xref: /openbmc/linux/fs/f2fs/compress.c (revision 4f3c8320)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include <trace/events/f2fs.h>
19 
20 static struct kmem_cache *cic_entry_slab;
21 static struct kmem_cache *dic_entry_slab;
22 
23 static void *page_array_alloc(struct inode *inode, int nr)
24 {
25 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
26 	unsigned int size = sizeof(struct page *) * nr;
27 
28 	if (likely(size <= sbi->page_array_slab_size))
29 		return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS);
30 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
31 }
32 
33 static void page_array_free(struct inode *inode, void *pages, int nr)
34 {
35 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
36 	unsigned int size = sizeof(struct page *) * nr;
37 
38 	if (!pages)
39 		return;
40 
41 	if (likely(size <= sbi->page_array_slab_size))
42 		kmem_cache_free(sbi->page_array_slab, pages);
43 	else
44 		kfree(pages);
45 }
46 
47 struct f2fs_compress_ops {
48 	int (*init_compress_ctx)(struct compress_ctx *cc);
49 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
50 	int (*compress_pages)(struct compress_ctx *cc);
51 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
52 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
53 	int (*decompress_pages)(struct decompress_io_ctx *dic);
54 };
55 
56 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
57 {
58 	return index & (cc->cluster_size - 1);
59 }
60 
61 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
62 {
63 	return index >> cc->log_cluster_size;
64 }
65 
66 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
67 {
68 	return cc->cluster_idx << cc->log_cluster_size;
69 }
70 
71 bool f2fs_is_compressed_page(struct page *page)
72 {
73 	if (!PagePrivate(page))
74 		return false;
75 	if (!page_private(page))
76 		return false;
77 	if (IS_ATOMIC_WRITTEN_PAGE(page) || IS_DUMMY_WRITTEN_PAGE(page))
78 		return false;
79 	/*
80 	 * page->private may be set with pid.
81 	 * pid_max is enough to check if it is traced.
82 	 */
83 	if (IS_IO_TRACED_PAGE(page))
84 		return false;
85 
86 	f2fs_bug_on(F2FS_M_SB(page->mapping),
87 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
88 	return true;
89 }
90 
91 static void f2fs_set_compressed_page(struct page *page,
92 		struct inode *inode, pgoff_t index, void *data)
93 {
94 	SetPagePrivate(page);
95 	set_page_private(page, (unsigned long)data);
96 
97 	/* i_crypto_info and iv index */
98 	page->index = index;
99 	page->mapping = inode->i_mapping;
100 }
101 
102 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
103 {
104 	int i;
105 
106 	for (i = 0; i < len; i++) {
107 		if (!cc->rpages[i])
108 			continue;
109 		if (unlock)
110 			unlock_page(cc->rpages[i]);
111 		else
112 			put_page(cc->rpages[i]);
113 	}
114 }
115 
116 static void f2fs_put_rpages(struct compress_ctx *cc)
117 {
118 	f2fs_drop_rpages(cc, cc->cluster_size, false);
119 }
120 
121 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
122 {
123 	f2fs_drop_rpages(cc, len, true);
124 }
125 
126 static void f2fs_put_rpages_mapping(struct address_space *mapping,
127 				pgoff_t start, int len)
128 {
129 	int i;
130 
131 	for (i = 0; i < len; i++) {
132 		struct page *page = find_get_page(mapping, start + i);
133 
134 		put_page(page);
135 		put_page(page);
136 	}
137 }
138 
139 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
140 		struct writeback_control *wbc, bool redirty, int unlock)
141 {
142 	unsigned int i;
143 
144 	for (i = 0; i < cc->cluster_size; i++) {
145 		if (!cc->rpages[i])
146 			continue;
147 		if (redirty)
148 			redirty_page_for_writepage(wbc, cc->rpages[i]);
149 		f2fs_put_page(cc->rpages[i], unlock);
150 	}
151 }
152 
153 struct page *f2fs_compress_control_page(struct page *page)
154 {
155 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
156 }
157 
158 int f2fs_init_compress_ctx(struct compress_ctx *cc)
159 {
160 	if (cc->rpages)
161 		return 0;
162 
163 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
164 	return cc->rpages ? 0 : -ENOMEM;
165 }
166 
167 void f2fs_destroy_compress_ctx(struct compress_ctx *cc)
168 {
169 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
170 	cc->rpages = NULL;
171 	cc->nr_rpages = 0;
172 	cc->nr_cpages = 0;
173 	cc->cluster_idx = NULL_CLUSTER;
174 }
175 
176 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
177 {
178 	unsigned int cluster_ofs;
179 
180 	if (!f2fs_cluster_can_merge_page(cc, page->index))
181 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
182 
183 	cluster_ofs = offset_in_cluster(cc, page->index);
184 	cc->rpages[cluster_ofs] = page;
185 	cc->nr_rpages++;
186 	cc->cluster_idx = cluster_idx(cc, page->index);
187 }
188 
189 #ifdef CONFIG_F2FS_FS_LZO
190 static int lzo_init_compress_ctx(struct compress_ctx *cc)
191 {
192 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
193 				LZO1X_MEM_COMPRESS, GFP_NOFS);
194 	if (!cc->private)
195 		return -ENOMEM;
196 
197 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
198 	return 0;
199 }
200 
201 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
202 {
203 	kvfree(cc->private);
204 	cc->private = NULL;
205 }
206 
207 static int lzo_compress_pages(struct compress_ctx *cc)
208 {
209 	int ret;
210 
211 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
212 					&cc->clen, cc->private);
213 	if (ret != LZO_E_OK) {
214 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
215 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
216 		return -EIO;
217 	}
218 	return 0;
219 }
220 
221 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
222 {
223 	int ret;
224 
225 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
226 						dic->rbuf, &dic->rlen);
227 	if (ret != LZO_E_OK) {
228 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
229 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
230 		return -EIO;
231 	}
232 
233 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
234 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
235 					"expected:%lu\n", KERN_ERR,
236 					F2FS_I_SB(dic->inode)->sb->s_id,
237 					dic->rlen,
238 					PAGE_SIZE << dic->log_cluster_size);
239 		return -EIO;
240 	}
241 	return 0;
242 }
243 
244 static const struct f2fs_compress_ops f2fs_lzo_ops = {
245 	.init_compress_ctx	= lzo_init_compress_ctx,
246 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
247 	.compress_pages		= lzo_compress_pages,
248 	.decompress_pages	= lzo_decompress_pages,
249 };
250 #endif
251 
252 #ifdef CONFIG_F2FS_FS_LZ4
253 static int lz4_init_compress_ctx(struct compress_ctx *cc)
254 {
255 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
256 				LZ4_MEM_COMPRESS, GFP_NOFS);
257 	if (!cc->private)
258 		return -ENOMEM;
259 
260 	/*
261 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
262 	 * adapt worst compress case, because lz4 compressor can handle
263 	 * output budget properly.
264 	 */
265 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
266 	return 0;
267 }
268 
269 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
270 {
271 	kvfree(cc->private);
272 	cc->private = NULL;
273 }
274 
275 static int lz4_compress_pages(struct compress_ctx *cc)
276 {
277 	int len;
278 
279 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
280 						cc->clen, cc->private);
281 	if (!len)
282 		return -EAGAIN;
283 
284 	cc->clen = len;
285 	return 0;
286 }
287 
288 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
289 {
290 	int ret;
291 
292 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
293 						dic->clen, dic->rlen);
294 	if (ret < 0) {
295 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
296 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
297 		return -EIO;
298 	}
299 
300 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
301 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
302 					"expected:%lu\n", KERN_ERR,
303 					F2FS_I_SB(dic->inode)->sb->s_id,
304 					dic->rlen,
305 					PAGE_SIZE << dic->log_cluster_size);
306 		return -EIO;
307 	}
308 	return 0;
309 }
310 
311 static const struct f2fs_compress_ops f2fs_lz4_ops = {
312 	.init_compress_ctx	= lz4_init_compress_ctx,
313 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
314 	.compress_pages		= lz4_compress_pages,
315 	.decompress_pages	= lz4_decompress_pages,
316 };
317 #endif
318 
319 #ifdef CONFIG_F2FS_FS_ZSTD
320 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
321 
322 static int zstd_init_compress_ctx(struct compress_ctx *cc)
323 {
324 	ZSTD_parameters params;
325 	ZSTD_CStream *stream;
326 	void *workspace;
327 	unsigned int workspace_size;
328 
329 	params = ZSTD_getParams(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen, 0);
330 	workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
331 
332 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
333 					workspace_size, GFP_NOFS);
334 	if (!workspace)
335 		return -ENOMEM;
336 
337 	stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
338 	if (!stream) {
339 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
340 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
341 				__func__);
342 		kvfree(workspace);
343 		return -EIO;
344 	}
345 
346 	cc->private = workspace;
347 	cc->private2 = stream;
348 
349 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
350 	return 0;
351 }
352 
353 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
354 {
355 	kvfree(cc->private);
356 	cc->private = NULL;
357 	cc->private2 = NULL;
358 }
359 
360 static int zstd_compress_pages(struct compress_ctx *cc)
361 {
362 	ZSTD_CStream *stream = cc->private2;
363 	ZSTD_inBuffer inbuf;
364 	ZSTD_outBuffer outbuf;
365 	int src_size = cc->rlen;
366 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
367 	int ret;
368 
369 	inbuf.pos = 0;
370 	inbuf.src = cc->rbuf;
371 	inbuf.size = src_size;
372 
373 	outbuf.pos = 0;
374 	outbuf.dst = cc->cbuf->cdata;
375 	outbuf.size = dst_size;
376 
377 	ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
378 	if (ZSTD_isError(ret)) {
379 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
380 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
381 				__func__, ZSTD_getErrorCode(ret));
382 		return -EIO;
383 	}
384 
385 	ret = ZSTD_endStream(stream, &outbuf);
386 	if (ZSTD_isError(ret)) {
387 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
388 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
389 				__func__, ZSTD_getErrorCode(ret));
390 		return -EIO;
391 	}
392 
393 	/*
394 	 * there is compressed data remained in intermediate buffer due to
395 	 * no more space in cbuf.cdata
396 	 */
397 	if (ret)
398 		return -EAGAIN;
399 
400 	cc->clen = outbuf.pos;
401 	return 0;
402 }
403 
404 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
405 {
406 	ZSTD_DStream *stream;
407 	void *workspace;
408 	unsigned int workspace_size;
409 	unsigned int max_window_size =
410 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
411 
412 	workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
413 
414 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
415 					workspace_size, GFP_NOFS);
416 	if (!workspace)
417 		return -ENOMEM;
418 
419 	stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
420 	if (!stream) {
421 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
422 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
423 				__func__);
424 		kvfree(workspace);
425 		return -EIO;
426 	}
427 
428 	dic->private = workspace;
429 	dic->private2 = stream;
430 
431 	return 0;
432 }
433 
434 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
435 {
436 	kvfree(dic->private);
437 	dic->private = NULL;
438 	dic->private2 = NULL;
439 }
440 
441 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
442 {
443 	ZSTD_DStream *stream = dic->private2;
444 	ZSTD_inBuffer inbuf;
445 	ZSTD_outBuffer outbuf;
446 	int ret;
447 
448 	inbuf.pos = 0;
449 	inbuf.src = dic->cbuf->cdata;
450 	inbuf.size = dic->clen;
451 
452 	outbuf.pos = 0;
453 	outbuf.dst = dic->rbuf;
454 	outbuf.size = dic->rlen;
455 
456 	ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
457 	if (ZSTD_isError(ret)) {
458 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
459 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
460 				__func__, ZSTD_getErrorCode(ret));
461 		return -EIO;
462 	}
463 
464 	if (dic->rlen != outbuf.pos) {
465 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
466 				"expected:%lu\n", KERN_ERR,
467 				F2FS_I_SB(dic->inode)->sb->s_id,
468 				__func__, dic->rlen,
469 				PAGE_SIZE << dic->log_cluster_size);
470 		return -EIO;
471 	}
472 
473 	return 0;
474 }
475 
476 static const struct f2fs_compress_ops f2fs_zstd_ops = {
477 	.init_compress_ctx	= zstd_init_compress_ctx,
478 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
479 	.compress_pages		= zstd_compress_pages,
480 	.init_decompress_ctx	= zstd_init_decompress_ctx,
481 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
482 	.decompress_pages	= zstd_decompress_pages,
483 };
484 #endif
485 
486 #ifdef CONFIG_F2FS_FS_LZO
487 #ifdef CONFIG_F2FS_FS_LZORLE
488 static int lzorle_compress_pages(struct compress_ctx *cc)
489 {
490 	int ret;
491 
492 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
493 					&cc->clen, cc->private);
494 	if (ret != LZO_E_OK) {
495 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
496 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
497 		return -EIO;
498 	}
499 	return 0;
500 }
501 
502 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
503 	.init_compress_ctx	= lzo_init_compress_ctx,
504 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
505 	.compress_pages		= lzorle_compress_pages,
506 	.decompress_pages	= lzo_decompress_pages,
507 };
508 #endif
509 #endif
510 
511 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
512 #ifdef CONFIG_F2FS_FS_LZO
513 	&f2fs_lzo_ops,
514 #else
515 	NULL,
516 #endif
517 #ifdef CONFIG_F2FS_FS_LZ4
518 	&f2fs_lz4_ops,
519 #else
520 	NULL,
521 #endif
522 #ifdef CONFIG_F2FS_FS_ZSTD
523 	&f2fs_zstd_ops,
524 #else
525 	NULL,
526 #endif
527 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
528 	&f2fs_lzorle_ops,
529 #else
530 	NULL,
531 #endif
532 };
533 
534 bool f2fs_is_compress_backend_ready(struct inode *inode)
535 {
536 	if (!f2fs_compressed_file(inode))
537 		return true;
538 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
539 }
540 
541 static mempool_t *compress_page_pool;
542 static int num_compress_pages = 512;
543 module_param(num_compress_pages, uint, 0444);
544 MODULE_PARM_DESC(num_compress_pages,
545 		"Number of intermediate compress pages to preallocate");
546 
547 int f2fs_init_compress_mempool(void)
548 {
549 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
550 	if (!compress_page_pool)
551 		return -ENOMEM;
552 
553 	return 0;
554 }
555 
556 void f2fs_destroy_compress_mempool(void)
557 {
558 	mempool_destroy(compress_page_pool);
559 }
560 
561 static struct page *f2fs_compress_alloc_page(void)
562 {
563 	struct page *page;
564 
565 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
566 	lock_page(page);
567 
568 	return page;
569 }
570 
571 static void f2fs_compress_free_page(struct page *page)
572 {
573 	if (!page)
574 		return;
575 	set_page_private(page, (unsigned long)NULL);
576 	ClearPagePrivate(page);
577 	page->mapping = NULL;
578 	unlock_page(page);
579 	mempool_free(page, compress_page_pool);
580 }
581 
582 #define MAX_VMAP_RETRIES	3
583 
584 static void *f2fs_vmap(struct page **pages, unsigned int count)
585 {
586 	int i;
587 	void *buf = NULL;
588 
589 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
590 		buf = vm_map_ram(pages, count, -1);
591 		if (buf)
592 			break;
593 		vm_unmap_aliases();
594 	}
595 	return buf;
596 }
597 
598 static int f2fs_compress_pages(struct compress_ctx *cc)
599 {
600 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
601 	const struct f2fs_compress_ops *cops =
602 				f2fs_cops[fi->i_compress_algorithm];
603 	unsigned int max_len, new_nr_cpages;
604 	struct page **new_cpages;
605 	u32 chksum = 0;
606 	int i, ret;
607 
608 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
609 				cc->cluster_size, fi->i_compress_algorithm);
610 
611 	if (cops->init_compress_ctx) {
612 		ret = cops->init_compress_ctx(cc);
613 		if (ret)
614 			goto out;
615 	}
616 
617 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
618 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
619 
620 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
621 	if (!cc->cpages) {
622 		ret = -ENOMEM;
623 		goto destroy_compress_ctx;
624 	}
625 
626 	for (i = 0; i < cc->nr_cpages; i++) {
627 		cc->cpages[i] = f2fs_compress_alloc_page();
628 		if (!cc->cpages[i]) {
629 			ret = -ENOMEM;
630 			goto out_free_cpages;
631 		}
632 	}
633 
634 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
635 	if (!cc->rbuf) {
636 		ret = -ENOMEM;
637 		goto out_free_cpages;
638 	}
639 
640 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
641 	if (!cc->cbuf) {
642 		ret = -ENOMEM;
643 		goto out_vunmap_rbuf;
644 	}
645 
646 	ret = cops->compress_pages(cc);
647 	if (ret)
648 		goto out_vunmap_cbuf;
649 
650 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
651 
652 	if (cc->clen > max_len) {
653 		ret = -EAGAIN;
654 		goto out_vunmap_cbuf;
655 	}
656 
657 	cc->cbuf->clen = cpu_to_le32(cc->clen);
658 
659 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
660 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
661 					cc->cbuf->cdata, cc->clen);
662 	cc->cbuf->chksum = cpu_to_le32(chksum);
663 
664 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
665 		cc->cbuf->reserved[i] = cpu_to_le32(0);
666 
667 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
668 
669 	/* Now we're going to cut unnecessary tail pages */
670 	new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
671 	if (!new_cpages) {
672 		ret = -ENOMEM;
673 		goto out_vunmap_cbuf;
674 	}
675 
676 	/* zero out any unused part of the last page */
677 	memset(&cc->cbuf->cdata[cc->clen], 0,
678 			(new_nr_cpages * PAGE_SIZE) -
679 			(cc->clen + COMPRESS_HEADER_SIZE));
680 
681 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
682 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
683 
684 	for (i = 0; i < cc->nr_cpages; i++) {
685 		if (i < new_nr_cpages) {
686 			new_cpages[i] = cc->cpages[i];
687 			continue;
688 		}
689 		f2fs_compress_free_page(cc->cpages[i]);
690 		cc->cpages[i] = NULL;
691 	}
692 
693 	if (cops->destroy_compress_ctx)
694 		cops->destroy_compress_ctx(cc);
695 
696 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
697 	cc->cpages = new_cpages;
698 	cc->nr_cpages = new_nr_cpages;
699 
700 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
701 							cc->clen, ret);
702 	return 0;
703 
704 out_vunmap_cbuf:
705 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
706 out_vunmap_rbuf:
707 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
708 out_free_cpages:
709 	for (i = 0; i < cc->nr_cpages; i++) {
710 		if (cc->cpages[i])
711 			f2fs_compress_free_page(cc->cpages[i]);
712 	}
713 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
714 	cc->cpages = NULL;
715 destroy_compress_ctx:
716 	if (cops->destroy_compress_ctx)
717 		cops->destroy_compress_ctx(cc);
718 out:
719 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
720 							cc->clen, ret);
721 	return ret;
722 }
723 
724 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity)
725 {
726 	struct decompress_io_ctx *dic =
727 			(struct decompress_io_ctx *)page_private(page);
728 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
729 	struct f2fs_inode_info *fi= F2FS_I(dic->inode);
730 	const struct f2fs_compress_ops *cops =
731 			f2fs_cops[fi->i_compress_algorithm];
732 	int ret;
733 	int i;
734 
735 	dec_page_count(sbi, F2FS_RD_DATA);
736 
737 	if (bio->bi_status || PageError(page))
738 		dic->failed = true;
739 
740 	if (atomic_dec_return(&dic->pending_pages))
741 		return;
742 
743 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
744 				dic->cluster_size, fi->i_compress_algorithm);
745 
746 	/* submit partial compressed pages */
747 	if (dic->failed) {
748 		ret = -EIO;
749 		goto out_free_dic;
750 	}
751 
752 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
753 	if (!dic->tpages) {
754 		ret = -ENOMEM;
755 		goto out_free_dic;
756 	}
757 
758 	for (i = 0; i < dic->cluster_size; i++) {
759 		if (dic->rpages[i]) {
760 			dic->tpages[i] = dic->rpages[i];
761 			continue;
762 		}
763 
764 		dic->tpages[i] = f2fs_compress_alloc_page();
765 		if (!dic->tpages[i]) {
766 			ret = -ENOMEM;
767 			goto out_free_dic;
768 		}
769 	}
770 
771 	if (cops->init_decompress_ctx) {
772 		ret = cops->init_decompress_ctx(dic);
773 		if (ret)
774 			goto out_free_dic;
775 	}
776 
777 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
778 	if (!dic->rbuf) {
779 		ret = -ENOMEM;
780 		goto destroy_decompress_ctx;
781 	}
782 
783 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
784 	if (!dic->cbuf) {
785 		ret = -ENOMEM;
786 		goto out_vunmap_rbuf;
787 	}
788 
789 	dic->clen = le32_to_cpu(dic->cbuf->clen);
790 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
791 
792 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
793 		ret = -EFSCORRUPTED;
794 		goto out_vunmap_cbuf;
795 	}
796 
797 	ret = cops->decompress_pages(dic);
798 
799 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
800 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
801 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
802 
803 		if (provided != calculated) {
804 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
805 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
806 				printk_ratelimited(
807 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
808 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
809 					provided, calculated);
810 			}
811 			set_sbi_flag(sbi, SBI_NEED_FSCK);
812 		}
813 	}
814 
815 out_vunmap_cbuf:
816 	vm_unmap_ram(dic->cbuf, dic->nr_cpages);
817 out_vunmap_rbuf:
818 	vm_unmap_ram(dic->rbuf, dic->cluster_size);
819 destroy_decompress_ctx:
820 	if (cops->destroy_decompress_ctx)
821 		cops->destroy_decompress_ctx(dic);
822 out_free_dic:
823 	if (!verity)
824 		f2fs_decompress_end_io(dic->rpages, dic->cluster_size,
825 								ret, false);
826 
827 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
828 							dic->clen, ret);
829 	if (!verity)
830 		f2fs_free_dic(dic);
831 }
832 
833 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
834 {
835 	if (cc->cluster_idx == NULL_CLUSTER)
836 		return true;
837 	return cc->cluster_idx == cluster_idx(cc, index);
838 }
839 
840 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
841 {
842 	return cc->nr_rpages == 0;
843 }
844 
845 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
846 {
847 	return cc->cluster_size == cc->nr_rpages;
848 }
849 
850 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
851 {
852 	if (f2fs_cluster_is_empty(cc))
853 		return true;
854 	return is_page_in_cluster(cc, index);
855 }
856 
857 static bool __cluster_may_compress(struct compress_ctx *cc)
858 {
859 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
860 	loff_t i_size = i_size_read(cc->inode);
861 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
862 	int i;
863 
864 	for (i = 0; i < cc->cluster_size; i++) {
865 		struct page *page = cc->rpages[i];
866 
867 		f2fs_bug_on(sbi, !page);
868 
869 		if (unlikely(f2fs_cp_error(sbi)))
870 			return false;
871 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
872 			return false;
873 
874 		/* beyond EOF */
875 		if (page->index >= nr_pages)
876 			return false;
877 	}
878 	return true;
879 }
880 
881 static int __f2fs_cluster_blocks(struct compress_ctx *cc, bool compr)
882 {
883 	struct dnode_of_data dn;
884 	int ret;
885 
886 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
887 	ret = f2fs_get_dnode_of_data(&dn, start_idx_of_cluster(cc),
888 							LOOKUP_NODE);
889 	if (ret) {
890 		if (ret == -ENOENT)
891 			ret = 0;
892 		goto fail;
893 	}
894 
895 	if (dn.data_blkaddr == COMPRESS_ADDR) {
896 		int i;
897 
898 		ret = 1;
899 		for (i = 1; i < cc->cluster_size; i++) {
900 			block_t blkaddr;
901 
902 			blkaddr = data_blkaddr(dn.inode,
903 					dn.node_page, dn.ofs_in_node + i);
904 			if (compr) {
905 				if (__is_valid_data_blkaddr(blkaddr))
906 					ret++;
907 			} else {
908 				if (blkaddr != NULL_ADDR)
909 					ret++;
910 			}
911 		}
912 	}
913 fail:
914 	f2fs_put_dnode(&dn);
915 	return ret;
916 }
917 
918 /* return # of compressed blocks in compressed cluster */
919 static int f2fs_compressed_blocks(struct compress_ctx *cc)
920 {
921 	return __f2fs_cluster_blocks(cc, true);
922 }
923 
924 /* return # of valid blocks in compressed cluster */
925 static int f2fs_cluster_blocks(struct compress_ctx *cc)
926 {
927 	return __f2fs_cluster_blocks(cc, false);
928 }
929 
930 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
931 {
932 	struct compress_ctx cc = {
933 		.inode = inode,
934 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
935 		.cluster_size = F2FS_I(inode)->i_cluster_size,
936 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
937 	};
938 
939 	return f2fs_cluster_blocks(&cc);
940 }
941 
942 static bool cluster_may_compress(struct compress_ctx *cc)
943 {
944 	if (!f2fs_need_compress_data(cc->inode))
945 		return false;
946 	if (f2fs_is_atomic_file(cc->inode))
947 		return false;
948 	if (f2fs_is_mmap_file(cc->inode))
949 		return false;
950 	if (!f2fs_cluster_is_full(cc))
951 		return false;
952 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
953 		return false;
954 	return __cluster_may_compress(cc);
955 }
956 
957 static void set_cluster_writeback(struct compress_ctx *cc)
958 {
959 	int i;
960 
961 	for (i = 0; i < cc->cluster_size; i++) {
962 		if (cc->rpages[i])
963 			set_page_writeback(cc->rpages[i]);
964 	}
965 }
966 
967 static void set_cluster_dirty(struct compress_ctx *cc)
968 {
969 	int i;
970 
971 	for (i = 0; i < cc->cluster_size; i++)
972 		if (cc->rpages[i])
973 			set_page_dirty(cc->rpages[i]);
974 }
975 
976 static int prepare_compress_overwrite(struct compress_ctx *cc,
977 		struct page **pagep, pgoff_t index, void **fsdata)
978 {
979 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
980 	struct address_space *mapping = cc->inode->i_mapping;
981 	struct page *page;
982 	struct dnode_of_data dn;
983 	sector_t last_block_in_bio;
984 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
985 	pgoff_t start_idx = start_idx_of_cluster(cc);
986 	int i, ret;
987 	bool prealloc;
988 
989 retry:
990 	ret = f2fs_cluster_blocks(cc);
991 	if (ret <= 0)
992 		return ret;
993 
994 	/* compressed case */
995 	prealloc = (ret < cc->cluster_size);
996 
997 	ret = f2fs_init_compress_ctx(cc);
998 	if (ret)
999 		return ret;
1000 
1001 	/* keep page reference to avoid page reclaim */
1002 	for (i = 0; i < cc->cluster_size; i++) {
1003 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
1004 							fgp_flag, GFP_NOFS);
1005 		if (!page) {
1006 			ret = -ENOMEM;
1007 			goto unlock_pages;
1008 		}
1009 
1010 		if (PageUptodate(page))
1011 			unlock_page(page);
1012 		else
1013 			f2fs_compress_ctx_add_page(cc, page);
1014 	}
1015 
1016 	if (!f2fs_cluster_is_empty(cc)) {
1017 		struct bio *bio = NULL;
1018 
1019 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1020 					&last_block_in_bio, false, true);
1021 		f2fs_destroy_compress_ctx(cc);
1022 		if (ret)
1023 			goto release_pages;
1024 		if (bio)
1025 			f2fs_submit_bio(sbi, bio, DATA);
1026 
1027 		ret = f2fs_init_compress_ctx(cc);
1028 		if (ret)
1029 			goto release_pages;
1030 	}
1031 
1032 	for (i = 0; i < cc->cluster_size; i++) {
1033 		f2fs_bug_on(sbi, cc->rpages[i]);
1034 
1035 		page = find_lock_page(mapping, start_idx + i);
1036 		f2fs_bug_on(sbi, !page);
1037 
1038 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1039 
1040 		f2fs_compress_ctx_add_page(cc, page);
1041 		f2fs_put_page(page, 0);
1042 
1043 		if (!PageUptodate(page)) {
1044 			f2fs_unlock_rpages(cc, i + 1);
1045 			f2fs_put_rpages_mapping(mapping, start_idx,
1046 					cc->cluster_size);
1047 			f2fs_destroy_compress_ctx(cc);
1048 			goto retry;
1049 		}
1050 	}
1051 
1052 	if (prealloc) {
1053 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1054 
1055 		set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1056 
1057 		for (i = cc->cluster_size - 1; i > 0; i--) {
1058 			ret = f2fs_get_block(&dn, start_idx + i);
1059 			if (ret) {
1060 				i = cc->cluster_size;
1061 				break;
1062 			}
1063 
1064 			if (dn.data_blkaddr != NEW_ADDR)
1065 				break;
1066 		}
1067 
1068 		f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1069 	}
1070 
1071 	if (likely(!ret)) {
1072 		*fsdata = cc->rpages;
1073 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1074 		return cc->cluster_size;
1075 	}
1076 
1077 unlock_pages:
1078 	f2fs_unlock_rpages(cc, i);
1079 release_pages:
1080 	f2fs_put_rpages_mapping(mapping, start_idx, i);
1081 	f2fs_destroy_compress_ctx(cc);
1082 	return ret;
1083 }
1084 
1085 int f2fs_prepare_compress_overwrite(struct inode *inode,
1086 		struct page **pagep, pgoff_t index, void **fsdata)
1087 {
1088 	struct compress_ctx cc = {
1089 		.inode = inode,
1090 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1091 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1092 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1093 		.rpages = NULL,
1094 		.nr_rpages = 0,
1095 	};
1096 
1097 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1098 }
1099 
1100 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1101 					pgoff_t index, unsigned copied)
1102 
1103 {
1104 	struct compress_ctx cc = {
1105 		.inode = inode,
1106 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1107 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1108 		.rpages = fsdata,
1109 	};
1110 	bool first_index = (index == cc.rpages[0]->index);
1111 
1112 	if (copied)
1113 		set_cluster_dirty(&cc);
1114 
1115 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1116 	f2fs_destroy_compress_ctx(&cc);
1117 
1118 	return first_index;
1119 }
1120 
1121 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1122 {
1123 	void *fsdata = NULL;
1124 	struct page *pagep;
1125 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1126 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1127 							log_cluster_size;
1128 	int err;
1129 
1130 	err = f2fs_is_compressed_cluster(inode, start_idx);
1131 	if (err < 0)
1132 		return err;
1133 
1134 	/* truncate normal cluster */
1135 	if (!err)
1136 		return f2fs_do_truncate_blocks(inode, from, lock);
1137 
1138 	/* truncate compressed cluster */
1139 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1140 						start_idx, &fsdata);
1141 
1142 	/* should not be a normal cluster */
1143 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1144 
1145 	if (err <= 0)
1146 		return err;
1147 
1148 	if (err > 0) {
1149 		struct page **rpages = fsdata;
1150 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1151 		int i;
1152 
1153 		for (i = cluster_size - 1; i >= 0; i--) {
1154 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1155 
1156 			if (from <= start) {
1157 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1158 			} else {
1159 				zero_user_segment(rpages[i], from - start,
1160 								PAGE_SIZE);
1161 				break;
1162 			}
1163 		}
1164 
1165 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1166 	}
1167 	return 0;
1168 }
1169 
1170 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1171 					int *submitted,
1172 					struct writeback_control *wbc,
1173 					enum iostat_type io_type)
1174 {
1175 	struct inode *inode = cc->inode;
1176 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1177 	struct f2fs_inode_info *fi = F2FS_I(inode);
1178 	struct f2fs_io_info fio = {
1179 		.sbi = sbi,
1180 		.ino = cc->inode->i_ino,
1181 		.type = DATA,
1182 		.op = REQ_OP_WRITE,
1183 		.op_flags = wbc_to_write_flags(wbc),
1184 		.old_blkaddr = NEW_ADDR,
1185 		.page = NULL,
1186 		.encrypted_page = NULL,
1187 		.compressed_page = NULL,
1188 		.submitted = false,
1189 		.io_type = io_type,
1190 		.io_wbc = wbc,
1191 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1192 	};
1193 	struct dnode_of_data dn;
1194 	struct node_info ni;
1195 	struct compress_io_ctx *cic;
1196 	pgoff_t start_idx = start_idx_of_cluster(cc);
1197 	unsigned int last_index = cc->cluster_size - 1;
1198 	loff_t psize;
1199 	int i, err;
1200 
1201 	if (IS_NOQUOTA(inode)) {
1202 		/*
1203 		 * We need to wait for node_write to avoid block allocation during
1204 		 * checkpoint. This can only happen to quota writes which can cause
1205 		 * the below discard race condition.
1206 		 */
1207 		down_read(&sbi->node_write);
1208 	} else if (!f2fs_trylock_op(sbi)) {
1209 		goto out_free;
1210 	}
1211 
1212 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1213 
1214 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1215 	if (err)
1216 		goto out_unlock_op;
1217 
1218 	for (i = 0; i < cc->cluster_size; i++) {
1219 		if (data_blkaddr(dn.inode, dn.node_page,
1220 					dn.ofs_in_node + i) == NULL_ADDR)
1221 			goto out_put_dnode;
1222 	}
1223 
1224 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1225 
1226 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1227 	if (err)
1228 		goto out_put_dnode;
1229 
1230 	fio.version = ni.version;
1231 
1232 	cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS);
1233 	if (!cic)
1234 		goto out_put_dnode;
1235 
1236 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1237 	cic->inode = inode;
1238 	atomic_set(&cic->pending_pages, cc->nr_cpages);
1239 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1240 	if (!cic->rpages)
1241 		goto out_put_cic;
1242 
1243 	cic->nr_rpages = cc->cluster_size;
1244 
1245 	for (i = 0; i < cc->nr_cpages; i++) {
1246 		f2fs_set_compressed_page(cc->cpages[i], inode,
1247 					cc->rpages[i + 1]->index, cic);
1248 		fio.compressed_page = cc->cpages[i];
1249 
1250 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1251 						dn.ofs_in_node + i + 1);
1252 
1253 		/* wait for GCed page writeback via META_MAPPING */
1254 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1255 
1256 		if (fio.encrypted) {
1257 			fio.page = cc->rpages[i + 1];
1258 			err = f2fs_encrypt_one_page(&fio);
1259 			if (err)
1260 				goto out_destroy_crypt;
1261 			cc->cpages[i] = fio.encrypted_page;
1262 		}
1263 	}
1264 
1265 	set_cluster_writeback(cc);
1266 
1267 	for (i = 0; i < cc->cluster_size; i++)
1268 		cic->rpages[i] = cc->rpages[i];
1269 
1270 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1271 		block_t blkaddr;
1272 
1273 		blkaddr = f2fs_data_blkaddr(&dn);
1274 		fio.page = cc->rpages[i];
1275 		fio.old_blkaddr = blkaddr;
1276 
1277 		/* cluster header */
1278 		if (i == 0) {
1279 			if (blkaddr == COMPRESS_ADDR)
1280 				fio.compr_blocks++;
1281 			if (__is_valid_data_blkaddr(blkaddr))
1282 				f2fs_invalidate_blocks(sbi, blkaddr);
1283 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1284 			goto unlock_continue;
1285 		}
1286 
1287 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1288 			fio.compr_blocks++;
1289 
1290 		if (i > cc->nr_cpages) {
1291 			if (__is_valid_data_blkaddr(blkaddr)) {
1292 				f2fs_invalidate_blocks(sbi, blkaddr);
1293 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1294 			}
1295 			goto unlock_continue;
1296 		}
1297 
1298 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1299 
1300 		if (fio.encrypted)
1301 			fio.encrypted_page = cc->cpages[i - 1];
1302 		else
1303 			fio.compressed_page = cc->cpages[i - 1];
1304 
1305 		cc->cpages[i - 1] = NULL;
1306 		f2fs_outplace_write_data(&dn, &fio);
1307 		(*submitted)++;
1308 unlock_continue:
1309 		inode_dec_dirty_pages(cc->inode);
1310 		unlock_page(fio.page);
1311 	}
1312 
1313 	if (fio.compr_blocks)
1314 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1315 	f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1316 
1317 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1318 	if (cc->cluster_idx == 0)
1319 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1320 
1321 	f2fs_put_dnode(&dn);
1322 	if (IS_NOQUOTA(inode))
1323 		up_read(&sbi->node_write);
1324 	else
1325 		f2fs_unlock_op(sbi);
1326 
1327 	spin_lock(&fi->i_size_lock);
1328 	if (fi->last_disk_size < psize)
1329 		fi->last_disk_size = psize;
1330 	spin_unlock(&fi->i_size_lock);
1331 
1332 	f2fs_put_rpages(cc);
1333 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1334 	cc->cpages = NULL;
1335 	f2fs_destroy_compress_ctx(cc);
1336 	return 0;
1337 
1338 out_destroy_crypt:
1339 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1340 
1341 	for (--i; i >= 0; i--)
1342 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1343 	for (i = 0; i < cc->nr_cpages; i++) {
1344 		if (!cc->cpages[i])
1345 			continue;
1346 		f2fs_put_page(cc->cpages[i], 1);
1347 	}
1348 out_put_cic:
1349 	kmem_cache_free(cic_entry_slab, cic);
1350 out_put_dnode:
1351 	f2fs_put_dnode(&dn);
1352 out_unlock_op:
1353 	if (IS_NOQUOTA(inode))
1354 		up_read(&sbi->node_write);
1355 	else
1356 		f2fs_unlock_op(sbi);
1357 out_free:
1358 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1359 	cc->cpages = NULL;
1360 	return -EAGAIN;
1361 }
1362 
1363 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1364 {
1365 	struct f2fs_sb_info *sbi = bio->bi_private;
1366 	struct compress_io_ctx *cic =
1367 			(struct compress_io_ctx *)page_private(page);
1368 	int i;
1369 
1370 	if (unlikely(bio->bi_status))
1371 		mapping_set_error(cic->inode->i_mapping, -EIO);
1372 
1373 	f2fs_compress_free_page(page);
1374 
1375 	dec_page_count(sbi, F2FS_WB_DATA);
1376 
1377 	if (atomic_dec_return(&cic->pending_pages))
1378 		return;
1379 
1380 	for (i = 0; i < cic->nr_rpages; i++) {
1381 		WARN_ON(!cic->rpages[i]);
1382 		clear_cold_data(cic->rpages[i]);
1383 		end_page_writeback(cic->rpages[i]);
1384 	}
1385 
1386 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1387 	kmem_cache_free(cic_entry_slab, cic);
1388 }
1389 
1390 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1391 					int *submitted,
1392 					struct writeback_control *wbc,
1393 					enum iostat_type io_type)
1394 {
1395 	struct address_space *mapping = cc->inode->i_mapping;
1396 	int _submitted, compr_blocks, ret;
1397 	int i = -1, err = 0;
1398 
1399 	compr_blocks = f2fs_compressed_blocks(cc);
1400 	if (compr_blocks < 0) {
1401 		err = compr_blocks;
1402 		goto out_err;
1403 	}
1404 
1405 	for (i = 0; i < cc->cluster_size; i++) {
1406 		if (!cc->rpages[i])
1407 			continue;
1408 retry_write:
1409 		if (cc->rpages[i]->mapping != mapping) {
1410 			unlock_page(cc->rpages[i]);
1411 			continue;
1412 		}
1413 
1414 		BUG_ON(!PageLocked(cc->rpages[i]));
1415 
1416 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1417 						NULL, NULL, wbc, io_type,
1418 						compr_blocks);
1419 		if (ret) {
1420 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1421 				unlock_page(cc->rpages[i]);
1422 				ret = 0;
1423 			} else if (ret == -EAGAIN) {
1424 				/*
1425 				 * for quota file, just redirty left pages to
1426 				 * avoid deadlock caused by cluster update race
1427 				 * from foreground operation.
1428 				 */
1429 				if (IS_NOQUOTA(cc->inode)) {
1430 					err = 0;
1431 					goto out_err;
1432 				}
1433 				ret = 0;
1434 				cond_resched();
1435 				congestion_wait(BLK_RW_ASYNC,
1436 						DEFAULT_IO_TIMEOUT);
1437 				lock_page(cc->rpages[i]);
1438 
1439 				if (!PageDirty(cc->rpages[i])) {
1440 					unlock_page(cc->rpages[i]);
1441 					continue;
1442 				}
1443 
1444 				clear_page_dirty_for_io(cc->rpages[i]);
1445 				goto retry_write;
1446 			}
1447 			err = ret;
1448 			goto out_err;
1449 		}
1450 
1451 		*submitted += _submitted;
1452 	}
1453 	return 0;
1454 out_err:
1455 	for (++i; i < cc->cluster_size; i++) {
1456 		if (!cc->rpages[i])
1457 			continue;
1458 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1459 		unlock_page(cc->rpages[i]);
1460 	}
1461 	return err;
1462 }
1463 
1464 int f2fs_write_multi_pages(struct compress_ctx *cc,
1465 					int *submitted,
1466 					struct writeback_control *wbc,
1467 					enum iostat_type io_type)
1468 {
1469 	int err;
1470 
1471 	*submitted = 0;
1472 	if (cluster_may_compress(cc)) {
1473 		err = f2fs_compress_pages(cc);
1474 		if (err == -EAGAIN) {
1475 			goto write;
1476 		} else if (err) {
1477 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1478 			goto destroy_out;
1479 		}
1480 
1481 		err = f2fs_write_compressed_pages(cc, submitted,
1482 							wbc, io_type);
1483 		if (!err)
1484 			return 0;
1485 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1486 	}
1487 write:
1488 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1489 
1490 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1491 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1492 destroy_out:
1493 	f2fs_destroy_compress_ctx(cc);
1494 	return err;
1495 }
1496 
1497 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1498 {
1499 	struct decompress_io_ctx *dic;
1500 	pgoff_t start_idx = start_idx_of_cluster(cc);
1501 	int i;
1502 
1503 	dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS);
1504 	if (!dic)
1505 		return ERR_PTR(-ENOMEM);
1506 
1507 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1508 	if (!dic->rpages) {
1509 		kmem_cache_free(dic_entry_slab, dic);
1510 		return ERR_PTR(-ENOMEM);
1511 	}
1512 
1513 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1514 	dic->inode = cc->inode;
1515 	atomic_set(&dic->pending_pages, cc->nr_cpages);
1516 	dic->cluster_idx = cc->cluster_idx;
1517 	dic->cluster_size = cc->cluster_size;
1518 	dic->log_cluster_size = cc->log_cluster_size;
1519 	dic->nr_cpages = cc->nr_cpages;
1520 	dic->failed = false;
1521 
1522 	for (i = 0; i < dic->cluster_size; i++)
1523 		dic->rpages[i] = cc->rpages[i];
1524 	dic->nr_rpages = cc->cluster_size;
1525 
1526 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1527 	if (!dic->cpages)
1528 		goto out_free;
1529 
1530 	for (i = 0; i < dic->nr_cpages; i++) {
1531 		struct page *page;
1532 
1533 		page = f2fs_compress_alloc_page();
1534 		if (!page)
1535 			goto out_free;
1536 
1537 		f2fs_set_compressed_page(page, cc->inode,
1538 					start_idx + i + 1, dic);
1539 		dic->cpages[i] = page;
1540 	}
1541 
1542 	return dic;
1543 
1544 out_free:
1545 	f2fs_free_dic(dic);
1546 	return ERR_PTR(-ENOMEM);
1547 }
1548 
1549 void f2fs_free_dic(struct decompress_io_ctx *dic)
1550 {
1551 	int i;
1552 
1553 	if (dic->tpages) {
1554 		for (i = 0; i < dic->cluster_size; i++) {
1555 			if (dic->rpages[i])
1556 				continue;
1557 			if (!dic->tpages[i])
1558 				continue;
1559 			f2fs_compress_free_page(dic->tpages[i]);
1560 		}
1561 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1562 	}
1563 
1564 	if (dic->cpages) {
1565 		for (i = 0; i < dic->nr_cpages; i++) {
1566 			if (!dic->cpages[i])
1567 				continue;
1568 			f2fs_compress_free_page(dic->cpages[i]);
1569 		}
1570 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1571 	}
1572 
1573 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1574 	kmem_cache_free(dic_entry_slab, dic);
1575 }
1576 
1577 void f2fs_decompress_end_io(struct page **rpages,
1578 			unsigned int cluster_size, bool err, bool verity)
1579 {
1580 	int i;
1581 
1582 	for (i = 0; i < cluster_size; i++) {
1583 		struct page *rpage = rpages[i];
1584 
1585 		if (!rpage)
1586 			continue;
1587 
1588 		if (err || PageError(rpage))
1589 			goto clear_uptodate;
1590 
1591 		if (!verity || fsverity_verify_page(rpage)) {
1592 			SetPageUptodate(rpage);
1593 			goto unlock;
1594 		}
1595 clear_uptodate:
1596 		ClearPageUptodate(rpage);
1597 		ClearPageError(rpage);
1598 unlock:
1599 		unlock_page(rpage);
1600 	}
1601 }
1602 
1603 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1604 {
1605 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1606 	char slab_name[32];
1607 
1608 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1609 
1610 	sbi->page_array_slab_size = sizeof(struct page *) <<
1611 					F2FS_OPTION(sbi).compress_log_size;
1612 
1613 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1614 					sbi->page_array_slab_size);
1615 	if (!sbi->page_array_slab)
1616 		return -ENOMEM;
1617 	return 0;
1618 }
1619 
1620 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1621 {
1622 	kmem_cache_destroy(sbi->page_array_slab);
1623 }
1624 
1625 static int __init f2fs_init_cic_cache(void)
1626 {
1627 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1628 					sizeof(struct compress_io_ctx));
1629 	if (!cic_entry_slab)
1630 		return -ENOMEM;
1631 	return 0;
1632 }
1633 
1634 static void f2fs_destroy_cic_cache(void)
1635 {
1636 	kmem_cache_destroy(cic_entry_slab);
1637 }
1638 
1639 static int __init f2fs_init_dic_cache(void)
1640 {
1641 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1642 					sizeof(struct decompress_io_ctx));
1643 	if (!dic_entry_slab)
1644 		return -ENOMEM;
1645 	return 0;
1646 }
1647 
1648 static void f2fs_destroy_dic_cache(void)
1649 {
1650 	kmem_cache_destroy(dic_entry_slab);
1651 }
1652 
1653 int __init f2fs_init_compress_cache(void)
1654 {
1655 	int err;
1656 
1657 	err = f2fs_init_cic_cache();
1658 	if (err)
1659 		goto out;
1660 	err = f2fs_init_dic_cache();
1661 	if (err)
1662 		goto free_cic;
1663 	return 0;
1664 free_cic:
1665 	f2fs_destroy_cic_cache();
1666 out:
1667 	return -ENOMEM;
1668 }
1669 
1670 void f2fs_destroy_compress_cache(void)
1671 {
1672 	f2fs_destroy_dic_cache();
1673 	f2fs_destroy_cic_cache();
1674 }
1675