lock(&fi->i_size_lock);
1380 	if (fi->last_disk_size < psize)
1381 		fi->last_disk_size = psize;
1382 	spin_unlock(&fi->i_size_lock);
1383 
1384 	f2fs_put_rpages(cc);
1385 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1386 	cc->cpages = NULL;
1387 	f2fs_destroy_compress_ctx(cc, false);
1388 	return 0;
1389 
1390 out_destroy_crypt:
1391 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1392 
1393 	for (--i; i >= 0; i--)
1394 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1395 out_put_cic:
1396 	kmem_cache_free(cic_entry_slab, cic);
1397 out_put_dnode:
1398 	f2fs_put_dnode(&dn);
1399 out_unlock_op:
1400 	if (quota_inode)
1401 		f2fs_up_read(&sbi->node_write);
1402 	else
1403 		f2fs_unlock_op(sbi);
1404 out_free:
1405 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1406 		f2fs_compress_free_page(cc->cpages[i]);
1407 		cc->cpages[i] = NULL;
1408 	}
1409 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1410 	cc->cpages = NULL;
1411 	return -EAGAIN;
1412 }
1413 
1414 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1415 {
1416 	struct f2fs_sb_info *sbi = bio->bi_private;
1417 	struct compress_io_ctx *cic =
1418 			(struct compress_io_ctx *)page_private(page);
1419 	int i;
1420 
1421 	if (unlikely(bio->bi_status))
1422 		mapping_set_error(cic->inode->i_mapping, -EIO);
1423 
1424 	f2fs_compress_free_page(page);
1425 
1426 	dec_page_count(sbi, F2FS_WB_DATA);
1427 
1428 	if (atomic_dec_return(&cic->pending_pages))
1429 		return;
1430 
1431 	for (i = 0; i < cic->nr_rpages; i++) {
1432 		WARN_ON(!cic->rpages[i]);
1433 		clear_page_private_gcing(cic->rpages[i]);
1434 		end_page_writeback(cic->rpages[i]);
1435 	}
1436 
1437 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1438 	kmem_cache_free(cic_entry_slab, cic);
1439 }
1440 
1441 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1442 					int *submitted,
1443 					struct writeback_control *wbc,
1444 					enum iostat_type io_type)
1445 {
1446 	struct address_space *mapping = cc->inode->i_mapping;
1447 	int _submitted, compr_blocks, ret, i;
1448 
1449 	compr_blocks = f2fs_compressed_blocks(cc);
1450 
1451 	for (i = 0; i < cc->cluster_size; i++) {
1452 		if (!cc->rpages[i])
1453 			continue;
1454 
1455 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1456 		unlock_page(cc->rpages[i]);
1457 	}
1458 
1459 	if (compr_blocks < 0)
1460 		return compr_blocks;
1461 
1462 	for (i = 0; i < cc->cluster_size; i++) {
1463 		if (!cc->rpages[i])
1464 			continue;
1465 retry_write:
1466 		lock_page(cc->rpages[i]);
1467 
1468 		if (cc->rpages[i]->mapping != mapping) {
1469 continue_unlock:
1470 			unlock_page(cc->rpages[i]);
1471 			continue;
1472 		}
1473 
1474 		if (!PageDirty(cc->rpages[i]))
1475 			goto continue_unlock;
1476 
1477 		if (PageWriteback(cc->rpages[i])) {
1478 			if (wbc->sync_mode == WB_SYNC_NONE)
1479 				goto continue_unlock;
1480 			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1481 		}
1482 
1483 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1484 			goto continue_unlock;
1485 
1486 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1487 						NULL, NULL, wbc, io_type,
1488 						compr_blocks, false);
1489 		if (ret) {
1490 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1491 				unlock_page(cc->rpages[i]);
1492 				ret = 0;
1493 			} else if (ret == -EAGAIN) {
1494 				/*
1495 				 * for quota file, just redirty left pages to
1496 				 * avoid deadlock caused by cluster update race
1497 				 * from foreground operation.
1498 				 */
1499 				if (IS_NOQUOTA(cc->inode))
1500 					return 0;
1501 				ret = 0;
1502 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1503 				goto retry_write;
1504 			}
1505 			return ret;
1506 		}
1507 
1508 		*submitted += _submitted;
1509 	}
1510 
1511 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1512 
1513 	return 0;
1514 }
1515 
1516 int f2fs_write_multi_pages(struct compress_ctx *cc,
1517 					int *submitted,
1518 					struct writeback_control *wbc,
1519 					enum iostat_type io_type)
1520 {
1521 	int err;
1522 
1523 	*submitted = 0;
1524 	if (cluster_may_compress(cc)) {
1525 		err = f2fs_compress_pages(cc);
1526 		if (err == -EAGAIN) {
1527 			add_compr_block_stat(cc->inode, cc->cluster_size);
1528 			goto write;
1529 		} else if (err) {
1530 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1531 			goto destroy_out;
1532 		}
1533 
1534 		err = f2fs_write_compressed_pages(cc, submitted,
1535 							wbc, io_type);
1536 		if (!err)
1537 			return 0;
1538 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1539 	}
1540 write:
1541 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1542 
1543 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1544 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1545 destroy_out:
1546 	f2fs_destroy_compress_ctx(cc, false);
1547 	return err;
1548 }
1549 
1550 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1551 		bool pre_alloc)
1552 {
1553 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1554 }
1555 
1556 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1557 		bool pre_alloc)
1558 {
1559 	const struct f2fs_compress_ops *cops =
1560 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1561 	int i;
1562 
1563 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1564 		return 0;
1565 
1566 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1567 	if (!dic->tpages)
1568 		return -ENOMEM;
1569 
1570 	for (i = 0; i < dic->cluster_size; i++) {
1571 		if (dic->rpages[i]) {
1572 			dic->tpages[i] = dic->rpages[i];
1573 			continue;
1574 		}
1575 
1576 		dic->tpages[i] = f2fs_compress_alloc_page();
1577 		if (!dic->tpages[i])
1578 			return -ENOMEM;
1579 	}
1580 
1581 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1582 	if (!dic->rbuf)
1583 		return -ENOMEM;
1584 
1585 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1586 	if (!dic->cbuf)
1587 		return -ENOMEM;
1588 
1589 	if (cops->init_decompress_ctx)
1590 		return cops->init_decompress_ctx(dic);
1591 
1592 	return 0;
1593 }
1594 
1595 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1596 		bool bypass_destroy_callback, bool pre_alloc)
1597 {
1598 	const struct f2fs_compress_ops *cops =
1599 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1600 
1601 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1602 		return;
1603 
1604 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1605 		cops->destroy_decompress_ctx(dic);
1606 
1607 	if (dic->cbuf)
1608 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1609 
1610 	if (dic->rbuf)
1611 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1612 }
1613 
1614 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1615 		bool bypass_destroy_callback);
1616 
1617 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1618 {
1619 	struct decompress_io_ctx *dic;
1620 	pgoff_t start_idx = start_idx_of_cluster(cc);
1621 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1622 	int i, ret;
1623 
1624 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1625 	if (!dic)
1626 		return ERR_PTR(-ENOMEM);
1627 
1628 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1629 	if (!dic->rpages) {
1630 		kmem_cache_free(dic_entry_slab, dic);
1631 		return ERR_PTR(-ENOMEM);
1632 	}
1633 
1634 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1635 	dic->inode = cc->inode;
1636 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1637 	dic->cluster_idx = cc->cluster_idx;
1638 	dic->cluster_size = cc->cluster_size;
1639 	dic->log_cluster_size = cc->log_cluster_size;
1640 	dic->nr_cpages = cc->nr_cpages;
1641 	refcount_set(&dic->refcnt, 1);
1642 	dic->failed = false;
1643 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1644 
1645 	for (i = 0; i < dic->cluster_size; i++)
1646 		dic->rpages[i] = cc->rpages[i];
1647 	dic->nr_rpages = cc->cluster_size;
1648 
1649 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1650 	if (!dic->cpages) {
1651 		ret = -ENOMEM;
1652 		goto out_free;
1653 	}
1654 
1655 	for (i = 0; i < dic->nr_cpages; i++) {
1656 		struct page *page;
1657 
1658 		page = f2fs_compress_alloc_page();
1659 		if (!page) {
1660 			ret = -ENOMEM;
1661 			goto out_free;
1662 		}
1663 
1664 		f2fs_set_compressed_page(page, cc->inode,
1665 					start_idx + i + 1, dic);
1666 		dic->cpages[i] = page;
1667 	}
1668 
1669 	ret = f2fs_prepare_decomp_mem(dic, true);
1670 	if (ret)
1671 		goto out_free;
1672 
1673 	return dic;
1674 
1675 out_free:
1676 	f2fs_free_dic(dic, true);
1677 	return ERR_PTR(ret);
1678 }
1679 
1680 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1681 		bool bypass_destroy_callback)
1682 {
1683 	int i;
1684 
1685 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1686 
1687 	if (dic->tpages) {
1688 		for (i = 0; i < dic->cluster_size; i++) {
1689 			if (dic->rpages[i])
1690 				continue;
1691 			if (!dic->tpages[i])
1692 				continue;
1693 			f2fs_compress_free_page(dic->tpages[i]);
1694 		}
1695 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1696 	}
1697 
1698 	if (dic->cpages) {
1699 		for (i = 0; i < dic->nr_cpages; i++) {
1700 			if (!dic->cpages[i])
1701 				continue;
1702 			f2fs_compress_free_page(dic->cpages[i]);
1703 		}
1704 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1705 	}
1706 
1707 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1708 	kmem_cache_free(dic_entry_slab, dic);
1709 }
1710 
1711 static void f2fs_late_free_dic(struct work_struct *work)
1712 {
1713 	struct decompress_io_ctx *dic =
1714 		container_of(work, struct decompress_io_ctx, free_work);
1715 
1716 	f2fs_free_dic(dic, false);
1717 }
1718 
1719 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1720 {
1721 	if (refcount_dec_and_test(&dic->refcnt)) {
1722 		if (in_task) {
1723 			f2fs_free_dic(dic, false);
1724 		} else {
1725 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1726 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1727 					&dic->free_work);
1728 		}
1729 	}
1730 }
1731 
1732 static void f2fs_verify_cluster(struct work_struct *work)
1733 {
1734 	struct decompress_io_ctx *dic =
1735 		container_of(work, struct decompress_io_ctx, verity_work);
1736 	int i;
1737 
1738 	/* Verify, update, and unlock the decompressed pages. */
1739 	for (i = 0; i < dic->cluster_size; i++) {
1740 		struct page *rpage = dic->rpages[i];
1741 
1742 		if (!rpage)
1743 			continue;
1744 
1745 		if (fsverity_verify_page(rpage))
1746 			SetPageUptodate(rpage);
1747 		else
1748 			ClearPageUptodate(rpage);
1749 		unlock_page(rpage);
1750 	}
1751 
1752 	f2fs_put_dic(dic, true);
1753 }
1754 
1755 /*
1756  * This is called when a compressed cluster has been decompressed
1757  * (or failed to be read and/or decompressed).
1758  */
1759 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1760 				bool in_task)
1761 {
1762 	int i;
1763 
1764 	if (!failed && dic->need_verity) {
1765 		/*
1766 		 * Note that to avoid deadlocks, the verity work can't be done
1767 		 * on the decompression workqueue.  This is because verifying
1768 		 * the data pages can involve reading metadata pages from the
1769 		 * file, and these metadata pages may be compressed.
1770 		 */
1771 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1772 		fsverity_enqueue_verify_work(&dic->verity_work);
1773 		return;
1774 	}
1775 
1776 	/* Update and unlock the cluster's pagecache pages. */
1777 	for (i = 0; i < dic->cluster_size; i++) {
1778 		struct page *rpage = dic->rpages[i];
1779 
1780 		if (!rpage)
1781 			continue;
1782 
1783 		if (failed)
1784 			ClearPageUptodate(rpage);
1785 		else
1786 			SetPageUptodate(rpage);
1787 		unlock_page(rpage);
1788 	}
1789 
1790 	/*
1791 	 * Release the reference to the decompress_io_ctx that was being held
1792 	 * for I/O completion.
1793 	 */
1794 	f2fs_put_dic(dic, in_task);
1795 }
1796 
1797 /*
1798  * Put a reference to a compressed page's decompress_io_ctx.
1799  *
1800  * This is called when the page is no longer needed and can be freed.
1801  */
1802 void f2fs_put_page_dic(struct page *page, bool in_task)
1803 {
1804 	struct decompress_io_ctx *dic =
1805 			(struct decompress_io_ctx *)page_private(page);
1806 
1807 	f2fs_put_dic(dic, in_task);
1808 }
1809 
1810 /*
1811  * check whether cluster blocks are contiguous, and add extent cache entry
1812  * only if cluster blocks are logically and physically contiguous.
1813  */
1814 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1815 {
1816 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1817 	int i = compressed ? 1 : 0;
1818 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1819 						dn->ofs_in_node + i);
1820 
1821 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1822 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1823 						dn->ofs_in_node + i);
1824 
1825 		if (!__is_valid_data_blkaddr(blkaddr))
1826 			break;
1827 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1828 			return 0;
1829 	}
1830 
1831 	return compressed ? i - 1 : i;
1832 }
1833 
1834 const struct address_space_operations f2fs_compress_aops = {
1835 	.release_folio = f2fs_release_folio,
1836 	.invalidate_folio = f2fs_invalidate_folio,
1837 	.migrate_folio	= filemap_migrate_folio,
1838 };
1839 
1840 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1841 {
1842 	return sbi->compress_inode->i_mapping;
1843 }
1844 
1845 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1846 {
1847 	if (!sbi->compress_inode)
1848 		return;
1849 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1850 }
1851 
1852 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1853 						nid_t ino, block_t blkaddr)
1854 {
1855 	struct page *cpage;
1856 	int ret;
1857 
1858 	if (!test_opt(sbi, COMPRESS_CACHE))
1859 		return;
1860 
1861 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1862 		return;
1863 
1864 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1865 		return;
1866 
1867 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1868 	if (cpage) {
1869 		f2fs_put_page(cpage, 0);
1870 		return;
1871 	}
1872 
1873 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1874 	if (!cpage)
1875 		return;
1876 
1877 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1878 						blkaddr, GFP_NOFS);
1879 	if (ret) {
1880 		f2fs_put_page(cpage, 0);
1881 		return;
1882 	}
1883 
1884 	set_page_private_data(cpage, ino);
1885 
1886 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1887 		goto out;
1888 
1889 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1890 	SetPageUptodate(cpage);
1891 out:
1892 	f2fs_put_page(cpage, 1);
1893 }
1894 
1895 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1896 								block_t blkaddr)
1897 {
1898 	struct page *cpage;
1899 	bool hitted = false;
1900 
1901 	if (!test_opt(sbi, COMPRESS_CACHE))
1902 		return false;
1903 
1904 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1905 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1906 	if (cpage) {
1907 		if (PageUptodate(cpage)) {
1908 			atomic_inc(&sbi->compress_page_hit);
1909 			memcpy(page_address(page),
1910 				page_address(cpage), PAGE_SIZE);
1911 			hitted = true;
1912 		}
1913 		f2fs_put_page(cpage, 1);
1914 	}
1915 
1916 	return hitted;
1917 }
1918 
1919 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1920 {
1921 	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1922 	struct folio_batch fbatch;
1923 	pgoff_t index = 0;
1924 	pgoff_t end = MAX_BLKADDR(sbi);
1925 
1926 	if (!mapping->nrpages)
1927 		return;
1928 
1929 	folio_batch_init(&fbatch);
1930 
1931 	do {
1932 		unsigned int nr, i;
1933 
1934 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1935 		if (!nr)
1936 			break;
1937 
1938 		for (i = 0; i < nr; i++) {
1939 			struct folio *folio = fbatch.folios[i];
1940 
1941 			folio_lock(folio);
1942 			if (folio->mapping != mapping) {
1943 				folio_unlock(folio);
1944 				continue;
1945 			}
1946 
1947 			if (ino != get_page_private_data(&folio->page)) {
1948 				folio_unlock(folio);
1949 				continue;
1950 			}
1951 
1952 			generic_error_remove_page(mapping, &folio->page);
1953 			folio_unlock(folio);
1954 		}
1955 		folio_batch_release(&fbatch);
1956 		cond_resched();
1957 	} while (index < end);
1958 }
1959 
1960 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1961 {
1962 	struct inode *inode;
1963 
1964 	if (!test_opt(sbi, COMPRESS_CACHE))
1965 		return 0;
1966 
1967 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1968 	if (IS_ERR(inode))
1969 		return PTR_ERR(inode);
1970 	sbi->compress_inode = inode;
1971 
1972 	sbi->compress_percent = COMPRESS_PERCENT;
1973 	sbi->compress_watermark = COMPRESS_WATERMARK;
1974 
1975 	atomic_set(&sbi->compress_page_hit, 0);
1976 
1977 	return 0;
1978 }
1979 
1980 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1981 {
1982 	if (!sbi->compress_inode)
1983 		return;
1984 	iput(sbi->compress_inode);
1985 	sbi->compress_inode = NULL;
1986 }
1987 
1988 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1989 {
1990 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1991 	char slab_name[32];
1992 
1993 	if (!f2fs_sb_has_compression(sbi))
1994 		return 0;
1995 
1996 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1997 
1998 	sbi->page_array_slab_size = sizeof(struct page *) <<
1999 					F2FS_OPTION(sbi).compress_log_size;
2000 
2001 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2002 					sbi->page_array_slab_size);
2003 	return sbi->page_array_slab ? 0 : -ENOMEM;
2004 }
2005 
2006 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2007 {
2008 	kmem_cache_destroy(sbi->page_array_slab);
2009 }
2010 
2011 int __init f2fs_init_compress_cache(void)
2012 {
2013 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2014 					sizeof(struct compress_io_ctx));
2015 	if (!cic_entry_slab)
2016 		return -ENOMEM;
2017 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2018 					sizeof(struct decompress_io_ctx));
2019 	if (!dic_entry_slab)
2020 		goto free_cic;
2021 	return 0;
2022 free_cic:
2023 	kmem_cache_destroy(cic_entry_slab);
2024 	return -ENOMEM;
2025 }
2026 
2027 void f2fs_destroy_compress_cache(void)
2028 {
2029 	kmem_cache_destroy(dic_entry_slab);
2030 	kmem_cache_destroy(cic_entry_slab);
2031 }
2032