1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/writeback.h> 11 #include <linux/backing-dev.h> 12 #include <linux/lzo.h> 13 #include <linux/lz4.h> 14 #include <linux/zstd.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include <trace/events/f2fs.h> 19 20 static struct kmem_cache *cic_entry_slab; 21 static struct kmem_cache *dic_entry_slab; 22 23 static void *page_array_alloc(struct inode *inode, int nr) 24 { 25 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 26 unsigned int size = sizeof(struct page *) * nr; 27 28 if (likely(size <= sbi->page_array_slab_size)) 29 return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS); 30 return f2fs_kzalloc(sbi, size, GFP_NOFS); 31 } 32 33 static void page_array_free(struct inode *inode, void *pages, int nr) 34 { 35 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 36 unsigned int size = sizeof(struct page *) * nr; 37 38 if (!pages) 39 return; 40 41 if (likely(size <= sbi->page_array_slab_size)) 42 kmem_cache_free(sbi->page_array_slab, pages); 43 else 44 kfree(pages); 45 } 46 47 struct f2fs_compress_ops { 48 int (*init_compress_ctx)(struct compress_ctx *cc); 49 void (*destroy_compress_ctx)(struct compress_ctx *cc); 50 int (*compress_pages)(struct compress_ctx *cc); 51 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 52 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 53 int (*decompress_pages)(struct decompress_io_ctx *dic); 54 }; 55 56 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 57 { 58 return index & (cc->cluster_size - 1); 59 } 60 61 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index >> cc->log_cluster_size; 64 } 65 66 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 67 { 68 return cc->cluster_idx << cc->log_cluster_size; 69 } 70 71 bool f2fs_is_compressed_page(struct page *page) 72 { 73 if (!PagePrivate(page)) 74 return false; 75 if (!page_private(page)) 76 return false; 77 if (IS_ATOMIC_WRITTEN_PAGE(page) || IS_DUMMY_WRITTEN_PAGE(page)) 78 return false; 79 80 f2fs_bug_on(F2FS_M_SB(page->mapping), 81 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 82 return true; 83 } 84 85 static void f2fs_set_compressed_page(struct page *page, 86 struct inode *inode, pgoff_t index, void *data) 87 { 88 SetPagePrivate(page); 89 set_page_private(page, (unsigned long)data); 90 91 /* i_crypto_info and iv index */ 92 page->index = index; 93 page->mapping = inode->i_mapping; 94 } 95 96 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 97 { 98 int i; 99 100 for (i = 0; i < len; i++) { 101 if (!cc->rpages[i]) 102 continue; 103 if (unlock) 104 unlock_page(cc->rpages[i]); 105 else 106 put_page(cc->rpages[i]); 107 } 108 } 109 110 static void f2fs_put_rpages(struct compress_ctx *cc) 111 { 112 f2fs_drop_rpages(cc, cc->cluster_size, false); 113 } 114 115 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 116 { 117 f2fs_drop_rpages(cc, len, true); 118 } 119 120 static void f2fs_put_rpages_mapping(struct address_space *mapping, 121 pgoff_t start, int len) 122 { 123 int i; 124 125 for (i = 0; i < len; i++) { 126 struct page *page = find_get_page(mapping, start + i); 127 128 put_page(page); 129 put_page(page); 130 } 131 } 132 133 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 134 struct writeback_control *wbc, bool redirty, int unlock) 135 { 136 unsigned int i; 137 138 for (i = 0; i < cc->cluster_size; i++) { 139 if (!cc->rpages[i]) 140 continue; 141 if (redirty) 142 redirty_page_for_writepage(wbc, cc->rpages[i]); 143 f2fs_put_page(cc->rpages[i], unlock); 144 } 145 } 146 147 struct page *f2fs_compress_control_page(struct page *page) 148 { 149 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 150 } 151 152 int f2fs_init_compress_ctx(struct compress_ctx *cc) 153 { 154 if (cc->rpages) 155 return 0; 156 157 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 158 return cc->rpages ? 0 : -ENOMEM; 159 } 160 161 void f2fs_destroy_compress_ctx(struct compress_ctx *cc) 162 { 163 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 164 cc->rpages = NULL; 165 cc->nr_rpages = 0; 166 cc->nr_cpages = 0; 167 cc->cluster_idx = NULL_CLUSTER; 168 } 169 170 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 171 { 172 unsigned int cluster_ofs; 173 174 if (!f2fs_cluster_can_merge_page(cc, page->index)) 175 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 176 177 cluster_ofs = offset_in_cluster(cc, page->index); 178 cc->rpages[cluster_ofs] = page; 179 cc->nr_rpages++; 180 cc->cluster_idx = cluster_idx(cc, page->index); 181 } 182 183 #ifdef CONFIG_F2FS_FS_LZO 184 static int lzo_init_compress_ctx(struct compress_ctx *cc) 185 { 186 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 187 LZO1X_MEM_COMPRESS, GFP_NOFS); 188 if (!cc->private) 189 return -ENOMEM; 190 191 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 192 return 0; 193 } 194 195 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 196 { 197 kvfree(cc->private); 198 cc->private = NULL; 199 } 200 201 static int lzo_compress_pages(struct compress_ctx *cc) 202 { 203 int ret; 204 205 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 206 &cc->clen, cc->private); 207 if (ret != LZO_E_OK) { 208 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 209 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 210 return -EIO; 211 } 212 return 0; 213 } 214 215 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 216 { 217 int ret; 218 219 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 220 dic->rbuf, &dic->rlen); 221 if (ret != LZO_E_OK) { 222 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 223 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 224 return -EIO; 225 } 226 227 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 228 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 229 "expected:%lu\n", KERN_ERR, 230 F2FS_I_SB(dic->inode)->sb->s_id, 231 dic->rlen, 232 PAGE_SIZE << dic->log_cluster_size); 233 return -EIO; 234 } 235 return 0; 236 } 237 238 static const struct f2fs_compress_ops f2fs_lzo_ops = { 239 .init_compress_ctx = lzo_init_compress_ctx, 240 .destroy_compress_ctx = lzo_destroy_compress_ctx, 241 .compress_pages = lzo_compress_pages, 242 .decompress_pages = lzo_decompress_pages, 243 }; 244 #endif 245 246 #ifdef CONFIG_F2FS_FS_LZ4 247 static int lz4_init_compress_ctx(struct compress_ctx *cc) 248 { 249 unsigned int size = LZ4_MEM_COMPRESS; 250 251 #ifdef CONFIG_F2FS_FS_LZ4HC 252 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) 253 size = LZ4HC_MEM_COMPRESS; 254 #endif 255 256 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 257 if (!cc->private) 258 return -ENOMEM; 259 260 /* 261 * we do not change cc->clen to LZ4_compressBound(inputsize) to 262 * adapt worst compress case, because lz4 compressor can handle 263 * output budget properly. 264 */ 265 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 266 return 0; 267 } 268 269 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 270 { 271 kvfree(cc->private); 272 cc->private = NULL; 273 } 274 275 #ifdef CONFIG_F2FS_FS_LZ4HC 276 static int lz4hc_compress_pages(struct compress_ctx *cc) 277 { 278 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 279 COMPRESS_LEVEL_OFFSET; 280 int len; 281 282 if (level) 283 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 284 cc->clen, level, cc->private); 285 else 286 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 287 cc->clen, cc->private); 288 if (!len) 289 return -EAGAIN; 290 291 cc->clen = len; 292 return 0; 293 } 294 #endif 295 296 static int lz4_compress_pages(struct compress_ctx *cc) 297 { 298 int len; 299 300 #ifdef CONFIG_F2FS_FS_LZ4HC 301 return lz4hc_compress_pages(cc); 302 #endif 303 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 304 cc->clen, cc->private); 305 if (!len) 306 return -EAGAIN; 307 308 cc->clen = len; 309 return 0; 310 } 311 312 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 313 { 314 int ret; 315 316 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 317 dic->clen, dic->rlen); 318 if (ret < 0) { 319 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 320 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 321 return -EIO; 322 } 323 324 if (ret != PAGE_SIZE << dic->log_cluster_size) { 325 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, " 326 "expected:%lu\n", KERN_ERR, 327 F2FS_I_SB(dic->inode)->sb->s_id, 328 dic->rlen, 329 PAGE_SIZE << dic->log_cluster_size); 330 return -EIO; 331 } 332 return 0; 333 } 334 335 static const struct f2fs_compress_ops f2fs_lz4_ops = { 336 .init_compress_ctx = lz4_init_compress_ctx, 337 .destroy_compress_ctx = lz4_destroy_compress_ctx, 338 .compress_pages = lz4_compress_pages, 339 .decompress_pages = lz4_decompress_pages, 340 }; 341 #endif 342 343 #ifdef CONFIG_F2FS_FS_ZSTD 344 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 345 346 static int zstd_init_compress_ctx(struct compress_ctx *cc) 347 { 348 ZSTD_parameters params; 349 ZSTD_CStream *stream; 350 void *workspace; 351 unsigned int workspace_size; 352 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> 353 COMPRESS_LEVEL_OFFSET; 354 355 if (!level) 356 level = F2FS_ZSTD_DEFAULT_CLEVEL; 357 358 params = ZSTD_getParams(level, cc->rlen, 0); 359 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams); 360 361 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 362 workspace_size, GFP_NOFS); 363 if (!workspace) 364 return -ENOMEM; 365 366 stream = ZSTD_initCStream(params, 0, workspace, workspace_size); 367 if (!stream) { 368 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n", 369 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 370 __func__); 371 kvfree(workspace); 372 return -EIO; 373 } 374 375 cc->private = workspace; 376 cc->private2 = stream; 377 378 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 379 return 0; 380 } 381 382 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 383 { 384 kvfree(cc->private); 385 cc->private = NULL; 386 cc->private2 = NULL; 387 } 388 389 static int zstd_compress_pages(struct compress_ctx *cc) 390 { 391 ZSTD_CStream *stream = cc->private2; 392 ZSTD_inBuffer inbuf; 393 ZSTD_outBuffer outbuf; 394 int src_size = cc->rlen; 395 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 396 int ret; 397 398 inbuf.pos = 0; 399 inbuf.src = cc->rbuf; 400 inbuf.size = src_size; 401 402 outbuf.pos = 0; 403 outbuf.dst = cc->cbuf->cdata; 404 outbuf.size = dst_size; 405 406 ret = ZSTD_compressStream(stream, &outbuf, &inbuf); 407 if (ZSTD_isError(ret)) { 408 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 409 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 410 __func__, ZSTD_getErrorCode(ret)); 411 return -EIO; 412 } 413 414 ret = ZSTD_endStream(stream, &outbuf); 415 if (ZSTD_isError(ret)) { 416 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n", 417 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 418 __func__, ZSTD_getErrorCode(ret)); 419 return -EIO; 420 } 421 422 /* 423 * there is compressed data remained in intermediate buffer due to 424 * no more space in cbuf.cdata 425 */ 426 if (ret) 427 return -EAGAIN; 428 429 cc->clen = outbuf.pos; 430 return 0; 431 } 432 433 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 434 { 435 ZSTD_DStream *stream; 436 void *workspace; 437 unsigned int workspace_size; 438 unsigned int max_window_size = 439 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 440 441 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size); 442 443 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 444 workspace_size, GFP_NOFS); 445 if (!workspace) 446 return -ENOMEM; 447 448 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size); 449 if (!stream) { 450 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n", 451 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 452 __func__); 453 kvfree(workspace); 454 return -EIO; 455 } 456 457 dic->private = workspace; 458 dic->private2 = stream; 459 460 return 0; 461 } 462 463 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 464 { 465 kvfree(dic->private); 466 dic->private = NULL; 467 dic->private2 = NULL; 468 } 469 470 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 471 { 472 ZSTD_DStream *stream = dic->private2; 473 ZSTD_inBuffer inbuf; 474 ZSTD_outBuffer outbuf; 475 int ret; 476 477 inbuf.pos = 0; 478 inbuf.src = dic->cbuf->cdata; 479 inbuf.size = dic->clen; 480 481 outbuf.pos = 0; 482 outbuf.dst = dic->rbuf; 483 outbuf.size = dic->rlen; 484 485 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf); 486 if (ZSTD_isError(ret)) { 487 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 488 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 489 __func__, ZSTD_getErrorCode(ret)); 490 return -EIO; 491 } 492 493 if (dic->rlen != outbuf.pos) { 494 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 495 "expected:%lu\n", KERN_ERR, 496 F2FS_I_SB(dic->inode)->sb->s_id, 497 __func__, dic->rlen, 498 PAGE_SIZE << dic->log_cluster_size); 499 return -EIO; 500 } 501 502 return 0; 503 } 504 505 static const struct f2fs_compress_ops f2fs_zstd_ops = { 506 .init_compress_ctx = zstd_init_compress_ctx, 507 .destroy_compress_ctx = zstd_destroy_compress_ctx, 508 .compress_pages = zstd_compress_pages, 509 .init_decompress_ctx = zstd_init_decompress_ctx, 510 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 511 .decompress_pages = zstd_decompress_pages, 512 }; 513 #endif 514 515 #ifdef CONFIG_F2FS_FS_LZO 516 #ifdef CONFIG_F2FS_FS_LZORLE 517 static int lzorle_compress_pages(struct compress_ctx *cc) 518 { 519 int ret; 520 521 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 522 &cc->clen, cc->private); 523 if (ret != LZO_E_OK) { 524 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 525 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 526 return -EIO; 527 } 528 return 0; 529 } 530 531 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 532 .init_compress_ctx = lzo_init_compress_ctx, 533 .destroy_compress_ctx = lzo_destroy_compress_ctx, 534 .compress_pages = lzorle_compress_pages, 535 .decompress_pages = lzo_decompress_pages, 536 }; 537 #endif 538 #endif 539 540 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 541 #ifdef CONFIG_F2FS_FS_LZO 542 &f2fs_lzo_ops, 543 #else 544 NULL, 545 #endif 546 #ifdef CONFIG_F2FS_FS_LZ4 547 &f2fs_lz4_ops, 548 #else 549 NULL, 550 #endif 551 #ifdef CONFIG_F2FS_FS_ZSTD 552 &f2fs_zstd_ops, 553 #else 554 NULL, 555 #endif 556 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 557 &f2fs_lzorle_ops, 558 #else 559 NULL, 560 #endif 561 }; 562 563 bool f2fs_is_compress_backend_ready(struct inode *inode) 564 { 565 if (!f2fs_compressed_file(inode)) 566 return true; 567 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 568 } 569 570 static mempool_t *compress_page_pool; 571 static int num_compress_pages = 512; 572 module_param(num_compress_pages, uint, 0444); 573 MODULE_PARM_DESC(num_compress_pages, 574 "Number of intermediate compress pages to preallocate"); 575 576 int f2fs_init_compress_mempool(void) 577 { 578 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 579 if (!compress_page_pool) 580 return -ENOMEM; 581 582 return 0; 583 } 584 585 void f2fs_destroy_compress_mempool(void) 586 { 587 mempool_destroy(compress_page_pool); 588 } 589 590 static struct page *f2fs_compress_alloc_page(void) 591 { 592 struct page *page; 593 594 page = mempool_alloc(compress_page_pool, GFP_NOFS); 595 lock_page(page); 596 597 return page; 598 } 599 600 static void f2fs_compress_free_page(struct page *page) 601 { 602 if (!page) 603 return; 604 set_page_private(page, (unsigned long)NULL); 605 ClearPagePrivate(page); 606 page->mapping = NULL; 607 unlock_page(page); 608 mempool_free(page, compress_page_pool); 609 } 610 611 #define MAX_VMAP_RETRIES 3 612 613 static void *f2fs_vmap(struct page **pages, unsigned int count) 614 { 615 int i; 616 void *buf = NULL; 617 618 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 619 buf = vm_map_ram(pages, count, -1); 620 if (buf) 621 break; 622 vm_unmap_aliases(); 623 } 624 return buf; 625 } 626 627 static int f2fs_compress_pages(struct compress_ctx *cc) 628 { 629 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 630 const struct f2fs_compress_ops *cops = 631 f2fs_cops[fi->i_compress_algorithm]; 632 unsigned int max_len, new_nr_cpages; 633 struct page **new_cpages; 634 u32 chksum = 0; 635 int i, ret; 636 637 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 638 cc->cluster_size, fi->i_compress_algorithm); 639 640 if (cops->init_compress_ctx) { 641 ret = cops->init_compress_ctx(cc); 642 if (ret) 643 goto out; 644 } 645 646 max_len = COMPRESS_HEADER_SIZE + cc->clen; 647 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 648 649 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 650 if (!cc->cpages) { 651 ret = -ENOMEM; 652 goto destroy_compress_ctx; 653 } 654 655 for (i = 0; i < cc->nr_cpages; i++) { 656 cc->cpages[i] = f2fs_compress_alloc_page(); 657 if (!cc->cpages[i]) { 658 ret = -ENOMEM; 659 goto out_free_cpages; 660 } 661 } 662 663 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 664 if (!cc->rbuf) { 665 ret = -ENOMEM; 666 goto out_free_cpages; 667 } 668 669 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 670 if (!cc->cbuf) { 671 ret = -ENOMEM; 672 goto out_vunmap_rbuf; 673 } 674 675 ret = cops->compress_pages(cc); 676 if (ret) 677 goto out_vunmap_cbuf; 678 679 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 680 681 if (cc->clen > max_len) { 682 ret = -EAGAIN; 683 goto out_vunmap_cbuf; 684 } 685 686 cc->cbuf->clen = cpu_to_le32(cc->clen); 687 688 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) 689 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 690 cc->cbuf->cdata, cc->clen); 691 cc->cbuf->chksum = cpu_to_le32(chksum); 692 693 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 694 cc->cbuf->reserved[i] = cpu_to_le32(0); 695 696 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 697 698 /* Now we're going to cut unnecessary tail pages */ 699 new_cpages = page_array_alloc(cc->inode, new_nr_cpages); 700 if (!new_cpages) { 701 ret = -ENOMEM; 702 goto out_vunmap_cbuf; 703 } 704 705 /* zero out any unused part of the last page */ 706 memset(&cc->cbuf->cdata[cc->clen], 0, 707 (new_nr_cpages * PAGE_SIZE) - 708 (cc->clen + COMPRESS_HEADER_SIZE)); 709 710 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 711 vm_unmap_ram(cc->rbuf, cc->cluster_size); 712 713 for (i = 0; i < cc->nr_cpages; i++) { 714 if (i < new_nr_cpages) { 715 new_cpages[i] = cc->cpages[i]; 716 continue; 717 } 718 f2fs_compress_free_page(cc->cpages[i]); 719 cc->cpages[i] = NULL; 720 } 721 722 if (cops->destroy_compress_ctx) 723 cops->destroy_compress_ctx(cc); 724 725 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 726 cc->cpages = new_cpages; 727 cc->nr_cpages = new_nr_cpages; 728 729 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 730 cc->clen, ret); 731 return 0; 732 733 out_vunmap_cbuf: 734 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 735 out_vunmap_rbuf: 736 vm_unmap_ram(cc->rbuf, cc->cluster_size); 737 out_free_cpages: 738 for (i = 0; i < cc->nr_cpages; i++) { 739 if (cc->cpages[i]) 740 f2fs_compress_free_page(cc->cpages[i]); 741 } 742 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 743 cc->cpages = NULL; 744 destroy_compress_ctx: 745 if (cops->destroy_compress_ctx) 746 cops->destroy_compress_ctx(cc); 747 out: 748 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 749 cc->clen, ret); 750 return ret; 751 } 752 753 static void f2fs_decompress_cluster(struct decompress_io_ctx *dic) 754 { 755 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 756 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 757 const struct f2fs_compress_ops *cops = 758 f2fs_cops[fi->i_compress_algorithm]; 759 int ret; 760 int i; 761 762 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 763 dic->cluster_size, fi->i_compress_algorithm); 764 765 if (dic->failed) { 766 ret = -EIO; 767 goto out_end_io; 768 } 769 770 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 771 if (!dic->tpages) { 772 ret = -ENOMEM; 773 goto out_end_io; 774 } 775 776 for (i = 0; i < dic->cluster_size; i++) { 777 if (dic->rpages[i]) { 778 dic->tpages[i] = dic->rpages[i]; 779 continue; 780 } 781 782 dic->tpages[i] = f2fs_compress_alloc_page(); 783 if (!dic->tpages[i]) { 784 ret = -ENOMEM; 785 goto out_end_io; 786 } 787 } 788 789 if (cops->init_decompress_ctx) { 790 ret = cops->init_decompress_ctx(dic); 791 if (ret) 792 goto out_end_io; 793 } 794 795 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 796 if (!dic->rbuf) { 797 ret = -ENOMEM; 798 goto out_destroy_decompress_ctx; 799 } 800 801 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 802 if (!dic->cbuf) { 803 ret = -ENOMEM; 804 goto out_vunmap_rbuf; 805 } 806 807 dic->clen = le32_to_cpu(dic->cbuf->clen); 808 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 809 810 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 811 ret = -EFSCORRUPTED; 812 goto out_vunmap_cbuf; 813 } 814 815 ret = cops->decompress_pages(dic); 816 817 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { 818 u32 provided = le32_to_cpu(dic->cbuf->chksum); 819 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 820 821 if (provided != calculated) { 822 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 823 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 824 printk_ratelimited( 825 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", 826 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, 827 provided, calculated); 828 } 829 set_sbi_flag(sbi, SBI_NEED_FSCK); 830 } 831 } 832 833 out_vunmap_cbuf: 834 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 835 out_vunmap_rbuf: 836 vm_unmap_ram(dic->rbuf, dic->cluster_size); 837 out_destroy_decompress_ctx: 838 if (cops->destroy_decompress_ctx) 839 cops->destroy_decompress_ctx(dic); 840 out_end_io: 841 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 842 dic->clen, ret); 843 f2fs_decompress_end_io(dic, ret); 844 } 845 846 /* 847 * This is called when a page of a compressed cluster has been read from disk 848 * (or failed to be read from disk). It checks whether this page was the last 849 * page being waited on in the cluster, and if so, it decompresses the cluster 850 * (or in the case of a failure, cleans up without actually decompressing). 851 */ 852 void f2fs_end_read_compressed_page(struct page *page, bool failed) 853 { 854 struct decompress_io_ctx *dic = 855 (struct decompress_io_ctx *)page_private(page); 856 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 857 858 dec_page_count(sbi, F2FS_RD_DATA); 859 860 if (failed) 861 WRITE_ONCE(dic->failed, true); 862 863 if (atomic_dec_and_test(&dic->remaining_pages)) 864 f2fs_decompress_cluster(dic); 865 } 866 867 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 868 { 869 if (cc->cluster_idx == NULL_CLUSTER) 870 return true; 871 return cc->cluster_idx == cluster_idx(cc, index); 872 } 873 874 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 875 { 876 return cc->nr_rpages == 0; 877 } 878 879 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 880 { 881 return cc->cluster_size == cc->nr_rpages; 882 } 883 884 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 885 { 886 if (f2fs_cluster_is_empty(cc)) 887 return true; 888 return is_page_in_cluster(cc, index); 889 } 890 891 static bool __cluster_may_compress(struct compress_ctx *cc) 892 { 893 loff_t i_size = i_size_read(cc->inode); 894 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 895 int i; 896 897 for (i = 0; i < cc->cluster_size; i++) { 898 struct page *page = cc->rpages[i]; 899 900 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 901 902 /* beyond EOF */ 903 if (page->index >= nr_pages) 904 return false; 905 } 906 return true; 907 } 908 909 static int __f2fs_cluster_blocks(struct compress_ctx *cc, bool compr) 910 { 911 struct dnode_of_data dn; 912 int ret; 913 914 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 915 ret = f2fs_get_dnode_of_data(&dn, start_idx_of_cluster(cc), 916 LOOKUP_NODE); 917 if (ret) { 918 if (ret == -ENOENT) 919 ret = 0; 920 goto fail; 921 } 922 923 if (dn.data_blkaddr == COMPRESS_ADDR) { 924 int i; 925 926 ret = 1; 927 for (i = 1; i < cc->cluster_size; i++) { 928 block_t blkaddr; 929 930 blkaddr = data_blkaddr(dn.inode, 931 dn.node_page, dn.ofs_in_node + i); 932 if (compr) { 933 if (__is_valid_data_blkaddr(blkaddr)) 934 ret++; 935 } else { 936 if (blkaddr != NULL_ADDR) 937 ret++; 938 } 939 } 940 } 941 fail: 942 f2fs_put_dnode(&dn); 943 return ret; 944 } 945 946 /* return # of compressed blocks in compressed cluster */ 947 static int f2fs_compressed_blocks(struct compress_ctx *cc) 948 { 949 return __f2fs_cluster_blocks(cc, true); 950 } 951 952 /* return # of valid blocks in compressed cluster */ 953 static int f2fs_cluster_blocks(struct compress_ctx *cc) 954 { 955 return __f2fs_cluster_blocks(cc, false); 956 } 957 958 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 959 { 960 struct compress_ctx cc = { 961 .inode = inode, 962 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 963 .cluster_size = F2FS_I(inode)->i_cluster_size, 964 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 965 }; 966 967 return f2fs_cluster_blocks(&cc); 968 } 969 970 static bool cluster_may_compress(struct compress_ctx *cc) 971 { 972 if (!f2fs_need_compress_data(cc->inode)) 973 return false; 974 if (f2fs_is_atomic_file(cc->inode)) 975 return false; 976 if (f2fs_is_mmap_file(cc->inode)) 977 return false; 978 if (!f2fs_cluster_is_full(cc)) 979 return false; 980 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 981 return false; 982 return __cluster_may_compress(cc); 983 } 984 985 static void set_cluster_writeback(struct compress_ctx *cc) 986 { 987 int i; 988 989 for (i = 0; i < cc->cluster_size; i++) { 990 if (cc->rpages[i]) 991 set_page_writeback(cc->rpages[i]); 992 } 993 } 994 995 static void set_cluster_dirty(struct compress_ctx *cc) 996 { 997 int i; 998 999 for (i = 0; i < cc->cluster_size; i++) 1000 if (cc->rpages[i]) 1001 set_page_dirty(cc->rpages[i]); 1002 } 1003 1004 static int prepare_compress_overwrite(struct compress_ctx *cc, 1005 struct page **pagep, pgoff_t index, void **fsdata) 1006 { 1007 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1008 struct address_space *mapping = cc->inode->i_mapping; 1009 struct page *page; 1010 struct dnode_of_data dn; 1011 sector_t last_block_in_bio; 1012 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1013 pgoff_t start_idx = start_idx_of_cluster(cc); 1014 int i, ret; 1015 bool prealloc; 1016 1017 retry: 1018 ret = f2fs_cluster_blocks(cc); 1019 if (ret <= 0) 1020 return ret; 1021 1022 /* compressed case */ 1023 prealloc = (ret < cc->cluster_size); 1024 1025 ret = f2fs_init_compress_ctx(cc); 1026 if (ret) 1027 return ret; 1028 1029 /* keep page reference to avoid page reclaim */ 1030 for (i = 0; i < cc->cluster_size; i++) { 1031 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1032 fgp_flag, GFP_NOFS); 1033 if (!page) { 1034 ret = -ENOMEM; 1035 goto unlock_pages; 1036 } 1037 1038 if (PageUptodate(page)) 1039 unlock_page(page); 1040 else 1041 f2fs_compress_ctx_add_page(cc, page); 1042 } 1043 1044 if (!f2fs_cluster_is_empty(cc)) { 1045 struct bio *bio = NULL; 1046 1047 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1048 &last_block_in_bio, false, true); 1049 f2fs_destroy_compress_ctx(cc); 1050 if (ret) 1051 goto release_pages; 1052 if (bio) 1053 f2fs_submit_bio(sbi, bio, DATA); 1054 1055 ret = f2fs_init_compress_ctx(cc); 1056 if (ret) 1057 goto release_pages; 1058 } 1059 1060 for (i = 0; i < cc->cluster_size; i++) { 1061 f2fs_bug_on(sbi, cc->rpages[i]); 1062 1063 page = find_lock_page(mapping, start_idx + i); 1064 f2fs_bug_on(sbi, !page); 1065 1066 f2fs_wait_on_page_writeback(page, DATA, true, true); 1067 1068 f2fs_compress_ctx_add_page(cc, page); 1069 f2fs_put_page(page, 0); 1070 1071 if (!PageUptodate(page)) { 1072 f2fs_unlock_rpages(cc, i + 1); 1073 f2fs_put_rpages_mapping(mapping, start_idx, 1074 cc->cluster_size); 1075 f2fs_destroy_compress_ctx(cc); 1076 goto retry; 1077 } 1078 } 1079 1080 if (prealloc) { 1081 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 1082 1083 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1084 1085 for (i = cc->cluster_size - 1; i > 0; i--) { 1086 ret = f2fs_get_block(&dn, start_idx + i); 1087 if (ret) { 1088 i = cc->cluster_size; 1089 break; 1090 } 1091 1092 if (dn.data_blkaddr != NEW_ADDR) 1093 break; 1094 } 1095 1096 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 1097 } 1098 1099 if (likely(!ret)) { 1100 *fsdata = cc->rpages; 1101 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1102 return cc->cluster_size; 1103 } 1104 1105 unlock_pages: 1106 f2fs_unlock_rpages(cc, i); 1107 release_pages: 1108 f2fs_put_rpages_mapping(mapping, start_idx, i); 1109 f2fs_destroy_compress_ctx(cc); 1110 return ret; 1111 } 1112 1113 int f2fs_prepare_compress_overwrite(struct inode *inode, 1114 struct page **pagep, pgoff_t index, void **fsdata) 1115 { 1116 struct compress_ctx cc = { 1117 .inode = inode, 1118 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1119 .cluster_size = F2FS_I(inode)->i_cluster_size, 1120 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1121 .rpages = NULL, 1122 .nr_rpages = 0, 1123 }; 1124 1125 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1126 } 1127 1128 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1129 pgoff_t index, unsigned copied) 1130 1131 { 1132 struct compress_ctx cc = { 1133 .inode = inode, 1134 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1135 .cluster_size = F2FS_I(inode)->i_cluster_size, 1136 .rpages = fsdata, 1137 }; 1138 bool first_index = (index == cc.rpages[0]->index); 1139 1140 if (copied) 1141 set_cluster_dirty(&cc); 1142 1143 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1144 f2fs_destroy_compress_ctx(&cc); 1145 1146 return first_index; 1147 } 1148 1149 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1150 { 1151 void *fsdata = NULL; 1152 struct page *pagep; 1153 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1154 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1155 log_cluster_size; 1156 int err; 1157 1158 err = f2fs_is_compressed_cluster(inode, start_idx); 1159 if (err < 0) 1160 return err; 1161 1162 /* truncate normal cluster */ 1163 if (!err) 1164 return f2fs_do_truncate_blocks(inode, from, lock); 1165 1166 /* truncate compressed cluster */ 1167 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1168 start_idx, &fsdata); 1169 1170 /* should not be a normal cluster */ 1171 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1172 1173 if (err <= 0) 1174 return err; 1175 1176 if (err > 0) { 1177 struct page **rpages = fsdata; 1178 int cluster_size = F2FS_I(inode)->i_cluster_size; 1179 int i; 1180 1181 for (i = cluster_size - 1; i >= 0; i--) { 1182 loff_t start = rpages[i]->index << PAGE_SHIFT; 1183 1184 if (from <= start) { 1185 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1186 } else { 1187 zero_user_segment(rpages[i], from - start, 1188 PAGE_SIZE); 1189 break; 1190 } 1191 } 1192 1193 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1194 } 1195 return 0; 1196 } 1197 1198 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1199 int *submitted, 1200 struct writeback_control *wbc, 1201 enum iostat_type io_type) 1202 { 1203 struct inode *inode = cc->inode; 1204 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1205 struct f2fs_inode_info *fi = F2FS_I(inode); 1206 struct f2fs_io_info fio = { 1207 .sbi = sbi, 1208 .ino = cc->inode->i_ino, 1209 .type = DATA, 1210 .op = REQ_OP_WRITE, 1211 .op_flags = wbc_to_write_flags(wbc), 1212 .old_blkaddr = NEW_ADDR, 1213 .page = NULL, 1214 .encrypted_page = NULL, 1215 .compressed_page = NULL, 1216 .submitted = false, 1217 .io_type = io_type, 1218 .io_wbc = wbc, 1219 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), 1220 }; 1221 struct dnode_of_data dn; 1222 struct node_info ni; 1223 struct compress_io_ctx *cic; 1224 pgoff_t start_idx = start_idx_of_cluster(cc); 1225 unsigned int last_index = cc->cluster_size - 1; 1226 loff_t psize; 1227 int i, err; 1228 1229 if (IS_NOQUOTA(inode)) { 1230 /* 1231 * We need to wait for node_write to avoid block allocation during 1232 * checkpoint. This can only happen to quota writes which can cause 1233 * the below discard race condition. 1234 */ 1235 down_read(&sbi->node_write); 1236 } else if (!f2fs_trylock_op(sbi)) { 1237 goto out_free; 1238 } 1239 1240 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1241 1242 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1243 if (err) 1244 goto out_unlock_op; 1245 1246 for (i = 0; i < cc->cluster_size; i++) { 1247 if (data_blkaddr(dn.inode, dn.node_page, 1248 dn.ofs_in_node + i) == NULL_ADDR) 1249 goto out_put_dnode; 1250 } 1251 1252 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1253 1254 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 1255 if (err) 1256 goto out_put_dnode; 1257 1258 fio.version = ni.version; 1259 1260 cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS); 1261 if (!cic) 1262 goto out_put_dnode; 1263 1264 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1265 cic->inode = inode; 1266 atomic_set(&cic->pending_pages, cc->nr_cpages); 1267 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1268 if (!cic->rpages) 1269 goto out_put_cic; 1270 1271 cic->nr_rpages = cc->cluster_size; 1272 1273 for (i = 0; i < cc->nr_cpages; i++) { 1274 f2fs_set_compressed_page(cc->cpages[i], inode, 1275 cc->rpages[i + 1]->index, cic); 1276 fio.compressed_page = cc->cpages[i]; 1277 1278 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1279 dn.ofs_in_node + i + 1); 1280 1281 /* wait for GCed page writeback via META_MAPPING */ 1282 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1283 1284 if (fio.encrypted) { 1285 fio.page = cc->rpages[i + 1]; 1286 err = f2fs_encrypt_one_page(&fio); 1287 if (err) 1288 goto out_destroy_crypt; 1289 cc->cpages[i] = fio.encrypted_page; 1290 } 1291 } 1292 1293 set_cluster_writeback(cc); 1294 1295 for (i = 0; i < cc->cluster_size; i++) 1296 cic->rpages[i] = cc->rpages[i]; 1297 1298 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1299 block_t blkaddr; 1300 1301 blkaddr = f2fs_data_blkaddr(&dn); 1302 fio.page = cc->rpages[i]; 1303 fio.old_blkaddr = blkaddr; 1304 1305 /* cluster header */ 1306 if (i == 0) { 1307 if (blkaddr == COMPRESS_ADDR) 1308 fio.compr_blocks++; 1309 if (__is_valid_data_blkaddr(blkaddr)) 1310 f2fs_invalidate_blocks(sbi, blkaddr); 1311 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1312 goto unlock_continue; 1313 } 1314 1315 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1316 fio.compr_blocks++; 1317 1318 if (i > cc->nr_cpages) { 1319 if (__is_valid_data_blkaddr(blkaddr)) { 1320 f2fs_invalidate_blocks(sbi, blkaddr); 1321 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1322 } 1323 goto unlock_continue; 1324 } 1325 1326 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1327 1328 if (fio.encrypted) 1329 fio.encrypted_page = cc->cpages[i - 1]; 1330 else 1331 fio.compressed_page = cc->cpages[i - 1]; 1332 1333 cc->cpages[i - 1] = NULL; 1334 f2fs_outplace_write_data(&dn, &fio); 1335 (*submitted)++; 1336 unlock_continue: 1337 inode_dec_dirty_pages(cc->inode); 1338 unlock_page(fio.page); 1339 } 1340 1341 if (fio.compr_blocks) 1342 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1343 f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true); 1344 add_compr_block_stat(inode, cc->nr_cpages); 1345 1346 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1347 if (cc->cluster_idx == 0) 1348 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1349 1350 f2fs_put_dnode(&dn); 1351 if (IS_NOQUOTA(inode)) 1352 up_read(&sbi->node_write); 1353 else 1354 f2fs_unlock_op(sbi); 1355 1356 spin_lock(&fi->i_size_lock); 1357 if (fi->last_disk_size < psize) 1358 fi->last_disk_size = psize; 1359 spin_unlock(&fi->i_size_lock); 1360 1361 f2fs_put_rpages(cc); 1362 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1363 cc->cpages = NULL; 1364 f2fs_destroy_compress_ctx(cc); 1365 return 0; 1366 1367 out_destroy_crypt: 1368 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1369 1370 for (--i; i >= 0; i--) 1371 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1372 for (i = 0; i < cc->nr_cpages; i++) { 1373 if (!cc->cpages[i]) 1374 continue; 1375 f2fs_put_page(cc->cpages[i], 1); 1376 } 1377 out_put_cic: 1378 kmem_cache_free(cic_entry_slab, cic); 1379 out_put_dnode: 1380 f2fs_put_dnode(&dn); 1381 out_unlock_op: 1382 if (IS_NOQUOTA(inode)) 1383 up_read(&sbi->node_write); 1384 else 1385 f2fs_unlock_op(sbi); 1386 out_free: 1387 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1388 cc->cpages = NULL; 1389 return -EAGAIN; 1390 } 1391 1392 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1393 { 1394 struct f2fs_sb_info *sbi = bio->bi_private; 1395 struct compress_io_ctx *cic = 1396 (struct compress_io_ctx *)page_private(page); 1397 int i; 1398 1399 if (unlikely(bio->bi_status)) 1400 mapping_set_error(cic->inode->i_mapping, -EIO); 1401 1402 f2fs_compress_free_page(page); 1403 1404 dec_page_count(sbi, F2FS_WB_DATA); 1405 1406 if (atomic_dec_return(&cic->pending_pages)) 1407 return; 1408 1409 for (i = 0; i < cic->nr_rpages; i++) { 1410 WARN_ON(!cic->rpages[i]); 1411 clear_cold_data(cic->rpages[i]); 1412 end_page_writeback(cic->rpages[i]); 1413 } 1414 1415 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1416 kmem_cache_free(cic_entry_slab, cic); 1417 } 1418 1419 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1420 int *submitted, 1421 struct writeback_control *wbc, 1422 enum iostat_type io_type) 1423 { 1424 struct address_space *mapping = cc->inode->i_mapping; 1425 int _submitted, compr_blocks, ret; 1426 int i = -1, err = 0; 1427 1428 compr_blocks = f2fs_compressed_blocks(cc); 1429 if (compr_blocks < 0) { 1430 err = compr_blocks; 1431 goto out_err; 1432 } 1433 1434 for (i = 0; i < cc->cluster_size; i++) { 1435 if (!cc->rpages[i]) 1436 continue; 1437 retry_write: 1438 if (cc->rpages[i]->mapping != mapping) { 1439 unlock_page(cc->rpages[i]); 1440 continue; 1441 } 1442 1443 BUG_ON(!PageLocked(cc->rpages[i])); 1444 1445 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1446 NULL, NULL, wbc, io_type, 1447 compr_blocks, false); 1448 if (ret) { 1449 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1450 unlock_page(cc->rpages[i]); 1451 ret = 0; 1452 } else if (ret == -EAGAIN) { 1453 /* 1454 * for quota file, just redirty left pages to 1455 * avoid deadlock caused by cluster update race 1456 * from foreground operation. 1457 */ 1458 if (IS_NOQUOTA(cc->inode)) { 1459 err = 0; 1460 goto out_err; 1461 } 1462 ret = 0; 1463 cond_resched(); 1464 congestion_wait(BLK_RW_ASYNC, 1465 DEFAULT_IO_TIMEOUT); 1466 lock_page(cc->rpages[i]); 1467 1468 if (!PageDirty(cc->rpages[i])) { 1469 unlock_page(cc->rpages[i]); 1470 continue; 1471 } 1472 1473 clear_page_dirty_for_io(cc->rpages[i]); 1474 goto retry_write; 1475 } 1476 err = ret; 1477 goto out_err; 1478 } 1479 1480 *submitted += _submitted; 1481 } 1482 1483 f2fs_balance_fs(F2FS_M_SB(mapping), true); 1484 1485 return 0; 1486 out_err: 1487 for (++i; i < cc->cluster_size; i++) { 1488 if (!cc->rpages[i]) 1489 continue; 1490 redirty_page_for_writepage(wbc, cc->rpages[i]); 1491 unlock_page(cc->rpages[i]); 1492 } 1493 return err; 1494 } 1495 1496 int f2fs_write_multi_pages(struct compress_ctx *cc, 1497 int *submitted, 1498 struct writeback_control *wbc, 1499 enum iostat_type io_type) 1500 { 1501 int err; 1502 1503 *submitted = 0; 1504 if (cluster_may_compress(cc)) { 1505 err = f2fs_compress_pages(cc); 1506 if (err == -EAGAIN) { 1507 goto write; 1508 } else if (err) { 1509 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1510 goto destroy_out; 1511 } 1512 1513 err = f2fs_write_compressed_pages(cc, submitted, 1514 wbc, io_type); 1515 if (!err) 1516 return 0; 1517 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1518 } 1519 write: 1520 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1521 1522 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1523 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1524 destroy_out: 1525 f2fs_destroy_compress_ctx(cc); 1526 return err; 1527 } 1528 1529 static void f2fs_free_dic(struct decompress_io_ctx *dic); 1530 1531 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1532 { 1533 struct decompress_io_ctx *dic; 1534 pgoff_t start_idx = start_idx_of_cluster(cc); 1535 int i; 1536 1537 dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS); 1538 if (!dic) 1539 return ERR_PTR(-ENOMEM); 1540 1541 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1542 if (!dic->rpages) { 1543 kmem_cache_free(dic_entry_slab, dic); 1544 return ERR_PTR(-ENOMEM); 1545 } 1546 1547 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1548 dic->inode = cc->inode; 1549 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1550 dic->cluster_idx = cc->cluster_idx; 1551 dic->cluster_size = cc->cluster_size; 1552 dic->log_cluster_size = cc->log_cluster_size; 1553 dic->nr_cpages = cc->nr_cpages; 1554 refcount_set(&dic->refcnt, 1); 1555 dic->failed = false; 1556 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1557 1558 for (i = 0; i < dic->cluster_size; i++) 1559 dic->rpages[i] = cc->rpages[i]; 1560 dic->nr_rpages = cc->cluster_size; 1561 1562 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1563 if (!dic->cpages) 1564 goto out_free; 1565 1566 for (i = 0; i < dic->nr_cpages; i++) { 1567 struct page *page; 1568 1569 page = f2fs_compress_alloc_page(); 1570 if (!page) 1571 goto out_free; 1572 1573 f2fs_set_compressed_page(page, cc->inode, 1574 start_idx + i + 1, dic); 1575 dic->cpages[i] = page; 1576 } 1577 1578 return dic; 1579 1580 out_free: 1581 f2fs_free_dic(dic); 1582 return ERR_PTR(-ENOMEM); 1583 } 1584 1585 static void f2fs_free_dic(struct decompress_io_ctx *dic) 1586 { 1587 int i; 1588 1589 if (dic->tpages) { 1590 for (i = 0; i < dic->cluster_size; i++) { 1591 if (dic->rpages[i]) 1592 continue; 1593 if (!dic->tpages[i]) 1594 continue; 1595 f2fs_compress_free_page(dic->tpages[i]); 1596 } 1597 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1598 } 1599 1600 if (dic->cpages) { 1601 for (i = 0; i < dic->nr_cpages; i++) { 1602 if (!dic->cpages[i]) 1603 continue; 1604 f2fs_compress_free_page(dic->cpages[i]); 1605 } 1606 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1607 } 1608 1609 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1610 kmem_cache_free(dic_entry_slab, dic); 1611 } 1612 1613 static void f2fs_put_dic(struct decompress_io_ctx *dic) 1614 { 1615 if (refcount_dec_and_test(&dic->refcnt)) 1616 f2fs_free_dic(dic); 1617 } 1618 1619 /* 1620 * Update and unlock the cluster's pagecache pages, and release the reference to 1621 * the decompress_io_ctx that was being held for I/O completion. 1622 */ 1623 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1624 { 1625 int i; 1626 1627 for (i = 0; i < dic->cluster_size; i++) { 1628 struct page *rpage = dic->rpages[i]; 1629 1630 if (!rpage) 1631 continue; 1632 1633 /* PG_error was set if verity failed. */ 1634 if (failed || PageError(rpage)) { 1635 ClearPageUptodate(rpage); 1636 /* will re-read again later */ 1637 ClearPageError(rpage); 1638 } else { 1639 SetPageUptodate(rpage); 1640 } 1641 unlock_page(rpage); 1642 } 1643 1644 f2fs_put_dic(dic); 1645 } 1646 1647 static void f2fs_verify_cluster(struct work_struct *work) 1648 { 1649 struct decompress_io_ctx *dic = 1650 container_of(work, struct decompress_io_ctx, verity_work); 1651 int i; 1652 1653 /* Verify the cluster's decompressed pages with fs-verity. */ 1654 for (i = 0; i < dic->cluster_size; i++) { 1655 struct page *rpage = dic->rpages[i]; 1656 1657 if (rpage && !fsverity_verify_page(rpage)) 1658 SetPageError(rpage); 1659 } 1660 1661 __f2fs_decompress_end_io(dic, false); 1662 } 1663 1664 /* 1665 * This is called when a compressed cluster has been decompressed 1666 * (or failed to be read and/or decompressed). 1667 */ 1668 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) 1669 { 1670 if (!failed && dic->need_verity) { 1671 /* 1672 * Note that to avoid deadlocks, the verity work can't be done 1673 * on the decompression workqueue. This is because verifying 1674 * the data pages can involve reading metadata pages from the 1675 * file, and these metadata pages may be compressed. 1676 */ 1677 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1678 fsverity_enqueue_verify_work(&dic->verity_work); 1679 } else { 1680 __f2fs_decompress_end_io(dic, failed); 1681 } 1682 } 1683 1684 /* 1685 * Put a reference to a compressed page's decompress_io_ctx. 1686 * 1687 * This is called when the page is no longer needed and can be freed. 1688 */ 1689 void f2fs_put_page_dic(struct page *page) 1690 { 1691 struct decompress_io_ctx *dic = 1692 (struct decompress_io_ctx *)page_private(page); 1693 1694 f2fs_put_dic(dic); 1695 } 1696 1697 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1698 { 1699 dev_t dev = sbi->sb->s_bdev->bd_dev; 1700 char slab_name[32]; 1701 1702 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1703 1704 sbi->page_array_slab_size = sizeof(struct page *) << 1705 F2FS_OPTION(sbi).compress_log_size; 1706 1707 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1708 sbi->page_array_slab_size); 1709 if (!sbi->page_array_slab) 1710 return -ENOMEM; 1711 return 0; 1712 } 1713 1714 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1715 { 1716 kmem_cache_destroy(sbi->page_array_slab); 1717 } 1718 1719 static int __init f2fs_init_cic_cache(void) 1720 { 1721 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 1722 sizeof(struct compress_io_ctx)); 1723 if (!cic_entry_slab) 1724 return -ENOMEM; 1725 return 0; 1726 } 1727 1728 static void f2fs_destroy_cic_cache(void) 1729 { 1730 kmem_cache_destroy(cic_entry_slab); 1731 } 1732 1733 static int __init f2fs_init_dic_cache(void) 1734 { 1735 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 1736 sizeof(struct decompress_io_ctx)); 1737 if (!dic_entry_slab) 1738 return -ENOMEM; 1739 return 0; 1740 } 1741 1742 static void f2fs_destroy_dic_cache(void) 1743 { 1744 kmem_cache_destroy(dic_entry_slab); 1745 } 1746 1747 int __init f2fs_init_compress_cache(void) 1748 { 1749 int err; 1750 1751 err = f2fs_init_cic_cache(); 1752 if (err) 1753 goto out; 1754 err = f2fs_init_dic_cache(); 1755 if (err) 1756 goto free_cic; 1757 return 0; 1758 free_cic: 1759 f2fs_destroy_cic_cache(); 1760 out: 1761 return -ENOMEM; 1762 } 1763 1764 void f2fs_destroy_compress_cache(void) 1765 { 1766 f2fs_destroy_dic_cache(); 1767 f2fs_destroy_cic_cache(); 1768 } 1769