1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 bool (*is_level_valid)(int level); 59 }; 60 61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index & (cc->cluster_size - 1); 64 } 65 66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 67 { 68 return index >> cc->log_cluster_size; 69 } 70 71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 72 { 73 return cc->cluster_idx << cc->log_cluster_size; 74 } 75 76 bool f2fs_is_compressed_page(struct page *page) 77 { 78 if (!PagePrivate(page)) 79 return false; 80 if (!page_private(page)) 81 return false; 82 if (page_private_nonpointer(page)) 83 return false; 84 85 f2fs_bug_on(F2FS_M_SB(page->mapping), 86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 87 return true; 88 } 89 90 static void f2fs_set_compressed_page(struct page *page, 91 struct inode *inode, pgoff_t index, void *data) 92 { 93 attach_page_private(page, (void *)data); 94 95 /* i_crypto_info and iv index */ 96 page->index = index; 97 page->mapping = inode->i_mapping; 98 } 99 100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 101 { 102 int i; 103 104 for (i = 0; i < len; i++) { 105 if (!cc->rpages[i]) 106 continue; 107 if (unlock) 108 unlock_page(cc->rpages[i]); 109 else 110 put_page(cc->rpages[i]); 111 } 112 } 113 114 static void f2fs_put_rpages(struct compress_ctx *cc) 115 { 116 f2fs_drop_rpages(cc, cc->cluster_size, false); 117 } 118 119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 120 { 121 f2fs_drop_rpages(cc, len, true); 122 } 123 124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 125 struct writeback_control *wbc, bool redirty, int unlock) 126 { 127 unsigned int i; 128 129 for (i = 0; i < cc->cluster_size; i++) { 130 if (!cc->rpages[i]) 131 continue; 132 if (redirty) 133 redirty_page_for_writepage(wbc, cc->rpages[i]); 134 f2fs_put_page(cc->rpages[i], unlock); 135 } 136 } 137 138 struct page *f2fs_compress_control_page(struct page *page) 139 { 140 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 141 } 142 143 int f2fs_init_compress_ctx(struct compress_ctx *cc) 144 { 145 if (cc->rpages) 146 return 0; 147 148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 149 return cc->rpages ? 0 : -ENOMEM; 150 } 151 152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 153 { 154 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 155 cc->rpages = NULL; 156 cc->nr_rpages = 0; 157 cc->nr_cpages = 0; 158 cc->valid_nr_cpages = 0; 159 if (!reuse) 160 cc->cluster_idx = NULL_CLUSTER; 161 } 162 163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 164 { 165 unsigned int cluster_ofs; 166 167 if (!f2fs_cluster_can_merge_page(cc, page->index)) 168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 169 170 cluster_ofs = offset_in_cluster(cc, page->index); 171 cc->rpages[cluster_ofs] = page; 172 cc->nr_rpages++; 173 cc->cluster_idx = cluster_idx(cc, page->index); 174 } 175 176 #ifdef CONFIG_F2FS_FS_LZO 177 static int lzo_init_compress_ctx(struct compress_ctx *cc) 178 { 179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 180 LZO1X_MEM_COMPRESS, GFP_NOFS); 181 if (!cc->private) 182 return -ENOMEM; 183 184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 185 return 0; 186 } 187 188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 189 { 190 kvfree(cc->private); 191 cc->private = NULL; 192 } 193 194 static int lzo_compress_pages(struct compress_ctx *cc) 195 { 196 int ret; 197 198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 199 &cc->clen, cc->private); 200 if (ret != LZO_E_OK) { 201 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 202 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 203 return -EIO; 204 } 205 return 0; 206 } 207 208 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 209 { 210 int ret; 211 212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 213 dic->rbuf, &dic->rlen); 214 if (ret != LZO_E_OK) { 215 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 216 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 217 return -EIO; 218 } 219 220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 221 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 222 "expected:%lu\n", KERN_ERR, 223 F2FS_I_SB(dic->inode)->sb->s_id, 224 dic->rlen, 225 PAGE_SIZE << dic->log_cluster_size); 226 return -EIO; 227 } 228 return 0; 229 } 230 231 static const struct f2fs_compress_ops f2fs_lzo_ops = { 232 .init_compress_ctx = lzo_init_compress_ctx, 233 .destroy_compress_ctx = lzo_destroy_compress_ctx, 234 .compress_pages = lzo_compress_pages, 235 .decompress_pages = lzo_decompress_pages, 236 }; 237 #endif 238 239 #ifdef CONFIG_F2FS_FS_LZ4 240 static int lz4_init_compress_ctx(struct compress_ctx *cc) 241 { 242 unsigned int size = LZ4_MEM_COMPRESS; 243 244 #ifdef CONFIG_F2FS_FS_LZ4HC 245 if (F2FS_I(cc->inode)->i_compress_level) 246 size = LZ4HC_MEM_COMPRESS; 247 #endif 248 249 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 250 if (!cc->private) 251 return -ENOMEM; 252 253 /* 254 * we do not change cc->clen to LZ4_compressBound(inputsize) to 255 * adapt worst compress case, because lz4 compressor can handle 256 * output budget properly. 257 */ 258 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 259 return 0; 260 } 261 262 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 263 { 264 kvfree(cc->private); 265 cc->private = NULL; 266 } 267 268 static int lz4_compress_pages(struct compress_ctx *cc) 269 { 270 int len = -EINVAL; 271 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 272 273 if (!level) 274 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 275 cc->clen, cc->private); 276 #ifdef CONFIG_F2FS_FS_LZ4HC 277 else 278 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 279 cc->clen, level, cc->private); 280 #endif 281 if (len < 0) 282 return len; 283 if (!len) 284 return -EAGAIN; 285 286 cc->clen = len; 287 return 0; 288 } 289 290 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 291 { 292 int ret; 293 294 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 295 dic->clen, dic->rlen); 296 if (ret < 0) { 297 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 298 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 299 return -EIO; 300 } 301 302 if (ret != PAGE_SIZE << dic->log_cluster_size) { 303 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, " 304 "expected:%lu\n", KERN_ERR, 305 F2FS_I_SB(dic->inode)->sb->s_id, ret, 306 PAGE_SIZE << dic->log_cluster_size); 307 return -EIO; 308 } 309 return 0; 310 } 311 312 static bool lz4_is_level_valid(int lvl) 313 { 314 #ifdef CONFIG_F2FS_FS_LZ4HC 315 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL); 316 #else 317 return lvl == 0; 318 #endif 319 } 320 321 static const struct f2fs_compress_ops f2fs_lz4_ops = { 322 .init_compress_ctx = lz4_init_compress_ctx, 323 .destroy_compress_ctx = lz4_destroy_compress_ctx, 324 .compress_pages = lz4_compress_pages, 325 .decompress_pages = lz4_decompress_pages, 326 .is_level_valid = lz4_is_level_valid, 327 }; 328 #endif 329 330 #ifdef CONFIG_F2FS_FS_ZSTD 331 static int zstd_init_compress_ctx(struct compress_ctx *cc) 332 { 333 zstd_parameters params; 334 zstd_cstream *stream; 335 void *workspace; 336 unsigned int workspace_size; 337 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 338 339 /* Need to remain this for backward compatibility */ 340 if (!level) 341 level = F2FS_ZSTD_DEFAULT_CLEVEL; 342 343 params = zstd_get_params(level, cc->rlen); 344 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 345 346 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 347 workspace_size, GFP_NOFS); 348 if (!workspace) 349 return -ENOMEM; 350 351 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 352 if (!stream) { 353 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_cstream failed\n", 354 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 355 __func__); 356 kvfree(workspace); 357 return -EIO; 358 } 359 360 cc->private = workspace; 361 cc->private2 = stream; 362 363 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 364 return 0; 365 } 366 367 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 368 { 369 kvfree(cc->private); 370 cc->private = NULL; 371 cc->private2 = NULL; 372 } 373 374 static int zstd_compress_pages(struct compress_ctx *cc) 375 { 376 zstd_cstream *stream = cc->private2; 377 zstd_in_buffer inbuf; 378 zstd_out_buffer outbuf; 379 int src_size = cc->rlen; 380 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 381 int ret; 382 383 inbuf.pos = 0; 384 inbuf.src = cc->rbuf; 385 inbuf.size = src_size; 386 387 outbuf.pos = 0; 388 outbuf.dst = cc->cbuf->cdata; 389 outbuf.size = dst_size; 390 391 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 392 if (zstd_is_error(ret)) { 393 printk_ratelimited("%sF2FS-fs (%s): %s zstd_compress_stream failed, ret: %d\n", 394 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 395 __func__, zstd_get_error_code(ret)); 396 return -EIO; 397 } 398 399 ret = zstd_end_stream(stream, &outbuf); 400 if (zstd_is_error(ret)) { 401 printk_ratelimited("%sF2FS-fs (%s): %s zstd_end_stream returned %d\n", 402 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 403 __func__, zstd_get_error_code(ret)); 404 return -EIO; 405 } 406 407 /* 408 * there is compressed data remained in intermediate buffer due to 409 * no more space in cbuf.cdata 410 */ 411 if (ret) 412 return -EAGAIN; 413 414 cc->clen = outbuf.pos; 415 return 0; 416 } 417 418 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 419 { 420 zstd_dstream *stream; 421 void *workspace; 422 unsigned int workspace_size; 423 unsigned int max_window_size = 424 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 425 426 workspace_size = zstd_dstream_workspace_bound(max_window_size); 427 428 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 429 workspace_size, GFP_NOFS); 430 if (!workspace) 431 return -ENOMEM; 432 433 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 434 if (!stream) { 435 printk_ratelimited("%sF2FS-fs (%s): %s zstd_init_dstream failed\n", 436 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 437 __func__); 438 kvfree(workspace); 439 return -EIO; 440 } 441 442 dic->private = workspace; 443 dic->private2 = stream; 444 445 return 0; 446 } 447 448 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 449 { 450 kvfree(dic->private); 451 dic->private = NULL; 452 dic->private2 = NULL; 453 } 454 455 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 456 { 457 zstd_dstream *stream = dic->private2; 458 zstd_in_buffer inbuf; 459 zstd_out_buffer outbuf; 460 int ret; 461 462 inbuf.pos = 0; 463 inbuf.src = dic->cbuf->cdata; 464 inbuf.size = dic->clen; 465 466 outbuf.pos = 0; 467 outbuf.dst = dic->rbuf; 468 outbuf.size = dic->rlen; 469 470 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 471 if (zstd_is_error(ret)) { 472 printk_ratelimited("%sF2FS-fs (%s): %s zstd_decompress_stream failed, ret: %d\n", 473 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 474 __func__, zstd_get_error_code(ret)); 475 return -EIO; 476 } 477 478 if (dic->rlen != outbuf.pos) { 479 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 480 "expected:%lu\n", KERN_ERR, 481 F2FS_I_SB(dic->inode)->sb->s_id, 482 __func__, dic->rlen, 483 PAGE_SIZE << dic->log_cluster_size); 484 return -EIO; 485 } 486 487 return 0; 488 } 489 490 static bool zstd_is_level_valid(int lvl) 491 { 492 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel(); 493 } 494 495 static const struct f2fs_compress_ops f2fs_zstd_ops = { 496 .init_compress_ctx = zstd_init_compress_ctx, 497 .destroy_compress_ctx = zstd_destroy_compress_ctx, 498 .compress_pages = zstd_compress_pages, 499 .init_decompress_ctx = zstd_init_decompress_ctx, 500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 501 .decompress_pages = zstd_decompress_pages, 502 .is_level_valid = zstd_is_level_valid, 503 }; 504 #endif 505 506 #ifdef CONFIG_F2FS_FS_LZO 507 #ifdef CONFIG_F2FS_FS_LZORLE 508 static int lzorle_compress_pages(struct compress_ctx *cc) 509 { 510 int ret; 511 512 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 513 &cc->clen, cc->private); 514 if (ret != LZO_E_OK) { 515 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 516 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 517 return -EIO; 518 } 519 return 0; 520 } 521 522 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 523 .init_compress_ctx = lzo_init_compress_ctx, 524 .destroy_compress_ctx = lzo_destroy_compress_ctx, 525 .compress_pages = lzorle_compress_pages, 526 .decompress_pages = lzo_decompress_pages, 527 }; 528 #endif 529 #endif 530 531 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 532 #ifdef CONFIG_F2FS_FS_LZO 533 &f2fs_lzo_ops, 534 #else 535 NULL, 536 #endif 537 #ifdef CONFIG_F2FS_FS_LZ4 538 &f2fs_lz4_ops, 539 #else 540 NULL, 541 #endif 542 #ifdef CONFIG_F2FS_FS_ZSTD 543 &f2fs_zstd_ops, 544 #else 545 NULL, 546 #endif 547 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 548 &f2fs_lzorle_ops, 549 #else 550 NULL, 551 #endif 552 }; 553 554 bool f2fs_is_compress_backend_ready(struct inode *inode) 555 { 556 if (!f2fs_compressed_file(inode)) 557 return true; 558 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 559 } 560 561 bool f2fs_is_compress_level_valid(int alg, int lvl) 562 { 563 const struct f2fs_compress_ops *cops = f2fs_cops[alg]; 564 565 if (cops->is_level_valid) 566 return cops->is_level_valid(lvl); 567 568 return lvl == 0; 569 } 570 571 static mempool_t *compress_page_pool; 572 static int num_compress_pages = 512; 573 module_param(num_compress_pages, uint, 0444); 574 MODULE_PARM_DESC(num_compress_pages, 575 "Number of intermediate compress pages to preallocate"); 576 577 int __init f2fs_init_compress_mempool(void) 578 { 579 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 580 return compress_page_pool ? 0 : -ENOMEM; 581 } 582 583 void f2fs_destroy_compress_mempool(void) 584 { 585 mempool_destroy(compress_page_pool); 586 } 587 588 static struct page *f2fs_compress_alloc_page(void) 589 { 590 struct page *page; 591 592 page = mempool_alloc(compress_page_pool, GFP_NOFS); 593 lock_page(page); 594 595 return page; 596 } 597 598 static void f2fs_compress_free_page(struct page *page) 599 { 600 if (!page) 601 return; 602 detach_page_private(page); 603 page->mapping = NULL; 604 unlock_page(page); 605 mempool_free(page, compress_page_pool); 606 } 607 608 #define MAX_VMAP_RETRIES 3 609 610 static void *f2fs_vmap(struct page **pages, unsigned int count) 611 { 612 int i; 613 void *buf = NULL; 614 615 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 616 buf = vm_map_ram(pages, count, -1); 617 if (buf) 618 break; 619 vm_unmap_aliases(); 620 } 621 return buf; 622 } 623 624 static int f2fs_compress_pages(struct compress_ctx *cc) 625 { 626 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 627 const struct f2fs_compress_ops *cops = 628 f2fs_cops[fi->i_compress_algorithm]; 629 unsigned int max_len, new_nr_cpages; 630 u32 chksum = 0; 631 int i, ret; 632 633 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 634 cc->cluster_size, fi->i_compress_algorithm); 635 636 if (cops->init_compress_ctx) { 637 ret = cops->init_compress_ctx(cc); 638 if (ret) 639 goto out; 640 } 641 642 max_len = COMPRESS_HEADER_SIZE + cc->clen; 643 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 644 cc->valid_nr_cpages = cc->nr_cpages; 645 646 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 647 if (!cc->cpages) { 648 ret = -ENOMEM; 649 goto destroy_compress_ctx; 650 } 651 652 for (i = 0; i < cc->nr_cpages; i++) 653 cc->cpages[i] = f2fs_compress_alloc_page(); 654 655 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 656 if (!cc->rbuf) { 657 ret = -ENOMEM; 658 goto out_free_cpages; 659 } 660 661 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 662 if (!cc->cbuf) { 663 ret = -ENOMEM; 664 goto out_vunmap_rbuf; 665 } 666 667 ret = cops->compress_pages(cc); 668 if (ret) 669 goto out_vunmap_cbuf; 670 671 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 672 673 if (cc->clen > max_len) { 674 ret = -EAGAIN; 675 goto out_vunmap_cbuf; 676 } 677 678 cc->cbuf->clen = cpu_to_le32(cc->clen); 679 680 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 681 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 682 cc->cbuf->cdata, cc->clen); 683 cc->cbuf->chksum = cpu_to_le32(chksum); 684 685 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 686 cc->cbuf->reserved[i] = cpu_to_le32(0); 687 688 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 689 690 /* zero out any unused part of the last page */ 691 memset(&cc->cbuf->cdata[cc->clen], 0, 692 (new_nr_cpages * PAGE_SIZE) - 693 (cc->clen + COMPRESS_HEADER_SIZE)); 694 695 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 696 vm_unmap_ram(cc->rbuf, cc->cluster_size); 697 698 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 699 f2fs_compress_free_page(cc->cpages[i]); 700 cc->cpages[i] = NULL; 701 } 702 703 if (cops->destroy_compress_ctx) 704 cops->destroy_compress_ctx(cc); 705 706 cc->valid_nr_cpages = new_nr_cpages; 707 708 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 709 cc->clen, ret); 710 return 0; 711 712 out_vunmap_cbuf: 713 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 714 out_vunmap_rbuf: 715 vm_unmap_ram(cc->rbuf, cc->cluster_size); 716 out_free_cpages: 717 for (i = 0; i < cc->nr_cpages; i++) { 718 if (cc->cpages[i]) 719 f2fs_compress_free_page(cc->cpages[i]); 720 } 721 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 722 cc->cpages = NULL; 723 destroy_compress_ctx: 724 if (cops->destroy_compress_ctx) 725 cops->destroy_compress_ctx(cc); 726 out: 727 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 728 cc->clen, ret); 729 return ret; 730 } 731 732 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 733 bool pre_alloc); 734 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 735 bool bypass_destroy_callback, bool pre_alloc); 736 737 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 738 { 739 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 740 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 741 const struct f2fs_compress_ops *cops = 742 f2fs_cops[fi->i_compress_algorithm]; 743 bool bypass_callback = false; 744 int ret; 745 746 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 747 dic->cluster_size, fi->i_compress_algorithm); 748 749 if (dic->failed) { 750 ret = -EIO; 751 goto out_end_io; 752 } 753 754 ret = f2fs_prepare_decomp_mem(dic, false); 755 if (ret) { 756 bypass_callback = true; 757 goto out_release; 758 } 759 760 dic->clen = le32_to_cpu(dic->cbuf->clen); 761 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 762 763 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 764 ret = -EFSCORRUPTED; 765 766 /* Avoid f2fs_commit_super in irq context */ 767 if (!in_task) 768 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION); 769 else 770 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 771 goto out_release; 772 } 773 774 ret = cops->decompress_pages(dic); 775 776 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 777 u32 provided = le32_to_cpu(dic->cbuf->chksum); 778 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 779 780 if (provided != calculated) { 781 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 782 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 783 printk_ratelimited( 784 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 785 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 786 provided, calculated); 787 } 788 set_sbi_flag(sbi, SBI_NEED_FSCK); 789 } 790 } 791 792 out_release: 793 f2fs_release_decomp_mem(dic, bypass_callback, false); 794 795 out_end_io: 796 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 797 dic->clen, ret); 798 f2fs_decompress_end_io(dic, ret, in_task); 799 } 800 801 /* 802 * This is called when a page of a compressed cluster has been read from disk 803 * (or failed to be read from disk). It checks whether this page was the last 804 * page being waited on in the cluster, and if so, it decompresses the cluster 805 * (or in the case of a failure, cleans up without actually decompressing). 806 */ 807 void f2fs_end_read_compressed_page(struct page *page, bool failed, 808 block_t blkaddr, bool in_task) 809 { 810 struct decompress_io_ctx *dic = 811 (struct decompress_io_ctx *)page_private(page); 812 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 813 814 dec_page_count(sbi, F2FS_RD_DATA); 815 816 if (failed) 817 WRITE_ONCE(dic->failed, true); 818 else if (blkaddr && in_task) 819 f2fs_cache_compressed_page(sbi, page, 820 dic->inode->i_ino, blkaddr); 821 822 if (atomic_dec_and_test(&dic->remaining_pages)) 823 f2fs_decompress_cluster(dic, in_task); 824 } 825 826 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 827 { 828 if (cc->cluster_idx == NULL_CLUSTER) 829 return true; 830 return cc->cluster_idx == cluster_idx(cc, index); 831 } 832 833 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 834 { 835 return cc->nr_rpages == 0; 836 } 837 838 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 839 { 840 return cc->cluster_size == cc->nr_rpages; 841 } 842 843 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 844 { 845 if (f2fs_cluster_is_empty(cc)) 846 return true; 847 return is_page_in_cluster(cc, index); 848 } 849 850 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 851 int index, int nr_pages, bool uptodate) 852 { 853 unsigned long pgidx = pages[index]->index; 854 int i = uptodate ? 0 : 1; 855 856 /* 857 * when uptodate set to true, try to check all pages in cluster is 858 * uptodate or not. 859 */ 860 if (uptodate && (pgidx % cc->cluster_size)) 861 return false; 862 863 if (nr_pages - index < cc->cluster_size) 864 return false; 865 866 for (; i < cc->cluster_size; i++) { 867 if (pages[index + i]->index != pgidx + i) 868 return false; 869 if (uptodate && !PageUptodate(pages[index + i])) 870 return false; 871 } 872 873 return true; 874 } 875 876 static bool cluster_has_invalid_data(struct compress_ctx *cc) 877 { 878 loff_t i_size = i_size_read(cc->inode); 879 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 880 int i; 881 882 for (i = 0; i < cc->cluster_size; i++) { 883 struct page *page = cc->rpages[i]; 884 885 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 886 887 /* beyond EOF */ 888 if (page->index >= nr_pages) 889 return true; 890 } 891 return false; 892 } 893 894 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 895 { 896 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 897 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 898 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 899 int cluster_end = 0; 900 int i; 901 char *reason = ""; 902 903 if (!compressed) 904 return false; 905 906 /* [..., COMPR_ADDR, ...] */ 907 if (dn->ofs_in_node % cluster_size) { 908 reason = "[*|C|*|*]"; 909 goto out; 910 } 911 912 for (i = 1; i < cluster_size; i++) { 913 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 914 dn->ofs_in_node + i); 915 916 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 917 if (blkaddr == COMPRESS_ADDR) { 918 reason = "[C|*|C|*]"; 919 goto out; 920 } 921 if (!__is_valid_data_blkaddr(blkaddr)) { 922 if (!cluster_end) 923 cluster_end = i; 924 continue; 925 } 926 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 927 if (cluster_end) { 928 reason = "[C|N|N|V]"; 929 goto out; 930 } 931 } 932 return false; 933 out: 934 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 935 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 936 set_sbi_flag(sbi, SBI_NEED_FSCK); 937 return true; 938 } 939 940 static int __f2fs_cluster_blocks(struct inode *inode, 941 unsigned int cluster_idx, bool compr) 942 { 943 struct dnode_of_data dn; 944 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 945 unsigned int start_idx = cluster_idx << 946 F2FS_I(inode)->i_log_cluster_size; 947 int ret; 948 949 set_new_dnode(&dn, inode, NULL, NULL, 0); 950 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 951 if (ret) { 952 if (ret == -ENOENT) 953 ret = 0; 954 goto fail; 955 } 956 957 if (f2fs_sanity_check_cluster(&dn)) { 958 ret = -EFSCORRUPTED; 959 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER); 960 goto fail; 961 } 962 963 if (dn.data_blkaddr == COMPRESS_ADDR) { 964 int i; 965 966 ret = 1; 967 for (i = 1; i < cluster_size; i++) { 968 block_t blkaddr; 969 970 blkaddr = data_blkaddr(dn.inode, 971 dn.node_page, dn.ofs_in_node + i); 972 if (compr) { 973 if (__is_valid_data_blkaddr(blkaddr)) 974 ret++; 975 } else { 976 if (blkaddr != NULL_ADDR) 977 ret++; 978 } 979 } 980 981 f2fs_bug_on(F2FS_I_SB(inode), 982 !compr && ret != cluster_size && 983 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 984 } 985 fail: 986 f2fs_put_dnode(&dn); 987 return ret; 988 } 989 990 /* return # of compressed blocks in compressed cluster */ 991 static int f2fs_compressed_blocks(struct compress_ctx *cc) 992 { 993 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 994 } 995 996 /* return # of valid blocks in compressed cluster */ 997 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 998 { 999 return __f2fs_cluster_blocks(inode, 1000 index >> F2FS_I(inode)->i_log_cluster_size, 1001 false); 1002 } 1003 1004 static bool cluster_may_compress(struct compress_ctx *cc) 1005 { 1006 if (!f2fs_need_compress_data(cc->inode)) 1007 return false; 1008 if (f2fs_is_atomic_file(cc->inode)) 1009 return false; 1010 if (!f2fs_cluster_is_full(cc)) 1011 return false; 1012 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1013 return false; 1014 return !cluster_has_invalid_data(cc); 1015 } 1016 1017 static void set_cluster_writeback(struct compress_ctx *cc) 1018 { 1019 int i; 1020 1021 for (i = 0; i < cc->cluster_size; i++) { 1022 if (cc->rpages[i]) 1023 set_page_writeback(cc->rpages[i]); 1024 } 1025 } 1026 1027 static void set_cluster_dirty(struct compress_ctx *cc) 1028 { 1029 int i; 1030 1031 for (i = 0; i < cc->cluster_size; i++) 1032 if (cc->rpages[i]) 1033 set_page_dirty(cc->rpages[i]); 1034 } 1035 1036 static int prepare_compress_overwrite(struct compress_ctx *cc, 1037 struct page **pagep, pgoff_t index, void **fsdata) 1038 { 1039 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1040 struct address_space *mapping = cc->inode->i_mapping; 1041 struct page *page; 1042 sector_t last_block_in_bio; 1043 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1044 pgoff_t start_idx = start_idx_of_cluster(cc); 1045 int i, ret; 1046 1047 retry: 1048 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1049 if (ret <= 0) 1050 return ret; 1051 1052 ret = f2fs_init_compress_ctx(cc); 1053 if (ret) 1054 return ret; 1055 1056 /* keep page reference to avoid page reclaim */ 1057 for (i = 0; i < cc->cluster_size; i++) { 1058 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1059 fgp_flag, GFP_NOFS); 1060 if (!page) { 1061 ret = -ENOMEM; 1062 goto unlock_pages; 1063 } 1064 1065 if (PageUptodate(page)) 1066 f2fs_put_page(page, 1); 1067 else 1068 f2fs_compress_ctx_add_page(cc, page); 1069 } 1070 1071 if (!f2fs_cluster_is_empty(cc)) { 1072 struct bio *bio = NULL; 1073 1074 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1075 &last_block_in_bio, false, true); 1076 f2fs_put_rpages(cc); 1077 f2fs_destroy_compress_ctx(cc, true); 1078 if (ret) 1079 goto out; 1080 if (bio) 1081 f2fs_submit_read_bio(sbi, bio, DATA); 1082 1083 ret = f2fs_init_compress_ctx(cc); 1084 if (ret) 1085 goto out; 1086 } 1087 1088 for (i = 0; i < cc->cluster_size; i++) { 1089 f2fs_bug_on(sbi, cc->rpages[i]); 1090 1091 page = find_lock_page(mapping, start_idx + i); 1092 if (!page) { 1093 /* page can be truncated */ 1094 goto release_and_retry; 1095 } 1096 1097 f2fs_wait_on_page_writeback(page, DATA, true, true); 1098 f2fs_compress_ctx_add_page(cc, page); 1099 1100 if (!PageUptodate(page)) { 1101 release_and_retry: 1102 f2fs_put_rpages(cc); 1103 f2fs_unlock_rpages(cc, i + 1); 1104 f2fs_destroy_compress_ctx(cc, true); 1105 goto retry; 1106 } 1107 } 1108 1109 if (likely(!ret)) { 1110 *fsdata = cc->rpages; 1111 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1112 return cc->cluster_size; 1113 } 1114 1115 unlock_pages: 1116 f2fs_put_rpages(cc); 1117 f2fs_unlock_rpages(cc, i); 1118 f2fs_destroy_compress_ctx(cc, true); 1119 out: 1120 return ret; 1121 } 1122 1123 int f2fs_prepare_compress_overwrite(struct inode *inode, 1124 struct page **pagep, pgoff_t index, void **fsdata) 1125 { 1126 struct compress_ctx cc = { 1127 .inode = inode, 1128 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1129 .cluster_size = F2FS_I(inode)->i_cluster_size, 1130 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1131 .rpages = NULL, 1132 .nr_rpages = 0, 1133 }; 1134 1135 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1136 } 1137 1138 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1139 pgoff_t index, unsigned copied) 1140 1141 { 1142 struct compress_ctx cc = { 1143 .inode = inode, 1144 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1145 .cluster_size = F2FS_I(inode)->i_cluster_size, 1146 .rpages = fsdata, 1147 }; 1148 bool first_index = (index == cc.rpages[0]->index); 1149 1150 if (copied) 1151 set_cluster_dirty(&cc); 1152 1153 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1154 f2fs_destroy_compress_ctx(&cc, false); 1155 1156 return first_index; 1157 } 1158 1159 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1160 { 1161 void *fsdata = NULL; 1162 struct page *pagep; 1163 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1164 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1165 log_cluster_size; 1166 int err; 1167 1168 err = f2fs_is_compressed_cluster(inode, start_idx); 1169 if (err < 0) 1170 return err; 1171 1172 /* truncate normal cluster */ 1173 if (!err) 1174 return f2fs_do_truncate_blocks(inode, from, lock); 1175 1176 /* truncate compressed cluster */ 1177 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1178 start_idx, &fsdata); 1179 1180 /* should not be a normal cluster */ 1181 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1182 1183 if (err <= 0) 1184 return err; 1185 1186 if (err > 0) { 1187 struct page **rpages = fsdata; 1188 int cluster_size = F2FS_I(inode)->i_cluster_size; 1189 int i; 1190 1191 for (i = cluster_size - 1; i >= 0; i--) { 1192 loff_t start = rpages[i]->index << PAGE_SHIFT; 1193 1194 if (from <= start) { 1195 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1196 } else { 1197 zero_user_segment(rpages[i], from - start, 1198 PAGE_SIZE); 1199 break; 1200 } 1201 } 1202 1203 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1204 } 1205 return 0; 1206 } 1207 1208 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1209 int *submitted, 1210 struct writeback_control *wbc, 1211 enum iostat_type io_type) 1212 { 1213 struct inode *inode = cc->inode; 1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1215 struct f2fs_inode_info *fi = F2FS_I(inode); 1216 struct f2fs_io_info fio = { 1217 .sbi = sbi, 1218 .ino = cc->inode->i_ino, 1219 .type = DATA, 1220 .op = REQ_OP_WRITE, 1221 .op_flags = wbc_to_write_flags(wbc), 1222 .old_blkaddr = NEW_ADDR, 1223 .page = NULL, 1224 .encrypted_page = NULL, 1225 .compressed_page = NULL, 1226 .submitted = 0, 1227 .io_type = io_type, 1228 .io_wbc = wbc, 1229 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1230 1 : 0, 1231 }; 1232 struct dnode_of_data dn; 1233 struct node_info ni; 1234 struct compress_io_ctx *cic; 1235 pgoff_t start_idx = start_idx_of_cluster(cc); 1236 unsigned int last_index = cc->cluster_size - 1; 1237 loff_t psize; 1238 int i, err; 1239 bool quota_inode = IS_NOQUOTA(inode); 1240 1241 /* we should bypass data pages to proceed the kworker jobs */ 1242 if (unlikely(f2fs_cp_error(sbi))) { 1243 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1244 goto out_free; 1245 } 1246 1247 if (quota_inode) { 1248 /* 1249 * We need to wait for node_write to avoid block allocation during 1250 * checkpoint. This can only happen to quota writes which can cause 1251 * the below discard race condition. 1252 */ 1253 f2fs_down_read(&sbi->node_write); 1254 } else if (!f2fs_trylock_op(sbi)) { 1255 goto out_free; 1256 } 1257 1258 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1259 1260 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1261 if (err) 1262 goto out_unlock_op; 1263 1264 for (i = 0; i < cc->cluster_size; i++) { 1265 if (data_blkaddr(dn.inode, dn.node_page, 1266 dn.ofs_in_node + i) == NULL_ADDR) 1267 goto out_put_dnode; 1268 } 1269 1270 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1271 1272 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1273 if (err) 1274 goto out_put_dnode; 1275 1276 fio.version = ni.version; 1277 1278 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1279 if (!cic) 1280 goto out_put_dnode; 1281 1282 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1283 cic->inode = inode; 1284 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1285 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1286 if (!cic->rpages) 1287 goto out_put_cic; 1288 1289 cic->nr_rpages = cc->cluster_size; 1290 1291 for (i = 0; i < cc->valid_nr_cpages; i++) { 1292 f2fs_set_compressed_page(cc->cpages[i], inode, 1293 cc->rpages[i + 1]->index, cic); 1294 fio.compressed_page = cc->cpages[i]; 1295 1296 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1297 dn.ofs_in_node + i + 1); 1298 1299 /* wait for GCed page writeback via META_MAPPING */ 1300 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1301 1302 if (fio.encrypted) { 1303 fio.page = cc->rpages[i + 1]; 1304 err = f2fs_encrypt_one_page(&fio); 1305 if (err) 1306 goto out_destroy_crypt; 1307 cc->cpages[i] = fio.encrypted_page; 1308 } 1309 } 1310 1311 set_cluster_writeback(cc); 1312 1313 for (i = 0; i < cc->cluster_size; i++) 1314 cic->rpages[i] = cc->rpages[i]; 1315 1316 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1317 block_t blkaddr; 1318 1319 blkaddr = f2fs_data_blkaddr(&dn); 1320 fio.page = cc->rpages[i]; 1321 fio.old_blkaddr = blkaddr; 1322 1323 /* cluster header */ 1324 if (i == 0) { 1325 if (blkaddr == COMPRESS_ADDR) 1326 fio.compr_blocks++; 1327 if (__is_valid_data_blkaddr(blkaddr)) 1328 f2fs_invalidate_blocks(sbi, blkaddr); 1329 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1330 goto unlock_continue; 1331 } 1332 1333 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1334 fio.compr_blocks++; 1335 1336 if (i > cc->valid_nr_cpages) { 1337 if (__is_valid_data_blkaddr(blkaddr)) { 1338 f2fs_invalidate_blocks(sbi, blkaddr); 1339 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1340 } 1341 goto unlock_continue; 1342 } 1343 1344 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1345 1346 if (fio.encrypted) 1347 fio.encrypted_page = cc->cpages[i - 1]; 1348 else 1349 fio.compressed_page = cc->cpages[i - 1]; 1350 1351 cc->cpages[i - 1] = NULL; 1352 f2fs_outplace_write_data(&dn, &fio); 1353 (*submitted)++; 1354 unlock_continue: 1355 inode_dec_dirty_pages(cc->inode); 1356 unlock_page(fio.page); 1357 } 1358 1359 if (fio.compr_blocks) 1360 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1361 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1362 add_compr_block_stat(inode, cc->valid_nr_cpages); 1363 1364 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1365 if (cc->cluster_idx == 0) 1366 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1367 1368 f2fs_put_dnode(&dn); 1369 if (quota_inode) 1370 f2fs_up_read(&sbi->node_write); 1371 else 1372 f2fs_unlock_op(sbi); 1373 1374 spin_lock(&fi->i_size_lock); 1375 if (fi->last_disk_size < psize) 1376 fi->last_disk_size = psize; 1377 spin_unlock(&fi->i_size_lock); 1378 1379 f2fs_put_rpages(cc); 1380 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1381 cc->cpages = NULL; 1382 f2fs_destroy_compress_ctx(cc, false); 1383 return 0; 1384 1385 out_destroy_crypt: 1386 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1387 1388 for (--i; i >= 0; i--) 1389 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1390 out_put_cic: 1391 kmem_cache_free(cic_entry_slab, cic); 1392 out_put_dnode: 1393 f2fs_put_dnode(&dn); 1394 out_unlock_op: 1395 if (quota_inode) 1396 f2fs_up_read(&sbi->node_write); 1397 else 1398 f2fs_unlock_op(sbi); 1399 out_free: 1400 for (i = 0; i < cc->valid_nr_cpages; i++) { 1401 f2fs_compress_free_page(cc->cpages[i]); 1402 cc->cpages[i] = NULL; 1403 } 1404 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1405 cc->cpages = NULL; 1406 return -EAGAIN; 1407 } 1408 1409 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1410 { 1411 struct f2fs_sb_info *sbi = bio->bi_private; 1412 struct compress_io_ctx *cic = 1413 (struct compress_io_ctx *)page_private(page); 1414 int i; 1415 1416 if (unlikely(bio->bi_status)) 1417 mapping_set_error(cic->inode->i_mapping, -EIO); 1418 1419 f2fs_compress_free_page(page); 1420 1421 dec_page_count(sbi, F2FS_WB_DATA); 1422 1423 if (atomic_dec_return(&cic->pending_pages)) 1424 return; 1425 1426 for (i = 0; i < cic->nr_rpages; i++) { 1427 WARN_ON(!cic->rpages[i]); 1428 clear_page_private_gcing(cic->rpages[i]); 1429 end_page_writeback(cic->rpages[i]); 1430 } 1431 1432 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1433 kmem_cache_free(cic_entry_slab, cic); 1434 } 1435 1436 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1437 int *submitted, 1438 struct writeback_control *wbc, 1439 enum iostat_type io_type) 1440 { 1441 struct address_space *mapping = cc->inode->i_mapping; 1442 int _submitted, compr_blocks, ret, i; 1443 1444 compr_blocks = f2fs_compressed_blocks(cc); 1445 1446 for (i = 0; i < cc->cluster_size; i++) { 1447 if (!cc->rpages[i]) 1448 continue; 1449 1450 redirty_page_for_writepage(wbc, cc->rpages[i]); 1451 unlock_page(cc->rpages[i]); 1452 } 1453 1454 if (compr_blocks < 0) 1455 return compr_blocks; 1456 1457 for (i = 0; i < cc->cluster_size; i++) { 1458 if (!cc->rpages[i]) 1459 continue; 1460 retry_write: 1461 lock_page(cc->rpages[i]); 1462 1463 if (cc->rpages[i]->mapping != mapping) { 1464 continue_unlock: 1465 unlock_page(cc->rpages[i]); 1466 continue; 1467 } 1468 1469 if (!PageDirty(cc->rpages[i])) 1470 goto continue_unlock; 1471 1472 if (PageWriteback(cc->rpages[i])) { 1473 if (wbc->sync_mode == WB_SYNC_NONE) 1474 goto continue_unlock; 1475 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1476 } 1477 1478 if (!clear_page_dirty_for_io(cc->rpages[i])) 1479 goto continue_unlock; 1480 1481 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1482 NULL, NULL, wbc, io_type, 1483 compr_blocks, false); 1484 if (ret) { 1485 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1486 unlock_page(cc->rpages[i]); 1487 ret = 0; 1488 } else if (ret == -EAGAIN) { 1489 /* 1490 * for quota file, just redirty left pages to 1491 * avoid deadlock caused by cluster update race 1492 * from foreground operation. 1493 */ 1494 if (IS_NOQUOTA(cc->inode)) 1495 return 0; 1496 ret = 0; 1497 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1498 goto retry_write; 1499 } 1500 return ret; 1501 } 1502 1503 *submitted += _submitted; 1504 } 1505 1506 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1507 1508 return 0; 1509 } 1510 1511 int f2fs_write_multi_pages(struct compress_ctx *cc, 1512 int *submitted, 1513 struct writeback_control *wbc, 1514 enum iostat_type io_type) 1515 { 1516 int err; 1517 1518 *submitted = 0; 1519 if (cluster_may_compress(cc)) { 1520 err = f2fs_compress_pages(cc); 1521 if (err == -EAGAIN) { 1522 add_compr_block_stat(cc->inode, cc->cluster_size); 1523 goto write; 1524 } else if (err) { 1525 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1526 goto destroy_out; 1527 } 1528 1529 err = f2fs_write_compressed_pages(cc, submitted, 1530 wbc, io_type); 1531 if (!err) 1532 return 0; 1533 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1534 } 1535 write: 1536 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1537 1538 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1539 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1540 destroy_out: 1541 f2fs_destroy_compress_ctx(cc, false); 1542 return err; 1543 } 1544 1545 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1546 bool pre_alloc) 1547 { 1548 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1549 } 1550 1551 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1552 bool pre_alloc) 1553 { 1554 const struct f2fs_compress_ops *cops = 1555 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1556 int i; 1557 1558 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1559 return 0; 1560 1561 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1562 if (!dic->tpages) 1563 return -ENOMEM; 1564 1565 for (i = 0; i < dic->cluster_size; i++) { 1566 if (dic->rpages[i]) { 1567 dic->tpages[i] = dic->rpages[i]; 1568 continue; 1569 } 1570 1571 dic->tpages[i] = f2fs_compress_alloc_page(); 1572 } 1573 1574 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1575 if (!dic->rbuf) 1576 return -ENOMEM; 1577 1578 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1579 if (!dic->cbuf) 1580 return -ENOMEM; 1581 1582 if (cops->init_decompress_ctx) 1583 return cops->init_decompress_ctx(dic); 1584 1585 return 0; 1586 } 1587 1588 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1589 bool bypass_destroy_callback, bool pre_alloc) 1590 { 1591 const struct f2fs_compress_ops *cops = 1592 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1593 1594 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1595 return; 1596 1597 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1598 cops->destroy_decompress_ctx(dic); 1599 1600 if (dic->cbuf) 1601 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1602 1603 if (dic->rbuf) 1604 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1605 } 1606 1607 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1608 bool bypass_destroy_callback); 1609 1610 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1611 { 1612 struct decompress_io_ctx *dic; 1613 pgoff_t start_idx = start_idx_of_cluster(cc); 1614 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1615 int i, ret; 1616 1617 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1618 if (!dic) 1619 return ERR_PTR(-ENOMEM); 1620 1621 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1622 if (!dic->rpages) { 1623 kmem_cache_free(dic_entry_slab, dic); 1624 return ERR_PTR(-ENOMEM); 1625 } 1626 1627 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1628 dic->inode = cc->inode; 1629 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1630 dic->cluster_idx = cc->cluster_idx; 1631 dic->cluster_size = cc->cluster_size; 1632 dic->log_cluster_size = cc->log_cluster_size; 1633 dic->nr_cpages = cc->nr_cpages; 1634 refcount_set(&dic->refcnt, 1); 1635 dic->failed = false; 1636 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1637 1638 for (i = 0; i < dic->cluster_size; i++) 1639 dic->rpages[i] = cc->rpages[i]; 1640 dic->nr_rpages = cc->cluster_size; 1641 1642 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1643 if (!dic->cpages) { 1644 ret = -ENOMEM; 1645 goto out_free; 1646 } 1647 1648 for (i = 0; i < dic->nr_cpages; i++) { 1649 struct page *page; 1650 1651 page = f2fs_compress_alloc_page(); 1652 f2fs_set_compressed_page(page, cc->inode, 1653 start_idx + i + 1, dic); 1654 dic->cpages[i] = page; 1655 } 1656 1657 ret = f2fs_prepare_decomp_mem(dic, true); 1658 if (ret) 1659 goto out_free; 1660 1661 return dic; 1662 1663 out_free: 1664 f2fs_free_dic(dic, true); 1665 return ERR_PTR(ret); 1666 } 1667 1668 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1669 bool bypass_destroy_callback) 1670 { 1671 int i; 1672 1673 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1674 1675 if (dic->tpages) { 1676 for (i = 0; i < dic->cluster_size; i++) { 1677 if (dic->rpages[i]) 1678 continue; 1679 if (!dic->tpages[i]) 1680 continue; 1681 f2fs_compress_free_page(dic->tpages[i]); 1682 } 1683 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1684 } 1685 1686 if (dic->cpages) { 1687 for (i = 0; i < dic->nr_cpages; i++) { 1688 if (!dic->cpages[i]) 1689 continue; 1690 f2fs_compress_free_page(dic->cpages[i]); 1691 } 1692 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1693 } 1694 1695 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1696 kmem_cache_free(dic_entry_slab, dic); 1697 } 1698 1699 static void f2fs_late_free_dic(struct work_struct *work) 1700 { 1701 struct decompress_io_ctx *dic = 1702 container_of(work, struct decompress_io_ctx, free_work); 1703 1704 f2fs_free_dic(dic, false); 1705 } 1706 1707 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1708 { 1709 if (refcount_dec_and_test(&dic->refcnt)) { 1710 if (in_task) { 1711 f2fs_free_dic(dic, false); 1712 } else { 1713 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1714 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1715 &dic->free_work); 1716 } 1717 } 1718 } 1719 1720 static void f2fs_verify_cluster(struct work_struct *work) 1721 { 1722 struct decompress_io_ctx *dic = 1723 container_of(work, struct decompress_io_ctx, verity_work); 1724 int i; 1725 1726 /* Verify, update, and unlock the decompressed pages. */ 1727 for (i = 0; i < dic->cluster_size; i++) { 1728 struct page *rpage = dic->rpages[i]; 1729 1730 if (!rpage) 1731 continue; 1732 1733 if (fsverity_verify_page(rpage)) 1734 SetPageUptodate(rpage); 1735 else 1736 ClearPageUptodate(rpage); 1737 unlock_page(rpage); 1738 } 1739 1740 f2fs_put_dic(dic, true); 1741 } 1742 1743 /* 1744 * This is called when a compressed cluster has been decompressed 1745 * (or failed to be read and/or decompressed). 1746 */ 1747 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1748 bool in_task) 1749 { 1750 int i; 1751 1752 if (!failed && dic->need_verity) { 1753 /* 1754 * Note that to avoid deadlocks, the verity work can't be done 1755 * on the decompression workqueue. This is because verifying 1756 * the data pages can involve reading metadata pages from the 1757 * file, and these metadata pages may be compressed. 1758 */ 1759 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1760 fsverity_enqueue_verify_work(&dic->verity_work); 1761 return; 1762 } 1763 1764 /* Update and unlock the cluster's pagecache pages. */ 1765 for (i = 0; i < dic->cluster_size; i++) { 1766 struct page *rpage = dic->rpages[i]; 1767 1768 if (!rpage) 1769 continue; 1770 1771 if (failed) 1772 ClearPageUptodate(rpage); 1773 else 1774 SetPageUptodate(rpage); 1775 unlock_page(rpage); 1776 } 1777 1778 /* 1779 * Release the reference to the decompress_io_ctx that was being held 1780 * for I/O completion. 1781 */ 1782 f2fs_put_dic(dic, in_task); 1783 } 1784 1785 /* 1786 * Put a reference to a compressed page's decompress_io_ctx. 1787 * 1788 * This is called when the page is no longer needed and can be freed. 1789 */ 1790 void f2fs_put_page_dic(struct page *page, bool in_task) 1791 { 1792 struct decompress_io_ctx *dic = 1793 (struct decompress_io_ctx *)page_private(page); 1794 1795 f2fs_put_dic(dic, in_task); 1796 } 1797 1798 /* 1799 * check whether cluster blocks are contiguous, and add extent cache entry 1800 * only if cluster blocks are logically and physically contiguous. 1801 */ 1802 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) 1803 { 1804 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR; 1805 int i = compressed ? 1 : 0; 1806 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1807 dn->ofs_in_node + i); 1808 1809 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1810 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1811 dn->ofs_in_node + i); 1812 1813 if (!__is_valid_data_blkaddr(blkaddr)) 1814 break; 1815 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1816 return 0; 1817 } 1818 1819 return compressed ? i - 1 : i; 1820 } 1821 1822 const struct address_space_operations f2fs_compress_aops = { 1823 .release_folio = f2fs_release_folio, 1824 .invalidate_folio = f2fs_invalidate_folio, 1825 .migrate_folio = filemap_migrate_folio, 1826 }; 1827 1828 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1829 { 1830 return sbi->compress_inode->i_mapping; 1831 } 1832 1833 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1834 { 1835 if (!sbi->compress_inode) 1836 return; 1837 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1838 } 1839 1840 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1841 nid_t ino, block_t blkaddr) 1842 { 1843 struct page *cpage; 1844 int ret; 1845 1846 if (!test_opt(sbi, COMPRESS_CACHE)) 1847 return; 1848 1849 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1850 return; 1851 1852 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1853 return; 1854 1855 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1856 if (cpage) { 1857 f2fs_put_page(cpage, 0); 1858 return; 1859 } 1860 1861 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1862 if (!cpage) 1863 return; 1864 1865 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1866 blkaddr, GFP_NOFS); 1867 if (ret) { 1868 f2fs_put_page(cpage, 0); 1869 return; 1870 } 1871 1872 set_page_private_data(cpage, ino); 1873 1874 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1875 goto out; 1876 1877 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1878 SetPageUptodate(cpage); 1879 out: 1880 f2fs_put_page(cpage, 1); 1881 } 1882 1883 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1884 block_t blkaddr) 1885 { 1886 struct page *cpage; 1887 bool hitted = false; 1888 1889 if (!test_opt(sbi, COMPRESS_CACHE)) 1890 return false; 1891 1892 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1893 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1894 if (cpage) { 1895 if (PageUptodate(cpage)) { 1896 atomic_inc(&sbi->compress_page_hit); 1897 memcpy(page_address(page), 1898 page_address(cpage), PAGE_SIZE); 1899 hitted = true; 1900 } 1901 f2fs_put_page(cpage, 1); 1902 } 1903 1904 return hitted; 1905 } 1906 1907 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1908 { 1909 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1910 struct folio_batch fbatch; 1911 pgoff_t index = 0; 1912 pgoff_t end = MAX_BLKADDR(sbi); 1913 1914 if (!mapping->nrpages) 1915 return; 1916 1917 folio_batch_init(&fbatch); 1918 1919 do { 1920 unsigned int nr, i; 1921 1922 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1923 if (!nr) 1924 break; 1925 1926 for (i = 0; i < nr; i++) { 1927 struct folio *folio = fbatch.folios[i]; 1928 1929 folio_lock(folio); 1930 if (folio->mapping != mapping) { 1931 folio_unlock(folio); 1932 continue; 1933 } 1934 1935 if (ino != get_page_private_data(&folio->page)) { 1936 folio_unlock(folio); 1937 continue; 1938 } 1939 1940 generic_error_remove_page(mapping, &folio->page); 1941 folio_unlock(folio); 1942 } 1943 folio_batch_release(&fbatch); 1944 cond_resched(); 1945 } while (index < end); 1946 } 1947 1948 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1949 { 1950 struct inode *inode; 1951 1952 if (!test_opt(sbi, COMPRESS_CACHE)) 1953 return 0; 1954 1955 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1956 if (IS_ERR(inode)) 1957 return PTR_ERR(inode); 1958 sbi->compress_inode = inode; 1959 1960 sbi->compress_percent = COMPRESS_PERCENT; 1961 sbi->compress_watermark = COMPRESS_WATERMARK; 1962 1963 atomic_set(&sbi->compress_page_hit, 0); 1964 1965 return 0; 1966 } 1967 1968 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1969 { 1970 if (!sbi->compress_inode) 1971 return; 1972 iput(sbi->compress_inode); 1973 sbi->compress_inode = NULL; 1974 } 1975 1976 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1977 { 1978 dev_t dev = sbi->sb->s_bdev->bd_dev; 1979 char slab_name[35]; 1980 1981 if (!f2fs_sb_has_compression(sbi)) 1982 return 0; 1983 1984 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1985 1986 sbi->page_array_slab_size = sizeof(struct page *) << 1987 F2FS_OPTION(sbi).compress_log_size; 1988 1989 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1990 sbi->page_array_slab_size); 1991 return sbi->page_array_slab ? 0 : -ENOMEM; 1992 } 1993 1994 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1995 { 1996 kmem_cache_destroy(sbi->page_array_slab); 1997 } 1998 1999 int __init f2fs_init_compress_cache(void) 2000 { 2001 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2002 sizeof(struct compress_io_ctx)); 2003 if (!cic_entry_slab) 2004 return -ENOMEM; 2005 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2006 sizeof(struct decompress_io_ctx)); 2007 if (!dic_entry_slab) 2008 goto free_cic; 2009 return 0; 2010 free_cic: 2011 kmem_cache_destroy(cic_entry_slab); 2012 return -ENOMEM; 2013 } 2014 2015 void f2fs_destroy_compress_cache(void) 2016 { 2017 kmem_cache_destroy(dic_entry_slab); 2018 kmem_cache_destroy(cic_entry_slab); 2019 } 2020