xref: /openbmc/linux/fs/f2fs/compress.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25 
26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 	unsigned int size = sizeof(struct page *) * nr;
30 
31 	if (likely(size <= sbi->page_array_slab_size))
32 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36 
37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	unsigned int size = sizeof(struct page *) * nr;
41 
42 	if (!pages)
43 		return;
44 
45 	if (likely(size <= sbi->page_array_slab_size))
46 		kmem_cache_free(sbi->page_array_slab, pages);
47 	else
48 		kfree(pages);
49 }
50 
51 struct f2fs_compress_ops {
52 	int (*init_compress_ctx)(struct compress_ctx *cc);
53 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 	int (*compress_pages)(struct compress_ctx *cc);
55 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 	int (*decompress_pages)(struct decompress_io_ctx *dic);
58 	bool (*is_level_valid)(int level);
59 };
60 
61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63 	return index & (cc->cluster_size - 1);
64 }
65 
66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68 	return index >> cc->log_cluster_size;
69 }
70 
71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73 	return cc->cluster_idx << cc->log_cluster_size;
74 }
75 
76 bool f2fs_is_compressed_page(struct page *page)
77 {
78 	if (!PagePrivate(page))
79 		return false;
80 	if (!page_private(page))
81 		return false;
82 	if (page_private_nonpointer(page))
83 		return false;
84 
85 	f2fs_bug_on(F2FS_M_SB(page->mapping),
86 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87 	return true;
88 }
89 
90 static void f2fs_set_compressed_page(struct page *page,
91 		struct inode *inode, pgoff_t index, void *data)
92 {
93 	attach_page_private(page, (void *)data);
94 
95 	/* i_crypto_info and iv index */
96 	page->index = index;
97 	page->mapping = inode->i_mapping;
98 }
99 
100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102 	int i;
103 
104 	for (i = 0; i < len; i++) {
105 		if (!cc->rpages[i])
106 			continue;
107 		if (unlock)
108 			unlock_page(cc->rpages[i]);
109 		else
110 			put_page(cc->rpages[i]);
111 	}
112 }
113 
114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116 	f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118 
119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121 	f2fs_drop_rpages(cc, len, true);
122 }
123 
124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125 		struct writeback_control *wbc, bool redirty, int unlock)
126 {
127 	unsigned int i;
128 
129 	for (i = 0; i < cc->cluster_size; i++) {
130 		if (!cc->rpages[i])
131 			continue;
132 		if (redirty)
133 			redirty_page_for_writepage(wbc, cc->rpages[i]);
134 		f2fs_put_page(cc->rpages[i], unlock);
135 	}
136 }
137 
138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142 
143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145 	if (cc->rpages)
146 		return 0;
147 
148 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149 	return cc->rpages ? 0 : -ENOMEM;
150 }
151 
152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155 	cc->rpages = NULL;
156 	cc->nr_rpages = 0;
157 	cc->nr_cpages = 0;
158 	cc->valid_nr_cpages = 0;
159 	if (!reuse)
160 		cc->cluster_idx = NULL_CLUSTER;
161 }
162 
163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165 	unsigned int cluster_ofs;
166 
167 	if (!f2fs_cluster_can_merge_page(cc, page->index))
168 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169 
170 	cluster_ofs = offset_in_cluster(cc, page->index);
171 	cc->rpages[cluster_ofs] = page;
172 	cc->nr_rpages++;
173 	cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175 
176 #ifdef CONFIG_F2FS_FS_LZO
177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180 				LZO1X_MEM_COMPRESS, GFP_NOFS);
181 	if (!cc->private)
182 		return -ENOMEM;
183 
184 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 	return 0;
186 }
187 
188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190 	kvfree(cc->private);
191 	cc->private = NULL;
192 }
193 
194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196 	int ret;
197 
198 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 					&cc->clen, cc->private);
200 	if (ret != LZO_E_OK) {
201 		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
202 				"lzo compress failed, ret:%d", ret);
203 		return -EIO;
204 	}
205 	return 0;
206 }
207 
208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210 	int ret;
211 
212 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 						dic->rbuf, &dic->rlen);
214 	if (ret != LZO_E_OK) {
215 		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
216 				"lzo decompress failed, ret:%d", ret);
217 		return -EIO;
218 	}
219 
220 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
222 				"lzo invalid rlen:%zu, expected:%lu",
223 				dic->rlen, PAGE_SIZE << dic->log_cluster_size);
224 		return -EIO;
225 	}
226 	return 0;
227 }
228 
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 	.init_compress_ctx	= lzo_init_compress_ctx,
231 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
232 	.compress_pages		= lzo_compress_pages,
233 	.decompress_pages	= lzo_decompress_pages,
234 };
235 #endif
236 
237 #ifdef CONFIG_F2FS_FS_LZ4
238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 	unsigned int size = LZ4_MEM_COMPRESS;
241 
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 	if (F2FS_I(cc->inode)->i_compress_level)
244 		size = LZ4HC_MEM_COMPRESS;
245 #endif
246 
247 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 	if (!cc->private)
249 		return -ENOMEM;
250 
251 	/*
252 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 	 * adapt worst compress case, because lz4 compressor can handle
254 	 * output budget properly.
255 	 */
256 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 	return 0;
258 }
259 
260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 	kvfree(cc->private);
263 	cc->private = NULL;
264 }
265 
266 static int lz4_compress_pages(struct compress_ctx *cc)
267 {
268 	int len = -EINVAL;
269 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
270 
271 	if (!level)
272 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
273 						cc->clen, cc->private);
274 #ifdef CONFIG_F2FS_FS_LZ4HC
275 	else
276 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
277 					cc->clen, level, cc->private);
278 #endif
279 	if (len < 0)
280 		return len;
281 	if (!len)
282 		return -EAGAIN;
283 
284 	cc->clen = len;
285 	return 0;
286 }
287 
288 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
289 {
290 	int ret;
291 
292 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
293 						dic->clen, dic->rlen);
294 	if (ret < 0) {
295 		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
296 				"lz4 decompress failed, ret:%d", ret);
297 		return -EIO;
298 	}
299 
300 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
301 		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
302 				"lz4 invalid ret:%d, expected:%lu",
303 				ret, PAGE_SIZE << dic->log_cluster_size);
304 		return -EIO;
305 	}
306 	return 0;
307 }
308 
309 static bool lz4_is_level_valid(int lvl)
310 {
311 #ifdef CONFIG_F2FS_FS_LZ4HC
312 	return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
313 #else
314 	return lvl == 0;
315 #endif
316 }
317 
318 static const struct f2fs_compress_ops f2fs_lz4_ops = {
319 	.init_compress_ctx	= lz4_init_compress_ctx,
320 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
321 	.compress_pages		= lz4_compress_pages,
322 	.decompress_pages	= lz4_decompress_pages,
323 	.is_level_valid		= lz4_is_level_valid,
324 };
325 #endif
326 
327 #ifdef CONFIG_F2FS_FS_ZSTD
328 static int zstd_init_compress_ctx(struct compress_ctx *cc)
329 {
330 	zstd_parameters params;
331 	zstd_cstream *stream;
332 	void *workspace;
333 	unsigned int workspace_size;
334 	unsigned char level = F2FS_I(cc->inode)->i_compress_level;
335 
336 	/* Need to remain this for backward compatibility */
337 	if (!level)
338 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
339 
340 	params = zstd_get_params(level, cc->rlen);
341 	workspace_size = zstd_cstream_workspace_bound(&params.cParams);
342 
343 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
344 					workspace_size, GFP_NOFS);
345 	if (!workspace)
346 		return -ENOMEM;
347 
348 	stream = zstd_init_cstream(&params, 0, workspace, workspace_size);
349 	if (!stream) {
350 		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
351 				"%s zstd_init_cstream failed", __func__);
352 		kvfree(workspace);
353 		return -EIO;
354 	}
355 
356 	cc->private = workspace;
357 	cc->private2 = stream;
358 
359 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
360 	return 0;
361 }
362 
363 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
364 {
365 	kvfree(cc->private);
366 	cc->private = NULL;
367 	cc->private2 = NULL;
368 }
369 
370 static int zstd_compress_pages(struct compress_ctx *cc)
371 {
372 	zstd_cstream *stream = cc->private2;
373 	zstd_in_buffer inbuf;
374 	zstd_out_buffer outbuf;
375 	int src_size = cc->rlen;
376 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
377 	int ret;
378 
379 	inbuf.pos = 0;
380 	inbuf.src = cc->rbuf;
381 	inbuf.size = src_size;
382 
383 	outbuf.pos = 0;
384 	outbuf.dst = cc->cbuf->cdata;
385 	outbuf.size = dst_size;
386 
387 	ret = zstd_compress_stream(stream, &outbuf, &inbuf);
388 	if (zstd_is_error(ret)) {
389 		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
390 				"%s zstd_compress_stream failed, ret: %d",
391 				__func__, zstd_get_error_code(ret));
392 		return -EIO;
393 	}
394 
395 	ret = zstd_end_stream(stream, &outbuf);
396 	if (zstd_is_error(ret)) {
397 		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
398 				"%s zstd_end_stream returned %d",
399 				__func__, zstd_get_error_code(ret));
400 		return -EIO;
401 	}
402 
403 	/*
404 	 * there is compressed data remained in intermediate buffer due to
405 	 * no more space in cbuf.cdata
406 	 */
407 	if (ret)
408 		return -EAGAIN;
409 
410 	cc->clen = outbuf.pos;
411 	return 0;
412 }
413 
414 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
415 {
416 	zstd_dstream *stream;
417 	void *workspace;
418 	unsigned int workspace_size;
419 	unsigned int max_window_size =
420 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
421 
422 	workspace_size = zstd_dstream_workspace_bound(max_window_size);
423 
424 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
425 					workspace_size, GFP_NOFS);
426 	if (!workspace)
427 		return -ENOMEM;
428 
429 	stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
430 	if (!stream) {
431 		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
432 				"%s zstd_init_dstream failed", __func__);
433 		kvfree(workspace);
434 		return -EIO;
435 	}
436 
437 	dic->private = workspace;
438 	dic->private2 = stream;
439 
440 	return 0;
441 }
442 
443 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
444 {
445 	kvfree(dic->private);
446 	dic->private = NULL;
447 	dic->private2 = NULL;
448 }
449 
450 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
451 {
452 	zstd_dstream *stream = dic->private2;
453 	zstd_in_buffer inbuf;
454 	zstd_out_buffer outbuf;
455 	int ret;
456 
457 	inbuf.pos = 0;
458 	inbuf.src = dic->cbuf->cdata;
459 	inbuf.size = dic->clen;
460 
461 	outbuf.pos = 0;
462 	outbuf.dst = dic->rbuf;
463 	outbuf.size = dic->rlen;
464 
465 	ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
466 	if (zstd_is_error(ret)) {
467 		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
468 				"%s zstd_decompress_stream failed, ret: %d",
469 				__func__, zstd_get_error_code(ret));
470 		return -EIO;
471 	}
472 
473 	if (dic->rlen != outbuf.pos) {
474 		f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
475 				"%s ZSTD invalid rlen:%zu, expected:%lu",
476 				__func__, dic->rlen,
477 				PAGE_SIZE << dic->log_cluster_size);
478 		return -EIO;
479 	}
480 
481 	return 0;
482 }
483 
484 static bool zstd_is_level_valid(int lvl)
485 {
486 	return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
487 }
488 
489 static const struct f2fs_compress_ops f2fs_zstd_ops = {
490 	.init_compress_ctx	= zstd_init_compress_ctx,
491 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
492 	.compress_pages		= zstd_compress_pages,
493 	.init_decompress_ctx	= zstd_init_decompress_ctx,
494 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
495 	.decompress_pages	= zstd_decompress_pages,
496 	.is_level_valid		= zstd_is_level_valid,
497 };
498 #endif
499 
500 #ifdef CONFIG_F2FS_FS_LZO
501 #ifdef CONFIG_F2FS_FS_LZORLE
502 static int lzorle_compress_pages(struct compress_ctx *cc)
503 {
504 	int ret;
505 
506 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
507 					&cc->clen, cc->private);
508 	if (ret != LZO_E_OK) {
509 		f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
510 				"lzo-rle compress failed, ret:%d", ret);
511 		return -EIO;
512 	}
513 	return 0;
514 }
515 
516 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
517 	.init_compress_ctx	= lzo_init_compress_ctx,
518 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
519 	.compress_pages		= lzorle_compress_pages,
520 	.decompress_pages	= lzo_decompress_pages,
521 };
522 #endif
523 #endif
524 
525 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
526 #ifdef CONFIG_F2FS_FS_LZO
527 	&f2fs_lzo_ops,
528 #else
529 	NULL,
530 #endif
531 #ifdef CONFIG_F2FS_FS_LZ4
532 	&f2fs_lz4_ops,
533 #else
534 	NULL,
535 #endif
536 #ifdef CONFIG_F2FS_FS_ZSTD
537 	&f2fs_zstd_ops,
538 #else
539 	NULL,
540 #endif
541 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
542 	&f2fs_lzorle_ops,
543 #else
544 	NULL,
545 #endif
546 };
547 
548 bool f2fs_is_compress_backend_ready(struct inode *inode)
549 {
550 	if (!f2fs_compressed_file(inode))
551 		return true;
552 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
553 }
554 
555 bool f2fs_is_compress_level_valid(int alg, int lvl)
556 {
557 	const struct f2fs_compress_ops *cops = f2fs_cops[alg];
558 
559 	if (cops->is_level_valid)
560 		return cops->is_level_valid(lvl);
561 
562 	return lvl == 0;
563 }
564 
565 static mempool_t *compress_page_pool;
566 static int num_compress_pages = 512;
567 module_param(num_compress_pages, uint, 0444);
568 MODULE_PARM_DESC(num_compress_pages,
569 		"Number of intermediate compress pages to preallocate");
570 
571 int __init f2fs_init_compress_mempool(void)
572 {
573 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
574 	return compress_page_pool ? 0 : -ENOMEM;
575 }
576 
577 void f2fs_destroy_compress_mempool(void)
578 {
579 	mempool_destroy(compress_page_pool);
580 }
581 
582 static struct page *f2fs_compress_alloc_page(void)
583 {
584 	struct page *page;
585 
586 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
587 	lock_page(page);
588 
589 	return page;
590 }
591 
592 static void f2fs_compress_free_page(struct page *page)
593 {
594 	if (!page)
595 		return;
596 	detach_page_private(page);
597 	page->mapping = NULL;
598 	unlock_page(page);
599 	mempool_free(page, compress_page_pool);
600 }
601 
602 #define MAX_VMAP_RETRIES	3
603 
604 static void *f2fs_vmap(struct page **pages, unsigned int count)
605 {
606 	int i;
607 	void *buf = NULL;
608 
609 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
610 		buf = vm_map_ram(pages, count, -1);
611 		if (buf)
612 			break;
613 		vm_unmap_aliases();
614 	}
615 	return buf;
616 }
617 
618 static int f2fs_compress_pages(struct compress_ctx *cc)
619 {
620 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
621 	const struct f2fs_compress_ops *cops =
622 				f2fs_cops[fi->i_compress_algorithm];
623 	unsigned int max_len, new_nr_cpages;
624 	u32 chksum = 0;
625 	int i, ret;
626 
627 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
628 				cc->cluster_size, fi->i_compress_algorithm);
629 
630 	if (cops->init_compress_ctx) {
631 		ret = cops->init_compress_ctx(cc);
632 		if (ret)
633 			goto out;
634 	}
635 
636 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
637 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
638 	cc->valid_nr_cpages = cc->nr_cpages;
639 
640 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
641 	if (!cc->cpages) {
642 		ret = -ENOMEM;
643 		goto destroy_compress_ctx;
644 	}
645 
646 	for (i = 0; i < cc->nr_cpages; i++)
647 		cc->cpages[i] = f2fs_compress_alloc_page();
648 
649 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
650 	if (!cc->rbuf) {
651 		ret = -ENOMEM;
652 		goto out_free_cpages;
653 	}
654 
655 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
656 	if (!cc->cbuf) {
657 		ret = -ENOMEM;
658 		goto out_vunmap_rbuf;
659 	}
660 
661 	ret = cops->compress_pages(cc);
662 	if (ret)
663 		goto out_vunmap_cbuf;
664 
665 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
666 
667 	if (cc->clen > max_len) {
668 		ret = -EAGAIN;
669 		goto out_vunmap_cbuf;
670 	}
671 
672 	cc->cbuf->clen = cpu_to_le32(cc->clen);
673 
674 	if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
675 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
676 					cc->cbuf->cdata, cc->clen);
677 	cc->cbuf->chksum = cpu_to_le32(chksum);
678 
679 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
680 		cc->cbuf->reserved[i] = cpu_to_le32(0);
681 
682 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
683 
684 	/* zero out any unused part of the last page */
685 	memset(&cc->cbuf->cdata[cc->clen], 0,
686 			(new_nr_cpages * PAGE_SIZE) -
687 			(cc->clen + COMPRESS_HEADER_SIZE));
688 
689 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
690 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
691 
692 	for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
693 		f2fs_compress_free_page(cc->cpages[i]);
694 		cc->cpages[i] = NULL;
695 	}
696 
697 	if (cops->destroy_compress_ctx)
698 		cops->destroy_compress_ctx(cc);
699 
700 	cc->valid_nr_cpages = new_nr_cpages;
701 
702 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
703 							cc->clen, ret);
704 	return 0;
705 
706 out_vunmap_cbuf:
707 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
708 out_vunmap_rbuf:
709 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
710 out_free_cpages:
711 	for (i = 0; i < cc->nr_cpages; i++) {
712 		if (cc->cpages[i])
713 			f2fs_compress_free_page(cc->cpages[i]);
714 	}
715 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
716 	cc->cpages = NULL;
717 destroy_compress_ctx:
718 	if (cops->destroy_compress_ctx)
719 		cops->destroy_compress_ctx(cc);
720 out:
721 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
722 							cc->clen, ret);
723 	return ret;
724 }
725 
726 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
727 		bool pre_alloc);
728 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
729 		bool bypass_destroy_callback, bool pre_alloc);
730 
731 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
732 {
733 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
734 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
735 	const struct f2fs_compress_ops *cops =
736 			f2fs_cops[fi->i_compress_algorithm];
737 	bool bypass_callback = false;
738 	int ret;
739 
740 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
741 				dic->cluster_size, fi->i_compress_algorithm);
742 
743 	if (dic->failed) {
744 		ret = -EIO;
745 		goto out_end_io;
746 	}
747 
748 	ret = f2fs_prepare_decomp_mem(dic, false);
749 	if (ret) {
750 		bypass_callback = true;
751 		goto out_release;
752 	}
753 
754 	dic->clen = le32_to_cpu(dic->cbuf->clen);
755 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
756 
757 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
758 		ret = -EFSCORRUPTED;
759 
760 		/* Avoid f2fs_commit_super in irq context */
761 		if (!in_task)
762 			f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
763 		else
764 			f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
765 		goto out_release;
766 	}
767 
768 	ret = cops->decompress_pages(dic);
769 
770 	if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
771 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
772 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
773 
774 		if (provided != calculated) {
775 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
776 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
777 				f2fs_info_ratelimited(sbi,
778 					"checksum invalid, nid = %lu, %x vs %x",
779 					dic->inode->i_ino,
780 					provided, calculated);
781 			}
782 			set_sbi_flag(sbi, SBI_NEED_FSCK);
783 		}
784 	}
785 
786 out_release:
787 	f2fs_release_decomp_mem(dic, bypass_callback, false);
788 
789 out_end_io:
790 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
791 							dic->clen, ret);
792 	f2fs_decompress_end_io(dic, ret, in_task);
793 }
794 
795 /*
796  * This is called when a page of a compressed cluster has been read from disk
797  * (or failed to be read from disk).  It checks whether this page was the last
798  * page being waited on in the cluster, and if so, it decompresses the cluster
799  * (or in the case of a failure, cleans up without actually decompressing).
800  */
801 void f2fs_end_read_compressed_page(struct page *page, bool failed,
802 		block_t blkaddr, bool in_task)
803 {
804 	struct decompress_io_ctx *dic =
805 			(struct decompress_io_ctx *)page_private(page);
806 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
807 
808 	dec_page_count(sbi, F2FS_RD_DATA);
809 
810 	if (failed)
811 		WRITE_ONCE(dic->failed, true);
812 	else if (blkaddr && in_task)
813 		f2fs_cache_compressed_page(sbi, page,
814 					dic->inode->i_ino, blkaddr);
815 
816 	if (atomic_dec_and_test(&dic->remaining_pages))
817 		f2fs_decompress_cluster(dic, in_task);
818 }
819 
820 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
821 {
822 	if (cc->cluster_idx == NULL_CLUSTER)
823 		return true;
824 	return cc->cluster_idx == cluster_idx(cc, index);
825 }
826 
827 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
828 {
829 	return cc->nr_rpages == 0;
830 }
831 
832 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
833 {
834 	return cc->cluster_size == cc->nr_rpages;
835 }
836 
837 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
838 {
839 	if (f2fs_cluster_is_empty(cc))
840 		return true;
841 	return is_page_in_cluster(cc, index);
842 }
843 
844 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
845 				int index, int nr_pages, bool uptodate)
846 {
847 	unsigned long pgidx = pages[index]->index;
848 	int i = uptodate ? 0 : 1;
849 
850 	/*
851 	 * when uptodate set to true, try to check all pages in cluster is
852 	 * uptodate or not.
853 	 */
854 	if (uptodate && (pgidx % cc->cluster_size))
855 		return false;
856 
857 	if (nr_pages - index < cc->cluster_size)
858 		return false;
859 
860 	for (; i < cc->cluster_size; i++) {
861 		if (pages[index + i]->index != pgidx + i)
862 			return false;
863 		if (uptodate && !PageUptodate(pages[index + i]))
864 			return false;
865 	}
866 
867 	return true;
868 }
869 
870 static bool cluster_has_invalid_data(struct compress_ctx *cc)
871 {
872 	loff_t i_size = i_size_read(cc->inode);
873 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
874 	int i;
875 
876 	for (i = 0; i < cc->cluster_size; i++) {
877 		struct page *page = cc->rpages[i];
878 
879 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
880 
881 		/* beyond EOF */
882 		if (page->index >= nr_pages)
883 			return true;
884 	}
885 	return false;
886 }
887 
888 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
889 {
890 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
891 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
892 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
893 	int cluster_end = 0;
894 	int i;
895 	char *reason = "";
896 
897 	if (!compressed)
898 		return false;
899 
900 	/* [..., COMPR_ADDR, ...] */
901 	if (dn->ofs_in_node % cluster_size) {
902 		reason = "[*|C|*|*]";
903 		goto out;
904 	}
905 
906 	for (i = 1; i < cluster_size; i++) {
907 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
908 							dn->ofs_in_node + i);
909 
910 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
911 		if (blkaddr == COMPRESS_ADDR) {
912 			reason = "[C|*|C|*]";
913 			goto out;
914 		}
915 		if (!__is_valid_data_blkaddr(blkaddr)) {
916 			if (!cluster_end)
917 				cluster_end = i;
918 			continue;
919 		}
920 		/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
921 		if (cluster_end) {
922 			reason = "[C|N|N|V]";
923 			goto out;
924 		}
925 	}
926 	return false;
927 out:
928 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
929 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
930 	set_sbi_flag(sbi, SBI_NEED_FSCK);
931 	return true;
932 }
933 
934 static int __f2fs_cluster_blocks(struct inode *inode,
935 				unsigned int cluster_idx, bool compr)
936 {
937 	struct dnode_of_data dn;
938 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
939 	unsigned int start_idx = cluster_idx <<
940 				F2FS_I(inode)->i_log_cluster_size;
941 	int ret;
942 
943 	set_new_dnode(&dn, inode, NULL, NULL, 0);
944 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
945 	if (ret) {
946 		if (ret == -ENOENT)
947 			ret = 0;
948 		goto fail;
949 	}
950 
951 	if (f2fs_sanity_check_cluster(&dn)) {
952 		ret = -EFSCORRUPTED;
953 		f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER);
954 		goto fail;
955 	}
956 
957 	if (dn.data_blkaddr == COMPRESS_ADDR) {
958 		int i;
959 
960 		ret = 1;
961 		for (i = 1; i < cluster_size; i++) {
962 			block_t blkaddr;
963 
964 			blkaddr = data_blkaddr(dn.inode,
965 					dn.node_page, dn.ofs_in_node + i);
966 			if (compr) {
967 				if (__is_valid_data_blkaddr(blkaddr))
968 					ret++;
969 			} else {
970 				if (blkaddr != NULL_ADDR)
971 					ret++;
972 			}
973 		}
974 
975 		f2fs_bug_on(F2FS_I_SB(inode),
976 			!compr && ret != cluster_size &&
977 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
978 	}
979 fail:
980 	f2fs_put_dnode(&dn);
981 	return ret;
982 }
983 
984 /* return # of compressed blocks in compressed cluster */
985 static int f2fs_compressed_blocks(struct compress_ctx *cc)
986 {
987 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
988 }
989 
990 /* return # of valid blocks in compressed cluster */
991 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
992 {
993 	return __f2fs_cluster_blocks(inode,
994 		index >> F2FS_I(inode)->i_log_cluster_size,
995 		false);
996 }
997 
998 static bool cluster_may_compress(struct compress_ctx *cc)
999 {
1000 	if (!f2fs_need_compress_data(cc->inode))
1001 		return false;
1002 	if (f2fs_is_atomic_file(cc->inode))
1003 		return false;
1004 	if (!f2fs_cluster_is_full(cc))
1005 		return false;
1006 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1007 		return false;
1008 	return !cluster_has_invalid_data(cc);
1009 }
1010 
1011 static void set_cluster_writeback(struct compress_ctx *cc)
1012 {
1013 	int i;
1014 
1015 	for (i = 0; i < cc->cluster_size; i++) {
1016 		if (cc->rpages[i])
1017 			set_page_writeback(cc->rpages[i]);
1018 	}
1019 }
1020 
1021 static void set_cluster_dirty(struct compress_ctx *cc)
1022 {
1023 	int i;
1024 
1025 	for (i = 0; i < cc->cluster_size; i++)
1026 		if (cc->rpages[i]) {
1027 			set_page_dirty(cc->rpages[i]);
1028 			set_page_private_gcing(cc->rpages[i]);
1029 		}
1030 }
1031 
1032 static int prepare_compress_overwrite(struct compress_ctx *cc,
1033 		struct page **pagep, pgoff_t index, void **fsdata)
1034 {
1035 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1036 	struct address_space *mapping = cc->inode->i_mapping;
1037 	struct page *page;
1038 	sector_t last_block_in_bio;
1039 	fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1040 	pgoff_t start_idx = start_idx_of_cluster(cc);
1041 	int i, ret;
1042 
1043 retry:
1044 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1045 	if (ret <= 0)
1046 		return ret;
1047 
1048 	ret = f2fs_init_compress_ctx(cc);
1049 	if (ret)
1050 		return ret;
1051 
1052 	/* keep page reference to avoid page reclaim */
1053 	for (i = 0; i < cc->cluster_size; i++) {
1054 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1055 							fgp_flag, GFP_NOFS);
1056 		if (!page) {
1057 			ret = -ENOMEM;
1058 			goto unlock_pages;
1059 		}
1060 
1061 		if (PageUptodate(page))
1062 			f2fs_put_page(page, 1);
1063 		else
1064 			f2fs_compress_ctx_add_page(cc, page);
1065 	}
1066 
1067 	if (!f2fs_cluster_is_empty(cc)) {
1068 		struct bio *bio = NULL;
1069 
1070 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1071 					&last_block_in_bio, false, true);
1072 		f2fs_put_rpages(cc);
1073 		f2fs_destroy_compress_ctx(cc, true);
1074 		if (ret)
1075 			goto out;
1076 		if (bio)
1077 			f2fs_submit_read_bio(sbi, bio, DATA);
1078 
1079 		ret = f2fs_init_compress_ctx(cc);
1080 		if (ret)
1081 			goto out;
1082 	}
1083 
1084 	for (i = 0; i < cc->cluster_size; i++) {
1085 		f2fs_bug_on(sbi, cc->rpages[i]);
1086 
1087 		page = find_lock_page(mapping, start_idx + i);
1088 		if (!page) {
1089 			/* page can be truncated */
1090 			goto release_and_retry;
1091 		}
1092 
1093 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1094 		f2fs_compress_ctx_add_page(cc, page);
1095 
1096 		if (!PageUptodate(page)) {
1097 release_and_retry:
1098 			f2fs_put_rpages(cc);
1099 			f2fs_unlock_rpages(cc, i + 1);
1100 			f2fs_destroy_compress_ctx(cc, true);
1101 			goto retry;
1102 		}
1103 	}
1104 
1105 	if (likely(!ret)) {
1106 		*fsdata = cc->rpages;
1107 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1108 		return cc->cluster_size;
1109 	}
1110 
1111 unlock_pages:
1112 	f2fs_put_rpages(cc);
1113 	f2fs_unlock_rpages(cc, i);
1114 	f2fs_destroy_compress_ctx(cc, true);
1115 out:
1116 	return ret;
1117 }
1118 
1119 int f2fs_prepare_compress_overwrite(struct inode *inode,
1120 		struct page **pagep, pgoff_t index, void **fsdata)
1121 {
1122 	struct compress_ctx cc = {
1123 		.inode = inode,
1124 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1125 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1126 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1127 		.rpages = NULL,
1128 		.nr_rpages = 0,
1129 	};
1130 
1131 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1132 }
1133 
1134 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1135 					pgoff_t index, unsigned copied)
1136 
1137 {
1138 	struct compress_ctx cc = {
1139 		.inode = inode,
1140 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1141 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1142 		.rpages = fsdata,
1143 	};
1144 	bool first_index = (index == cc.rpages[0]->index);
1145 
1146 	if (copied)
1147 		set_cluster_dirty(&cc);
1148 
1149 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1150 	f2fs_destroy_compress_ctx(&cc, false);
1151 
1152 	return first_index;
1153 }
1154 
1155 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1156 {
1157 	void *fsdata = NULL;
1158 	struct page *pagep;
1159 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1160 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1161 							log_cluster_size;
1162 	int err;
1163 
1164 	err = f2fs_is_compressed_cluster(inode, start_idx);
1165 	if (err < 0)
1166 		return err;
1167 
1168 	/* truncate normal cluster */
1169 	if (!err)
1170 		return f2fs_do_truncate_blocks(inode, from, lock);
1171 
1172 	/* truncate compressed cluster */
1173 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1174 						start_idx, &fsdata);
1175 
1176 	/* should not be a normal cluster */
1177 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1178 
1179 	if (err <= 0)
1180 		return err;
1181 
1182 	if (err > 0) {
1183 		struct page **rpages = fsdata;
1184 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1185 		int i;
1186 
1187 		for (i = cluster_size - 1; i >= 0; i--) {
1188 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1189 
1190 			if (from <= start) {
1191 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1192 			} else {
1193 				zero_user_segment(rpages[i], from - start,
1194 								PAGE_SIZE);
1195 				break;
1196 			}
1197 		}
1198 
1199 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1200 	}
1201 	return 0;
1202 }
1203 
1204 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1205 					int *submitted,
1206 					struct writeback_control *wbc,
1207 					enum iostat_type io_type)
1208 {
1209 	struct inode *inode = cc->inode;
1210 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1211 	struct f2fs_inode_info *fi = F2FS_I(inode);
1212 	struct f2fs_io_info fio = {
1213 		.sbi = sbi,
1214 		.ino = cc->inode->i_ino,
1215 		.type = DATA,
1216 		.op = REQ_OP_WRITE,
1217 		.op_flags = wbc_to_write_flags(wbc),
1218 		.old_blkaddr = NEW_ADDR,
1219 		.page = NULL,
1220 		.encrypted_page = NULL,
1221 		.compressed_page = NULL,
1222 		.submitted = 0,
1223 		.io_type = io_type,
1224 		.io_wbc = wbc,
1225 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1226 									1 : 0,
1227 	};
1228 	struct dnode_of_data dn;
1229 	struct node_info ni;
1230 	struct compress_io_ctx *cic;
1231 	pgoff_t start_idx = start_idx_of_cluster(cc);
1232 	unsigned int last_index = cc->cluster_size - 1;
1233 	loff_t psize;
1234 	int i, err;
1235 	bool quota_inode = IS_NOQUOTA(inode);
1236 
1237 	/* we should bypass data pages to proceed the kworker jobs */
1238 	if (unlikely(f2fs_cp_error(sbi))) {
1239 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1240 		goto out_free;
1241 	}
1242 
1243 	if (quota_inode) {
1244 		/*
1245 		 * We need to wait for node_write to avoid block allocation during
1246 		 * checkpoint. This can only happen to quota writes which can cause
1247 		 * the below discard race condition.
1248 		 */
1249 		f2fs_down_read(&sbi->node_write);
1250 	} else if (!f2fs_trylock_op(sbi)) {
1251 		goto out_free;
1252 	}
1253 
1254 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1255 
1256 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1257 	if (err)
1258 		goto out_unlock_op;
1259 
1260 	for (i = 0; i < cc->cluster_size; i++) {
1261 		if (data_blkaddr(dn.inode, dn.node_page,
1262 					dn.ofs_in_node + i) == NULL_ADDR)
1263 			goto out_put_dnode;
1264 	}
1265 
1266 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1267 
1268 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1269 	if (err)
1270 		goto out_put_dnode;
1271 
1272 	fio.version = ni.version;
1273 
1274 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1275 	if (!cic)
1276 		goto out_put_dnode;
1277 
1278 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1279 	cic->inode = inode;
1280 	atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1281 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1282 	if (!cic->rpages)
1283 		goto out_put_cic;
1284 
1285 	cic->nr_rpages = cc->cluster_size;
1286 
1287 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1288 		f2fs_set_compressed_page(cc->cpages[i], inode,
1289 					cc->rpages[i + 1]->index, cic);
1290 		fio.compressed_page = cc->cpages[i];
1291 
1292 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1293 						dn.ofs_in_node + i + 1);
1294 
1295 		/* wait for GCed page writeback via META_MAPPING */
1296 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1297 
1298 		if (fio.encrypted) {
1299 			fio.page = cc->rpages[i + 1];
1300 			err = f2fs_encrypt_one_page(&fio);
1301 			if (err)
1302 				goto out_destroy_crypt;
1303 			cc->cpages[i] = fio.encrypted_page;
1304 		}
1305 	}
1306 
1307 	set_cluster_writeback(cc);
1308 
1309 	for (i = 0; i < cc->cluster_size; i++)
1310 		cic->rpages[i] = cc->rpages[i];
1311 
1312 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1313 		block_t blkaddr;
1314 
1315 		blkaddr = f2fs_data_blkaddr(&dn);
1316 		fio.page = cc->rpages[i];
1317 		fio.old_blkaddr = blkaddr;
1318 
1319 		/* cluster header */
1320 		if (i == 0) {
1321 			if (blkaddr == COMPRESS_ADDR)
1322 				fio.compr_blocks++;
1323 			if (__is_valid_data_blkaddr(blkaddr))
1324 				f2fs_invalidate_blocks(sbi, blkaddr);
1325 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1326 			goto unlock_continue;
1327 		}
1328 
1329 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1330 			fio.compr_blocks++;
1331 
1332 		if (i > cc->valid_nr_cpages) {
1333 			if (__is_valid_data_blkaddr(blkaddr)) {
1334 				f2fs_invalidate_blocks(sbi, blkaddr);
1335 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1336 			}
1337 			goto unlock_continue;
1338 		}
1339 
1340 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1341 
1342 		if (fio.encrypted)
1343 			fio.encrypted_page = cc->cpages[i - 1];
1344 		else
1345 			fio.compressed_page = cc->cpages[i - 1];
1346 
1347 		cc->cpages[i - 1] = NULL;
1348 		f2fs_outplace_write_data(&dn, &fio);
1349 		(*submitted)++;
1350 unlock_continue:
1351 		inode_dec_dirty_pages(cc->inode);
1352 		unlock_page(fio.page);
1353 	}
1354 
1355 	if (fio.compr_blocks)
1356 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1357 	f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1358 	add_compr_block_stat(inode, cc->valid_nr_cpages);
1359 
1360 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1361 
1362 	f2fs_put_dnode(&dn);
1363 	if (quota_inode)
1364 		f2fs_up_read(&sbi->node_write);
1365 	else
1366 		f2fs_unlock_op(sbi);
1367 
1368 	spin_lock(&fi->i_size_lock);
1369 	if (fi->last_disk_size < psize)
1370 		fi->last_disk_size = psize;
1371 	spin_unlock(&fi->i_size_lock);
1372 
1373 	f2fs_put_rpages(cc);
1374 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1375 	cc->cpages = NULL;
1376 	f2fs_destroy_compress_ctx(cc, false);
1377 	return 0;
1378 
1379 out_destroy_crypt:
1380 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1381 
1382 	for (--i; i >= 0; i--)
1383 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1384 out_put_cic:
1385 	kmem_cache_free(cic_entry_slab, cic);
1386 out_put_dnode:
1387 	f2fs_put_dnode(&dn);
1388 out_unlock_op:
1389 	if (quota_inode)
1390 		f2fs_up_read(&sbi->node_write);
1391 	else
1392 		f2fs_unlock_op(sbi);
1393 out_free:
1394 	for (i = 0; i < cc->valid_nr_cpages; i++) {
1395 		f2fs_compress_free_page(cc->cpages[i]);
1396 		cc->cpages[i] = NULL;
1397 	}
1398 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1399 	cc->cpages = NULL;
1400 	return -EAGAIN;
1401 }
1402 
1403 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1404 {
1405 	struct f2fs_sb_info *sbi = bio->bi_private;
1406 	struct compress_io_ctx *cic =
1407 			(struct compress_io_ctx *)page_private(page);
1408 	enum count_type type = WB_DATA_TYPE(page,
1409 				f2fs_is_compressed_page(page));
1410 	int i;
1411 
1412 	if (unlikely(bio->bi_status))
1413 		mapping_set_error(cic->inode->i_mapping, -EIO);
1414 
1415 	f2fs_compress_free_page(page);
1416 
1417 	dec_page_count(sbi, type);
1418 
1419 	if (atomic_dec_return(&cic->pending_pages))
1420 		return;
1421 
1422 	for (i = 0; i < cic->nr_rpages; i++) {
1423 		WARN_ON(!cic->rpages[i]);
1424 		clear_page_private_gcing(cic->rpages[i]);
1425 		end_page_writeback(cic->rpages[i]);
1426 	}
1427 
1428 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1429 	kmem_cache_free(cic_entry_slab, cic);
1430 }
1431 
1432 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1433 					int *submitted_p,
1434 					struct writeback_control *wbc,
1435 					enum iostat_type io_type)
1436 {
1437 	struct address_space *mapping = cc->inode->i_mapping;
1438 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1439 	int submitted, compr_blocks, i;
1440 	int ret = 0;
1441 
1442 	compr_blocks = f2fs_compressed_blocks(cc);
1443 
1444 	for (i = 0; i < cc->cluster_size; i++) {
1445 		if (!cc->rpages[i])
1446 			continue;
1447 
1448 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1449 		unlock_page(cc->rpages[i]);
1450 	}
1451 
1452 	if (compr_blocks < 0)
1453 		return compr_blocks;
1454 
1455 	/* overwrite compressed cluster w/ normal cluster */
1456 	if (compr_blocks > 0)
1457 		f2fs_lock_op(sbi);
1458 
1459 	for (i = 0; i < cc->cluster_size; i++) {
1460 		if (!cc->rpages[i])
1461 			continue;
1462 retry_write:
1463 		lock_page(cc->rpages[i]);
1464 
1465 		if (cc->rpages[i]->mapping != mapping) {
1466 continue_unlock:
1467 			unlock_page(cc->rpages[i]);
1468 			continue;
1469 		}
1470 
1471 		if (!PageDirty(cc->rpages[i]))
1472 			goto continue_unlock;
1473 
1474 		if (PageWriteback(cc->rpages[i])) {
1475 			if (wbc->sync_mode == WB_SYNC_NONE)
1476 				goto continue_unlock;
1477 			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1478 		}
1479 
1480 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1481 			goto continue_unlock;
1482 
1483 		ret = f2fs_write_single_data_page(cc->rpages[i], &submitted,
1484 						NULL, NULL, wbc, io_type,
1485 						compr_blocks, false);
1486 		if (ret) {
1487 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1488 				unlock_page(cc->rpages[i]);
1489 				ret = 0;
1490 			} else if (ret == -EAGAIN) {
1491 				ret = 0;
1492 				/*
1493 				 * for quota file, just redirty left pages to
1494 				 * avoid deadlock caused by cluster update race
1495 				 * from foreground operation.
1496 				 */
1497 				if (IS_NOQUOTA(cc->inode))
1498 					goto out;
1499 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1500 				goto retry_write;
1501 			}
1502 			goto out;
1503 		}
1504 
1505 		*submitted_p += submitted;
1506 	}
1507 
1508 out:
1509 	if (compr_blocks > 0)
1510 		f2fs_unlock_op(sbi);
1511 
1512 	f2fs_balance_fs(sbi, true);
1513 	return ret;
1514 }
1515 
1516 int f2fs_write_multi_pages(struct compress_ctx *cc,
1517 					int *submitted,
1518 					struct writeback_control *wbc,
1519 					enum iostat_type io_type)
1520 {
1521 	int err;
1522 
1523 	*submitted = 0;
1524 	if (cluster_may_compress(cc)) {
1525 		err = f2fs_compress_pages(cc);
1526 		if (err == -EAGAIN) {
1527 			add_compr_block_stat(cc->inode, cc->cluster_size);
1528 			goto write;
1529 		} else if (err) {
1530 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1531 			goto destroy_out;
1532 		}
1533 
1534 		err = f2fs_write_compressed_pages(cc, submitted,
1535 							wbc, io_type);
1536 		if (!err)
1537 			return 0;
1538 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1539 	}
1540 write:
1541 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1542 
1543 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1544 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1545 destroy_out:
1546 	f2fs_destroy_compress_ctx(cc, false);
1547 	return err;
1548 }
1549 
1550 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1551 		bool pre_alloc)
1552 {
1553 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1554 }
1555 
1556 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1557 		bool pre_alloc)
1558 {
1559 	const struct f2fs_compress_ops *cops =
1560 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1561 	int i;
1562 
1563 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1564 		return 0;
1565 
1566 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1567 	if (!dic->tpages)
1568 		return -ENOMEM;
1569 
1570 	for (i = 0; i < dic->cluster_size; i++) {
1571 		if (dic->rpages[i]) {
1572 			dic->tpages[i] = dic->rpages[i];
1573 			continue;
1574 		}
1575 
1576 		dic->tpages[i] = f2fs_compress_alloc_page();
1577 	}
1578 
1579 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1580 	if (!dic->rbuf)
1581 		return -ENOMEM;
1582 
1583 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1584 	if (!dic->cbuf)
1585 		return -ENOMEM;
1586 
1587 	if (cops->init_decompress_ctx)
1588 		return cops->init_decompress_ctx(dic);
1589 
1590 	return 0;
1591 }
1592 
1593 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1594 		bool bypass_destroy_callback, bool pre_alloc)
1595 {
1596 	const struct f2fs_compress_ops *cops =
1597 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1598 
1599 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1600 		return;
1601 
1602 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1603 		cops->destroy_decompress_ctx(dic);
1604 
1605 	if (dic->cbuf)
1606 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1607 
1608 	if (dic->rbuf)
1609 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1610 }
1611 
1612 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1613 		bool bypass_destroy_callback);
1614 
1615 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1616 {
1617 	struct decompress_io_ctx *dic;
1618 	pgoff_t start_idx = start_idx_of_cluster(cc);
1619 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1620 	int i, ret;
1621 
1622 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1623 	if (!dic)
1624 		return ERR_PTR(-ENOMEM);
1625 
1626 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1627 	if (!dic->rpages) {
1628 		kmem_cache_free(dic_entry_slab, dic);
1629 		return ERR_PTR(-ENOMEM);
1630 	}
1631 
1632 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1633 	dic->inode = cc->inode;
1634 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1635 	dic->cluster_idx = cc->cluster_idx;
1636 	dic->cluster_size = cc->cluster_size;
1637 	dic->log_cluster_size = cc->log_cluster_size;
1638 	dic->nr_cpages = cc->nr_cpages;
1639 	refcount_set(&dic->refcnt, 1);
1640 	dic->failed = false;
1641 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1642 
1643 	for (i = 0; i < dic->cluster_size; i++)
1644 		dic->rpages[i] = cc->rpages[i];
1645 	dic->nr_rpages = cc->cluster_size;
1646 
1647 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1648 	if (!dic->cpages) {
1649 		ret = -ENOMEM;
1650 		goto out_free;
1651 	}
1652 
1653 	for (i = 0; i < dic->nr_cpages; i++) {
1654 		struct page *page;
1655 
1656 		page = f2fs_compress_alloc_page();
1657 		f2fs_set_compressed_page(page, cc->inode,
1658 					start_idx + i + 1, dic);
1659 		dic->cpages[i] = page;
1660 	}
1661 
1662 	ret = f2fs_prepare_decomp_mem(dic, true);
1663 	if (ret)
1664 		goto out_free;
1665 
1666 	return dic;
1667 
1668 out_free:
1669 	f2fs_free_dic(dic, true);
1670 	return ERR_PTR(ret);
1671 }
1672 
1673 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1674 		bool bypass_destroy_callback)
1675 {
1676 	int i;
1677 
1678 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1679 
1680 	if (dic->tpages) {
1681 		for (i = 0; i < dic->cluster_size; i++) {
1682 			if (dic->rpages[i])
1683 				continue;
1684 			if (!dic->tpages[i])
1685 				continue;
1686 			f2fs_compress_free_page(dic->tpages[i]);
1687 		}
1688 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1689 	}
1690 
1691 	if (dic->cpages) {
1692 		for (i = 0; i < dic->nr_cpages; i++) {
1693 			if (!dic->cpages[i])
1694 				continue;
1695 			f2fs_compress_free_page(dic->cpages[i]);
1696 		}
1697 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1698 	}
1699 
1700 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1701 	kmem_cache_free(dic_entry_slab, dic);
1702 }
1703 
1704 static void f2fs_late_free_dic(struct work_struct *work)
1705 {
1706 	struct decompress_io_ctx *dic =
1707 		container_of(work, struct decompress_io_ctx, free_work);
1708 
1709 	f2fs_free_dic(dic, false);
1710 }
1711 
1712 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1713 {
1714 	if (refcount_dec_and_test(&dic->refcnt)) {
1715 		if (in_task) {
1716 			f2fs_free_dic(dic, false);
1717 		} else {
1718 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1719 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1720 					&dic->free_work);
1721 		}
1722 	}
1723 }
1724 
1725 static void f2fs_verify_cluster(struct work_struct *work)
1726 {
1727 	struct decompress_io_ctx *dic =
1728 		container_of(work, struct decompress_io_ctx, verity_work);
1729 	int i;
1730 
1731 	/* Verify, update, and unlock the decompressed pages. */
1732 	for (i = 0; i < dic->cluster_size; i++) {
1733 		struct page *rpage = dic->rpages[i];
1734 
1735 		if (!rpage)
1736 			continue;
1737 
1738 		if (fsverity_verify_page(rpage))
1739 			SetPageUptodate(rpage);
1740 		else
1741 			ClearPageUptodate(rpage);
1742 		unlock_page(rpage);
1743 	}
1744 
1745 	f2fs_put_dic(dic, true);
1746 }
1747 
1748 /*
1749  * This is called when a compressed cluster has been decompressed
1750  * (or failed to be read and/or decompressed).
1751  */
1752 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1753 				bool in_task)
1754 {
1755 	int i;
1756 
1757 	if (!failed && dic->need_verity) {
1758 		/*
1759 		 * Note that to avoid deadlocks, the verity work can't be done
1760 		 * on the decompression workqueue.  This is because verifying
1761 		 * the data pages can involve reading metadata pages from the
1762 		 * file, and these metadata pages may be compressed.
1763 		 */
1764 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1765 		fsverity_enqueue_verify_work(&dic->verity_work);
1766 		return;
1767 	}
1768 
1769 	/* Update and unlock the cluster's pagecache pages. */
1770 	for (i = 0; i < dic->cluster_size; i++) {
1771 		struct page *rpage = dic->rpages[i];
1772 
1773 		if (!rpage)
1774 			continue;
1775 
1776 		if (failed)
1777 			ClearPageUptodate(rpage);
1778 		else
1779 			SetPageUptodate(rpage);
1780 		unlock_page(rpage);
1781 	}
1782 
1783 	/*
1784 	 * Release the reference to the decompress_io_ctx that was being held
1785 	 * for I/O completion.
1786 	 */
1787 	f2fs_put_dic(dic, in_task);
1788 }
1789 
1790 /*
1791  * Put a reference to a compressed page's decompress_io_ctx.
1792  *
1793  * This is called when the page is no longer needed and can be freed.
1794  */
1795 void f2fs_put_page_dic(struct page *page, bool in_task)
1796 {
1797 	struct decompress_io_ctx *dic =
1798 			(struct decompress_io_ctx *)page_private(page);
1799 
1800 	f2fs_put_dic(dic, in_task);
1801 }
1802 
1803 /*
1804  * check whether cluster blocks are contiguous, and add extent cache entry
1805  * only if cluster blocks are logically and physically contiguous.
1806  */
1807 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1808 						unsigned int ofs_in_node)
1809 {
1810 	bool compressed = data_blkaddr(dn->inode, dn->node_page,
1811 					ofs_in_node) == COMPRESS_ADDR;
1812 	int i = compressed ? 1 : 0;
1813 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1814 							ofs_in_node + i);
1815 
1816 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1817 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1818 							ofs_in_node + i);
1819 
1820 		if (!__is_valid_data_blkaddr(blkaddr))
1821 			break;
1822 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1823 			return 0;
1824 	}
1825 
1826 	return compressed ? i - 1 : i;
1827 }
1828 
1829 const struct address_space_operations f2fs_compress_aops = {
1830 	.release_folio = f2fs_release_folio,
1831 	.invalidate_folio = f2fs_invalidate_folio,
1832 	.migrate_folio	= filemap_migrate_folio,
1833 };
1834 
1835 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1836 {
1837 	return sbi->compress_inode->i_mapping;
1838 }
1839 
1840 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1841 {
1842 	if (!sbi->compress_inode)
1843 		return;
1844 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1845 }
1846 
1847 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1848 						nid_t ino, block_t blkaddr)
1849 {
1850 	struct page *cpage;
1851 	int ret;
1852 
1853 	if (!test_opt(sbi, COMPRESS_CACHE))
1854 		return;
1855 
1856 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1857 		return;
1858 
1859 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1860 		return;
1861 
1862 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1863 	if (cpage) {
1864 		f2fs_put_page(cpage, 0);
1865 		return;
1866 	}
1867 
1868 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1869 	if (!cpage)
1870 		return;
1871 
1872 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1873 						blkaddr, GFP_NOFS);
1874 	if (ret) {
1875 		f2fs_put_page(cpage, 0);
1876 		return;
1877 	}
1878 
1879 	set_page_private_data(cpage, ino);
1880 
1881 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1882 		goto out;
1883 
1884 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1885 	SetPageUptodate(cpage);
1886 out:
1887 	f2fs_put_page(cpage, 1);
1888 }
1889 
1890 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1891 								block_t blkaddr)
1892 {
1893 	struct page *cpage;
1894 	bool hitted = false;
1895 
1896 	if (!test_opt(sbi, COMPRESS_CACHE))
1897 		return false;
1898 
1899 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1900 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1901 	if (cpage) {
1902 		if (PageUptodate(cpage)) {
1903 			atomic_inc(&sbi->compress_page_hit);
1904 			memcpy(page_address(page),
1905 				page_address(cpage), PAGE_SIZE);
1906 			hitted = true;
1907 		}
1908 		f2fs_put_page(cpage, 1);
1909 	}
1910 
1911 	return hitted;
1912 }
1913 
1914 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1915 {
1916 	struct address_space *mapping = COMPRESS_MAPPING(sbi);
1917 	struct folio_batch fbatch;
1918 	pgoff_t index = 0;
1919 	pgoff_t end = MAX_BLKADDR(sbi);
1920 
1921 	if (!mapping->nrpages)
1922 		return;
1923 
1924 	folio_batch_init(&fbatch);
1925 
1926 	do {
1927 		unsigned int nr, i;
1928 
1929 		nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1930 		if (!nr)
1931 			break;
1932 
1933 		for (i = 0; i < nr; i++) {
1934 			struct folio *folio = fbatch.folios[i];
1935 
1936 			folio_lock(folio);
1937 			if (folio->mapping != mapping) {
1938 				folio_unlock(folio);
1939 				continue;
1940 			}
1941 
1942 			if (ino != get_page_private_data(&folio->page)) {
1943 				folio_unlock(folio);
1944 				continue;
1945 			}
1946 
1947 			generic_error_remove_page(mapping, &folio->page);
1948 			folio_unlock(folio);
1949 		}
1950 		folio_batch_release(&fbatch);
1951 		cond_resched();
1952 	} while (index < end);
1953 }
1954 
1955 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1956 {
1957 	struct inode *inode;
1958 
1959 	if (!test_opt(sbi, COMPRESS_CACHE))
1960 		return 0;
1961 
1962 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1963 	if (IS_ERR(inode))
1964 		return PTR_ERR(inode);
1965 	sbi->compress_inode = inode;
1966 
1967 	sbi->compress_percent = COMPRESS_PERCENT;
1968 	sbi->compress_watermark = COMPRESS_WATERMARK;
1969 
1970 	atomic_set(&sbi->compress_page_hit, 0);
1971 
1972 	return 0;
1973 }
1974 
1975 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1976 {
1977 	if (!sbi->compress_inode)
1978 		return;
1979 	iput(sbi->compress_inode);
1980 	sbi->compress_inode = NULL;
1981 }
1982 
1983 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1984 {
1985 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1986 	char slab_name[35];
1987 
1988 	if (!f2fs_sb_has_compression(sbi))
1989 		return 0;
1990 
1991 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1992 
1993 	sbi->page_array_slab_size = sizeof(struct page *) <<
1994 					F2FS_OPTION(sbi).compress_log_size;
1995 
1996 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1997 					sbi->page_array_slab_size);
1998 	return sbi->page_array_slab ? 0 : -ENOMEM;
1999 }
2000 
2001 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2002 {
2003 	kmem_cache_destroy(sbi->page_array_slab);
2004 }
2005 
2006 int __init f2fs_init_compress_cache(void)
2007 {
2008 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2009 					sizeof(struct compress_io_ctx));
2010 	if (!cic_entry_slab)
2011 		return -ENOMEM;
2012 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2013 					sizeof(struct decompress_io_ctx));
2014 	if (!dic_entry_slab)
2015 		goto free_cic;
2016 	return 0;
2017 free_cic:
2018 	kmem_cache_destroy(cic_entry_slab);
2019 	return -ENOMEM;
2020 }
2021 
2022 void f2fs_destroy_compress_cache(void)
2023 {
2024 	kmem_cache_destroy(dic_entry_slab);
2025 	kmem_cache_destroy(cic_entry_slab);
2026 }
2027