1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 bool (*is_level_valid)(int level); 59 }; 60 61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index & (cc->cluster_size - 1); 64 } 65 66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 67 { 68 return index >> cc->log_cluster_size; 69 } 70 71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 72 { 73 return cc->cluster_idx << cc->log_cluster_size; 74 } 75 76 bool f2fs_is_compressed_page(struct page *page) 77 { 78 if (!PagePrivate(page)) 79 return false; 80 if (!page_private(page)) 81 return false; 82 if (page_private_nonpointer(page)) 83 return false; 84 85 f2fs_bug_on(F2FS_M_SB(page->mapping), 86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 87 return true; 88 } 89 90 static void f2fs_set_compressed_page(struct page *page, 91 struct inode *inode, pgoff_t index, void *data) 92 { 93 attach_page_private(page, (void *)data); 94 95 /* i_crypto_info and iv index */ 96 page->index = index; 97 page->mapping = inode->i_mapping; 98 } 99 100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 101 { 102 int i; 103 104 for (i = 0; i < len; i++) { 105 if (!cc->rpages[i]) 106 continue; 107 if (unlock) 108 unlock_page(cc->rpages[i]); 109 else 110 put_page(cc->rpages[i]); 111 } 112 } 113 114 static void f2fs_put_rpages(struct compress_ctx *cc) 115 { 116 f2fs_drop_rpages(cc, cc->cluster_size, false); 117 } 118 119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 120 { 121 f2fs_drop_rpages(cc, len, true); 122 } 123 124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 125 struct writeback_control *wbc, bool redirty, int unlock) 126 { 127 unsigned int i; 128 129 for (i = 0; i < cc->cluster_size; i++) { 130 if (!cc->rpages[i]) 131 continue; 132 if (redirty) 133 redirty_page_for_writepage(wbc, cc->rpages[i]); 134 f2fs_put_page(cc->rpages[i], unlock); 135 } 136 } 137 138 struct page *f2fs_compress_control_page(struct page *page) 139 { 140 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 141 } 142 143 int f2fs_init_compress_ctx(struct compress_ctx *cc) 144 { 145 if (cc->rpages) 146 return 0; 147 148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 149 return cc->rpages ? 0 : -ENOMEM; 150 } 151 152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 153 { 154 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 155 cc->rpages = NULL; 156 cc->nr_rpages = 0; 157 cc->nr_cpages = 0; 158 cc->valid_nr_cpages = 0; 159 if (!reuse) 160 cc->cluster_idx = NULL_CLUSTER; 161 } 162 163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 164 { 165 unsigned int cluster_ofs; 166 167 if (!f2fs_cluster_can_merge_page(cc, page->index)) 168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 169 170 cluster_ofs = offset_in_cluster(cc, page->index); 171 cc->rpages[cluster_ofs] = page; 172 cc->nr_rpages++; 173 cc->cluster_idx = cluster_idx(cc, page->index); 174 } 175 176 #ifdef CONFIG_F2FS_FS_LZO 177 static int lzo_init_compress_ctx(struct compress_ctx *cc) 178 { 179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 180 LZO1X_MEM_COMPRESS, GFP_NOFS); 181 if (!cc->private) 182 return -ENOMEM; 183 184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 185 return 0; 186 } 187 188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 189 { 190 kvfree(cc->private); 191 cc->private = NULL; 192 } 193 194 static int lzo_compress_pages(struct compress_ctx *cc) 195 { 196 int ret; 197 198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 199 &cc->clen, cc->private); 200 if (ret != LZO_E_OK) { 201 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 202 "lzo compress failed, ret:%d", ret); 203 return -EIO; 204 } 205 return 0; 206 } 207 208 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 209 { 210 int ret; 211 212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 213 dic->rbuf, &dic->rlen); 214 if (ret != LZO_E_OK) { 215 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 216 "lzo decompress failed, ret:%d", ret); 217 return -EIO; 218 } 219 220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 221 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 222 "lzo invalid rlen:%zu, expected:%lu", 223 dic->rlen, PAGE_SIZE << dic->log_cluster_size); 224 return -EIO; 225 } 226 return 0; 227 } 228 229 static const struct f2fs_compress_ops f2fs_lzo_ops = { 230 .init_compress_ctx = lzo_init_compress_ctx, 231 .destroy_compress_ctx = lzo_destroy_compress_ctx, 232 .compress_pages = lzo_compress_pages, 233 .decompress_pages = lzo_decompress_pages, 234 }; 235 #endif 236 237 #ifdef CONFIG_F2FS_FS_LZ4 238 static int lz4_init_compress_ctx(struct compress_ctx *cc) 239 { 240 unsigned int size = LZ4_MEM_COMPRESS; 241 242 #ifdef CONFIG_F2FS_FS_LZ4HC 243 if (F2FS_I(cc->inode)->i_compress_level) 244 size = LZ4HC_MEM_COMPRESS; 245 #endif 246 247 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 248 if (!cc->private) 249 return -ENOMEM; 250 251 /* 252 * we do not change cc->clen to LZ4_compressBound(inputsize) to 253 * adapt worst compress case, because lz4 compressor can handle 254 * output budget properly. 255 */ 256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 257 return 0; 258 } 259 260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 261 { 262 kvfree(cc->private); 263 cc->private = NULL; 264 } 265 266 static int lz4_compress_pages(struct compress_ctx *cc) 267 { 268 int len = -EINVAL; 269 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 270 271 if (!level) 272 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 273 cc->clen, cc->private); 274 #ifdef CONFIG_F2FS_FS_LZ4HC 275 else 276 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 277 cc->clen, level, cc->private); 278 #endif 279 if (len < 0) 280 return len; 281 if (!len) 282 return -EAGAIN; 283 284 cc->clen = len; 285 return 0; 286 } 287 288 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 289 { 290 int ret; 291 292 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 293 dic->clen, dic->rlen); 294 if (ret < 0) { 295 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 296 "lz4 decompress failed, ret:%d", ret); 297 return -EIO; 298 } 299 300 if (ret != PAGE_SIZE << dic->log_cluster_size) { 301 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 302 "lz4 invalid ret:%d, expected:%lu", 303 ret, PAGE_SIZE << dic->log_cluster_size); 304 return -EIO; 305 } 306 return 0; 307 } 308 309 static bool lz4_is_level_valid(int lvl) 310 { 311 #ifdef CONFIG_F2FS_FS_LZ4HC 312 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL); 313 #else 314 return lvl == 0; 315 #endif 316 } 317 318 static const struct f2fs_compress_ops f2fs_lz4_ops = { 319 .init_compress_ctx = lz4_init_compress_ctx, 320 .destroy_compress_ctx = lz4_destroy_compress_ctx, 321 .compress_pages = lz4_compress_pages, 322 .decompress_pages = lz4_decompress_pages, 323 .is_level_valid = lz4_is_level_valid, 324 }; 325 #endif 326 327 #ifdef CONFIG_F2FS_FS_ZSTD 328 static int zstd_init_compress_ctx(struct compress_ctx *cc) 329 { 330 zstd_parameters params; 331 zstd_cstream *stream; 332 void *workspace; 333 unsigned int workspace_size; 334 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 335 336 /* Need to remain this for backward compatibility */ 337 if (!level) 338 level = F2FS_ZSTD_DEFAULT_CLEVEL; 339 340 params = zstd_get_params(level, cc->rlen); 341 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 342 343 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 344 workspace_size, GFP_NOFS); 345 if (!workspace) 346 return -ENOMEM; 347 348 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 349 if (!stream) { 350 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 351 "%s zstd_init_cstream failed", __func__); 352 kvfree(workspace); 353 return -EIO; 354 } 355 356 cc->private = workspace; 357 cc->private2 = stream; 358 359 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 360 return 0; 361 } 362 363 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 364 { 365 kvfree(cc->private); 366 cc->private = NULL; 367 cc->private2 = NULL; 368 } 369 370 static int zstd_compress_pages(struct compress_ctx *cc) 371 { 372 zstd_cstream *stream = cc->private2; 373 zstd_in_buffer inbuf; 374 zstd_out_buffer outbuf; 375 int src_size = cc->rlen; 376 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 377 int ret; 378 379 inbuf.pos = 0; 380 inbuf.src = cc->rbuf; 381 inbuf.size = src_size; 382 383 outbuf.pos = 0; 384 outbuf.dst = cc->cbuf->cdata; 385 outbuf.size = dst_size; 386 387 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 388 if (zstd_is_error(ret)) { 389 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 390 "%s zstd_compress_stream failed, ret: %d", 391 __func__, zstd_get_error_code(ret)); 392 return -EIO; 393 } 394 395 ret = zstd_end_stream(stream, &outbuf); 396 if (zstd_is_error(ret)) { 397 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 398 "%s zstd_end_stream returned %d", 399 __func__, zstd_get_error_code(ret)); 400 return -EIO; 401 } 402 403 /* 404 * there is compressed data remained in intermediate buffer due to 405 * no more space in cbuf.cdata 406 */ 407 if (ret) 408 return -EAGAIN; 409 410 cc->clen = outbuf.pos; 411 return 0; 412 } 413 414 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 415 { 416 zstd_dstream *stream; 417 void *workspace; 418 unsigned int workspace_size; 419 unsigned int max_window_size = 420 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 421 422 workspace_size = zstd_dstream_workspace_bound(max_window_size); 423 424 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 425 workspace_size, GFP_NOFS); 426 if (!workspace) 427 return -ENOMEM; 428 429 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 430 if (!stream) { 431 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 432 "%s zstd_init_dstream failed", __func__); 433 kvfree(workspace); 434 return -EIO; 435 } 436 437 dic->private = workspace; 438 dic->private2 = stream; 439 440 return 0; 441 } 442 443 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 444 { 445 kvfree(dic->private); 446 dic->private = NULL; 447 dic->private2 = NULL; 448 } 449 450 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 451 { 452 zstd_dstream *stream = dic->private2; 453 zstd_in_buffer inbuf; 454 zstd_out_buffer outbuf; 455 int ret; 456 457 inbuf.pos = 0; 458 inbuf.src = dic->cbuf->cdata; 459 inbuf.size = dic->clen; 460 461 outbuf.pos = 0; 462 outbuf.dst = dic->rbuf; 463 outbuf.size = dic->rlen; 464 465 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 466 if (zstd_is_error(ret)) { 467 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 468 "%s zstd_decompress_stream failed, ret: %d", 469 __func__, zstd_get_error_code(ret)); 470 return -EIO; 471 } 472 473 if (dic->rlen != outbuf.pos) { 474 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 475 "%s ZSTD invalid rlen:%zu, expected:%lu", 476 __func__, dic->rlen, 477 PAGE_SIZE << dic->log_cluster_size); 478 return -EIO; 479 } 480 481 return 0; 482 } 483 484 static bool zstd_is_level_valid(int lvl) 485 { 486 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel(); 487 } 488 489 static const struct f2fs_compress_ops f2fs_zstd_ops = { 490 .init_compress_ctx = zstd_init_compress_ctx, 491 .destroy_compress_ctx = zstd_destroy_compress_ctx, 492 .compress_pages = zstd_compress_pages, 493 .init_decompress_ctx = zstd_init_decompress_ctx, 494 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 495 .decompress_pages = zstd_decompress_pages, 496 .is_level_valid = zstd_is_level_valid, 497 }; 498 #endif 499 500 #ifdef CONFIG_F2FS_FS_LZO 501 #ifdef CONFIG_F2FS_FS_LZORLE 502 static int lzorle_compress_pages(struct compress_ctx *cc) 503 { 504 int ret; 505 506 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 507 &cc->clen, cc->private); 508 if (ret != LZO_E_OK) { 509 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 510 "lzo-rle compress failed, ret:%d", ret); 511 return -EIO; 512 } 513 return 0; 514 } 515 516 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 517 .init_compress_ctx = lzo_init_compress_ctx, 518 .destroy_compress_ctx = lzo_destroy_compress_ctx, 519 .compress_pages = lzorle_compress_pages, 520 .decompress_pages = lzo_decompress_pages, 521 }; 522 #endif 523 #endif 524 525 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 526 #ifdef CONFIG_F2FS_FS_LZO 527 &f2fs_lzo_ops, 528 #else 529 NULL, 530 #endif 531 #ifdef CONFIG_F2FS_FS_LZ4 532 &f2fs_lz4_ops, 533 #else 534 NULL, 535 #endif 536 #ifdef CONFIG_F2FS_FS_ZSTD 537 &f2fs_zstd_ops, 538 #else 539 NULL, 540 #endif 541 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 542 &f2fs_lzorle_ops, 543 #else 544 NULL, 545 #endif 546 }; 547 548 bool f2fs_is_compress_backend_ready(struct inode *inode) 549 { 550 if (!f2fs_compressed_file(inode)) 551 return true; 552 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 553 } 554 555 bool f2fs_is_compress_level_valid(int alg, int lvl) 556 { 557 const struct f2fs_compress_ops *cops = f2fs_cops[alg]; 558 559 if (cops->is_level_valid) 560 return cops->is_level_valid(lvl); 561 562 return lvl == 0; 563 } 564 565 static mempool_t *compress_page_pool; 566 static int num_compress_pages = 512; 567 module_param(num_compress_pages, uint, 0444); 568 MODULE_PARM_DESC(num_compress_pages, 569 "Number of intermediate compress pages to preallocate"); 570 571 int __init f2fs_init_compress_mempool(void) 572 { 573 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 574 return compress_page_pool ? 0 : -ENOMEM; 575 } 576 577 void f2fs_destroy_compress_mempool(void) 578 { 579 mempool_destroy(compress_page_pool); 580 } 581 582 static struct page *f2fs_compress_alloc_page(void) 583 { 584 struct page *page; 585 586 page = mempool_alloc(compress_page_pool, GFP_NOFS); 587 lock_page(page); 588 589 return page; 590 } 591 592 static void f2fs_compress_free_page(struct page *page) 593 { 594 if (!page) 595 return; 596 detach_page_private(page); 597 page->mapping = NULL; 598 unlock_page(page); 599 mempool_free(page, compress_page_pool); 600 } 601 602 #define MAX_VMAP_RETRIES 3 603 604 static void *f2fs_vmap(struct page **pages, unsigned int count) 605 { 606 int i; 607 void *buf = NULL; 608 609 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 610 buf = vm_map_ram(pages, count, -1); 611 if (buf) 612 break; 613 vm_unmap_aliases(); 614 } 615 return buf; 616 } 617 618 static int f2fs_compress_pages(struct compress_ctx *cc) 619 { 620 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 621 const struct f2fs_compress_ops *cops = 622 f2fs_cops[fi->i_compress_algorithm]; 623 unsigned int max_len, new_nr_cpages; 624 u32 chksum = 0; 625 int i, ret; 626 627 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 628 cc->cluster_size, fi->i_compress_algorithm); 629 630 if (cops->init_compress_ctx) { 631 ret = cops->init_compress_ctx(cc); 632 if (ret) 633 goto out; 634 } 635 636 max_len = COMPRESS_HEADER_SIZE + cc->clen; 637 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 638 cc->valid_nr_cpages = cc->nr_cpages; 639 640 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 641 if (!cc->cpages) { 642 ret = -ENOMEM; 643 goto destroy_compress_ctx; 644 } 645 646 for (i = 0; i < cc->nr_cpages; i++) 647 cc->cpages[i] = f2fs_compress_alloc_page(); 648 649 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 650 if (!cc->rbuf) { 651 ret = -ENOMEM; 652 goto out_free_cpages; 653 } 654 655 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 656 if (!cc->cbuf) { 657 ret = -ENOMEM; 658 goto out_vunmap_rbuf; 659 } 660 661 ret = cops->compress_pages(cc); 662 if (ret) 663 goto out_vunmap_cbuf; 664 665 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 666 667 if (cc->clen > max_len) { 668 ret = -EAGAIN; 669 goto out_vunmap_cbuf; 670 } 671 672 cc->cbuf->clen = cpu_to_le32(cc->clen); 673 674 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 675 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 676 cc->cbuf->cdata, cc->clen); 677 cc->cbuf->chksum = cpu_to_le32(chksum); 678 679 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 680 cc->cbuf->reserved[i] = cpu_to_le32(0); 681 682 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 683 684 /* zero out any unused part of the last page */ 685 memset(&cc->cbuf->cdata[cc->clen], 0, 686 (new_nr_cpages * PAGE_SIZE) - 687 (cc->clen + COMPRESS_HEADER_SIZE)); 688 689 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 690 vm_unmap_ram(cc->rbuf, cc->cluster_size); 691 692 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 693 f2fs_compress_free_page(cc->cpages[i]); 694 cc->cpages[i] = NULL; 695 } 696 697 if (cops->destroy_compress_ctx) 698 cops->destroy_compress_ctx(cc); 699 700 cc->valid_nr_cpages = new_nr_cpages; 701 702 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 703 cc->clen, ret); 704 return 0; 705 706 out_vunmap_cbuf: 707 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 708 out_vunmap_rbuf: 709 vm_unmap_ram(cc->rbuf, cc->cluster_size); 710 out_free_cpages: 711 for (i = 0; i < cc->nr_cpages; i++) { 712 if (cc->cpages[i]) 713 f2fs_compress_free_page(cc->cpages[i]); 714 } 715 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 716 cc->cpages = NULL; 717 destroy_compress_ctx: 718 if (cops->destroy_compress_ctx) 719 cops->destroy_compress_ctx(cc); 720 out: 721 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 722 cc->clen, ret); 723 return ret; 724 } 725 726 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 727 bool pre_alloc); 728 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 729 bool bypass_destroy_callback, bool pre_alloc); 730 731 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 732 { 733 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 734 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 735 const struct f2fs_compress_ops *cops = 736 f2fs_cops[fi->i_compress_algorithm]; 737 bool bypass_callback = false; 738 int ret; 739 740 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 741 dic->cluster_size, fi->i_compress_algorithm); 742 743 if (dic->failed) { 744 ret = -EIO; 745 goto out_end_io; 746 } 747 748 ret = f2fs_prepare_decomp_mem(dic, false); 749 if (ret) { 750 bypass_callback = true; 751 goto out_release; 752 } 753 754 dic->clen = le32_to_cpu(dic->cbuf->clen); 755 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 756 757 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 758 ret = -EFSCORRUPTED; 759 760 /* Avoid f2fs_commit_super in irq context */ 761 if (!in_task) 762 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION); 763 else 764 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 765 goto out_release; 766 } 767 768 ret = cops->decompress_pages(dic); 769 770 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 771 u32 provided = le32_to_cpu(dic->cbuf->chksum); 772 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 773 774 if (provided != calculated) { 775 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 776 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 777 f2fs_info_ratelimited(sbi, 778 "checksum invalid, nid = %lu, %x vs %x", 779 dic->inode->i_ino, 780 provided, calculated); 781 } 782 set_sbi_flag(sbi, SBI_NEED_FSCK); 783 } 784 } 785 786 out_release: 787 f2fs_release_decomp_mem(dic, bypass_callback, false); 788 789 out_end_io: 790 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 791 dic->clen, ret); 792 f2fs_decompress_end_io(dic, ret, in_task); 793 } 794 795 /* 796 * This is called when a page of a compressed cluster has been read from disk 797 * (or failed to be read from disk). It checks whether this page was the last 798 * page being waited on in the cluster, and if so, it decompresses the cluster 799 * (or in the case of a failure, cleans up without actually decompressing). 800 */ 801 void f2fs_end_read_compressed_page(struct page *page, bool failed, 802 block_t blkaddr, bool in_task) 803 { 804 struct decompress_io_ctx *dic = 805 (struct decompress_io_ctx *)page_private(page); 806 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 807 808 dec_page_count(sbi, F2FS_RD_DATA); 809 810 if (failed) 811 WRITE_ONCE(dic->failed, true); 812 else if (blkaddr && in_task) 813 f2fs_cache_compressed_page(sbi, page, 814 dic->inode->i_ino, blkaddr); 815 816 if (atomic_dec_and_test(&dic->remaining_pages)) 817 f2fs_decompress_cluster(dic, in_task); 818 } 819 820 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 821 { 822 if (cc->cluster_idx == NULL_CLUSTER) 823 return true; 824 return cc->cluster_idx == cluster_idx(cc, index); 825 } 826 827 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 828 { 829 return cc->nr_rpages == 0; 830 } 831 832 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 833 { 834 return cc->cluster_size == cc->nr_rpages; 835 } 836 837 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 838 { 839 if (f2fs_cluster_is_empty(cc)) 840 return true; 841 return is_page_in_cluster(cc, index); 842 } 843 844 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 845 int index, int nr_pages, bool uptodate) 846 { 847 unsigned long pgidx = pages[index]->index; 848 int i = uptodate ? 0 : 1; 849 850 /* 851 * when uptodate set to true, try to check all pages in cluster is 852 * uptodate or not. 853 */ 854 if (uptodate && (pgidx % cc->cluster_size)) 855 return false; 856 857 if (nr_pages - index < cc->cluster_size) 858 return false; 859 860 for (; i < cc->cluster_size; i++) { 861 if (pages[index + i]->index != pgidx + i) 862 return false; 863 if (uptodate && !PageUptodate(pages[index + i])) 864 return false; 865 } 866 867 return true; 868 } 869 870 static bool cluster_has_invalid_data(struct compress_ctx *cc) 871 { 872 loff_t i_size = i_size_read(cc->inode); 873 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 874 int i; 875 876 for (i = 0; i < cc->cluster_size; i++) { 877 struct page *page = cc->rpages[i]; 878 879 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 880 881 /* beyond EOF */ 882 if (page->index >= nr_pages) 883 return true; 884 } 885 return false; 886 } 887 888 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 889 { 890 #ifdef CONFIG_F2FS_CHECK_FS 891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 892 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 893 int cluster_end = 0; 894 unsigned int count; 895 int i; 896 char *reason = ""; 897 898 if (dn->data_blkaddr != COMPRESS_ADDR) 899 return false; 900 901 /* [..., COMPR_ADDR, ...] */ 902 if (dn->ofs_in_node % cluster_size) { 903 reason = "[*|C|*|*]"; 904 goto out; 905 } 906 907 for (i = 1, count = 1; i < cluster_size; i++, count++) { 908 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 909 dn->ofs_in_node + i); 910 911 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 912 if (blkaddr == COMPRESS_ADDR) { 913 reason = "[C|*|C|*]"; 914 goto out; 915 } 916 if (!__is_valid_data_blkaddr(blkaddr)) { 917 if (!cluster_end) 918 cluster_end = i; 919 continue; 920 } 921 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 922 if (cluster_end) { 923 reason = "[C|N|N|V]"; 924 goto out; 925 } 926 } 927 928 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size && 929 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED)); 930 931 return false; 932 out: 933 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 934 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 935 set_sbi_flag(sbi, SBI_NEED_FSCK); 936 return true; 937 #else 938 return false; 939 #endif 940 } 941 942 static int __f2fs_get_cluster_blocks(struct inode *inode, 943 struct dnode_of_data *dn) 944 { 945 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 946 int count, i; 947 948 for (i = 0, count = 0; i < cluster_size; i++) { 949 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 950 dn->ofs_in_node + i); 951 952 if (__is_valid_data_blkaddr(blkaddr)) 953 count++; 954 } 955 956 return count; 957 } 958 959 static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx, 960 enum cluster_check_type type) 961 { 962 struct dnode_of_data dn; 963 unsigned int start_idx = cluster_idx << 964 F2FS_I(inode)->i_log_cluster_size; 965 int ret; 966 967 set_new_dnode(&dn, inode, NULL, NULL, 0); 968 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 969 if (ret) { 970 if (ret == -ENOENT) 971 ret = 0; 972 goto fail; 973 } 974 975 if (f2fs_sanity_check_cluster(&dn)) { 976 ret = -EFSCORRUPTED; 977 goto fail; 978 } 979 980 if (dn.data_blkaddr == COMPRESS_ADDR) { 981 if (type == CLUSTER_COMPR_BLKS) 982 ret = 1 + __f2fs_get_cluster_blocks(inode, &dn); 983 else if (type == CLUSTER_IS_COMPR) 984 ret = 1; 985 } else if (type == CLUSTER_RAW_BLKS) { 986 ret = __f2fs_get_cluster_blocks(inode, &dn); 987 } 988 fail: 989 f2fs_put_dnode(&dn); 990 return ret; 991 } 992 993 /* return # of compressed blocks in compressed cluster */ 994 static int f2fs_compressed_blocks(struct compress_ctx *cc) 995 { 996 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, 997 CLUSTER_COMPR_BLKS); 998 } 999 1000 /* return # of raw blocks in non-compressed cluster */ 1001 static int f2fs_decompressed_blocks(struct inode *inode, 1002 unsigned int cluster_idx) 1003 { 1004 return __f2fs_cluster_blocks(inode, cluster_idx, 1005 CLUSTER_RAW_BLKS); 1006 } 1007 1008 /* return whether cluster is compressed one or not */ 1009 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 1010 { 1011 return __f2fs_cluster_blocks(inode, 1012 index >> F2FS_I(inode)->i_log_cluster_size, 1013 CLUSTER_IS_COMPR); 1014 } 1015 1016 /* return whether cluster contains non raw blocks or not */ 1017 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index) 1018 { 1019 unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size; 1020 1021 return f2fs_decompressed_blocks(inode, cluster_idx) != 1022 F2FS_I(inode)->i_cluster_size; 1023 } 1024 1025 static bool cluster_may_compress(struct compress_ctx *cc) 1026 { 1027 if (!f2fs_need_compress_data(cc->inode)) 1028 return false; 1029 if (f2fs_is_atomic_file(cc->inode)) 1030 return false; 1031 if (!f2fs_cluster_is_full(cc)) 1032 return false; 1033 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1034 return false; 1035 return !cluster_has_invalid_data(cc); 1036 } 1037 1038 static void set_cluster_writeback(struct compress_ctx *cc) 1039 { 1040 int i; 1041 1042 for (i = 0; i < cc->cluster_size; i++) { 1043 if (cc->rpages[i]) 1044 set_page_writeback(cc->rpages[i]); 1045 } 1046 } 1047 1048 static void set_cluster_dirty(struct compress_ctx *cc) 1049 { 1050 int i; 1051 1052 for (i = 0; i < cc->cluster_size; i++) 1053 if (cc->rpages[i]) { 1054 set_page_dirty(cc->rpages[i]); 1055 set_page_private_gcing(cc->rpages[i]); 1056 } 1057 } 1058 1059 static int prepare_compress_overwrite(struct compress_ctx *cc, 1060 struct page **pagep, pgoff_t index, void **fsdata) 1061 { 1062 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1063 struct address_space *mapping = cc->inode->i_mapping; 1064 struct page *page; 1065 sector_t last_block_in_bio; 1066 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1067 pgoff_t start_idx = start_idx_of_cluster(cc); 1068 int i, ret; 1069 1070 retry: 1071 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1072 if (ret <= 0) 1073 return ret; 1074 1075 ret = f2fs_init_compress_ctx(cc); 1076 if (ret) 1077 return ret; 1078 1079 /* keep page reference to avoid page reclaim */ 1080 for (i = 0; i < cc->cluster_size; i++) { 1081 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1082 fgp_flag, GFP_NOFS); 1083 if (!page) { 1084 ret = -ENOMEM; 1085 goto unlock_pages; 1086 } 1087 1088 if (PageUptodate(page)) 1089 f2fs_put_page(page, 1); 1090 else 1091 f2fs_compress_ctx_add_page(cc, page); 1092 } 1093 1094 if (!f2fs_cluster_is_empty(cc)) { 1095 struct bio *bio = NULL; 1096 1097 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1098 &last_block_in_bio, false, true); 1099 f2fs_put_rpages(cc); 1100 f2fs_destroy_compress_ctx(cc, true); 1101 if (ret) 1102 goto out; 1103 if (bio) 1104 f2fs_submit_read_bio(sbi, bio, DATA); 1105 1106 ret = f2fs_init_compress_ctx(cc); 1107 if (ret) 1108 goto out; 1109 } 1110 1111 for (i = 0; i < cc->cluster_size; i++) { 1112 f2fs_bug_on(sbi, cc->rpages[i]); 1113 1114 page = find_lock_page(mapping, start_idx + i); 1115 if (!page) { 1116 /* page can be truncated */ 1117 goto release_and_retry; 1118 } 1119 1120 f2fs_wait_on_page_writeback(page, DATA, true, true); 1121 f2fs_compress_ctx_add_page(cc, page); 1122 1123 if (!PageUptodate(page)) { 1124 release_and_retry: 1125 f2fs_put_rpages(cc); 1126 f2fs_unlock_rpages(cc, i + 1); 1127 f2fs_destroy_compress_ctx(cc, true); 1128 goto retry; 1129 } 1130 } 1131 1132 if (likely(!ret)) { 1133 *fsdata = cc->rpages; 1134 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1135 return cc->cluster_size; 1136 } 1137 1138 unlock_pages: 1139 f2fs_put_rpages(cc); 1140 f2fs_unlock_rpages(cc, i); 1141 f2fs_destroy_compress_ctx(cc, true); 1142 out: 1143 return ret; 1144 } 1145 1146 int f2fs_prepare_compress_overwrite(struct inode *inode, 1147 struct page **pagep, pgoff_t index, void **fsdata) 1148 { 1149 struct compress_ctx cc = { 1150 .inode = inode, 1151 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1152 .cluster_size = F2FS_I(inode)->i_cluster_size, 1153 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1154 .rpages = NULL, 1155 .nr_rpages = 0, 1156 }; 1157 1158 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1159 } 1160 1161 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1162 pgoff_t index, unsigned copied) 1163 1164 { 1165 struct compress_ctx cc = { 1166 .inode = inode, 1167 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1168 .cluster_size = F2FS_I(inode)->i_cluster_size, 1169 .rpages = fsdata, 1170 }; 1171 bool first_index = (index == cc.rpages[0]->index); 1172 1173 if (copied) 1174 set_cluster_dirty(&cc); 1175 1176 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1177 f2fs_destroy_compress_ctx(&cc, false); 1178 1179 return first_index; 1180 } 1181 1182 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1183 { 1184 void *fsdata = NULL; 1185 struct page *pagep; 1186 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1187 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1188 log_cluster_size; 1189 int err; 1190 1191 err = f2fs_is_compressed_cluster(inode, start_idx); 1192 if (err < 0) 1193 return err; 1194 1195 /* truncate normal cluster */ 1196 if (!err) 1197 return f2fs_do_truncate_blocks(inode, from, lock); 1198 1199 /* truncate compressed cluster */ 1200 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1201 start_idx, &fsdata); 1202 1203 /* should not be a normal cluster */ 1204 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1205 1206 if (err <= 0) 1207 return err; 1208 1209 if (err > 0) { 1210 struct page **rpages = fsdata; 1211 int cluster_size = F2FS_I(inode)->i_cluster_size; 1212 int i; 1213 1214 for (i = cluster_size - 1; i >= 0; i--) { 1215 loff_t start = rpages[i]->index << PAGE_SHIFT; 1216 1217 if (from <= start) { 1218 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1219 } else { 1220 zero_user_segment(rpages[i], from - start, 1221 PAGE_SIZE); 1222 break; 1223 } 1224 } 1225 1226 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1227 } 1228 return 0; 1229 } 1230 1231 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1232 int *submitted, 1233 struct writeback_control *wbc, 1234 enum iostat_type io_type) 1235 { 1236 struct inode *inode = cc->inode; 1237 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1238 struct f2fs_inode_info *fi = F2FS_I(inode); 1239 struct f2fs_io_info fio = { 1240 .sbi = sbi, 1241 .ino = cc->inode->i_ino, 1242 .type = DATA, 1243 .op = REQ_OP_WRITE, 1244 .op_flags = wbc_to_write_flags(wbc), 1245 .old_blkaddr = NEW_ADDR, 1246 .page = NULL, 1247 .encrypted_page = NULL, 1248 .compressed_page = NULL, 1249 .submitted = 0, 1250 .io_type = io_type, 1251 .io_wbc = wbc, 1252 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1253 1 : 0, 1254 }; 1255 struct dnode_of_data dn; 1256 struct node_info ni; 1257 struct compress_io_ctx *cic; 1258 pgoff_t start_idx = start_idx_of_cluster(cc); 1259 unsigned int last_index = cc->cluster_size - 1; 1260 loff_t psize; 1261 int i, err; 1262 bool quota_inode = IS_NOQUOTA(inode); 1263 1264 /* we should bypass data pages to proceed the kworker jobs */ 1265 if (unlikely(f2fs_cp_error(sbi))) { 1266 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1267 goto out_free; 1268 } 1269 1270 if (quota_inode) { 1271 /* 1272 * We need to wait for node_write to avoid block allocation during 1273 * checkpoint. This can only happen to quota writes which can cause 1274 * the below discard race condition. 1275 */ 1276 f2fs_down_read(&sbi->node_write); 1277 } else if (!f2fs_trylock_op(sbi)) { 1278 goto out_free; 1279 } 1280 1281 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1282 1283 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1284 if (err) 1285 goto out_unlock_op; 1286 1287 for (i = 0; i < cc->cluster_size; i++) { 1288 if (data_blkaddr(dn.inode, dn.node_page, 1289 dn.ofs_in_node + i) == NULL_ADDR) 1290 goto out_put_dnode; 1291 } 1292 1293 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1294 1295 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1296 if (err) 1297 goto out_put_dnode; 1298 1299 fio.version = ni.version; 1300 1301 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1302 if (!cic) 1303 goto out_put_dnode; 1304 1305 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1306 cic->inode = inode; 1307 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1308 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1309 if (!cic->rpages) 1310 goto out_put_cic; 1311 1312 cic->nr_rpages = cc->cluster_size; 1313 1314 for (i = 0; i < cc->valid_nr_cpages; i++) { 1315 f2fs_set_compressed_page(cc->cpages[i], inode, 1316 cc->rpages[i + 1]->index, cic); 1317 fio.compressed_page = cc->cpages[i]; 1318 1319 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1320 dn.ofs_in_node + i + 1); 1321 1322 /* wait for GCed page writeback via META_MAPPING */ 1323 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1324 1325 if (fio.encrypted) { 1326 fio.page = cc->rpages[i + 1]; 1327 err = f2fs_encrypt_one_page(&fio); 1328 if (err) 1329 goto out_destroy_crypt; 1330 cc->cpages[i] = fio.encrypted_page; 1331 } 1332 } 1333 1334 set_cluster_writeback(cc); 1335 1336 for (i = 0; i < cc->cluster_size; i++) 1337 cic->rpages[i] = cc->rpages[i]; 1338 1339 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1340 block_t blkaddr; 1341 1342 blkaddr = f2fs_data_blkaddr(&dn); 1343 fio.page = cc->rpages[i]; 1344 fio.old_blkaddr = blkaddr; 1345 1346 /* cluster header */ 1347 if (i == 0) { 1348 if (blkaddr == COMPRESS_ADDR) 1349 fio.compr_blocks++; 1350 if (__is_valid_data_blkaddr(blkaddr)) 1351 f2fs_invalidate_blocks(sbi, blkaddr); 1352 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1353 goto unlock_continue; 1354 } 1355 1356 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1357 fio.compr_blocks++; 1358 1359 if (i > cc->valid_nr_cpages) { 1360 if (__is_valid_data_blkaddr(blkaddr)) { 1361 f2fs_invalidate_blocks(sbi, blkaddr); 1362 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1363 } 1364 goto unlock_continue; 1365 } 1366 1367 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1368 1369 if (fio.encrypted) 1370 fio.encrypted_page = cc->cpages[i - 1]; 1371 else 1372 fio.compressed_page = cc->cpages[i - 1]; 1373 1374 cc->cpages[i - 1] = NULL; 1375 f2fs_outplace_write_data(&dn, &fio); 1376 (*submitted)++; 1377 unlock_continue: 1378 inode_dec_dirty_pages(cc->inode); 1379 unlock_page(fio.page); 1380 } 1381 1382 if (fio.compr_blocks) 1383 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1384 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1385 add_compr_block_stat(inode, cc->valid_nr_cpages); 1386 1387 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1388 1389 f2fs_put_dnode(&dn); 1390 if (quota_inode) 1391 f2fs_up_read(&sbi->node_write); 1392 else 1393 f2fs_unlock_op(sbi); 1394 1395 spin_lock(&fi->i_size_lock); 1396 if (fi->last_disk_size < psize) 1397 fi->last_disk_size = psize; 1398 spin_unlock(&fi->i_size_lock); 1399 1400 f2fs_put_rpages(cc); 1401 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1402 cc->cpages = NULL; 1403 f2fs_destroy_compress_ctx(cc, false); 1404 return 0; 1405 1406 out_destroy_crypt: 1407 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1408 1409 for (--i; i >= 0; i--) 1410 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1411 out_put_cic: 1412 kmem_cache_free(cic_entry_slab, cic); 1413 out_put_dnode: 1414 f2fs_put_dnode(&dn); 1415 out_unlock_op: 1416 if (quota_inode) 1417 f2fs_up_read(&sbi->node_write); 1418 else 1419 f2fs_unlock_op(sbi); 1420 out_free: 1421 for (i = 0; i < cc->valid_nr_cpages; i++) { 1422 f2fs_compress_free_page(cc->cpages[i]); 1423 cc->cpages[i] = NULL; 1424 } 1425 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1426 cc->cpages = NULL; 1427 return -EAGAIN; 1428 } 1429 1430 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1431 { 1432 struct f2fs_sb_info *sbi = bio->bi_private; 1433 struct compress_io_ctx *cic = 1434 (struct compress_io_ctx *)page_private(page); 1435 enum count_type type = WB_DATA_TYPE(page, 1436 f2fs_is_compressed_page(page)); 1437 int i; 1438 1439 if (unlikely(bio->bi_status)) 1440 mapping_set_error(cic->inode->i_mapping, -EIO); 1441 1442 f2fs_compress_free_page(page); 1443 1444 dec_page_count(sbi, type); 1445 1446 if (atomic_dec_return(&cic->pending_pages)) 1447 return; 1448 1449 for (i = 0; i < cic->nr_rpages; i++) { 1450 WARN_ON(!cic->rpages[i]); 1451 clear_page_private_gcing(cic->rpages[i]); 1452 end_page_writeback(cic->rpages[i]); 1453 } 1454 1455 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1456 kmem_cache_free(cic_entry_slab, cic); 1457 } 1458 1459 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1460 int *submitted_p, 1461 struct writeback_control *wbc, 1462 enum iostat_type io_type) 1463 { 1464 struct address_space *mapping = cc->inode->i_mapping; 1465 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1466 int submitted, compr_blocks, i; 1467 int ret = 0; 1468 1469 compr_blocks = f2fs_compressed_blocks(cc); 1470 1471 for (i = 0; i < cc->cluster_size; i++) { 1472 if (!cc->rpages[i]) 1473 continue; 1474 1475 redirty_page_for_writepage(wbc, cc->rpages[i]); 1476 unlock_page(cc->rpages[i]); 1477 } 1478 1479 if (compr_blocks < 0) 1480 return compr_blocks; 1481 1482 /* overwrite compressed cluster w/ normal cluster */ 1483 if (compr_blocks > 0) 1484 f2fs_lock_op(sbi); 1485 1486 for (i = 0; i < cc->cluster_size; i++) { 1487 if (!cc->rpages[i]) 1488 continue; 1489 retry_write: 1490 lock_page(cc->rpages[i]); 1491 1492 if (cc->rpages[i]->mapping != mapping) { 1493 continue_unlock: 1494 unlock_page(cc->rpages[i]); 1495 continue; 1496 } 1497 1498 if (!PageDirty(cc->rpages[i])) 1499 goto continue_unlock; 1500 1501 if (PageWriteback(cc->rpages[i])) { 1502 if (wbc->sync_mode == WB_SYNC_NONE) 1503 goto continue_unlock; 1504 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1505 } 1506 1507 if (!clear_page_dirty_for_io(cc->rpages[i])) 1508 goto continue_unlock; 1509 1510 ret = f2fs_write_single_data_page(cc->rpages[i], &submitted, 1511 NULL, NULL, wbc, io_type, 1512 compr_blocks, false); 1513 if (ret) { 1514 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1515 unlock_page(cc->rpages[i]); 1516 ret = 0; 1517 } else if (ret == -EAGAIN) { 1518 ret = 0; 1519 /* 1520 * for quota file, just redirty left pages to 1521 * avoid deadlock caused by cluster update race 1522 * from foreground operation. 1523 */ 1524 if (IS_NOQUOTA(cc->inode)) 1525 goto out; 1526 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1527 goto retry_write; 1528 } 1529 goto out; 1530 } 1531 1532 *submitted_p += submitted; 1533 } 1534 1535 out: 1536 if (compr_blocks > 0) 1537 f2fs_unlock_op(sbi); 1538 1539 f2fs_balance_fs(sbi, true); 1540 return ret; 1541 } 1542 1543 int f2fs_write_multi_pages(struct compress_ctx *cc, 1544 int *submitted, 1545 struct writeback_control *wbc, 1546 enum iostat_type io_type) 1547 { 1548 int err; 1549 1550 *submitted = 0; 1551 if (cluster_may_compress(cc)) { 1552 err = f2fs_compress_pages(cc); 1553 if (err == -EAGAIN) { 1554 add_compr_block_stat(cc->inode, cc->cluster_size); 1555 goto write; 1556 } else if (err) { 1557 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1558 goto destroy_out; 1559 } 1560 1561 err = f2fs_write_compressed_pages(cc, submitted, 1562 wbc, io_type); 1563 if (!err) 1564 return 0; 1565 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1566 } 1567 write: 1568 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1569 1570 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1571 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1572 destroy_out: 1573 f2fs_destroy_compress_ctx(cc, false); 1574 return err; 1575 } 1576 1577 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1578 bool pre_alloc) 1579 { 1580 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1581 } 1582 1583 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1584 bool pre_alloc) 1585 { 1586 const struct f2fs_compress_ops *cops = 1587 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1588 int i; 1589 1590 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1591 return 0; 1592 1593 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1594 if (!dic->tpages) 1595 return -ENOMEM; 1596 1597 for (i = 0; i < dic->cluster_size; i++) { 1598 if (dic->rpages[i]) { 1599 dic->tpages[i] = dic->rpages[i]; 1600 continue; 1601 } 1602 1603 dic->tpages[i] = f2fs_compress_alloc_page(); 1604 } 1605 1606 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1607 if (!dic->rbuf) 1608 return -ENOMEM; 1609 1610 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1611 if (!dic->cbuf) 1612 return -ENOMEM; 1613 1614 if (cops->init_decompress_ctx) 1615 return cops->init_decompress_ctx(dic); 1616 1617 return 0; 1618 } 1619 1620 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1621 bool bypass_destroy_callback, bool pre_alloc) 1622 { 1623 const struct f2fs_compress_ops *cops = 1624 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1625 1626 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1627 return; 1628 1629 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1630 cops->destroy_decompress_ctx(dic); 1631 1632 if (dic->cbuf) 1633 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1634 1635 if (dic->rbuf) 1636 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1637 } 1638 1639 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1640 bool bypass_destroy_callback); 1641 1642 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1643 { 1644 struct decompress_io_ctx *dic; 1645 pgoff_t start_idx = start_idx_of_cluster(cc); 1646 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1647 int i, ret; 1648 1649 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1650 if (!dic) 1651 return ERR_PTR(-ENOMEM); 1652 1653 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1654 if (!dic->rpages) { 1655 kmem_cache_free(dic_entry_slab, dic); 1656 return ERR_PTR(-ENOMEM); 1657 } 1658 1659 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1660 dic->inode = cc->inode; 1661 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1662 dic->cluster_idx = cc->cluster_idx; 1663 dic->cluster_size = cc->cluster_size; 1664 dic->log_cluster_size = cc->log_cluster_size; 1665 dic->nr_cpages = cc->nr_cpages; 1666 refcount_set(&dic->refcnt, 1); 1667 dic->failed = false; 1668 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1669 1670 for (i = 0; i < dic->cluster_size; i++) 1671 dic->rpages[i] = cc->rpages[i]; 1672 dic->nr_rpages = cc->cluster_size; 1673 1674 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1675 if (!dic->cpages) { 1676 ret = -ENOMEM; 1677 goto out_free; 1678 } 1679 1680 for (i = 0; i < dic->nr_cpages; i++) { 1681 struct page *page; 1682 1683 page = f2fs_compress_alloc_page(); 1684 f2fs_set_compressed_page(page, cc->inode, 1685 start_idx + i + 1, dic); 1686 dic->cpages[i] = page; 1687 } 1688 1689 ret = f2fs_prepare_decomp_mem(dic, true); 1690 if (ret) 1691 goto out_free; 1692 1693 return dic; 1694 1695 out_free: 1696 f2fs_free_dic(dic, true); 1697 return ERR_PTR(ret); 1698 } 1699 1700 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1701 bool bypass_destroy_callback) 1702 { 1703 int i; 1704 1705 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1706 1707 if (dic->tpages) { 1708 for (i = 0; i < dic->cluster_size; i++) { 1709 if (dic->rpages[i]) 1710 continue; 1711 if (!dic->tpages[i]) 1712 continue; 1713 f2fs_compress_free_page(dic->tpages[i]); 1714 } 1715 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1716 } 1717 1718 if (dic->cpages) { 1719 for (i = 0; i < dic->nr_cpages; i++) { 1720 if (!dic->cpages[i]) 1721 continue; 1722 f2fs_compress_free_page(dic->cpages[i]); 1723 } 1724 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1725 } 1726 1727 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1728 kmem_cache_free(dic_entry_slab, dic); 1729 } 1730 1731 static void f2fs_late_free_dic(struct work_struct *work) 1732 { 1733 struct decompress_io_ctx *dic = 1734 container_of(work, struct decompress_io_ctx, free_work); 1735 1736 f2fs_free_dic(dic, false); 1737 } 1738 1739 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1740 { 1741 if (refcount_dec_and_test(&dic->refcnt)) { 1742 if (in_task) { 1743 f2fs_free_dic(dic, false); 1744 } else { 1745 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1746 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1747 &dic->free_work); 1748 } 1749 } 1750 } 1751 1752 static void f2fs_verify_cluster(struct work_struct *work) 1753 { 1754 struct decompress_io_ctx *dic = 1755 container_of(work, struct decompress_io_ctx, verity_work); 1756 int i; 1757 1758 /* Verify, update, and unlock the decompressed pages. */ 1759 for (i = 0; i < dic->cluster_size; i++) { 1760 struct page *rpage = dic->rpages[i]; 1761 1762 if (!rpage) 1763 continue; 1764 1765 if (fsverity_verify_page(rpage)) 1766 SetPageUptodate(rpage); 1767 else 1768 ClearPageUptodate(rpage); 1769 unlock_page(rpage); 1770 } 1771 1772 f2fs_put_dic(dic, true); 1773 } 1774 1775 /* 1776 * This is called when a compressed cluster has been decompressed 1777 * (or failed to be read and/or decompressed). 1778 */ 1779 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1780 bool in_task) 1781 { 1782 int i; 1783 1784 if (!failed && dic->need_verity) { 1785 /* 1786 * Note that to avoid deadlocks, the verity work can't be done 1787 * on the decompression workqueue. This is because verifying 1788 * the data pages can involve reading metadata pages from the 1789 * file, and these metadata pages may be compressed. 1790 */ 1791 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1792 fsverity_enqueue_verify_work(&dic->verity_work); 1793 return; 1794 } 1795 1796 /* Update and unlock the cluster's pagecache pages. */ 1797 for (i = 0; i < dic->cluster_size; i++) { 1798 struct page *rpage = dic->rpages[i]; 1799 1800 if (!rpage) 1801 continue; 1802 1803 if (failed) 1804 ClearPageUptodate(rpage); 1805 else 1806 SetPageUptodate(rpage); 1807 unlock_page(rpage); 1808 } 1809 1810 /* 1811 * Release the reference to the decompress_io_ctx that was being held 1812 * for I/O completion. 1813 */ 1814 f2fs_put_dic(dic, in_task); 1815 } 1816 1817 /* 1818 * Put a reference to a compressed page's decompress_io_ctx. 1819 * 1820 * This is called when the page is no longer needed and can be freed. 1821 */ 1822 void f2fs_put_page_dic(struct page *page, bool in_task) 1823 { 1824 struct decompress_io_ctx *dic = 1825 (struct decompress_io_ctx *)page_private(page); 1826 1827 f2fs_put_dic(dic, in_task); 1828 } 1829 1830 /* 1831 * check whether cluster blocks are contiguous, and add extent cache entry 1832 * only if cluster blocks are logically and physically contiguous. 1833 */ 1834 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 1835 unsigned int ofs_in_node) 1836 { 1837 bool compressed = data_blkaddr(dn->inode, dn->node_page, 1838 ofs_in_node) == COMPRESS_ADDR; 1839 int i = compressed ? 1 : 0; 1840 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1841 ofs_in_node + i); 1842 1843 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1844 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1845 ofs_in_node + i); 1846 1847 if (!__is_valid_data_blkaddr(blkaddr)) 1848 break; 1849 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1850 return 0; 1851 } 1852 1853 return compressed ? i - 1 : i; 1854 } 1855 1856 const struct address_space_operations f2fs_compress_aops = { 1857 .release_folio = f2fs_release_folio, 1858 .invalidate_folio = f2fs_invalidate_folio, 1859 .migrate_folio = filemap_migrate_folio, 1860 }; 1861 1862 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1863 { 1864 return sbi->compress_inode->i_mapping; 1865 } 1866 1867 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1868 { 1869 if (!sbi->compress_inode) 1870 return; 1871 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1872 } 1873 1874 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1875 nid_t ino, block_t blkaddr) 1876 { 1877 struct page *cpage; 1878 int ret; 1879 1880 if (!test_opt(sbi, COMPRESS_CACHE)) 1881 return; 1882 1883 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1884 return; 1885 1886 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1887 return; 1888 1889 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1890 if (cpage) { 1891 f2fs_put_page(cpage, 0); 1892 return; 1893 } 1894 1895 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1896 if (!cpage) 1897 return; 1898 1899 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1900 blkaddr, GFP_NOFS); 1901 if (ret) { 1902 f2fs_put_page(cpage, 0); 1903 return; 1904 } 1905 1906 set_page_private_data(cpage, ino); 1907 1908 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1909 goto out; 1910 1911 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1912 SetPageUptodate(cpage); 1913 out: 1914 f2fs_put_page(cpage, 1); 1915 } 1916 1917 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1918 block_t blkaddr) 1919 { 1920 struct page *cpage; 1921 bool hitted = false; 1922 1923 if (!test_opt(sbi, COMPRESS_CACHE)) 1924 return false; 1925 1926 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1927 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1928 if (cpage) { 1929 if (PageUptodate(cpage)) { 1930 atomic_inc(&sbi->compress_page_hit); 1931 memcpy(page_address(page), 1932 page_address(cpage), PAGE_SIZE); 1933 hitted = true; 1934 } 1935 f2fs_put_page(cpage, 1); 1936 } 1937 1938 return hitted; 1939 } 1940 1941 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1942 { 1943 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1944 struct folio_batch fbatch; 1945 pgoff_t index = 0; 1946 pgoff_t end = MAX_BLKADDR(sbi); 1947 1948 if (!mapping->nrpages) 1949 return; 1950 1951 folio_batch_init(&fbatch); 1952 1953 do { 1954 unsigned int nr, i; 1955 1956 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1957 if (!nr) 1958 break; 1959 1960 for (i = 0; i < nr; i++) { 1961 struct folio *folio = fbatch.folios[i]; 1962 1963 folio_lock(folio); 1964 if (folio->mapping != mapping) { 1965 folio_unlock(folio); 1966 continue; 1967 } 1968 1969 if (ino != get_page_private_data(&folio->page)) { 1970 folio_unlock(folio); 1971 continue; 1972 } 1973 1974 generic_error_remove_page(mapping, &folio->page); 1975 folio_unlock(folio); 1976 } 1977 folio_batch_release(&fbatch); 1978 cond_resched(); 1979 } while (index < end); 1980 } 1981 1982 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1983 { 1984 struct inode *inode; 1985 1986 if (!test_opt(sbi, COMPRESS_CACHE)) 1987 return 0; 1988 1989 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1990 if (IS_ERR(inode)) 1991 return PTR_ERR(inode); 1992 sbi->compress_inode = inode; 1993 1994 sbi->compress_percent = COMPRESS_PERCENT; 1995 sbi->compress_watermark = COMPRESS_WATERMARK; 1996 1997 atomic_set(&sbi->compress_page_hit, 0); 1998 1999 return 0; 2000 } 2001 2002 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 2003 { 2004 if (!sbi->compress_inode) 2005 return; 2006 iput(sbi->compress_inode); 2007 sbi->compress_inode = NULL; 2008 } 2009 2010 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 2011 { 2012 dev_t dev = sbi->sb->s_bdev->bd_dev; 2013 char slab_name[35]; 2014 2015 if (!f2fs_sb_has_compression(sbi)) 2016 return 0; 2017 2018 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 2019 2020 sbi->page_array_slab_size = sizeof(struct page *) << 2021 F2FS_OPTION(sbi).compress_log_size; 2022 2023 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 2024 sbi->page_array_slab_size); 2025 return sbi->page_array_slab ? 0 : -ENOMEM; 2026 } 2027 2028 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 2029 { 2030 kmem_cache_destroy(sbi->page_array_slab); 2031 } 2032 2033 int __init f2fs_init_compress_cache(void) 2034 { 2035 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2036 sizeof(struct compress_io_ctx)); 2037 if (!cic_entry_slab) 2038 return -ENOMEM; 2039 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2040 sizeof(struct decompress_io_ctx)); 2041 if (!dic_entry_slab) 2042 goto free_cic; 2043 return 0; 2044 free_cic: 2045 kmem_cache_destroy(cic_entry_slab); 2046 return -ENOMEM; 2047 } 2048 2049 void f2fs_destroy_compress_cache(void) 2050 { 2051 kmem_cache_destroy(dic_entry_slab); 2052 kmem_cache_destroy(cic_entry_slab); 2053 } 2054