xref: /openbmc/linux/fs/f2fs/compress.c (revision 61cb9ac6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 #include <linux/pagevec.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include <trace/events/f2fs.h>
21 
22 static struct kmem_cache *cic_entry_slab;
23 static struct kmem_cache *dic_entry_slab;
24 
25 static void *page_array_alloc(struct inode *inode, int nr)
26 {
27 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
28 	unsigned int size = sizeof(struct page *) * nr;
29 
30 	if (likely(size <= sbi->page_array_slab_size))
31 		return f2fs_kmem_cache_alloc(sbi->page_array_slab,
32 					GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
33 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
34 }
35 
36 static void page_array_free(struct inode *inode, void *pages, int nr)
37 {
38 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 	unsigned int size = sizeof(struct page *) * nr;
40 
41 	if (!pages)
42 		return;
43 
44 	if (likely(size <= sbi->page_array_slab_size))
45 		kmem_cache_free(sbi->page_array_slab, pages);
46 	else
47 		kfree(pages);
48 }
49 
50 struct f2fs_compress_ops {
51 	int (*init_compress_ctx)(struct compress_ctx *cc);
52 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
53 	int (*compress_pages)(struct compress_ctx *cc);
54 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
55 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
56 	int (*decompress_pages)(struct decompress_io_ctx *dic);
57 };
58 
59 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
60 {
61 	return index & (cc->cluster_size - 1);
62 }
63 
64 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
65 {
66 	return index >> cc->log_cluster_size;
67 }
68 
69 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
70 {
71 	return cc->cluster_idx << cc->log_cluster_size;
72 }
73 
74 bool f2fs_is_compressed_page(struct page *page)
75 {
76 	if (!PagePrivate(page))
77 		return false;
78 	if (!page_private(page))
79 		return false;
80 	if (page_private_nonpointer(page))
81 		return false;
82 
83 	f2fs_bug_on(F2FS_M_SB(page->mapping),
84 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
85 	return true;
86 }
87 
88 static void f2fs_set_compressed_page(struct page *page,
89 		struct inode *inode, pgoff_t index, void *data)
90 {
91 	attach_page_private(page, (void *)data);
92 
93 	/* i_crypto_info and iv index */
94 	page->index = index;
95 	page->mapping = inode->i_mapping;
96 }
97 
98 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
99 {
100 	int i;
101 
102 	for (i = 0; i < len; i++) {
103 		if (!cc->rpages[i])
104 			continue;
105 		if (unlock)
106 			unlock_page(cc->rpages[i]);
107 		else
108 			put_page(cc->rpages[i]);
109 	}
110 }
111 
112 static void f2fs_put_rpages(struct compress_ctx *cc)
113 {
114 	f2fs_drop_rpages(cc, cc->cluster_size, false);
115 }
116 
117 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
118 {
119 	f2fs_drop_rpages(cc, len, true);
120 }
121 
122 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
123 		struct writeback_control *wbc, bool redirty, int unlock)
124 {
125 	unsigned int i;
126 
127 	for (i = 0; i < cc->cluster_size; i++) {
128 		if (!cc->rpages[i])
129 			continue;
130 		if (redirty)
131 			redirty_page_for_writepage(wbc, cc->rpages[i]);
132 		f2fs_put_page(cc->rpages[i], unlock);
133 	}
134 }
135 
136 struct page *f2fs_compress_control_page(struct page *page)
137 {
138 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
139 }
140 
141 int f2fs_init_compress_ctx(struct compress_ctx *cc)
142 {
143 	if (cc->rpages)
144 		return 0;
145 
146 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
147 	return cc->rpages ? 0 : -ENOMEM;
148 }
149 
150 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
151 {
152 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
153 	cc->rpages = NULL;
154 	cc->nr_rpages = 0;
155 	cc->nr_cpages = 0;
156 	if (!reuse)
157 		cc->cluster_idx = NULL_CLUSTER;
158 }
159 
160 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
161 {
162 	unsigned int cluster_ofs;
163 
164 	if (!f2fs_cluster_can_merge_page(cc, page->index))
165 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
166 
167 	cluster_ofs = offset_in_cluster(cc, page->index);
168 	cc->rpages[cluster_ofs] = page;
169 	cc->nr_rpages++;
170 	cc->cluster_idx = cluster_idx(cc, page->index);
171 }
172 
173 #ifdef CONFIG_F2FS_FS_LZO
174 static int lzo_init_compress_ctx(struct compress_ctx *cc)
175 {
176 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
177 				LZO1X_MEM_COMPRESS, GFP_NOFS);
178 	if (!cc->private)
179 		return -ENOMEM;
180 
181 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
182 	return 0;
183 }
184 
185 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
186 {
187 	kvfree(cc->private);
188 	cc->private = NULL;
189 }
190 
191 static int lzo_compress_pages(struct compress_ctx *cc)
192 {
193 	int ret;
194 
195 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
196 					&cc->clen, cc->private);
197 	if (ret != LZO_E_OK) {
198 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
199 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
200 		return -EIO;
201 	}
202 	return 0;
203 }
204 
205 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
206 {
207 	int ret;
208 
209 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
210 						dic->rbuf, &dic->rlen);
211 	if (ret != LZO_E_OK) {
212 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
213 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
214 		return -EIO;
215 	}
216 
217 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
218 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
219 					"expected:%lu\n", KERN_ERR,
220 					F2FS_I_SB(dic->inode)->sb->s_id,
221 					dic->rlen,
222 					PAGE_SIZE << dic->log_cluster_size);
223 		return -EIO;
224 	}
225 	return 0;
226 }
227 
228 static const struct f2fs_compress_ops f2fs_lzo_ops = {
229 	.init_compress_ctx	= lzo_init_compress_ctx,
230 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
231 	.compress_pages		= lzo_compress_pages,
232 	.decompress_pages	= lzo_decompress_pages,
233 };
234 #endif
235 
236 #ifdef CONFIG_F2FS_FS_LZ4
237 static int lz4_init_compress_ctx(struct compress_ctx *cc)
238 {
239 	unsigned int size = LZ4_MEM_COMPRESS;
240 
241 #ifdef CONFIG_F2FS_FS_LZ4HC
242 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
243 		size = LZ4HC_MEM_COMPRESS;
244 #endif
245 
246 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
247 	if (!cc->private)
248 		return -ENOMEM;
249 
250 	/*
251 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
252 	 * adapt worst compress case, because lz4 compressor can handle
253 	 * output budget properly.
254 	 */
255 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
256 	return 0;
257 }
258 
259 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
260 {
261 	kvfree(cc->private);
262 	cc->private = NULL;
263 }
264 
265 #ifdef CONFIG_F2FS_FS_LZ4HC
266 static int lz4hc_compress_pages(struct compress_ctx *cc)
267 {
268 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
269 						COMPRESS_LEVEL_OFFSET;
270 	int len;
271 
272 	if (level)
273 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
274 					cc->clen, level, cc->private);
275 	else
276 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
277 						cc->clen, cc->private);
278 	if (!len)
279 		return -EAGAIN;
280 
281 	cc->clen = len;
282 	return 0;
283 }
284 #endif
285 
286 static int lz4_compress_pages(struct compress_ctx *cc)
287 {
288 	int len;
289 
290 #ifdef CONFIG_F2FS_FS_LZ4HC
291 	return lz4hc_compress_pages(cc);
292 #endif
293 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
294 						cc->clen, cc->private);
295 	if (!len)
296 		return -EAGAIN;
297 
298 	cc->clen = len;
299 	return 0;
300 }
301 
302 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
303 {
304 	int ret;
305 
306 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
307 						dic->clen, dic->rlen);
308 	if (ret < 0) {
309 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
310 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
311 		return -EIO;
312 	}
313 
314 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
315 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
316 					"expected:%lu\n", KERN_ERR,
317 					F2FS_I_SB(dic->inode)->sb->s_id,
318 					dic->rlen,
319 					PAGE_SIZE << dic->log_cluster_size);
320 		return -EIO;
321 	}
322 	return 0;
323 }
324 
325 static const struct f2fs_compress_ops f2fs_lz4_ops = {
326 	.init_compress_ctx	= lz4_init_compress_ctx,
327 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
328 	.compress_pages		= lz4_compress_pages,
329 	.decompress_pages	= lz4_decompress_pages,
330 };
331 #endif
332 
333 #ifdef CONFIG_F2FS_FS_ZSTD
334 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
335 
336 static int zstd_init_compress_ctx(struct compress_ctx *cc)
337 {
338 	ZSTD_parameters params;
339 	ZSTD_CStream *stream;
340 	void *workspace;
341 	unsigned int workspace_size;
342 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
343 						COMPRESS_LEVEL_OFFSET;
344 
345 	if (!level)
346 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
347 
348 	params = ZSTD_getParams(level, cc->rlen, 0);
349 	workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
350 
351 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
352 					workspace_size, GFP_NOFS);
353 	if (!workspace)
354 		return -ENOMEM;
355 
356 	stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
357 	if (!stream) {
358 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
359 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
360 				__func__);
361 		kvfree(workspace);
362 		return -EIO;
363 	}
364 
365 	cc->private = workspace;
366 	cc->private2 = stream;
367 
368 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
369 	return 0;
370 }
371 
372 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
373 {
374 	kvfree(cc->private);
375 	cc->private = NULL;
376 	cc->private2 = NULL;
377 }
378 
379 static int zstd_compress_pages(struct compress_ctx *cc)
380 {
381 	ZSTD_CStream *stream = cc->private2;
382 	ZSTD_inBuffer inbuf;
383 	ZSTD_outBuffer outbuf;
384 	int src_size = cc->rlen;
385 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
386 	int ret;
387 
388 	inbuf.pos = 0;
389 	inbuf.src = cc->rbuf;
390 	inbuf.size = src_size;
391 
392 	outbuf.pos = 0;
393 	outbuf.dst = cc->cbuf->cdata;
394 	outbuf.size = dst_size;
395 
396 	ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
397 	if (ZSTD_isError(ret)) {
398 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
399 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
400 				__func__, ZSTD_getErrorCode(ret));
401 		return -EIO;
402 	}
403 
404 	ret = ZSTD_endStream(stream, &outbuf);
405 	if (ZSTD_isError(ret)) {
406 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
407 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
408 				__func__, ZSTD_getErrorCode(ret));
409 		return -EIO;
410 	}
411 
412 	/*
413 	 * there is compressed data remained in intermediate buffer due to
414 	 * no more space in cbuf.cdata
415 	 */
416 	if (ret)
417 		return -EAGAIN;
418 
419 	cc->clen = outbuf.pos;
420 	return 0;
421 }
422 
423 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
424 {
425 	ZSTD_DStream *stream;
426 	void *workspace;
427 	unsigned int workspace_size;
428 	unsigned int max_window_size =
429 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
430 
431 	workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
432 
433 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
434 					workspace_size, GFP_NOFS);
435 	if (!workspace)
436 		return -ENOMEM;
437 
438 	stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
439 	if (!stream) {
440 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
441 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
442 				__func__);
443 		kvfree(workspace);
444 		return -EIO;
445 	}
446 
447 	dic->private = workspace;
448 	dic->private2 = stream;
449 
450 	return 0;
451 }
452 
453 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
454 {
455 	kvfree(dic->private);
456 	dic->private = NULL;
457 	dic->private2 = NULL;
458 }
459 
460 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
461 {
462 	ZSTD_DStream *stream = dic->private2;
463 	ZSTD_inBuffer inbuf;
464 	ZSTD_outBuffer outbuf;
465 	int ret;
466 
467 	inbuf.pos = 0;
468 	inbuf.src = dic->cbuf->cdata;
469 	inbuf.size = dic->clen;
470 
471 	outbuf.pos = 0;
472 	outbuf.dst = dic->rbuf;
473 	outbuf.size = dic->rlen;
474 
475 	ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
476 	if (ZSTD_isError(ret)) {
477 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
478 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
479 				__func__, ZSTD_getErrorCode(ret));
480 		return -EIO;
481 	}
482 
483 	if (dic->rlen != outbuf.pos) {
484 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
485 				"expected:%lu\n", KERN_ERR,
486 				F2FS_I_SB(dic->inode)->sb->s_id,
487 				__func__, dic->rlen,
488 				PAGE_SIZE << dic->log_cluster_size);
489 		return -EIO;
490 	}
491 
492 	return 0;
493 }
494 
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 	.init_compress_ctx	= zstd_init_compress_ctx,
497 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
498 	.compress_pages		= zstd_compress_pages,
499 	.init_decompress_ctx	= zstd_init_decompress_ctx,
500 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
501 	.decompress_pages	= zstd_decompress_pages,
502 };
503 #endif
504 
505 #ifdef CONFIG_F2FS_FS_LZO
506 #ifdef CONFIG_F2FS_FS_LZORLE
507 static int lzorle_compress_pages(struct compress_ctx *cc)
508 {
509 	int ret;
510 
511 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
512 					&cc->clen, cc->private);
513 	if (ret != LZO_E_OK) {
514 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
515 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
516 		return -EIO;
517 	}
518 	return 0;
519 }
520 
521 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
522 	.init_compress_ctx	= lzo_init_compress_ctx,
523 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
524 	.compress_pages		= lzorle_compress_pages,
525 	.decompress_pages	= lzo_decompress_pages,
526 };
527 #endif
528 #endif
529 
530 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
531 #ifdef CONFIG_F2FS_FS_LZO
532 	&f2fs_lzo_ops,
533 #else
534 	NULL,
535 #endif
536 #ifdef CONFIG_F2FS_FS_LZ4
537 	&f2fs_lz4_ops,
538 #else
539 	NULL,
540 #endif
541 #ifdef CONFIG_F2FS_FS_ZSTD
542 	&f2fs_zstd_ops,
543 #else
544 	NULL,
545 #endif
546 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
547 	&f2fs_lzorle_ops,
548 #else
549 	NULL,
550 #endif
551 };
552 
553 bool f2fs_is_compress_backend_ready(struct inode *inode)
554 {
555 	if (!f2fs_compressed_file(inode))
556 		return true;
557 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
558 }
559 
560 static mempool_t *compress_page_pool;
561 static int num_compress_pages = 512;
562 module_param(num_compress_pages, uint, 0444);
563 MODULE_PARM_DESC(num_compress_pages,
564 		"Number of intermediate compress pages to preallocate");
565 
566 int f2fs_init_compress_mempool(void)
567 {
568 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
569 	if (!compress_page_pool)
570 		return -ENOMEM;
571 
572 	return 0;
573 }
574 
575 void f2fs_destroy_compress_mempool(void)
576 {
577 	mempool_destroy(compress_page_pool);
578 }
579 
580 static struct page *f2fs_compress_alloc_page(void)
581 {
582 	struct page *page;
583 
584 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
585 	lock_page(page);
586 
587 	return page;
588 }
589 
590 static void f2fs_compress_free_page(struct page *page)
591 {
592 	if (!page)
593 		return;
594 	detach_page_private(page);
595 	page->mapping = NULL;
596 	unlock_page(page);
597 	mempool_free(page, compress_page_pool);
598 }
599 
600 #define MAX_VMAP_RETRIES	3
601 
602 static void *f2fs_vmap(struct page **pages, unsigned int count)
603 {
604 	int i;
605 	void *buf = NULL;
606 
607 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
608 		buf = vm_map_ram(pages, count, -1);
609 		if (buf)
610 			break;
611 		vm_unmap_aliases();
612 	}
613 	return buf;
614 }
615 
616 static int f2fs_compress_pages(struct compress_ctx *cc)
617 {
618 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
619 	const struct f2fs_compress_ops *cops =
620 				f2fs_cops[fi->i_compress_algorithm];
621 	unsigned int max_len, new_nr_cpages;
622 	struct page **new_cpages;
623 	u32 chksum = 0;
624 	int i, ret;
625 
626 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
627 				cc->cluster_size, fi->i_compress_algorithm);
628 
629 	if (cops->init_compress_ctx) {
630 		ret = cops->init_compress_ctx(cc);
631 		if (ret)
632 			goto out;
633 	}
634 
635 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
636 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
637 
638 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
639 	if (!cc->cpages) {
640 		ret = -ENOMEM;
641 		goto destroy_compress_ctx;
642 	}
643 
644 	for (i = 0; i < cc->nr_cpages; i++) {
645 		cc->cpages[i] = f2fs_compress_alloc_page();
646 		if (!cc->cpages[i]) {
647 			ret = -ENOMEM;
648 			goto out_free_cpages;
649 		}
650 	}
651 
652 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
653 	if (!cc->rbuf) {
654 		ret = -ENOMEM;
655 		goto out_free_cpages;
656 	}
657 
658 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
659 	if (!cc->cbuf) {
660 		ret = -ENOMEM;
661 		goto out_vunmap_rbuf;
662 	}
663 
664 	ret = cops->compress_pages(cc);
665 	if (ret)
666 		goto out_vunmap_cbuf;
667 
668 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
669 
670 	if (cc->clen > max_len) {
671 		ret = -EAGAIN;
672 		goto out_vunmap_cbuf;
673 	}
674 
675 	cc->cbuf->clen = cpu_to_le32(cc->clen);
676 
677 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
678 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
679 					cc->cbuf->cdata, cc->clen);
680 	cc->cbuf->chksum = cpu_to_le32(chksum);
681 
682 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
683 		cc->cbuf->reserved[i] = cpu_to_le32(0);
684 
685 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
686 
687 	/* Now we're going to cut unnecessary tail pages */
688 	new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
689 	if (!new_cpages) {
690 		ret = -ENOMEM;
691 		goto out_vunmap_cbuf;
692 	}
693 
694 	/* zero out any unused part of the last page */
695 	memset(&cc->cbuf->cdata[cc->clen], 0,
696 			(new_nr_cpages * PAGE_SIZE) -
697 			(cc->clen + COMPRESS_HEADER_SIZE));
698 
699 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
700 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
701 
702 	for (i = 0; i < cc->nr_cpages; i++) {
703 		if (i < new_nr_cpages) {
704 			new_cpages[i] = cc->cpages[i];
705 			continue;
706 		}
707 		f2fs_compress_free_page(cc->cpages[i]);
708 		cc->cpages[i] = NULL;
709 	}
710 
711 	if (cops->destroy_compress_ctx)
712 		cops->destroy_compress_ctx(cc);
713 
714 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
715 	cc->cpages = new_cpages;
716 	cc->nr_cpages = new_nr_cpages;
717 
718 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
719 							cc->clen, ret);
720 	return 0;
721 
722 out_vunmap_cbuf:
723 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
724 out_vunmap_rbuf:
725 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
726 out_free_cpages:
727 	for (i = 0; i < cc->nr_cpages; i++) {
728 		if (cc->cpages[i])
729 			f2fs_compress_free_page(cc->cpages[i]);
730 	}
731 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
732 	cc->cpages = NULL;
733 destroy_compress_ctx:
734 	if (cops->destroy_compress_ctx)
735 		cops->destroy_compress_ctx(cc);
736 out:
737 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
738 							cc->clen, ret);
739 	return ret;
740 }
741 
742 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
743 {
744 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
745 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
746 	const struct f2fs_compress_ops *cops =
747 			f2fs_cops[fi->i_compress_algorithm];
748 	int ret;
749 	int i;
750 
751 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
752 				dic->cluster_size, fi->i_compress_algorithm);
753 
754 	if (dic->failed) {
755 		ret = -EIO;
756 		goto out_end_io;
757 	}
758 
759 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
760 	if (!dic->tpages) {
761 		ret = -ENOMEM;
762 		goto out_end_io;
763 	}
764 
765 	for (i = 0; i < dic->cluster_size; i++) {
766 		if (dic->rpages[i]) {
767 			dic->tpages[i] = dic->rpages[i];
768 			continue;
769 		}
770 
771 		dic->tpages[i] = f2fs_compress_alloc_page();
772 		if (!dic->tpages[i]) {
773 			ret = -ENOMEM;
774 			goto out_end_io;
775 		}
776 	}
777 
778 	if (cops->init_decompress_ctx) {
779 		ret = cops->init_decompress_ctx(dic);
780 		if (ret)
781 			goto out_end_io;
782 	}
783 
784 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
785 	if (!dic->rbuf) {
786 		ret = -ENOMEM;
787 		goto out_destroy_decompress_ctx;
788 	}
789 
790 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
791 	if (!dic->cbuf) {
792 		ret = -ENOMEM;
793 		goto out_vunmap_rbuf;
794 	}
795 
796 	dic->clen = le32_to_cpu(dic->cbuf->clen);
797 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
798 
799 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
800 		ret = -EFSCORRUPTED;
801 		goto out_vunmap_cbuf;
802 	}
803 
804 	ret = cops->decompress_pages(dic);
805 
806 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
807 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
808 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
809 
810 		if (provided != calculated) {
811 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
812 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
813 				printk_ratelimited(
814 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
815 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
816 					provided, calculated);
817 			}
818 			set_sbi_flag(sbi, SBI_NEED_FSCK);
819 		}
820 	}
821 
822 out_vunmap_cbuf:
823 	vm_unmap_ram(dic->cbuf, dic->nr_cpages);
824 out_vunmap_rbuf:
825 	vm_unmap_ram(dic->rbuf, dic->cluster_size);
826 out_destroy_decompress_ctx:
827 	if (cops->destroy_decompress_ctx)
828 		cops->destroy_decompress_ctx(dic);
829 out_end_io:
830 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
831 							dic->clen, ret);
832 	f2fs_decompress_end_io(dic, ret);
833 }
834 
835 /*
836  * This is called when a page of a compressed cluster has been read from disk
837  * (or failed to be read from disk).  It checks whether this page was the last
838  * page being waited on in the cluster, and if so, it decompresses the cluster
839  * (or in the case of a failure, cleans up without actually decompressing).
840  */
841 void f2fs_end_read_compressed_page(struct page *page, bool failed,
842 						block_t blkaddr)
843 {
844 	struct decompress_io_ctx *dic =
845 			(struct decompress_io_ctx *)page_private(page);
846 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
847 
848 	dec_page_count(sbi, F2FS_RD_DATA);
849 
850 	if (failed)
851 		WRITE_ONCE(dic->failed, true);
852 	else if (blkaddr)
853 		f2fs_cache_compressed_page(sbi, page,
854 					dic->inode->i_ino, blkaddr);
855 
856 	if (atomic_dec_and_test(&dic->remaining_pages))
857 		f2fs_decompress_cluster(dic);
858 }
859 
860 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
861 {
862 	if (cc->cluster_idx == NULL_CLUSTER)
863 		return true;
864 	return cc->cluster_idx == cluster_idx(cc, index);
865 }
866 
867 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
868 {
869 	return cc->nr_rpages == 0;
870 }
871 
872 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
873 {
874 	return cc->cluster_size == cc->nr_rpages;
875 }
876 
877 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
878 {
879 	if (f2fs_cluster_is_empty(cc))
880 		return true;
881 	return is_page_in_cluster(cc, index);
882 }
883 
884 static bool cluster_has_invalid_data(struct compress_ctx *cc)
885 {
886 	loff_t i_size = i_size_read(cc->inode);
887 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
888 	int i;
889 
890 	for (i = 0; i < cc->cluster_size; i++) {
891 		struct page *page = cc->rpages[i];
892 
893 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
894 
895 		/* beyond EOF */
896 		if (page->index >= nr_pages)
897 			return true;
898 	}
899 	return false;
900 }
901 
902 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
903 {
904 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
905 	unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
906 	bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
907 	int cluster_end = 0;
908 	int i;
909 	char *reason = "";
910 
911 	if (!compressed)
912 		return false;
913 
914 	/* [..., COMPR_ADDR, ...] */
915 	if (dn->ofs_in_node % cluster_size) {
916 		reason = "[*|C|*|*]";
917 		goto out;
918 	}
919 
920 	for (i = 1; i < cluster_size; i++) {
921 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
922 							dn->ofs_in_node + i);
923 
924 		/* [COMPR_ADDR, ..., COMPR_ADDR] */
925 		if (blkaddr == COMPRESS_ADDR) {
926 			reason = "[C|*|C|*]";
927 			goto out;
928 		}
929 		if (compressed) {
930 			if (!__is_valid_data_blkaddr(blkaddr)) {
931 				if (!cluster_end)
932 					cluster_end = i;
933 				continue;
934 			}
935 			/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
936 			if (cluster_end) {
937 				reason = "[C|N|N|V]";
938 				goto out;
939 			}
940 		}
941 	}
942 	return false;
943 out:
944 	f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
945 			dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
946 	set_sbi_flag(sbi, SBI_NEED_FSCK);
947 	return true;
948 }
949 
950 static int __f2fs_cluster_blocks(struct inode *inode,
951 				unsigned int cluster_idx, bool compr)
952 {
953 	struct dnode_of_data dn;
954 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
955 	unsigned int start_idx = cluster_idx <<
956 				F2FS_I(inode)->i_log_cluster_size;
957 	int ret;
958 
959 	set_new_dnode(&dn, inode, NULL, NULL, 0);
960 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
961 	if (ret) {
962 		if (ret == -ENOENT)
963 			ret = 0;
964 		goto fail;
965 	}
966 
967 	if (f2fs_sanity_check_cluster(&dn)) {
968 		ret = -EFSCORRUPTED;
969 		goto fail;
970 	}
971 
972 	if (dn.data_blkaddr == COMPRESS_ADDR) {
973 		int i;
974 
975 		ret = 1;
976 		for (i = 1; i < cluster_size; i++) {
977 			block_t blkaddr;
978 
979 			blkaddr = data_blkaddr(dn.inode,
980 					dn.node_page, dn.ofs_in_node + i);
981 			if (compr) {
982 				if (__is_valid_data_blkaddr(blkaddr))
983 					ret++;
984 			} else {
985 				if (blkaddr != NULL_ADDR)
986 					ret++;
987 			}
988 		}
989 
990 		f2fs_bug_on(F2FS_I_SB(inode),
991 			!compr && ret != cluster_size &&
992 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
993 	}
994 fail:
995 	f2fs_put_dnode(&dn);
996 	return ret;
997 }
998 
999 /* return # of compressed blocks in compressed cluster */
1000 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1001 {
1002 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1003 }
1004 
1005 /* return # of valid blocks in compressed cluster */
1006 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1007 {
1008 	return __f2fs_cluster_blocks(inode,
1009 		index >> F2FS_I(inode)->i_log_cluster_size,
1010 		false);
1011 }
1012 
1013 static bool cluster_may_compress(struct compress_ctx *cc)
1014 {
1015 	if (!f2fs_need_compress_data(cc->inode))
1016 		return false;
1017 	if (f2fs_is_atomic_file(cc->inode))
1018 		return false;
1019 	if (!f2fs_cluster_is_full(cc))
1020 		return false;
1021 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1022 		return false;
1023 	return !cluster_has_invalid_data(cc);
1024 }
1025 
1026 static void set_cluster_writeback(struct compress_ctx *cc)
1027 {
1028 	int i;
1029 
1030 	for (i = 0; i < cc->cluster_size; i++) {
1031 		if (cc->rpages[i])
1032 			set_page_writeback(cc->rpages[i]);
1033 	}
1034 }
1035 
1036 static void set_cluster_dirty(struct compress_ctx *cc)
1037 {
1038 	int i;
1039 
1040 	for (i = 0; i < cc->cluster_size; i++)
1041 		if (cc->rpages[i])
1042 			set_page_dirty(cc->rpages[i]);
1043 }
1044 
1045 static int prepare_compress_overwrite(struct compress_ctx *cc,
1046 		struct page **pagep, pgoff_t index, void **fsdata)
1047 {
1048 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1049 	struct address_space *mapping = cc->inode->i_mapping;
1050 	struct page *page;
1051 	sector_t last_block_in_bio;
1052 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1053 	pgoff_t start_idx = start_idx_of_cluster(cc);
1054 	int i, ret;
1055 
1056 retry:
1057 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1058 	if (ret <= 0)
1059 		return ret;
1060 
1061 	ret = f2fs_init_compress_ctx(cc);
1062 	if (ret)
1063 		return ret;
1064 
1065 	/* keep page reference to avoid page reclaim */
1066 	for (i = 0; i < cc->cluster_size; i++) {
1067 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1068 							fgp_flag, GFP_NOFS);
1069 		if (!page) {
1070 			ret = -ENOMEM;
1071 			goto unlock_pages;
1072 		}
1073 
1074 		if (PageUptodate(page))
1075 			f2fs_put_page(page, 1);
1076 		else
1077 			f2fs_compress_ctx_add_page(cc, page);
1078 	}
1079 
1080 	if (!f2fs_cluster_is_empty(cc)) {
1081 		struct bio *bio = NULL;
1082 
1083 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1084 					&last_block_in_bio, false, true);
1085 		f2fs_put_rpages(cc);
1086 		f2fs_destroy_compress_ctx(cc, true);
1087 		if (ret)
1088 			goto out;
1089 		if (bio)
1090 			f2fs_submit_bio(sbi, bio, DATA);
1091 
1092 		ret = f2fs_init_compress_ctx(cc);
1093 		if (ret)
1094 			goto out;
1095 	}
1096 
1097 	for (i = 0; i < cc->cluster_size; i++) {
1098 		f2fs_bug_on(sbi, cc->rpages[i]);
1099 
1100 		page = find_lock_page(mapping, start_idx + i);
1101 		if (!page) {
1102 			/* page can be truncated */
1103 			goto release_and_retry;
1104 		}
1105 
1106 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1107 		f2fs_compress_ctx_add_page(cc, page);
1108 
1109 		if (!PageUptodate(page)) {
1110 release_and_retry:
1111 			f2fs_put_rpages(cc);
1112 			f2fs_unlock_rpages(cc, i + 1);
1113 			f2fs_destroy_compress_ctx(cc, true);
1114 			goto retry;
1115 		}
1116 	}
1117 
1118 	if (likely(!ret)) {
1119 		*fsdata = cc->rpages;
1120 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1121 		return cc->cluster_size;
1122 	}
1123 
1124 unlock_pages:
1125 	f2fs_put_rpages(cc);
1126 	f2fs_unlock_rpages(cc, i);
1127 	f2fs_destroy_compress_ctx(cc, true);
1128 out:
1129 	return ret;
1130 }
1131 
1132 int f2fs_prepare_compress_overwrite(struct inode *inode,
1133 		struct page **pagep, pgoff_t index, void **fsdata)
1134 {
1135 	struct compress_ctx cc = {
1136 		.inode = inode,
1137 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1138 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1139 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1140 		.rpages = NULL,
1141 		.nr_rpages = 0,
1142 	};
1143 
1144 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1145 }
1146 
1147 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1148 					pgoff_t index, unsigned copied)
1149 
1150 {
1151 	struct compress_ctx cc = {
1152 		.inode = inode,
1153 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1154 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1155 		.rpages = fsdata,
1156 	};
1157 	bool first_index = (index == cc.rpages[0]->index);
1158 
1159 	if (copied)
1160 		set_cluster_dirty(&cc);
1161 
1162 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1163 	f2fs_destroy_compress_ctx(&cc, false);
1164 
1165 	return first_index;
1166 }
1167 
1168 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1169 {
1170 	void *fsdata = NULL;
1171 	struct page *pagep;
1172 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1173 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1174 							log_cluster_size;
1175 	int err;
1176 
1177 	err = f2fs_is_compressed_cluster(inode, start_idx);
1178 	if (err < 0)
1179 		return err;
1180 
1181 	/* truncate normal cluster */
1182 	if (!err)
1183 		return f2fs_do_truncate_blocks(inode, from, lock);
1184 
1185 	/* truncate compressed cluster */
1186 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1187 						start_idx, &fsdata);
1188 
1189 	/* should not be a normal cluster */
1190 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1191 
1192 	if (err <= 0)
1193 		return err;
1194 
1195 	if (err > 0) {
1196 		struct page **rpages = fsdata;
1197 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1198 		int i;
1199 
1200 		for (i = cluster_size - 1; i >= 0; i--) {
1201 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1202 
1203 			if (from <= start) {
1204 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1205 			} else {
1206 				zero_user_segment(rpages[i], from - start,
1207 								PAGE_SIZE);
1208 				break;
1209 			}
1210 		}
1211 
1212 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1213 	}
1214 	return 0;
1215 }
1216 
1217 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1218 					int *submitted,
1219 					struct writeback_control *wbc,
1220 					enum iostat_type io_type)
1221 {
1222 	struct inode *inode = cc->inode;
1223 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224 	struct f2fs_inode_info *fi = F2FS_I(inode);
1225 	struct f2fs_io_info fio = {
1226 		.sbi = sbi,
1227 		.ino = cc->inode->i_ino,
1228 		.type = DATA,
1229 		.op = REQ_OP_WRITE,
1230 		.op_flags = wbc_to_write_flags(wbc),
1231 		.old_blkaddr = NEW_ADDR,
1232 		.page = NULL,
1233 		.encrypted_page = NULL,
1234 		.compressed_page = NULL,
1235 		.submitted = false,
1236 		.io_type = io_type,
1237 		.io_wbc = wbc,
1238 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1239 	};
1240 	struct dnode_of_data dn;
1241 	struct node_info ni;
1242 	struct compress_io_ctx *cic;
1243 	pgoff_t start_idx = start_idx_of_cluster(cc);
1244 	unsigned int last_index = cc->cluster_size - 1;
1245 	loff_t psize;
1246 	int i, err;
1247 
1248 	/* we should bypass data pages to proceed the kworkder jobs */
1249 	if (unlikely(f2fs_cp_error(sbi))) {
1250 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1251 		goto out_free;
1252 	}
1253 
1254 	if (IS_NOQUOTA(inode)) {
1255 		/*
1256 		 * We need to wait for node_write to avoid block allocation during
1257 		 * checkpoint. This can only happen to quota writes which can cause
1258 		 * the below discard race condition.
1259 		 */
1260 		down_read(&sbi->node_write);
1261 	} else if (!f2fs_trylock_op(sbi)) {
1262 		goto out_free;
1263 	}
1264 
1265 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1266 
1267 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1268 	if (err)
1269 		goto out_unlock_op;
1270 
1271 	for (i = 0; i < cc->cluster_size; i++) {
1272 		if (data_blkaddr(dn.inode, dn.node_page,
1273 					dn.ofs_in_node + i) == NULL_ADDR)
1274 			goto out_put_dnode;
1275 	}
1276 
1277 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1278 
1279 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1280 	if (err)
1281 		goto out_put_dnode;
1282 
1283 	fio.version = ni.version;
1284 
1285 	cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1286 	if (!cic)
1287 		goto out_put_dnode;
1288 
1289 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1290 	cic->inode = inode;
1291 	atomic_set(&cic->pending_pages, cc->nr_cpages);
1292 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1293 	if (!cic->rpages)
1294 		goto out_put_cic;
1295 
1296 	cic->nr_rpages = cc->cluster_size;
1297 
1298 	for (i = 0; i < cc->nr_cpages; i++) {
1299 		f2fs_set_compressed_page(cc->cpages[i], inode,
1300 					cc->rpages[i + 1]->index, cic);
1301 		fio.compressed_page = cc->cpages[i];
1302 
1303 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1304 						dn.ofs_in_node + i + 1);
1305 
1306 		/* wait for GCed page writeback via META_MAPPING */
1307 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1308 
1309 		if (fio.encrypted) {
1310 			fio.page = cc->rpages[i + 1];
1311 			err = f2fs_encrypt_one_page(&fio);
1312 			if (err)
1313 				goto out_destroy_crypt;
1314 			cc->cpages[i] = fio.encrypted_page;
1315 		}
1316 	}
1317 
1318 	set_cluster_writeback(cc);
1319 
1320 	for (i = 0; i < cc->cluster_size; i++)
1321 		cic->rpages[i] = cc->rpages[i];
1322 
1323 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1324 		block_t blkaddr;
1325 
1326 		blkaddr = f2fs_data_blkaddr(&dn);
1327 		fio.page = cc->rpages[i];
1328 		fio.old_blkaddr = blkaddr;
1329 
1330 		/* cluster header */
1331 		if (i == 0) {
1332 			if (blkaddr == COMPRESS_ADDR)
1333 				fio.compr_blocks++;
1334 			if (__is_valid_data_blkaddr(blkaddr))
1335 				f2fs_invalidate_blocks(sbi, blkaddr);
1336 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1337 			goto unlock_continue;
1338 		}
1339 
1340 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1341 			fio.compr_blocks++;
1342 
1343 		if (i > cc->nr_cpages) {
1344 			if (__is_valid_data_blkaddr(blkaddr)) {
1345 				f2fs_invalidate_blocks(sbi, blkaddr);
1346 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1347 			}
1348 			goto unlock_continue;
1349 		}
1350 
1351 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1352 
1353 		if (fio.encrypted)
1354 			fio.encrypted_page = cc->cpages[i - 1];
1355 		else
1356 			fio.compressed_page = cc->cpages[i - 1];
1357 
1358 		cc->cpages[i - 1] = NULL;
1359 		f2fs_outplace_write_data(&dn, &fio);
1360 		(*submitted)++;
1361 unlock_continue:
1362 		inode_dec_dirty_pages(cc->inode);
1363 		unlock_page(fio.page);
1364 	}
1365 
1366 	if (fio.compr_blocks)
1367 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1368 	f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1369 	add_compr_block_stat(inode, cc->nr_cpages);
1370 
1371 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1372 	if (cc->cluster_idx == 0)
1373 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1374 
1375 	f2fs_put_dnode(&dn);
1376 	if (IS_NOQUOTA(inode))
1377 		up_read(&sbi->node_write);
1378 	else
1379 		f2fs_unlock_op(sbi);
1380 
1381 	spin_lock(&fi->i_size_lock);
1382 	if (fi->last_disk_size < psize)
1383 		fi->last_disk_size = psize;
1384 	spin_unlock(&fi->i_size_lock);
1385 
1386 	f2fs_put_rpages(cc);
1387 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1388 	cc->cpages = NULL;
1389 	f2fs_destroy_compress_ctx(cc, false);
1390 	return 0;
1391 
1392 out_destroy_crypt:
1393 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1394 
1395 	for (--i; i >= 0; i--)
1396 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1397 out_put_cic:
1398 	kmem_cache_free(cic_entry_slab, cic);
1399 out_put_dnode:
1400 	f2fs_put_dnode(&dn);
1401 out_unlock_op:
1402 	if (IS_NOQUOTA(inode))
1403 		up_read(&sbi->node_write);
1404 	else
1405 		f2fs_unlock_op(sbi);
1406 out_free:
1407 	for (i = 0; i < cc->nr_cpages; i++) {
1408 		if (!cc->cpages[i])
1409 			continue;
1410 		f2fs_compress_free_page(cc->cpages[i]);
1411 		cc->cpages[i] = NULL;
1412 	}
1413 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1414 	cc->cpages = NULL;
1415 	return -EAGAIN;
1416 }
1417 
1418 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1419 {
1420 	struct f2fs_sb_info *sbi = bio->bi_private;
1421 	struct compress_io_ctx *cic =
1422 			(struct compress_io_ctx *)page_private(page);
1423 	int i;
1424 
1425 	if (unlikely(bio->bi_status))
1426 		mapping_set_error(cic->inode->i_mapping, -EIO);
1427 
1428 	f2fs_compress_free_page(page);
1429 
1430 	dec_page_count(sbi, F2FS_WB_DATA);
1431 
1432 	if (atomic_dec_return(&cic->pending_pages))
1433 		return;
1434 
1435 	for (i = 0; i < cic->nr_rpages; i++) {
1436 		WARN_ON(!cic->rpages[i]);
1437 		clear_page_private_gcing(cic->rpages[i]);
1438 		end_page_writeback(cic->rpages[i]);
1439 	}
1440 
1441 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1442 	kmem_cache_free(cic_entry_slab, cic);
1443 }
1444 
1445 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1446 					int *submitted,
1447 					struct writeback_control *wbc,
1448 					enum iostat_type io_type)
1449 {
1450 	struct address_space *mapping = cc->inode->i_mapping;
1451 	int _submitted, compr_blocks, ret;
1452 	int i = -1, err = 0;
1453 
1454 	compr_blocks = f2fs_compressed_blocks(cc);
1455 	if (compr_blocks < 0) {
1456 		err = compr_blocks;
1457 		goto out_err;
1458 	}
1459 
1460 	for (i = 0; i < cc->cluster_size; i++) {
1461 		if (!cc->rpages[i])
1462 			continue;
1463 retry_write:
1464 		if (cc->rpages[i]->mapping != mapping) {
1465 			unlock_page(cc->rpages[i]);
1466 			continue;
1467 		}
1468 
1469 		BUG_ON(!PageLocked(cc->rpages[i]));
1470 
1471 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1472 						NULL, NULL, wbc, io_type,
1473 						compr_blocks, false);
1474 		if (ret) {
1475 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1476 				unlock_page(cc->rpages[i]);
1477 				ret = 0;
1478 			} else if (ret == -EAGAIN) {
1479 				/*
1480 				 * for quota file, just redirty left pages to
1481 				 * avoid deadlock caused by cluster update race
1482 				 * from foreground operation.
1483 				 */
1484 				if (IS_NOQUOTA(cc->inode)) {
1485 					err = 0;
1486 					goto out_err;
1487 				}
1488 				ret = 0;
1489 				cond_resched();
1490 				congestion_wait(BLK_RW_ASYNC,
1491 						DEFAULT_IO_TIMEOUT);
1492 				lock_page(cc->rpages[i]);
1493 
1494 				if (!PageDirty(cc->rpages[i])) {
1495 					unlock_page(cc->rpages[i]);
1496 					continue;
1497 				}
1498 
1499 				clear_page_dirty_for_io(cc->rpages[i]);
1500 				goto retry_write;
1501 			}
1502 			err = ret;
1503 			goto out_err;
1504 		}
1505 
1506 		*submitted += _submitted;
1507 	}
1508 
1509 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1510 
1511 	return 0;
1512 out_err:
1513 	for (++i; i < cc->cluster_size; i++) {
1514 		if (!cc->rpages[i])
1515 			continue;
1516 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1517 		unlock_page(cc->rpages[i]);
1518 	}
1519 	return err;
1520 }
1521 
1522 int f2fs_write_multi_pages(struct compress_ctx *cc,
1523 					int *submitted,
1524 					struct writeback_control *wbc,
1525 					enum iostat_type io_type)
1526 {
1527 	int err;
1528 
1529 	*submitted = 0;
1530 	if (cluster_may_compress(cc)) {
1531 		err = f2fs_compress_pages(cc);
1532 		if (err == -EAGAIN) {
1533 			goto write;
1534 		} else if (err) {
1535 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1536 			goto destroy_out;
1537 		}
1538 
1539 		err = f2fs_write_compressed_pages(cc, submitted,
1540 							wbc, io_type);
1541 		if (!err)
1542 			return 0;
1543 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1544 	}
1545 write:
1546 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1547 
1548 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1549 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1550 destroy_out:
1551 	f2fs_destroy_compress_ctx(cc, false);
1552 	return err;
1553 }
1554 
1555 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1556 
1557 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1558 {
1559 	struct decompress_io_ctx *dic;
1560 	pgoff_t start_idx = start_idx_of_cluster(cc);
1561 	int i;
1562 
1563 	dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO,
1564 					false, F2FS_I_SB(cc->inode));
1565 	if (!dic)
1566 		return ERR_PTR(-ENOMEM);
1567 
1568 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1569 	if (!dic->rpages) {
1570 		kmem_cache_free(dic_entry_slab, dic);
1571 		return ERR_PTR(-ENOMEM);
1572 	}
1573 
1574 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1575 	dic->inode = cc->inode;
1576 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1577 	dic->cluster_idx = cc->cluster_idx;
1578 	dic->cluster_size = cc->cluster_size;
1579 	dic->log_cluster_size = cc->log_cluster_size;
1580 	dic->nr_cpages = cc->nr_cpages;
1581 	refcount_set(&dic->refcnt, 1);
1582 	dic->failed = false;
1583 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1584 
1585 	for (i = 0; i < dic->cluster_size; i++)
1586 		dic->rpages[i] = cc->rpages[i];
1587 	dic->nr_rpages = cc->cluster_size;
1588 
1589 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1590 	if (!dic->cpages)
1591 		goto out_free;
1592 
1593 	for (i = 0; i < dic->nr_cpages; i++) {
1594 		struct page *page;
1595 
1596 		page = f2fs_compress_alloc_page();
1597 		if (!page)
1598 			goto out_free;
1599 
1600 		f2fs_set_compressed_page(page, cc->inode,
1601 					start_idx + i + 1, dic);
1602 		dic->cpages[i] = page;
1603 	}
1604 
1605 	return dic;
1606 
1607 out_free:
1608 	f2fs_free_dic(dic);
1609 	return ERR_PTR(-ENOMEM);
1610 }
1611 
1612 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1613 {
1614 	int i;
1615 
1616 	if (dic->tpages) {
1617 		for (i = 0; i < dic->cluster_size; i++) {
1618 			if (dic->rpages[i])
1619 				continue;
1620 			if (!dic->tpages[i])
1621 				continue;
1622 			f2fs_compress_free_page(dic->tpages[i]);
1623 		}
1624 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1625 	}
1626 
1627 	if (dic->cpages) {
1628 		for (i = 0; i < dic->nr_cpages; i++) {
1629 			if (!dic->cpages[i])
1630 				continue;
1631 			f2fs_compress_free_page(dic->cpages[i]);
1632 		}
1633 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1634 	}
1635 
1636 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1637 	kmem_cache_free(dic_entry_slab, dic);
1638 }
1639 
1640 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1641 {
1642 	if (refcount_dec_and_test(&dic->refcnt))
1643 		f2fs_free_dic(dic);
1644 }
1645 
1646 /*
1647  * Update and unlock the cluster's pagecache pages, and release the reference to
1648  * the decompress_io_ctx that was being held for I/O completion.
1649  */
1650 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1651 {
1652 	int i;
1653 
1654 	for (i = 0; i < dic->cluster_size; i++) {
1655 		struct page *rpage = dic->rpages[i];
1656 
1657 		if (!rpage)
1658 			continue;
1659 
1660 		/* PG_error was set if verity failed. */
1661 		if (failed || PageError(rpage)) {
1662 			ClearPageUptodate(rpage);
1663 			/* will re-read again later */
1664 			ClearPageError(rpage);
1665 		} else {
1666 			SetPageUptodate(rpage);
1667 		}
1668 		unlock_page(rpage);
1669 	}
1670 
1671 	f2fs_put_dic(dic);
1672 }
1673 
1674 static void f2fs_verify_cluster(struct work_struct *work)
1675 {
1676 	struct decompress_io_ctx *dic =
1677 		container_of(work, struct decompress_io_ctx, verity_work);
1678 	int i;
1679 
1680 	/* Verify the cluster's decompressed pages with fs-verity. */
1681 	for (i = 0; i < dic->cluster_size; i++) {
1682 		struct page *rpage = dic->rpages[i];
1683 
1684 		if (rpage && !fsverity_verify_page(rpage))
1685 			SetPageError(rpage);
1686 	}
1687 
1688 	__f2fs_decompress_end_io(dic, false);
1689 }
1690 
1691 /*
1692  * This is called when a compressed cluster has been decompressed
1693  * (or failed to be read and/or decompressed).
1694  */
1695 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1696 {
1697 	if (!failed && dic->need_verity) {
1698 		/*
1699 		 * Note that to avoid deadlocks, the verity work can't be done
1700 		 * on the decompression workqueue.  This is because verifying
1701 		 * the data pages can involve reading metadata pages from the
1702 		 * file, and these metadata pages may be compressed.
1703 		 */
1704 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1705 		fsverity_enqueue_verify_work(&dic->verity_work);
1706 	} else {
1707 		__f2fs_decompress_end_io(dic, failed);
1708 	}
1709 }
1710 
1711 /*
1712  * Put a reference to a compressed page's decompress_io_ctx.
1713  *
1714  * This is called when the page is no longer needed and can be freed.
1715  */
1716 void f2fs_put_page_dic(struct page *page)
1717 {
1718 	struct decompress_io_ctx *dic =
1719 			(struct decompress_io_ctx *)page_private(page);
1720 
1721 	f2fs_put_dic(dic);
1722 }
1723 
1724 /*
1725  * check whether cluster blocks are contiguous, and add extent cache entry
1726  * only if cluster blocks are logically and physically contiguous.
1727  */
1728 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1729 {
1730 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1731 	int i = compressed ? 1 : 0;
1732 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1733 						dn->ofs_in_node + i);
1734 
1735 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1736 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1737 						dn->ofs_in_node + i);
1738 
1739 		if (!__is_valid_data_blkaddr(blkaddr))
1740 			break;
1741 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1742 			return 0;
1743 	}
1744 
1745 	return compressed ? i - 1 : i;
1746 }
1747 
1748 const struct address_space_operations f2fs_compress_aops = {
1749 	.releasepage = f2fs_release_page,
1750 	.invalidatepage = f2fs_invalidate_page,
1751 };
1752 
1753 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1754 {
1755 	return sbi->compress_inode->i_mapping;
1756 }
1757 
1758 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1759 {
1760 	if (!sbi->compress_inode)
1761 		return;
1762 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1763 }
1764 
1765 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1766 						nid_t ino, block_t blkaddr)
1767 {
1768 	struct page *cpage;
1769 	int ret;
1770 
1771 	if (!test_opt(sbi, COMPRESS_CACHE))
1772 		return;
1773 
1774 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1775 		return;
1776 
1777 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1778 		return;
1779 
1780 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1781 	if (cpage) {
1782 		f2fs_put_page(cpage, 0);
1783 		return;
1784 	}
1785 
1786 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1787 	if (!cpage)
1788 		return;
1789 
1790 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1791 						blkaddr, GFP_NOFS);
1792 	if (ret) {
1793 		f2fs_put_page(cpage, 0);
1794 		return;
1795 	}
1796 
1797 	set_page_private_data(cpage, ino);
1798 
1799 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1800 		goto out;
1801 
1802 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1803 	SetPageUptodate(cpage);
1804 out:
1805 	f2fs_put_page(cpage, 1);
1806 }
1807 
1808 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1809 								block_t blkaddr)
1810 {
1811 	struct page *cpage;
1812 	bool hitted = false;
1813 
1814 	if (!test_opt(sbi, COMPRESS_CACHE))
1815 		return false;
1816 
1817 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1818 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1819 	if (cpage) {
1820 		if (PageUptodate(cpage)) {
1821 			atomic_inc(&sbi->compress_page_hit);
1822 			memcpy(page_address(page),
1823 				page_address(cpage), PAGE_SIZE);
1824 			hitted = true;
1825 		}
1826 		f2fs_put_page(cpage, 1);
1827 	}
1828 
1829 	return hitted;
1830 }
1831 
1832 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1833 {
1834 	struct address_space *mapping = sbi->compress_inode->i_mapping;
1835 	struct pagevec pvec;
1836 	pgoff_t index = 0;
1837 	pgoff_t end = MAX_BLKADDR(sbi);
1838 
1839 	if (!mapping->nrpages)
1840 		return;
1841 
1842 	pagevec_init(&pvec);
1843 
1844 	do {
1845 		unsigned int nr_pages;
1846 		int i;
1847 
1848 		nr_pages = pagevec_lookup_range(&pvec, mapping,
1849 						&index, end - 1);
1850 		if (!nr_pages)
1851 			break;
1852 
1853 		for (i = 0; i < nr_pages; i++) {
1854 			struct page *page = pvec.pages[i];
1855 
1856 			if (page->index > end)
1857 				break;
1858 
1859 			lock_page(page);
1860 			if (page->mapping != mapping) {
1861 				unlock_page(page);
1862 				continue;
1863 			}
1864 
1865 			if (ino != get_page_private_data(page)) {
1866 				unlock_page(page);
1867 				continue;
1868 			}
1869 
1870 			generic_error_remove_page(mapping, page);
1871 			unlock_page(page);
1872 		}
1873 		pagevec_release(&pvec);
1874 		cond_resched();
1875 	} while (index < end);
1876 }
1877 
1878 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1879 {
1880 	struct inode *inode;
1881 
1882 	if (!test_opt(sbi, COMPRESS_CACHE))
1883 		return 0;
1884 
1885 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1886 	if (IS_ERR(inode))
1887 		return PTR_ERR(inode);
1888 	sbi->compress_inode = inode;
1889 
1890 	sbi->compress_percent = COMPRESS_PERCENT;
1891 	sbi->compress_watermark = COMPRESS_WATERMARK;
1892 
1893 	atomic_set(&sbi->compress_page_hit, 0);
1894 
1895 	return 0;
1896 }
1897 
1898 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1899 {
1900 	if (!sbi->compress_inode)
1901 		return;
1902 	iput(sbi->compress_inode);
1903 	sbi->compress_inode = NULL;
1904 }
1905 
1906 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1907 {
1908 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1909 	char slab_name[32];
1910 
1911 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1912 
1913 	sbi->page_array_slab_size = sizeof(struct page *) <<
1914 					F2FS_OPTION(sbi).compress_log_size;
1915 
1916 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1917 					sbi->page_array_slab_size);
1918 	if (!sbi->page_array_slab)
1919 		return -ENOMEM;
1920 	return 0;
1921 }
1922 
1923 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1924 {
1925 	kmem_cache_destroy(sbi->page_array_slab);
1926 }
1927 
1928 static int __init f2fs_init_cic_cache(void)
1929 {
1930 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1931 					sizeof(struct compress_io_ctx));
1932 	if (!cic_entry_slab)
1933 		return -ENOMEM;
1934 	return 0;
1935 }
1936 
1937 static void f2fs_destroy_cic_cache(void)
1938 {
1939 	kmem_cache_destroy(cic_entry_slab);
1940 }
1941 
1942 static int __init f2fs_init_dic_cache(void)
1943 {
1944 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1945 					sizeof(struct decompress_io_ctx));
1946 	if (!dic_entry_slab)
1947 		return -ENOMEM;
1948 	return 0;
1949 }
1950 
1951 static void f2fs_destroy_dic_cache(void)
1952 {
1953 	kmem_cache_destroy(dic_entry_slab);
1954 }
1955 
1956 int __init f2fs_init_compress_cache(void)
1957 {
1958 	int err;
1959 
1960 	err = f2fs_init_cic_cache();
1961 	if (err)
1962 		goto out;
1963 	err = f2fs_init_dic_cache();
1964 	if (err)
1965 		goto free_cic;
1966 	return 0;
1967 free_cic:
1968 	f2fs_destroy_cic_cache();
1969 out:
1970 	return -ENOMEM;
1971 }
1972 
1973 void f2fs_destroy_compress_cache(void)
1974 {
1975 	f2fs_destroy_dic_cache();
1976 	f2fs_destroy_cic_cache();
1977 }
1978