1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/writeback.h> 11 #include <linux/backing-dev.h> 12 #include <linux/lzo.h> 13 #include <linux/lz4.h> 14 #include <linux/zstd.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include <trace/events/f2fs.h> 19 20 static struct kmem_cache *cic_entry_slab; 21 static struct kmem_cache *dic_entry_slab; 22 23 static void *page_array_alloc(struct inode *inode, int nr) 24 { 25 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 26 unsigned int size = sizeof(struct page *) * nr; 27 28 if (likely(size <= sbi->page_array_slab_size)) 29 return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS); 30 return f2fs_kzalloc(sbi, size, GFP_NOFS); 31 } 32 33 static void page_array_free(struct inode *inode, void *pages, int nr) 34 { 35 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 36 unsigned int size = sizeof(struct page *) * nr; 37 38 if (!pages) 39 return; 40 41 if (likely(size <= sbi->page_array_slab_size)) 42 kmem_cache_free(sbi->page_array_slab, pages); 43 else 44 kfree(pages); 45 } 46 47 struct f2fs_compress_ops { 48 int (*init_compress_ctx)(struct compress_ctx *cc); 49 void (*destroy_compress_ctx)(struct compress_ctx *cc); 50 int (*compress_pages)(struct compress_ctx *cc); 51 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 52 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 53 int (*decompress_pages)(struct decompress_io_ctx *dic); 54 }; 55 56 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 57 { 58 return index & (cc->cluster_size - 1); 59 } 60 61 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index >> cc->log_cluster_size; 64 } 65 66 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 67 { 68 return cc->cluster_idx << cc->log_cluster_size; 69 } 70 71 bool f2fs_is_compressed_page(struct page *page) 72 { 73 if (!PagePrivate(page)) 74 return false; 75 if (!page_private(page)) 76 return false; 77 if (IS_ATOMIC_WRITTEN_PAGE(page) || IS_DUMMY_WRITTEN_PAGE(page)) 78 return false; 79 80 f2fs_bug_on(F2FS_M_SB(page->mapping), 81 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 82 return true; 83 } 84 85 static void f2fs_set_compressed_page(struct page *page, 86 struct inode *inode, pgoff_t index, void *data) 87 { 88 SetPagePrivate(page); 89 set_page_private(page, (unsigned long)data); 90 91 /* i_crypto_info and iv index */ 92 page->index = index; 93 page->mapping = inode->i_mapping; 94 } 95 96 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 97 { 98 int i; 99 100 for (i = 0; i < len; i++) { 101 if (!cc->rpages[i]) 102 continue; 103 if (unlock) 104 unlock_page(cc->rpages[i]); 105 else 106 put_page(cc->rpages[i]); 107 } 108 } 109 110 static void f2fs_put_rpages(struct compress_ctx *cc) 111 { 112 f2fs_drop_rpages(cc, cc->cluster_size, false); 113 } 114 115 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 116 { 117 f2fs_drop_rpages(cc, len, true); 118 } 119 120 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 121 struct writeback_control *wbc, bool redirty, int unlock) 122 { 123 unsigned int i; 124 125 for (i = 0; i < cc->cluster_size; i++) { 126 if (!cc->rpages[i]) 127 continue; 128 if (redirty) 129 redirty_page_for_writepage(wbc, cc->rpages[i]); 130 f2fs_put_page(cc->rpages[i], unlock); 131 } 132 } 133 134 struct page *f2fs_compress_control_page(struct page *page) 135 { 136 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 137 } 138 139 int f2fs_init_compress_ctx(struct compress_ctx *cc) 140 { 141 if (cc->rpages) 142 return 0; 143 144 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 145 return cc->rpages ? 0 : -ENOMEM; 146 } 147 148 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 149 { 150 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 151 cc->rpages = NULL; 152 cc->nr_rpages = 0; 153 cc->nr_cpages = 0; 154 if (!reuse) 155 cc->cluster_idx = NULL_CLUSTER; 156 } 157 158 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 159 { 160 unsigned int cluster_ofs; 161 162 if (!f2fs_cluster_can_merge_page(cc, page->index)) 163 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 164 165 cluster_ofs = offset_in_cluster(cc, page->index); 166 cc->rpages[cluster_ofs] = page; 167 cc->nr_rpages++; 168 cc->cluster_idx = cluster_idx(cc, page->index); 169 } 170 171 #ifdef CONFIG_F2FS_FS_LZO 172 static int lzo_init_compress_ctx(struct compress_ctx *cc) 173 { 174 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 175 LZO1X_MEM_COMPRESS, GFP_NOFS); 176 if (!cc->private) 177 return -ENOMEM; 178 179 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 180 return 0; 181 } 182 183 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 184 { 185 kvfree(cc->private); 186 cc->private = NULL; 187 } 188 189 static int lzo_compress_pages(struct compress_ctx *cc) 190 { 191 int ret; 192 193 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 194 &cc->clen, cc->private); 195 if (ret != LZO_E_OK) { 196 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 197 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 198 return -EIO; 199 } 200 return 0; 201 } 202 203 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 204 { 205 int ret; 206 207 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 208 dic->rbuf, &dic->rlen); 209 if (ret != LZO_E_OK) { 210 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 211 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 212 return -EIO; 213 } 214 215 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 216 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 217 "expected:%lu\n", KERN_ERR, 218 F2FS_I_SB(dic->inode)->sb->s_id, 219 dic->rlen, 220 PAGE_SIZE << dic->log_cluster_size); 221 return -EIO; 222 } 223 return 0; 224 } 225 226 static const struct f2fs_compress_ops f2fs_lzo_ops = { 227 .init_compress_ctx = lzo_init_compress_ctx, 228 .destroy_compress_ctx = lzo_destroy_compress_ctx, 229 .compress_pages = lzo_compress_pages, 230 .decompress_pages = lzo_decompress_pages, 231 }; 232 #endif 233 234 #ifdef CONFIG_F2FS_FS_LZ4 235 static int lz4_init_compress_ctx(struct compress_ctx *cc) 236 { 237 unsigned int size = LZ4_MEM_COMPRESS; 238 239 #ifdef CONFIG_F2FS_FS_LZ4HC 240 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) 241 size = LZ4HC_MEM_COMPRESS; 242 #endif 243 244 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 245 if (!cc->private) 246 return -ENOMEM; 247 248 /* 249 * we do not change cc->clen to LZ4_compressBound(inputsize) to 250 * adapt worst compress case, because lz4 compressor can handle 251 * output budget properly. 252 */ 253 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 254 return 0; 255 } 256 257 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 258 { 259 kvfree(cc->private); 260 cc->private = NULL; 261 } 262 263 #ifdef CONFIG_F2FS_FS_LZ4HC 264 static int lz4hc_compress_pages(struct compress_ctx *cc) 265 { 266 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 267 COMPRESS_LEVEL_OFFSET; 268 int len; 269 270 if (level) 271 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 272 cc->clen, level, cc->private); 273 else 274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 275 cc->clen, cc->private); 276 if (!len) 277 return -EAGAIN; 278 279 cc->clen = len; 280 return 0; 281 } 282 #endif 283 284 static int lz4_compress_pages(struct compress_ctx *cc) 285 { 286 int len; 287 288 #ifdef CONFIG_F2FS_FS_LZ4HC 289 return lz4hc_compress_pages(cc); 290 #endif 291 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 292 cc->clen, cc->private); 293 if (!len) 294 return -EAGAIN; 295 296 cc->clen = len; 297 return 0; 298 } 299 300 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 301 { 302 int ret; 303 304 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 305 dic->clen, dic->rlen); 306 if (ret < 0) { 307 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 308 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 309 return -EIO; 310 } 311 312 if (ret != PAGE_SIZE << dic->log_cluster_size) { 313 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, " 314 "expected:%lu\n", KERN_ERR, 315 F2FS_I_SB(dic->inode)->sb->s_id, 316 dic->rlen, 317 PAGE_SIZE << dic->log_cluster_size); 318 return -EIO; 319 } 320 return 0; 321 } 322 323 static const struct f2fs_compress_ops f2fs_lz4_ops = { 324 .init_compress_ctx = lz4_init_compress_ctx, 325 .destroy_compress_ctx = lz4_destroy_compress_ctx, 326 .compress_pages = lz4_compress_pages, 327 .decompress_pages = lz4_decompress_pages, 328 }; 329 #endif 330 331 #ifdef CONFIG_F2FS_FS_ZSTD 332 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 333 334 static int zstd_init_compress_ctx(struct compress_ctx *cc) 335 { 336 ZSTD_parameters params; 337 ZSTD_CStream *stream; 338 void *workspace; 339 unsigned int workspace_size; 340 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 341 COMPRESS_LEVEL_OFFSET; 342 343 if (!level) 344 level = F2FS_ZSTD_DEFAULT_CLEVEL; 345 346 params = ZSTD_getParams(level, cc->rlen, 0); 347 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams); 348 349 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 350 workspace_size, GFP_NOFS); 351 if (!workspace) 352 return -ENOMEM; 353 354 stream = ZSTD_initCStream(params, 0, workspace, workspace_size); 355 if (!stream) { 356 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n", 357 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 358 __func__); 359 kvfree(workspace); 360 return -EIO; 361 } 362 363 cc->private = workspace; 364 cc->private2 = stream; 365 366 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 367 return 0; 368 } 369 370 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 371 { 372 kvfree(cc->private); 373 cc->private = NULL; 374 cc->private2 = NULL; 375 } 376 377 static int zstd_compress_pages(struct compress_ctx *cc) 378 { 379 ZSTD_CStream *stream = cc->private2; 380 ZSTD_inBuffer inbuf; 381 ZSTD_outBuffer outbuf; 382 int src_size = cc->rlen; 383 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 384 int ret; 385 386 inbuf.pos = 0; 387 inbuf.src = cc->rbuf; 388 inbuf.size = src_size; 389 390 outbuf.pos = 0; 391 outbuf.dst = cc->cbuf->cdata; 392 outbuf.size = dst_size; 393 394 ret = ZSTD_compressStream(stream, &outbuf, &inbuf); 395 if (ZSTD_isError(ret)) { 396 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 397 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 398 __func__, ZSTD_getErrorCode(ret)); 399 return -EIO; 400 } 401 402 ret = ZSTD_endStream(stream, &outbuf); 403 if (ZSTD_isError(ret)) { 404 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n", 405 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 406 __func__, ZSTD_getErrorCode(ret)); 407 return -EIO; 408 } 409 410 /* 411 * there is compressed data remained in intermediate buffer due to 412 * no more space in cbuf.cdata 413 */ 414 if (ret) 415 return -EAGAIN; 416 417 cc->clen = outbuf.pos; 418 return 0; 419 } 420 421 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 422 { 423 ZSTD_DStream *stream; 424 void *workspace; 425 unsigned int workspace_size; 426 unsigned int max_window_size = 427 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 428 429 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size); 430 431 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 432 workspace_size, GFP_NOFS); 433 if (!workspace) 434 return -ENOMEM; 435 436 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size); 437 if (!stream) { 438 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n", 439 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 440 __func__); 441 kvfree(workspace); 442 return -EIO; 443 } 444 445 dic->private = workspace; 446 dic->private2 = stream; 447 448 return 0; 449 } 450 451 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 452 { 453 kvfree(dic->private); 454 dic->private = NULL; 455 dic->private2 = NULL; 456 } 457 458 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 459 { 460 ZSTD_DStream *stream = dic->private2; 461 ZSTD_inBuffer inbuf; 462 ZSTD_outBuffer outbuf; 463 int ret; 464 465 inbuf.pos = 0; 466 inbuf.src = dic->cbuf->cdata; 467 inbuf.size = dic->clen; 468 469 outbuf.pos = 0; 470 outbuf.dst = dic->rbuf; 471 outbuf.size = dic->rlen; 472 473 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf); 474 if (ZSTD_isError(ret)) { 475 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 476 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 477 __func__, ZSTD_getErrorCode(ret)); 478 return -EIO; 479 } 480 481 if (dic->rlen != outbuf.pos) { 482 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 483 "expected:%lu\n", KERN_ERR, 484 F2FS_I_SB(dic->inode)->sb->s_id, 485 __func__, dic->rlen, 486 PAGE_SIZE << dic->log_cluster_size); 487 return -EIO; 488 } 489 490 return 0; 491 } 492 493 static const struct f2fs_compress_ops f2fs_zstd_ops = { 494 .init_compress_ctx = zstd_init_compress_ctx, 495 .destroy_compress_ctx = zstd_destroy_compress_ctx, 496 .compress_pages = zstd_compress_pages, 497 .init_decompress_ctx = zstd_init_decompress_ctx, 498 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 499 .decompress_pages = zstd_decompress_pages, 500 }; 501 #endif 502 503 #ifdef CONFIG_F2FS_FS_LZO 504 #ifdef CONFIG_F2FS_FS_LZORLE 505 static int lzorle_compress_pages(struct compress_ctx *cc) 506 { 507 int ret; 508 509 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 510 &cc->clen, cc->private); 511 if (ret != LZO_E_OK) { 512 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 513 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 514 return -EIO; 515 } 516 return 0; 517 } 518 519 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 520 .init_compress_ctx = lzo_init_compress_ctx, 521 .destroy_compress_ctx = lzo_destroy_compress_ctx, 522 .compress_pages = lzorle_compress_pages, 523 .decompress_pages = lzo_decompress_pages, 524 }; 525 #endif 526 #endif 527 528 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 529 #ifdef CONFIG_F2FS_FS_LZO 530 &f2fs_lzo_ops, 531 #else 532 NULL, 533 #endif 534 #ifdef CONFIG_F2FS_FS_LZ4 535 &f2fs_lz4_ops, 536 #else 537 NULL, 538 #endif 539 #ifdef CONFIG_F2FS_FS_ZSTD 540 &f2fs_zstd_ops, 541 #else 542 NULL, 543 #endif 544 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 545 &f2fs_lzorle_ops, 546 #else 547 NULL, 548 #endif 549 }; 550 551 bool f2fs_is_compress_backend_ready(struct inode *inode) 552 { 553 if (!f2fs_compressed_file(inode)) 554 return true; 555 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 556 } 557 558 static mempool_t *compress_page_pool; 559 static int num_compress_pages = 512; 560 module_param(num_compress_pages, uint, 0444); 561 MODULE_PARM_DESC(num_compress_pages, 562 "Number of intermediate compress pages to preallocate"); 563 564 int f2fs_init_compress_mempool(void) 565 { 566 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 567 if (!compress_page_pool) 568 return -ENOMEM; 569 570 return 0; 571 } 572 573 void f2fs_destroy_compress_mempool(void) 574 { 575 mempool_destroy(compress_page_pool); 576 } 577 578 static struct page *f2fs_compress_alloc_page(void) 579 { 580 struct page *page; 581 582 page = mempool_alloc(compress_page_pool, GFP_NOFS); 583 lock_page(page); 584 585 return page; 586 } 587 588 static void f2fs_compress_free_page(struct page *page) 589 { 590 if (!page) 591 return; 592 set_page_private(page, (unsigned long)NULL); 593 ClearPagePrivate(page); 594 page->mapping = NULL; 595 unlock_page(page); 596 mempool_free(page, compress_page_pool); 597 } 598 599 #define MAX_VMAP_RETRIES 3 600 601 static void *f2fs_vmap(struct page **pages, unsigned int count) 602 { 603 int i; 604 void *buf = NULL; 605 606 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 607 buf = vm_map_ram(pages, count, -1); 608 if (buf) 609 break; 610 vm_unmap_aliases(); 611 } 612 return buf; 613 } 614 615 static int f2fs_compress_pages(struct compress_ctx *cc) 616 { 617 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 618 const struct f2fs_compress_ops *cops = 619 f2fs_cops[fi->i_compress_algorithm]; 620 unsigned int max_len, new_nr_cpages; 621 struct page **new_cpages; 622 u32 chksum = 0; 623 int i, ret; 624 625 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 626 cc->cluster_size, fi->i_compress_algorithm); 627 628 if (cops->init_compress_ctx) { 629 ret = cops->init_compress_ctx(cc); 630 if (ret) 631 goto out; 632 } 633 634 max_len = COMPRESS_HEADER_SIZE + cc->clen; 635 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 636 637 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 638 if (!cc->cpages) { 639 ret = -ENOMEM; 640 goto destroy_compress_ctx; 641 } 642 643 for (i = 0; i < cc->nr_cpages; i++) { 644 cc->cpages[i] = f2fs_compress_alloc_page(); 645 if (!cc->cpages[i]) { 646 ret = -ENOMEM; 647 goto out_free_cpages; 648 } 649 } 650 651 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 652 if (!cc->rbuf) { 653 ret = -ENOMEM; 654 goto out_free_cpages; 655 } 656 657 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 658 if (!cc->cbuf) { 659 ret = -ENOMEM; 660 goto out_vunmap_rbuf; 661 } 662 663 ret = cops->compress_pages(cc); 664 if (ret) 665 goto out_vunmap_cbuf; 666 667 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 668 669 if (cc->clen > max_len) { 670 ret = -EAGAIN; 671 goto out_vunmap_cbuf; 672 } 673 674 cc->cbuf->clen = cpu_to_le32(cc->clen); 675 676 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) 677 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 678 cc->cbuf->cdata, cc->clen); 679 cc->cbuf->chksum = cpu_to_le32(chksum); 680 681 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 682 cc->cbuf->reserved[i] = cpu_to_le32(0); 683 684 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 685 686 /* Now we're going to cut unnecessary tail pages */ 687 new_cpages = page_array_alloc(cc->inode, new_nr_cpages); 688 if (!new_cpages) { 689 ret = -ENOMEM; 690 goto out_vunmap_cbuf; 691 } 692 693 /* zero out any unused part of the last page */ 694 memset(&cc->cbuf->cdata[cc->clen], 0, 695 (new_nr_cpages * PAGE_SIZE) - 696 (cc->clen + COMPRESS_HEADER_SIZE)); 697 698 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 699 vm_unmap_ram(cc->rbuf, cc->cluster_size); 700 701 for (i = 0; i < cc->nr_cpages; i++) { 702 if (i < new_nr_cpages) { 703 new_cpages[i] = cc->cpages[i]; 704 continue; 705 } 706 f2fs_compress_free_page(cc->cpages[i]); 707 cc->cpages[i] = NULL; 708 } 709 710 if (cops->destroy_compress_ctx) 711 cops->destroy_compress_ctx(cc); 712 713 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 714 cc->cpages = new_cpages; 715 cc->nr_cpages = new_nr_cpages; 716 717 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 718 cc->clen, ret); 719 return 0; 720 721 out_vunmap_cbuf: 722 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 723 out_vunmap_rbuf: 724 vm_unmap_ram(cc->rbuf, cc->cluster_size); 725 out_free_cpages: 726 for (i = 0; i < cc->nr_cpages; i++) { 727 if (cc->cpages[i]) 728 f2fs_compress_free_page(cc->cpages[i]); 729 } 730 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 731 cc->cpages = NULL; 732 destroy_compress_ctx: 733 if (cops->destroy_compress_ctx) 734 cops->destroy_compress_ctx(cc); 735 out: 736 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 737 cc->clen, ret); 738 return ret; 739 } 740 741 static void f2fs_decompress_cluster(struct decompress_io_ctx *dic) 742 { 743 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 744 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 745 const struct f2fs_compress_ops *cops = 746 f2fs_cops[fi->i_compress_algorithm]; 747 int ret; 748 int i; 749 750 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 751 dic->cluster_size, fi->i_compress_algorithm); 752 753 if (dic->failed) { 754 ret = -EIO; 755 goto out_end_io; 756 } 757 758 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 759 if (!dic->tpages) { 760 ret = -ENOMEM; 761 goto out_end_io; 762 } 763 764 for (i = 0; i < dic->cluster_size; i++) { 765 if (dic->rpages[i]) { 766 dic->tpages[i] = dic->rpages[i]; 767 continue; 768 } 769 770 dic->tpages[i] = f2fs_compress_alloc_page(); 771 if (!dic->tpages[i]) { 772 ret = -ENOMEM; 773 goto out_end_io; 774 } 775 } 776 777 if (cops->init_decompress_ctx) { 778 ret = cops->init_decompress_ctx(dic); 779 if (ret) 780 goto out_end_io; 781 } 782 783 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 784 if (!dic->rbuf) { 785 ret = -ENOMEM; 786 goto out_destroy_decompress_ctx; 787 } 788 789 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 790 if (!dic->cbuf) { 791 ret = -ENOMEM; 792 goto out_vunmap_rbuf; 793 } 794 795 dic->clen = le32_to_cpu(dic->cbuf->clen); 796 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 797 798 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 799 ret = -EFSCORRUPTED; 800 goto out_vunmap_cbuf; 801 } 802 803 ret = cops->decompress_pages(dic); 804 805 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { 806 u32 provided = le32_to_cpu(dic->cbuf->chksum); 807 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 808 809 if (provided != calculated) { 810 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 811 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 812 printk_ratelimited( 813 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 814 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 815 provided, calculated); 816 } 817 set_sbi_flag(sbi, SBI_NEED_FSCK); 818 } 819 } 820 821 out_vunmap_cbuf: 822 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 823 out_vunmap_rbuf: 824 vm_unmap_ram(dic->rbuf, dic->cluster_size); 825 out_destroy_decompress_ctx: 826 if (cops->destroy_decompress_ctx) 827 cops->destroy_decompress_ctx(dic); 828 out_end_io: 829 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 830 dic->clen, ret); 831 f2fs_decompress_end_io(dic, ret); 832 } 833 834 /* 835 * This is called when a page of a compressed cluster has been read from disk 836 * (or failed to be read from disk). It checks whether this page was the last 837 * page being waited on in the cluster, and if so, it decompresses the cluster 838 * (or in the case of a failure, cleans up without actually decompressing). 839 */ 840 void f2fs_end_read_compressed_page(struct page *page, bool failed) 841 { 842 struct decompress_io_ctx *dic = 843 (struct decompress_io_ctx *)page_private(page); 844 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 845 846 dec_page_count(sbi, F2FS_RD_DATA); 847 848 if (failed) 849 WRITE_ONCE(dic->failed, true); 850 851 if (atomic_dec_and_test(&dic->remaining_pages)) 852 f2fs_decompress_cluster(dic); 853 } 854 855 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 856 { 857 if (cc->cluster_idx == NULL_CLUSTER) 858 return true; 859 return cc->cluster_idx == cluster_idx(cc, index); 860 } 861 862 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 863 { 864 return cc->nr_rpages == 0; 865 } 866 867 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 868 { 869 return cc->cluster_size == cc->nr_rpages; 870 } 871 872 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 873 { 874 if (f2fs_cluster_is_empty(cc)) 875 return true; 876 return is_page_in_cluster(cc, index); 877 } 878 879 static bool __cluster_may_compress(struct compress_ctx *cc) 880 { 881 loff_t i_size = i_size_read(cc->inode); 882 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 883 int i; 884 885 for (i = 0; i < cc->cluster_size; i++) { 886 struct page *page = cc->rpages[i]; 887 888 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 889 890 /* beyond EOF */ 891 if (page->index >= nr_pages) 892 return false; 893 } 894 return true; 895 } 896 897 static int __f2fs_cluster_blocks(struct compress_ctx *cc, bool compr) 898 { 899 struct dnode_of_data dn; 900 int ret; 901 902 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 903 ret = f2fs_get_dnode_of_data(&dn, start_idx_of_cluster(cc), 904 LOOKUP_NODE); 905 if (ret) { 906 if (ret == -ENOENT) 907 ret = 0; 908 goto fail; 909 } 910 911 if (dn.data_blkaddr == COMPRESS_ADDR) { 912 int i; 913 914 ret = 1; 915 for (i = 1; i < cc->cluster_size; i++) { 916 block_t blkaddr; 917 918 blkaddr = data_blkaddr(dn.inode, 919 dn.node_page, dn.ofs_in_node + i); 920 if (compr) { 921 if (__is_valid_data_blkaddr(blkaddr)) 922 ret++; 923 } else { 924 if (blkaddr != NULL_ADDR) 925 ret++; 926 } 927 } 928 } 929 fail: 930 f2fs_put_dnode(&dn); 931 return ret; 932 } 933 934 /* return # of compressed blocks in compressed cluster */ 935 static int f2fs_compressed_blocks(struct compress_ctx *cc) 936 { 937 return __f2fs_cluster_blocks(cc, true); 938 } 939 940 /* return # of valid blocks in compressed cluster */ 941 static int f2fs_cluster_blocks(struct compress_ctx *cc) 942 { 943 return __f2fs_cluster_blocks(cc, false); 944 } 945 946 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 947 { 948 struct compress_ctx cc = { 949 .inode = inode, 950 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 951 .cluster_size = F2FS_I(inode)->i_cluster_size, 952 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 953 }; 954 955 return f2fs_cluster_blocks(&cc); 956 } 957 958 static bool cluster_may_compress(struct compress_ctx *cc) 959 { 960 if (!f2fs_need_compress_data(cc->inode)) 961 return false; 962 if (f2fs_is_atomic_file(cc->inode)) 963 return false; 964 if (f2fs_is_mmap_file(cc->inode)) 965 return false; 966 if (!f2fs_cluster_is_full(cc)) 967 return false; 968 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 969 return false; 970 return __cluster_may_compress(cc); 971 } 972 973 static void set_cluster_writeback(struct compress_ctx *cc) 974 { 975 int i; 976 977 for (i = 0; i < cc->cluster_size; i++) { 978 if (cc->rpages[i]) 979 set_page_writeback(cc->rpages[i]); 980 } 981 } 982 983 static void set_cluster_dirty(struct compress_ctx *cc) 984 { 985 int i; 986 987 for (i = 0; i < cc->cluster_size; i++) 988 if (cc->rpages[i]) 989 set_page_dirty(cc->rpages[i]); 990 } 991 992 static int prepare_compress_overwrite(struct compress_ctx *cc, 993 struct page **pagep, pgoff_t index, void **fsdata) 994 { 995 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 996 struct address_space *mapping = cc->inode->i_mapping; 997 struct page *page; 998 struct dnode_of_data dn; 999 sector_t last_block_in_bio; 1000 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1001 pgoff_t start_idx = start_idx_of_cluster(cc); 1002 int i, ret; 1003 bool prealloc; 1004 1005 retry: 1006 ret = f2fs_cluster_blocks(cc); 1007 if (ret <= 0) 1008 return ret; 1009 1010 /* compressed case */ 1011 prealloc = (ret < cc->cluster_size); 1012 1013 ret = f2fs_init_compress_ctx(cc); 1014 if (ret) 1015 return ret; 1016 1017 /* keep page reference to avoid page reclaim */ 1018 for (i = 0; i < cc->cluster_size; i++) { 1019 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1020 fgp_flag, GFP_NOFS); 1021 if (!page) { 1022 ret = -ENOMEM; 1023 goto unlock_pages; 1024 } 1025 1026 if (PageUptodate(page)) 1027 f2fs_put_page(page, 1); 1028 else 1029 f2fs_compress_ctx_add_page(cc, page); 1030 } 1031 1032 if (!f2fs_cluster_is_empty(cc)) { 1033 struct bio *bio = NULL; 1034 1035 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1036 &last_block_in_bio, false, true); 1037 f2fs_put_rpages(cc); 1038 f2fs_destroy_compress_ctx(cc, true); 1039 if (ret) 1040 goto out; 1041 if (bio) 1042 f2fs_submit_bio(sbi, bio, DATA); 1043 1044 ret = f2fs_init_compress_ctx(cc); 1045 if (ret) 1046 goto out; 1047 } 1048 1049 for (i = 0; i < cc->cluster_size; i++) { 1050 f2fs_bug_on(sbi, cc->rpages[i]); 1051 1052 page = find_lock_page(mapping, start_idx + i); 1053 if (!page) { 1054 /* page can be truncated */ 1055 goto release_and_retry; 1056 } 1057 1058 f2fs_wait_on_page_writeback(page, DATA, true, true); 1059 f2fs_compress_ctx_add_page(cc, page); 1060 1061 if (!PageUptodate(page)) { 1062 release_and_retry: 1063 f2fs_put_rpages(cc); 1064 f2fs_unlock_rpages(cc, i + 1); 1065 f2fs_destroy_compress_ctx(cc, true); 1066 goto retry; 1067 } 1068 } 1069 1070 if (prealloc) { 1071 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 1072 1073 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1074 1075 for (i = cc->cluster_size - 1; i > 0; i--) { 1076 ret = f2fs_get_block(&dn, start_idx + i); 1077 if (ret) { 1078 i = cc->cluster_size; 1079 break; 1080 } 1081 1082 if (dn.data_blkaddr != NEW_ADDR) 1083 break; 1084 } 1085 1086 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 1087 } 1088 1089 if (likely(!ret)) { 1090 *fsdata = cc->rpages; 1091 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1092 return cc->cluster_size; 1093 } 1094 1095 unlock_pages: 1096 f2fs_put_rpages(cc); 1097 f2fs_unlock_rpages(cc, i); 1098 f2fs_destroy_compress_ctx(cc, true); 1099 out: 1100 return ret; 1101 } 1102 1103 int f2fs_prepare_compress_overwrite(struct inode *inode, 1104 struct page **pagep, pgoff_t index, void **fsdata) 1105 { 1106 struct compress_ctx cc = { 1107 .inode = inode, 1108 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1109 .cluster_size = F2FS_I(inode)->i_cluster_size, 1110 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1111 .rpages = NULL, 1112 .nr_rpages = 0, 1113 }; 1114 1115 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1116 } 1117 1118 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1119 pgoff_t index, unsigned copied) 1120 1121 { 1122 struct compress_ctx cc = { 1123 .inode = inode, 1124 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1125 .cluster_size = F2FS_I(inode)->i_cluster_size, 1126 .rpages = fsdata, 1127 }; 1128 bool first_index = (index == cc.rpages[0]->index); 1129 1130 if (copied) 1131 set_cluster_dirty(&cc); 1132 1133 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1134 f2fs_destroy_compress_ctx(&cc, false); 1135 1136 return first_index; 1137 } 1138 1139 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1140 { 1141 void *fsdata = NULL; 1142 struct page *pagep; 1143 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1144 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1145 log_cluster_size; 1146 int err; 1147 1148 err = f2fs_is_compressed_cluster(inode, start_idx); 1149 if (err < 0) 1150 return err; 1151 1152 /* truncate normal cluster */ 1153 if (!err) 1154 return f2fs_do_truncate_blocks(inode, from, lock); 1155 1156 /* truncate compressed cluster */ 1157 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1158 start_idx, &fsdata); 1159 1160 /* should not be a normal cluster */ 1161 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1162 1163 if (err <= 0) 1164 return err; 1165 1166 if (err > 0) { 1167 struct page **rpages = fsdata; 1168 int cluster_size = F2FS_I(inode)->i_cluster_size; 1169 int i; 1170 1171 for (i = cluster_size - 1; i >= 0; i--) { 1172 loff_t start = rpages[i]->index << PAGE_SHIFT; 1173 1174 if (from <= start) { 1175 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1176 } else { 1177 zero_user_segment(rpages[i], from - start, 1178 PAGE_SIZE); 1179 break; 1180 } 1181 } 1182 1183 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1184 } 1185 return 0; 1186 } 1187 1188 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1189 int *submitted, 1190 struct writeback_control *wbc, 1191 enum iostat_type io_type) 1192 { 1193 struct inode *inode = cc->inode; 1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1195 struct f2fs_inode_info *fi = F2FS_I(inode); 1196 struct f2fs_io_info fio = { 1197 .sbi = sbi, 1198 .ino = cc->inode->i_ino, 1199 .type = DATA, 1200 .op = REQ_OP_WRITE, 1201 .op_flags = wbc_to_write_flags(wbc), 1202 .old_blkaddr = NEW_ADDR, 1203 .page = NULL, 1204 .encrypted_page = NULL, 1205 .compressed_page = NULL, 1206 .submitted = false, 1207 .io_type = io_type, 1208 .io_wbc = wbc, 1209 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), 1210 }; 1211 struct dnode_of_data dn; 1212 struct node_info ni; 1213 struct compress_io_ctx *cic; 1214 pgoff_t start_idx = start_idx_of_cluster(cc); 1215 unsigned int last_index = cc->cluster_size - 1; 1216 loff_t psize; 1217 int i, err; 1218 1219 if (IS_NOQUOTA(inode)) { 1220 /* 1221 * We need to wait for node_write to avoid block allocation during 1222 * checkpoint. This can only happen to quota writes which can cause 1223 * the below discard race condition. 1224 */ 1225 down_read(&sbi->node_write); 1226 } else if (!f2fs_trylock_op(sbi)) { 1227 goto out_free; 1228 } 1229 1230 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1231 1232 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1233 if (err) 1234 goto out_unlock_op; 1235 1236 for (i = 0; i < cc->cluster_size; i++) { 1237 if (data_blkaddr(dn.inode, dn.node_page, 1238 dn.ofs_in_node + i) == NULL_ADDR) 1239 goto out_put_dnode; 1240 } 1241 1242 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1243 1244 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 1245 if (err) 1246 goto out_put_dnode; 1247 1248 fio.version = ni.version; 1249 1250 cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS); 1251 if (!cic) 1252 goto out_put_dnode; 1253 1254 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1255 cic->inode = inode; 1256 atomic_set(&cic->pending_pages, cc->nr_cpages); 1257 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1258 if (!cic->rpages) 1259 goto out_put_cic; 1260 1261 cic->nr_rpages = cc->cluster_size; 1262 1263 for (i = 0; i < cc->nr_cpages; i++) { 1264 f2fs_set_compressed_page(cc->cpages[i], inode, 1265 cc->rpages[i + 1]->index, cic); 1266 fio.compressed_page = cc->cpages[i]; 1267 1268 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1269 dn.ofs_in_node + i + 1); 1270 1271 /* wait for GCed page writeback via META_MAPPING */ 1272 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1273 1274 if (fio.encrypted) { 1275 fio.page = cc->rpages[i + 1]; 1276 err = f2fs_encrypt_one_page(&fio); 1277 if (err) 1278 goto out_destroy_crypt; 1279 cc->cpages[i] = fio.encrypted_page; 1280 } 1281 } 1282 1283 set_cluster_writeback(cc); 1284 1285 for (i = 0; i < cc->cluster_size; i++) 1286 cic->rpages[i] = cc->rpages[i]; 1287 1288 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1289 block_t blkaddr; 1290 1291 blkaddr = f2fs_data_blkaddr(&dn); 1292 fio.page = cc->rpages[i]; 1293 fio.old_blkaddr = blkaddr; 1294 1295 /* cluster header */ 1296 if (i == 0) { 1297 if (blkaddr == COMPRESS_ADDR) 1298 fio.compr_blocks++; 1299 if (__is_valid_data_blkaddr(blkaddr)) 1300 f2fs_invalidate_blocks(sbi, blkaddr); 1301 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1302 goto unlock_continue; 1303 } 1304 1305 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1306 fio.compr_blocks++; 1307 1308 if (i > cc->nr_cpages) { 1309 if (__is_valid_data_blkaddr(blkaddr)) { 1310 f2fs_invalidate_blocks(sbi, blkaddr); 1311 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1312 } 1313 goto unlock_continue; 1314 } 1315 1316 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1317 1318 if (fio.encrypted) 1319 fio.encrypted_page = cc->cpages[i - 1]; 1320 else 1321 fio.compressed_page = cc->cpages[i - 1]; 1322 1323 cc->cpages[i - 1] = NULL; 1324 f2fs_outplace_write_data(&dn, &fio); 1325 (*submitted)++; 1326 unlock_continue: 1327 inode_dec_dirty_pages(cc->inode); 1328 unlock_page(fio.page); 1329 } 1330 1331 if (fio.compr_blocks) 1332 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1333 f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true); 1334 add_compr_block_stat(inode, cc->nr_cpages); 1335 1336 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1337 if (cc->cluster_idx == 0) 1338 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1339 1340 f2fs_put_dnode(&dn); 1341 if (IS_NOQUOTA(inode)) 1342 up_read(&sbi->node_write); 1343 else 1344 f2fs_unlock_op(sbi); 1345 1346 spin_lock(&fi->i_size_lock); 1347 if (fi->last_disk_size < psize) 1348 fi->last_disk_size = psize; 1349 spin_unlock(&fi->i_size_lock); 1350 1351 f2fs_put_rpages(cc); 1352 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1353 cc->cpages = NULL; 1354 f2fs_destroy_compress_ctx(cc, false); 1355 return 0; 1356 1357 out_destroy_crypt: 1358 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1359 1360 for (--i; i >= 0; i--) 1361 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1362 for (i = 0; i < cc->nr_cpages; i++) { 1363 if (!cc->cpages[i]) 1364 continue; 1365 f2fs_compress_free_page(cc->cpages[i]); 1366 cc->cpages[i] = NULL; 1367 } 1368 out_put_cic: 1369 kmem_cache_free(cic_entry_slab, cic); 1370 out_put_dnode: 1371 f2fs_put_dnode(&dn); 1372 out_unlock_op: 1373 if (IS_NOQUOTA(inode)) 1374 up_read(&sbi->node_write); 1375 else 1376 f2fs_unlock_op(sbi); 1377 out_free: 1378 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1379 cc->cpages = NULL; 1380 return -EAGAIN; 1381 } 1382 1383 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1384 { 1385 struct f2fs_sb_info *sbi = bio->bi_private; 1386 struct compress_io_ctx *cic = 1387 (struct compress_io_ctx *)page_private(page); 1388 int i; 1389 1390 if (unlikely(bio->bi_status)) 1391 mapping_set_error(cic->inode->i_mapping, -EIO); 1392 1393 f2fs_compress_free_page(page); 1394 1395 dec_page_count(sbi, F2FS_WB_DATA); 1396 1397 if (atomic_dec_return(&cic->pending_pages)) 1398 return; 1399 1400 for (i = 0; i < cic->nr_rpages; i++) { 1401 WARN_ON(!cic->rpages[i]); 1402 clear_cold_data(cic->rpages[i]); 1403 end_page_writeback(cic->rpages[i]); 1404 } 1405 1406 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1407 kmem_cache_free(cic_entry_slab, cic); 1408 } 1409 1410 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1411 int *submitted, 1412 struct writeback_control *wbc, 1413 enum iostat_type io_type) 1414 { 1415 struct address_space *mapping = cc->inode->i_mapping; 1416 int _submitted, compr_blocks, ret; 1417 int i = -1, err = 0; 1418 1419 compr_blocks = f2fs_compressed_blocks(cc); 1420 if (compr_blocks < 0) { 1421 err = compr_blocks; 1422 goto out_err; 1423 } 1424 1425 for (i = 0; i < cc->cluster_size; i++) { 1426 if (!cc->rpages[i]) 1427 continue; 1428 retry_write: 1429 if (cc->rpages[i]->mapping != mapping) { 1430 unlock_page(cc->rpages[i]); 1431 continue; 1432 } 1433 1434 BUG_ON(!PageLocked(cc->rpages[i])); 1435 1436 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1437 NULL, NULL, wbc, io_type, 1438 compr_blocks, false); 1439 if (ret) { 1440 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1441 unlock_page(cc->rpages[i]); 1442 ret = 0; 1443 } else if (ret == -EAGAIN) { 1444 /* 1445 * for quota file, just redirty left pages to 1446 * avoid deadlock caused by cluster update race 1447 * from foreground operation. 1448 */ 1449 if (IS_NOQUOTA(cc->inode)) { 1450 err = 0; 1451 goto out_err; 1452 } 1453 ret = 0; 1454 cond_resched(); 1455 congestion_wait(BLK_RW_ASYNC, 1456 DEFAULT_IO_TIMEOUT); 1457 lock_page(cc->rpages[i]); 1458 1459 if (!PageDirty(cc->rpages[i])) { 1460 unlock_page(cc->rpages[i]); 1461 continue; 1462 } 1463 1464 clear_page_dirty_for_io(cc->rpages[i]); 1465 goto retry_write; 1466 } 1467 err = ret; 1468 goto out_err; 1469 } 1470 1471 *submitted += _submitted; 1472 } 1473 1474 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1475 1476 return 0; 1477 out_err: 1478 for (++i; i < cc->cluster_size; i++) { 1479 if (!cc->rpages[i]) 1480 continue; 1481 redirty_page_for_writepage(wbc, cc->rpages[i]); 1482 unlock_page(cc->rpages[i]); 1483 } 1484 return err; 1485 } 1486 1487 int f2fs_write_multi_pages(struct compress_ctx *cc, 1488 int *submitted, 1489 struct writeback_control *wbc, 1490 enum iostat_type io_type) 1491 { 1492 int err; 1493 1494 *submitted = 0; 1495 if (cluster_may_compress(cc)) { 1496 err = f2fs_compress_pages(cc); 1497 if (err == -EAGAIN) { 1498 goto write; 1499 } else if (err) { 1500 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1501 goto destroy_out; 1502 } 1503 1504 err = f2fs_write_compressed_pages(cc, submitted, 1505 wbc, io_type); 1506 if (!err) 1507 return 0; 1508 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1509 } 1510 write: 1511 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1512 1513 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1514 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1515 destroy_out: 1516 f2fs_destroy_compress_ctx(cc, false); 1517 return err; 1518 } 1519 1520 static void f2fs_free_dic(struct decompress_io_ctx *dic); 1521 1522 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1523 { 1524 struct decompress_io_ctx *dic; 1525 pgoff_t start_idx = start_idx_of_cluster(cc); 1526 int i; 1527 1528 dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS); 1529 if (!dic) 1530 return ERR_PTR(-ENOMEM); 1531 1532 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1533 if (!dic->rpages) { 1534 kmem_cache_free(dic_entry_slab, dic); 1535 return ERR_PTR(-ENOMEM); 1536 } 1537 1538 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1539 dic->inode = cc->inode; 1540 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1541 dic->cluster_idx = cc->cluster_idx; 1542 dic->cluster_size = cc->cluster_size; 1543 dic->log_cluster_size = cc->log_cluster_size; 1544 dic->nr_cpages = cc->nr_cpages; 1545 refcount_set(&dic->refcnt, 1); 1546 dic->failed = false; 1547 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1548 1549 for (i = 0; i < dic->cluster_size; i++) 1550 dic->rpages[i] = cc->rpages[i]; 1551 dic->nr_rpages = cc->cluster_size; 1552 1553 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1554 if (!dic->cpages) 1555 goto out_free; 1556 1557 for (i = 0; i < dic->nr_cpages; i++) { 1558 struct page *page; 1559 1560 page = f2fs_compress_alloc_page(); 1561 if (!page) 1562 goto out_free; 1563 1564 f2fs_set_compressed_page(page, cc->inode, 1565 start_idx + i + 1, dic); 1566 dic->cpages[i] = page; 1567 } 1568 1569 return dic; 1570 1571 out_free: 1572 f2fs_free_dic(dic); 1573 return ERR_PTR(-ENOMEM); 1574 } 1575 1576 static void f2fs_free_dic(struct decompress_io_ctx *dic) 1577 { 1578 int i; 1579 1580 if (dic->tpages) { 1581 for (i = 0; i < dic->cluster_size; i++) { 1582 if (dic->rpages[i]) 1583 continue; 1584 if (!dic->tpages[i]) 1585 continue; 1586 f2fs_compress_free_page(dic->tpages[i]); 1587 } 1588 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1589 } 1590 1591 if (dic->cpages) { 1592 for (i = 0; i < dic->nr_cpages; i++) { 1593 if (!dic->cpages[i]) 1594 continue; 1595 f2fs_compress_free_page(dic->cpages[i]); 1596 } 1597 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1598 } 1599 1600 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1601 kmem_cache_free(dic_entry_slab, dic); 1602 } 1603 1604 static void f2fs_put_dic(struct decompress_io_ctx *dic) 1605 { 1606 if (refcount_dec_and_test(&dic->refcnt)) 1607 f2fs_free_dic(dic); 1608 } 1609 1610 /* 1611 * Update and unlock the cluster's pagecache pages, and release the reference to 1612 * the decompress_io_ctx that was being held for I/O completion. 1613 */ 1614 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1615 { 1616 int i; 1617 1618 for (i = 0; i < dic->cluster_size; i++) { 1619 struct page *rpage = dic->rpages[i]; 1620 1621 if (!rpage) 1622 continue; 1623 1624 /* PG_error was set if verity failed. */ 1625 if (failed || PageError(rpage)) { 1626 ClearPageUptodate(rpage); 1627 /* will re-read again later */ 1628 ClearPageError(rpage); 1629 } else { 1630 SetPageUptodate(rpage); 1631 } 1632 unlock_page(rpage); 1633 } 1634 1635 f2fs_put_dic(dic); 1636 } 1637 1638 static void f2fs_verify_cluster(struct work_struct *work) 1639 { 1640 struct decompress_io_ctx *dic = 1641 container_of(work, struct decompress_io_ctx, verity_work); 1642 int i; 1643 1644 /* Verify the cluster's decompressed pages with fs-verity. */ 1645 for (i = 0; i < dic->cluster_size; i++) { 1646 struct page *rpage = dic->rpages[i]; 1647 1648 if (rpage && !fsverity_verify_page(rpage)) 1649 SetPageError(rpage); 1650 } 1651 1652 __f2fs_decompress_end_io(dic, false); 1653 } 1654 1655 /* 1656 * This is called when a compressed cluster has been decompressed 1657 * (or failed to be read and/or decompressed). 1658 */ 1659 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1660 { 1661 if (!failed && dic->need_verity) { 1662 /* 1663 * Note that to avoid deadlocks, the verity work can't be done 1664 * on the decompression workqueue. This is because verifying 1665 * the data pages can involve reading metadata pages from the 1666 * file, and these metadata pages may be compressed. 1667 */ 1668 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1669 fsverity_enqueue_verify_work(&dic->verity_work); 1670 } else { 1671 __f2fs_decompress_end_io(dic, failed); 1672 } 1673 } 1674 1675 /* 1676 * Put a reference to a compressed page's decompress_io_ctx. 1677 * 1678 * This is called when the page is no longer needed and can be freed. 1679 */ 1680 void f2fs_put_page_dic(struct page *page) 1681 { 1682 struct decompress_io_ctx *dic = 1683 (struct decompress_io_ctx *)page_private(page); 1684 1685 f2fs_put_dic(dic); 1686 } 1687 1688 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1689 { 1690 dev_t dev = sbi->sb->s_bdev->bd_dev; 1691 char slab_name[32]; 1692 1693 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1694 1695 sbi->page_array_slab_size = sizeof(struct page *) << 1696 F2FS_OPTION(sbi).compress_log_size; 1697 1698 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1699 sbi->page_array_slab_size); 1700 if (!sbi->page_array_slab) 1701 return -ENOMEM; 1702 return 0; 1703 } 1704 1705 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1706 { 1707 kmem_cache_destroy(sbi->page_array_slab); 1708 } 1709 1710 static int __init f2fs_init_cic_cache(void) 1711 { 1712 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 1713 sizeof(struct compress_io_ctx)); 1714 if (!cic_entry_slab) 1715 return -ENOMEM; 1716 return 0; 1717 } 1718 1719 static void f2fs_destroy_cic_cache(void) 1720 { 1721 kmem_cache_destroy(cic_entry_slab); 1722 } 1723 1724 static int __init f2fs_init_dic_cache(void) 1725 { 1726 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 1727 sizeof(struct decompress_io_ctx)); 1728 if (!dic_entry_slab) 1729 return -ENOMEM; 1730 return 0; 1731 } 1732 1733 static void f2fs_destroy_dic_cache(void) 1734 { 1735 kmem_cache_destroy(dic_entry_slab); 1736 } 1737 1738 int __init f2fs_init_compress_cache(void) 1739 { 1740 int err; 1741 1742 err = f2fs_init_cic_cache(); 1743 if (err) 1744 goto out; 1745 err = f2fs_init_dic_cache(); 1746 if (err) 1747 goto free_cic; 1748 return 0; 1749 free_cic: 1750 f2fs_destroy_cic_cache(); 1751 out: 1752 return -ENOMEM; 1753 } 1754 1755 void f2fs_destroy_compress_cache(void) 1756 { 1757 f2fs_destroy_dic_cache(); 1758 f2fs_destroy_cic_cache(); 1759 } 1760