1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/writeback.h> 11 #include <linux/backing-dev.h> 12 #include <linux/lzo.h> 13 #include <linux/lz4.h> 14 #include <linux/zstd.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include <trace/events/f2fs.h> 19 20 static struct kmem_cache *cic_entry_slab; 21 static struct kmem_cache *dic_entry_slab; 22 23 static void *page_array_alloc(struct inode *inode, int nr) 24 { 25 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 26 unsigned int size = sizeof(struct page *) * nr; 27 28 if (likely(size <= sbi->page_array_slab_size)) 29 return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS); 30 return f2fs_kzalloc(sbi, size, GFP_NOFS); 31 } 32 33 static void page_array_free(struct inode *inode, void *pages, int nr) 34 { 35 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 36 unsigned int size = sizeof(struct page *) * nr; 37 38 if (!pages) 39 return; 40 41 if (likely(size <= sbi->page_array_slab_size)) 42 kmem_cache_free(sbi->page_array_slab, pages); 43 else 44 kfree(pages); 45 } 46 47 struct f2fs_compress_ops { 48 int (*init_compress_ctx)(struct compress_ctx *cc); 49 void (*destroy_compress_ctx)(struct compress_ctx *cc); 50 int (*compress_pages)(struct compress_ctx *cc); 51 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 52 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 53 int (*decompress_pages)(struct decompress_io_ctx *dic); 54 }; 55 56 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 57 { 58 return index & (cc->cluster_size - 1); 59 } 60 61 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index >> cc->log_cluster_size; 64 } 65 66 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 67 { 68 return cc->cluster_idx << cc->log_cluster_size; 69 } 70 71 bool f2fs_is_compressed_page(struct page *page) 72 { 73 if (!PagePrivate(page)) 74 return false; 75 if (!page_private(page)) 76 return false; 77 if (IS_ATOMIC_WRITTEN_PAGE(page) || IS_DUMMY_WRITTEN_PAGE(page)) 78 return false; 79 /* 80 * page->private may be set with pid. 81 * pid_max is enough to check if it is traced. 82 */ 83 if (IS_IO_TRACED_PAGE(page)) 84 return false; 85 86 f2fs_bug_on(F2FS_M_SB(page->mapping), 87 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 88 return true; 89 } 90 91 static void f2fs_set_compressed_page(struct page *page, 92 struct inode *inode, pgoff_t index, void *data) 93 { 94 SetPagePrivate(page); 95 set_page_private(page, (unsigned long)data); 96 97 /* i_crypto_info and iv index */ 98 page->index = index; 99 page->mapping = inode->i_mapping; 100 } 101 102 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 103 { 104 int i; 105 106 for (i = 0; i < len; i++) { 107 if (!cc->rpages[i]) 108 continue; 109 if (unlock) 110 unlock_page(cc->rpages[i]); 111 else 112 put_page(cc->rpages[i]); 113 } 114 } 115 116 static void f2fs_put_rpages(struct compress_ctx *cc) 117 { 118 f2fs_drop_rpages(cc, cc->cluster_size, false); 119 } 120 121 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 122 { 123 f2fs_drop_rpages(cc, len, true); 124 } 125 126 static void f2fs_put_rpages_mapping(struct address_space *mapping, 127 pgoff_t start, int len) 128 { 129 int i; 130 131 for (i = 0; i < len; i++) { 132 struct page *page = find_get_page(mapping, start + i); 133 134 put_page(page); 135 put_page(page); 136 } 137 } 138 139 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 140 struct writeback_control *wbc, bool redirty, int unlock) 141 { 142 unsigned int i; 143 144 for (i = 0; i < cc->cluster_size; i++) { 145 if (!cc->rpages[i]) 146 continue; 147 if (redirty) 148 redirty_page_for_writepage(wbc, cc->rpages[i]); 149 f2fs_put_page(cc->rpages[i], unlock); 150 } 151 } 152 153 struct page *f2fs_compress_control_page(struct page *page) 154 { 155 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 156 } 157 158 int f2fs_init_compress_ctx(struct compress_ctx *cc) 159 { 160 if (cc->rpages) 161 return 0; 162 163 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 164 return cc->rpages ? 0 : -ENOMEM; 165 } 166 167 void f2fs_destroy_compress_ctx(struct compress_ctx *cc) 168 { 169 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 170 cc->rpages = NULL; 171 cc->nr_rpages = 0; 172 cc->nr_cpages = 0; 173 cc->cluster_idx = NULL_CLUSTER; 174 } 175 176 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 177 { 178 unsigned int cluster_ofs; 179 180 if (!f2fs_cluster_can_merge_page(cc, page->index)) 181 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 182 183 cluster_ofs = offset_in_cluster(cc, page->index); 184 cc->rpages[cluster_ofs] = page; 185 cc->nr_rpages++; 186 cc->cluster_idx = cluster_idx(cc, page->index); 187 } 188 189 #ifdef CONFIG_F2FS_FS_LZO 190 static int lzo_init_compress_ctx(struct compress_ctx *cc) 191 { 192 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 193 LZO1X_MEM_COMPRESS, GFP_NOFS); 194 if (!cc->private) 195 return -ENOMEM; 196 197 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 198 return 0; 199 } 200 201 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 202 { 203 kvfree(cc->private); 204 cc->private = NULL; 205 } 206 207 static int lzo_compress_pages(struct compress_ctx *cc) 208 { 209 int ret; 210 211 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 212 &cc->clen, cc->private); 213 if (ret != LZO_E_OK) { 214 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", 215 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 216 return -EIO; 217 } 218 return 0; 219 } 220 221 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 222 { 223 int ret; 224 225 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 226 dic->rbuf, &dic->rlen); 227 if (ret != LZO_E_OK) { 228 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", 229 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 230 return -EIO; 231 } 232 233 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 234 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " 235 "expected:%lu\n", KERN_ERR, 236 F2FS_I_SB(dic->inode)->sb->s_id, 237 dic->rlen, 238 PAGE_SIZE << dic->log_cluster_size); 239 return -EIO; 240 } 241 return 0; 242 } 243 244 static const struct f2fs_compress_ops f2fs_lzo_ops = { 245 .init_compress_ctx = lzo_init_compress_ctx, 246 .destroy_compress_ctx = lzo_destroy_compress_ctx, 247 .compress_pages = lzo_compress_pages, 248 .decompress_pages = lzo_decompress_pages, 249 }; 250 #endif 251 252 #ifdef CONFIG_F2FS_FS_LZ4 253 static int lz4_init_compress_ctx(struct compress_ctx *cc) 254 { 255 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 256 LZ4_MEM_COMPRESS, GFP_NOFS); 257 if (!cc->private) 258 return -ENOMEM; 259 260 /* 261 * we do not change cc->clen to LZ4_compressBound(inputsize) to 262 * adapt worst compress case, because lz4 compressor can handle 263 * output budget properly. 264 */ 265 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 266 return 0; 267 } 268 269 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 270 { 271 kvfree(cc->private); 272 cc->private = NULL; 273 } 274 275 static int lz4_compress_pages(struct compress_ctx *cc) 276 { 277 int len; 278 279 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 280 cc->clen, cc->private); 281 if (!len) 282 return -EAGAIN; 283 284 cc->clen = len; 285 return 0; 286 } 287 288 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 289 { 290 int ret; 291 292 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 293 dic->clen, dic->rlen); 294 if (ret < 0) { 295 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", 296 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); 297 return -EIO; 298 } 299 300 if (ret != PAGE_SIZE << dic->log_cluster_size) { 301 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, " 302 "expected:%lu\n", KERN_ERR, 303 F2FS_I_SB(dic->inode)->sb->s_id, 304 dic->rlen, 305 PAGE_SIZE << dic->log_cluster_size); 306 return -EIO; 307 } 308 return 0; 309 } 310 311 static const struct f2fs_compress_ops f2fs_lz4_ops = { 312 .init_compress_ctx = lz4_init_compress_ctx, 313 .destroy_compress_ctx = lz4_destroy_compress_ctx, 314 .compress_pages = lz4_compress_pages, 315 .decompress_pages = lz4_decompress_pages, 316 }; 317 #endif 318 319 #ifdef CONFIG_F2FS_FS_ZSTD 320 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 321 322 static int zstd_init_compress_ctx(struct compress_ctx *cc) 323 { 324 ZSTD_parameters params; 325 ZSTD_CStream *stream; 326 void *workspace; 327 unsigned int workspace_size; 328 329 params = ZSTD_getParams(F2FS_ZSTD_DEFAULT_CLEVEL, cc->rlen, 0); 330 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams); 331 332 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 333 workspace_size, GFP_NOFS); 334 if (!workspace) 335 return -ENOMEM; 336 337 stream = ZSTD_initCStream(params, 0, workspace, workspace_size); 338 if (!stream) { 339 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n", 340 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 341 __func__); 342 kvfree(workspace); 343 return -EIO; 344 } 345 346 cc->private = workspace; 347 cc->private2 = stream; 348 349 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 350 return 0; 351 } 352 353 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 354 { 355 kvfree(cc->private); 356 cc->private = NULL; 357 cc->private2 = NULL; 358 } 359 360 static int zstd_compress_pages(struct compress_ctx *cc) 361 { 362 ZSTD_CStream *stream = cc->private2; 363 ZSTD_inBuffer inbuf; 364 ZSTD_outBuffer outbuf; 365 int src_size = cc->rlen; 366 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 367 int ret; 368 369 inbuf.pos = 0; 370 inbuf.src = cc->rbuf; 371 inbuf.size = src_size; 372 373 outbuf.pos = 0; 374 outbuf.dst = cc->cbuf->cdata; 375 outbuf.size = dst_size; 376 377 ret = ZSTD_compressStream(stream, &outbuf, &inbuf); 378 if (ZSTD_isError(ret)) { 379 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 380 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 381 __func__, ZSTD_getErrorCode(ret)); 382 return -EIO; 383 } 384 385 ret = ZSTD_endStream(stream, &outbuf); 386 if (ZSTD_isError(ret)) { 387 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n", 388 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, 389 __func__, ZSTD_getErrorCode(ret)); 390 return -EIO; 391 } 392 393 /* 394 * there is compressed data remained in intermediate buffer due to 395 * no more space in cbuf.cdata 396 */ 397 if (ret) 398 return -EAGAIN; 399 400 cc->clen = outbuf.pos; 401 return 0; 402 } 403 404 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 405 { 406 ZSTD_DStream *stream; 407 void *workspace; 408 unsigned int workspace_size; 409 unsigned int max_window_size = 410 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 411 412 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size); 413 414 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 415 workspace_size, GFP_NOFS); 416 if (!workspace) 417 return -ENOMEM; 418 419 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size); 420 if (!stream) { 421 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n", 422 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 423 __func__); 424 kvfree(workspace); 425 return -EIO; 426 } 427 428 dic->private = workspace; 429 dic->private2 = stream; 430 431 return 0; 432 } 433 434 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 435 { 436 kvfree(dic->private); 437 dic->private = NULL; 438 dic->private2 = NULL; 439 } 440 441 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 442 { 443 ZSTD_DStream *stream = dic->private2; 444 ZSTD_inBuffer inbuf; 445 ZSTD_outBuffer outbuf; 446 int ret; 447 448 inbuf.pos = 0; 449 inbuf.src = dic->cbuf->cdata; 450 inbuf.size = dic->clen; 451 452 outbuf.pos = 0; 453 outbuf.dst = dic->rbuf; 454 outbuf.size = dic->rlen; 455 456 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf); 457 if (ZSTD_isError(ret)) { 458 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", 459 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, 460 __func__, ZSTD_getErrorCode(ret)); 461 return -EIO; 462 } 463 464 if (dic->rlen != outbuf.pos) { 465 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " 466 "expected:%lu\n", KERN_ERR, 467 F2FS_I_SB(dic->inode)->sb->s_id, 468 __func__, dic->rlen, 469 PAGE_SIZE << dic->log_cluster_size); 470 return -EIO; 471 } 472 473 return 0; 474 } 475 476 static const struct f2fs_compress_ops f2fs_zstd_ops = { 477 .init_compress_ctx = zstd_init_compress_ctx, 478 .destroy_compress_ctx = zstd_destroy_compress_ctx, 479 .compress_pages = zstd_compress_pages, 480 .init_decompress_ctx = zstd_init_decompress_ctx, 481 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 482 .decompress_pages = zstd_decompress_pages, 483 }; 484 #endif 485 486 #ifdef CONFIG_F2FS_FS_LZO 487 #ifdef CONFIG_F2FS_FS_LZORLE 488 static int lzorle_compress_pages(struct compress_ctx *cc) 489 { 490 int ret; 491 492 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 493 &cc->clen, cc->private); 494 if (ret != LZO_E_OK) { 495 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", 496 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); 497 return -EIO; 498 } 499 return 0; 500 } 501 502 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 503 .init_compress_ctx = lzo_init_compress_ctx, 504 .destroy_compress_ctx = lzo_destroy_compress_ctx, 505 .compress_pages = lzorle_compress_pages, 506 .decompress_pages = lzo_decompress_pages, 507 }; 508 #endif 509 #endif 510 511 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 512 #ifdef CONFIG_F2FS_FS_LZO 513 &f2fs_lzo_ops, 514 #else 515 NULL, 516 #endif 517 #ifdef CONFIG_F2FS_FS_LZ4 518 &f2fs_lz4_ops, 519 #else 520 NULL, 521 #endif 522 #ifdef CONFIG_F2FS_FS_ZSTD 523 &f2fs_zstd_ops, 524 #else 525 NULL, 526 #endif 527 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 528 &f2fs_lzorle_ops, 529 #else 530 NULL, 531 #endif 532 }; 533 534 bool f2fs_is_compress_backend_ready(struct inode *inode) 535 { 536 if (!f2fs_compressed_file(inode)) 537 return true; 538 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 539 } 540 541 static mempool_t *compress_page_pool; 542 static int num_compress_pages = 512; 543 module_param(num_compress_pages, uint, 0444); 544 MODULE_PARM_DESC(num_compress_pages, 545 "Number of intermediate compress pages to preallocate"); 546 547 int f2fs_init_compress_mempool(void) 548 { 549 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 550 if (!compress_page_pool) 551 return -ENOMEM; 552 553 return 0; 554 } 555 556 void f2fs_destroy_compress_mempool(void) 557 { 558 mempool_destroy(compress_page_pool); 559 } 560 561 static struct page *f2fs_compress_alloc_page(void) 562 { 563 struct page *page; 564 565 page = mempool_alloc(compress_page_pool, GFP_NOFS); 566 lock_page(page); 567 568 return page; 569 } 570 571 static void f2fs_compress_free_page(struct page *page) 572 { 573 if (!page) 574 return; 575 set_page_private(page, (unsigned long)NULL); 576 ClearPagePrivate(page); 577 page->mapping = NULL; 578 unlock_page(page); 579 mempool_free(page, compress_page_pool); 580 } 581 582 #define MAX_VMAP_RETRIES 3 583 584 static void *f2fs_vmap(struct page **pages, unsigned int count) 585 { 586 int i; 587 void *buf = NULL; 588 589 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 590 buf = vm_map_ram(pages, count, -1); 591 if (buf) 592 break; 593 vm_unmap_aliases(); 594 } 595 return buf; 596 } 597 598 static int f2fs_compress_pages(struct compress_ctx *cc) 599 { 600 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 601 const struct f2fs_compress_ops *cops = 602 f2fs_cops[fi->i_compress_algorithm]; 603 unsigned int max_len, new_nr_cpages; 604 struct page **new_cpages; 605 int i, ret; 606 607 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 608 cc->cluster_size, fi->i_compress_algorithm); 609 610 if (cops->init_compress_ctx) { 611 ret = cops->init_compress_ctx(cc); 612 if (ret) 613 goto out; 614 } 615 616 max_len = COMPRESS_HEADER_SIZE + cc->clen; 617 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 618 619 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 620 if (!cc->cpages) { 621 ret = -ENOMEM; 622 goto destroy_compress_ctx; 623 } 624 625 for (i = 0; i < cc->nr_cpages; i++) { 626 cc->cpages[i] = f2fs_compress_alloc_page(); 627 if (!cc->cpages[i]) { 628 ret = -ENOMEM; 629 goto out_free_cpages; 630 } 631 } 632 633 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 634 if (!cc->rbuf) { 635 ret = -ENOMEM; 636 goto out_free_cpages; 637 } 638 639 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 640 if (!cc->cbuf) { 641 ret = -ENOMEM; 642 goto out_vunmap_rbuf; 643 } 644 645 ret = cops->compress_pages(cc); 646 if (ret) 647 goto out_vunmap_cbuf; 648 649 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 650 651 if (cc->clen > max_len) { 652 ret = -EAGAIN; 653 goto out_vunmap_cbuf; 654 } 655 656 cc->cbuf->clen = cpu_to_le32(cc->clen); 657 658 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 659 cc->cbuf->reserved[i] = cpu_to_le32(0); 660 661 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 662 663 /* Now we're going to cut unnecessary tail pages */ 664 new_cpages = page_array_alloc(cc->inode, new_nr_cpages); 665 if (!new_cpages) { 666 ret = -ENOMEM; 667 goto out_vunmap_cbuf; 668 } 669 670 /* zero out any unused part of the last page */ 671 memset(&cc->cbuf->cdata[cc->clen], 0, 672 (new_nr_cpages * PAGE_SIZE) - 673 (cc->clen + COMPRESS_HEADER_SIZE)); 674 675 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 676 vm_unmap_ram(cc->rbuf, cc->cluster_size); 677 678 for (i = 0; i < cc->nr_cpages; i++) { 679 if (i < new_nr_cpages) { 680 new_cpages[i] = cc->cpages[i]; 681 continue; 682 } 683 f2fs_compress_free_page(cc->cpages[i]); 684 cc->cpages[i] = NULL; 685 } 686 687 if (cops->destroy_compress_ctx) 688 cops->destroy_compress_ctx(cc); 689 690 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 691 cc->cpages = new_cpages; 692 cc->nr_cpages = new_nr_cpages; 693 694 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 695 cc->clen, ret); 696 return 0; 697 698 out_vunmap_cbuf: 699 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 700 out_vunmap_rbuf: 701 vm_unmap_ram(cc->rbuf, cc->cluster_size); 702 out_free_cpages: 703 for (i = 0; i < cc->nr_cpages; i++) { 704 if (cc->cpages[i]) 705 f2fs_compress_free_page(cc->cpages[i]); 706 } 707 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 708 cc->cpages = NULL; 709 destroy_compress_ctx: 710 if (cops->destroy_compress_ctx) 711 cops->destroy_compress_ctx(cc); 712 out: 713 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 714 cc->clen, ret); 715 return ret; 716 } 717 718 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity) 719 { 720 struct decompress_io_ctx *dic = 721 (struct decompress_io_ctx *)page_private(page); 722 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 723 struct f2fs_inode_info *fi= F2FS_I(dic->inode); 724 const struct f2fs_compress_ops *cops = 725 f2fs_cops[fi->i_compress_algorithm]; 726 int ret; 727 int i; 728 729 dec_page_count(sbi, F2FS_RD_DATA); 730 731 if (bio->bi_status || PageError(page)) 732 dic->failed = true; 733 734 if (atomic_dec_return(&dic->pending_pages)) 735 return; 736 737 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 738 dic->cluster_size, fi->i_compress_algorithm); 739 740 /* submit partial compressed pages */ 741 if (dic->failed) { 742 ret = -EIO; 743 goto out_free_dic; 744 } 745 746 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 747 if (!dic->tpages) { 748 ret = -ENOMEM; 749 goto out_free_dic; 750 } 751 752 for (i = 0; i < dic->cluster_size; i++) { 753 if (dic->rpages[i]) { 754 dic->tpages[i] = dic->rpages[i]; 755 continue; 756 } 757 758 dic->tpages[i] = f2fs_compress_alloc_page(); 759 if (!dic->tpages[i]) { 760 ret = -ENOMEM; 761 goto out_free_dic; 762 } 763 } 764 765 if (cops->init_decompress_ctx) { 766 ret = cops->init_decompress_ctx(dic); 767 if (ret) 768 goto out_free_dic; 769 } 770 771 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 772 if (!dic->rbuf) { 773 ret = -ENOMEM; 774 goto destroy_decompress_ctx; 775 } 776 777 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 778 if (!dic->cbuf) { 779 ret = -ENOMEM; 780 goto out_vunmap_rbuf; 781 } 782 783 dic->clen = le32_to_cpu(dic->cbuf->clen); 784 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 785 786 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 787 ret = -EFSCORRUPTED; 788 goto out_vunmap_cbuf; 789 } 790 791 ret = cops->decompress_pages(dic); 792 793 out_vunmap_cbuf: 794 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 795 out_vunmap_rbuf: 796 vm_unmap_ram(dic->rbuf, dic->cluster_size); 797 destroy_decompress_ctx: 798 if (cops->destroy_decompress_ctx) 799 cops->destroy_decompress_ctx(dic); 800 out_free_dic: 801 if (verity) 802 atomic_set(&dic->pending_pages, dic->nr_cpages); 803 if (!verity) 804 f2fs_decompress_end_io(dic->rpages, dic->cluster_size, 805 ret, false); 806 807 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 808 dic->clen, ret); 809 if (!verity) 810 f2fs_free_dic(dic); 811 } 812 813 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 814 { 815 if (cc->cluster_idx == NULL_CLUSTER) 816 return true; 817 return cc->cluster_idx == cluster_idx(cc, index); 818 } 819 820 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 821 { 822 return cc->nr_rpages == 0; 823 } 824 825 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 826 { 827 return cc->cluster_size == cc->nr_rpages; 828 } 829 830 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 831 { 832 if (f2fs_cluster_is_empty(cc)) 833 return true; 834 return is_page_in_cluster(cc, index); 835 } 836 837 static bool __cluster_may_compress(struct compress_ctx *cc) 838 { 839 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 840 loff_t i_size = i_size_read(cc->inode); 841 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 842 int i; 843 844 for (i = 0; i < cc->cluster_size; i++) { 845 struct page *page = cc->rpages[i]; 846 847 f2fs_bug_on(sbi, !page); 848 849 if (unlikely(f2fs_cp_error(sbi))) 850 return false; 851 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 852 return false; 853 854 /* beyond EOF */ 855 if (page->index >= nr_pages) 856 return false; 857 } 858 return true; 859 } 860 861 static int __f2fs_cluster_blocks(struct compress_ctx *cc, bool compr) 862 { 863 struct dnode_of_data dn; 864 int ret; 865 866 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 867 ret = f2fs_get_dnode_of_data(&dn, start_idx_of_cluster(cc), 868 LOOKUP_NODE); 869 if (ret) { 870 if (ret == -ENOENT) 871 ret = 0; 872 goto fail; 873 } 874 875 if (dn.data_blkaddr == COMPRESS_ADDR) { 876 int i; 877 878 ret = 1; 879 for (i = 1; i < cc->cluster_size; i++) { 880 block_t blkaddr; 881 882 blkaddr = data_blkaddr(dn.inode, 883 dn.node_page, dn.ofs_in_node + i); 884 if (compr) { 885 if (__is_valid_data_blkaddr(blkaddr)) 886 ret++; 887 } else { 888 if (blkaddr != NULL_ADDR) 889 ret++; 890 } 891 } 892 } 893 fail: 894 f2fs_put_dnode(&dn); 895 return ret; 896 } 897 898 /* return # of compressed blocks in compressed cluster */ 899 static int f2fs_compressed_blocks(struct compress_ctx *cc) 900 { 901 return __f2fs_cluster_blocks(cc, true); 902 } 903 904 /* return # of valid blocks in compressed cluster */ 905 static int f2fs_cluster_blocks(struct compress_ctx *cc) 906 { 907 return __f2fs_cluster_blocks(cc, false); 908 } 909 910 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 911 { 912 struct compress_ctx cc = { 913 .inode = inode, 914 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 915 .cluster_size = F2FS_I(inode)->i_cluster_size, 916 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 917 }; 918 919 return f2fs_cluster_blocks(&cc); 920 } 921 922 static bool cluster_may_compress(struct compress_ctx *cc) 923 { 924 if (!f2fs_compressed_file(cc->inode)) 925 return false; 926 if (f2fs_is_atomic_file(cc->inode)) 927 return false; 928 if (f2fs_is_mmap_file(cc->inode)) 929 return false; 930 if (!f2fs_cluster_is_full(cc)) 931 return false; 932 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 933 return false; 934 return __cluster_may_compress(cc); 935 } 936 937 static void set_cluster_writeback(struct compress_ctx *cc) 938 { 939 int i; 940 941 for (i = 0; i < cc->cluster_size; i++) { 942 if (cc->rpages[i]) 943 set_page_writeback(cc->rpages[i]); 944 } 945 } 946 947 static void set_cluster_dirty(struct compress_ctx *cc) 948 { 949 int i; 950 951 for (i = 0; i < cc->cluster_size; i++) 952 if (cc->rpages[i]) 953 set_page_dirty(cc->rpages[i]); 954 } 955 956 static int prepare_compress_overwrite(struct compress_ctx *cc, 957 struct page **pagep, pgoff_t index, void **fsdata) 958 { 959 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 960 struct address_space *mapping = cc->inode->i_mapping; 961 struct page *page; 962 struct dnode_of_data dn; 963 sector_t last_block_in_bio; 964 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 965 pgoff_t start_idx = start_idx_of_cluster(cc); 966 int i, ret; 967 bool prealloc; 968 969 retry: 970 ret = f2fs_cluster_blocks(cc); 971 if (ret <= 0) 972 return ret; 973 974 /* compressed case */ 975 prealloc = (ret < cc->cluster_size); 976 977 ret = f2fs_init_compress_ctx(cc); 978 if (ret) 979 return ret; 980 981 /* keep page reference to avoid page reclaim */ 982 for (i = 0; i < cc->cluster_size; i++) { 983 page = f2fs_pagecache_get_page(mapping, start_idx + i, 984 fgp_flag, GFP_NOFS); 985 if (!page) { 986 ret = -ENOMEM; 987 goto unlock_pages; 988 } 989 990 if (PageUptodate(page)) 991 unlock_page(page); 992 else 993 f2fs_compress_ctx_add_page(cc, page); 994 } 995 996 if (!f2fs_cluster_is_empty(cc)) { 997 struct bio *bio = NULL; 998 999 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1000 &last_block_in_bio, false, true); 1001 f2fs_destroy_compress_ctx(cc); 1002 if (ret) 1003 goto release_pages; 1004 if (bio) 1005 f2fs_submit_bio(sbi, bio, DATA); 1006 1007 ret = f2fs_init_compress_ctx(cc); 1008 if (ret) 1009 goto release_pages; 1010 } 1011 1012 for (i = 0; i < cc->cluster_size; i++) { 1013 f2fs_bug_on(sbi, cc->rpages[i]); 1014 1015 page = find_lock_page(mapping, start_idx + i); 1016 f2fs_bug_on(sbi, !page); 1017 1018 f2fs_wait_on_page_writeback(page, DATA, true, true); 1019 1020 f2fs_compress_ctx_add_page(cc, page); 1021 f2fs_put_page(page, 0); 1022 1023 if (!PageUptodate(page)) { 1024 f2fs_unlock_rpages(cc, i + 1); 1025 f2fs_put_rpages_mapping(mapping, start_idx, 1026 cc->cluster_size); 1027 f2fs_destroy_compress_ctx(cc); 1028 goto retry; 1029 } 1030 } 1031 1032 if (prealloc) { 1033 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 1034 1035 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1036 1037 for (i = cc->cluster_size - 1; i > 0; i--) { 1038 ret = f2fs_get_block(&dn, start_idx + i); 1039 if (ret) { 1040 i = cc->cluster_size; 1041 break; 1042 } 1043 1044 if (dn.data_blkaddr != NEW_ADDR) 1045 break; 1046 } 1047 1048 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 1049 } 1050 1051 if (likely(!ret)) { 1052 *fsdata = cc->rpages; 1053 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1054 return cc->cluster_size; 1055 } 1056 1057 unlock_pages: 1058 f2fs_unlock_rpages(cc, i); 1059 release_pages: 1060 f2fs_put_rpages_mapping(mapping, start_idx, i); 1061 f2fs_destroy_compress_ctx(cc); 1062 return ret; 1063 } 1064 1065 int f2fs_prepare_compress_overwrite(struct inode *inode, 1066 struct page **pagep, pgoff_t index, void **fsdata) 1067 { 1068 struct compress_ctx cc = { 1069 .inode = inode, 1070 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1071 .cluster_size = F2FS_I(inode)->i_cluster_size, 1072 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1073 .rpages = NULL, 1074 .nr_rpages = 0, 1075 }; 1076 1077 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1078 } 1079 1080 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1081 pgoff_t index, unsigned copied) 1082 1083 { 1084 struct compress_ctx cc = { 1085 .inode = inode, 1086 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1087 .cluster_size = F2FS_I(inode)->i_cluster_size, 1088 .rpages = fsdata, 1089 }; 1090 bool first_index = (index == cc.rpages[0]->index); 1091 1092 if (copied) 1093 set_cluster_dirty(&cc); 1094 1095 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1096 f2fs_destroy_compress_ctx(&cc); 1097 1098 return first_index; 1099 } 1100 1101 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1102 { 1103 void *fsdata = NULL; 1104 struct page *pagep; 1105 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1106 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1107 log_cluster_size; 1108 int err; 1109 1110 err = f2fs_is_compressed_cluster(inode, start_idx); 1111 if (err < 0) 1112 return err; 1113 1114 /* truncate normal cluster */ 1115 if (!err) 1116 return f2fs_do_truncate_blocks(inode, from, lock); 1117 1118 /* truncate compressed cluster */ 1119 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1120 start_idx, &fsdata); 1121 1122 /* should not be a normal cluster */ 1123 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1124 1125 if (err <= 0) 1126 return err; 1127 1128 if (err > 0) { 1129 struct page **rpages = fsdata; 1130 int cluster_size = F2FS_I(inode)->i_cluster_size; 1131 int i; 1132 1133 for (i = cluster_size - 1; i >= 0; i--) { 1134 loff_t start = rpages[i]->index << PAGE_SHIFT; 1135 1136 if (from <= start) { 1137 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1138 } else { 1139 zero_user_segment(rpages[i], from - start, 1140 PAGE_SIZE); 1141 break; 1142 } 1143 } 1144 1145 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1146 } 1147 return 0; 1148 } 1149 1150 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1151 int *submitted, 1152 struct writeback_control *wbc, 1153 enum iostat_type io_type) 1154 { 1155 struct inode *inode = cc->inode; 1156 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1157 struct f2fs_inode_info *fi = F2FS_I(inode); 1158 struct f2fs_io_info fio = { 1159 .sbi = sbi, 1160 .ino = cc->inode->i_ino, 1161 .type = DATA, 1162 .op = REQ_OP_WRITE, 1163 .op_flags = wbc_to_write_flags(wbc), 1164 .old_blkaddr = NEW_ADDR, 1165 .page = NULL, 1166 .encrypted_page = NULL, 1167 .compressed_page = NULL, 1168 .submitted = false, 1169 .io_type = io_type, 1170 .io_wbc = wbc, 1171 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), 1172 }; 1173 struct dnode_of_data dn; 1174 struct node_info ni; 1175 struct compress_io_ctx *cic; 1176 pgoff_t start_idx = start_idx_of_cluster(cc); 1177 unsigned int last_index = cc->cluster_size - 1; 1178 loff_t psize; 1179 int i, err; 1180 1181 if (IS_NOQUOTA(inode)) { 1182 /* 1183 * We need to wait for node_write to avoid block allocation during 1184 * checkpoint. This can only happen to quota writes which can cause 1185 * the below discard race condition. 1186 */ 1187 down_read(&sbi->node_write); 1188 } else if (!f2fs_trylock_op(sbi)) { 1189 goto out_free; 1190 } 1191 1192 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1193 1194 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1195 if (err) 1196 goto out_unlock_op; 1197 1198 for (i = 0; i < cc->cluster_size; i++) { 1199 if (data_blkaddr(dn.inode, dn.node_page, 1200 dn.ofs_in_node + i) == NULL_ADDR) 1201 goto out_put_dnode; 1202 } 1203 1204 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1205 1206 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 1207 if (err) 1208 goto out_put_dnode; 1209 1210 fio.version = ni.version; 1211 1212 cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS); 1213 if (!cic) 1214 goto out_put_dnode; 1215 1216 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1217 cic->inode = inode; 1218 atomic_set(&cic->pending_pages, cc->nr_cpages); 1219 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1220 if (!cic->rpages) 1221 goto out_put_cic; 1222 1223 cic->nr_rpages = cc->cluster_size; 1224 1225 for (i = 0; i < cc->nr_cpages; i++) { 1226 f2fs_set_compressed_page(cc->cpages[i], inode, 1227 cc->rpages[i + 1]->index, cic); 1228 fio.compressed_page = cc->cpages[i]; 1229 1230 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1231 dn.ofs_in_node + i + 1); 1232 1233 /* wait for GCed page writeback via META_MAPPING */ 1234 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1235 1236 if (fio.encrypted) { 1237 fio.page = cc->rpages[i + 1]; 1238 err = f2fs_encrypt_one_page(&fio); 1239 if (err) 1240 goto out_destroy_crypt; 1241 cc->cpages[i] = fio.encrypted_page; 1242 } 1243 } 1244 1245 set_cluster_writeback(cc); 1246 1247 for (i = 0; i < cc->cluster_size; i++) 1248 cic->rpages[i] = cc->rpages[i]; 1249 1250 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1251 block_t blkaddr; 1252 1253 blkaddr = f2fs_data_blkaddr(&dn); 1254 fio.page = cc->rpages[i]; 1255 fio.old_blkaddr = blkaddr; 1256 1257 /* cluster header */ 1258 if (i == 0) { 1259 if (blkaddr == COMPRESS_ADDR) 1260 fio.compr_blocks++; 1261 if (__is_valid_data_blkaddr(blkaddr)) 1262 f2fs_invalidate_blocks(sbi, blkaddr); 1263 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1264 goto unlock_continue; 1265 } 1266 1267 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1268 fio.compr_blocks++; 1269 1270 if (i > cc->nr_cpages) { 1271 if (__is_valid_data_blkaddr(blkaddr)) { 1272 f2fs_invalidate_blocks(sbi, blkaddr); 1273 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1274 } 1275 goto unlock_continue; 1276 } 1277 1278 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1279 1280 if (fio.encrypted) 1281 fio.encrypted_page = cc->cpages[i - 1]; 1282 else 1283 fio.compressed_page = cc->cpages[i - 1]; 1284 1285 cc->cpages[i - 1] = NULL; 1286 f2fs_outplace_write_data(&dn, &fio); 1287 (*submitted)++; 1288 unlock_continue: 1289 inode_dec_dirty_pages(cc->inode); 1290 unlock_page(fio.page); 1291 } 1292 1293 if (fio.compr_blocks) 1294 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1295 f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true); 1296 1297 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1298 if (cc->cluster_idx == 0) 1299 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1300 1301 f2fs_put_dnode(&dn); 1302 if (IS_NOQUOTA(inode)) 1303 up_read(&sbi->node_write); 1304 else 1305 f2fs_unlock_op(sbi); 1306 1307 spin_lock(&fi->i_size_lock); 1308 if (fi->last_disk_size < psize) 1309 fi->last_disk_size = psize; 1310 spin_unlock(&fi->i_size_lock); 1311 1312 f2fs_put_rpages(cc); 1313 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1314 cc->cpages = NULL; 1315 f2fs_destroy_compress_ctx(cc); 1316 return 0; 1317 1318 out_destroy_crypt: 1319 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1320 1321 for (--i; i >= 0; i--) 1322 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1323 for (i = 0; i < cc->nr_cpages; i++) { 1324 if (!cc->cpages[i]) 1325 continue; 1326 f2fs_put_page(cc->cpages[i], 1); 1327 } 1328 out_put_cic: 1329 kmem_cache_free(cic_entry_slab, cic); 1330 out_put_dnode: 1331 f2fs_put_dnode(&dn); 1332 out_unlock_op: 1333 if (IS_NOQUOTA(inode)) 1334 up_read(&sbi->node_write); 1335 else 1336 f2fs_unlock_op(sbi); 1337 out_free: 1338 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1339 cc->cpages = NULL; 1340 return -EAGAIN; 1341 } 1342 1343 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1344 { 1345 struct f2fs_sb_info *sbi = bio->bi_private; 1346 struct compress_io_ctx *cic = 1347 (struct compress_io_ctx *)page_private(page); 1348 int i; 1349 1350 if (unlikely(bio->bi_status)) 1351 mapping_set_error(cic->inode->i_mapping, -EIO); 1352 1353 f2fs_compress_free_page(page); 1354 1355 dec_page_count(sbi, F2FS_WB_DATA); 1356 1357 if (atomic_dec_return(&cic->pending_pages)) 1358 return; 1359 1360 for (i = 0; i < cic->nr_rpages; i++) { 1361 WARN_ON(!cic->rpages[i]); 1362 clear_cold_data(cic->rpages[i]); 1363 end_page_writeback(cic->rpages[i]); 1364 } 1365 1366 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1367 kmem_cache_free(cic_entry_slab, cic); 1368 } 1369 1370 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1371 int *submitted, 1372 struct writeback_control *wbc, 1373 enum iostat_type io_type) 1374 { 1375 struct address_space *mapping = cc->inode->i_mapping; 1376 int _submitted, compr_blocks, ret; 1377 int i = -1, err = 0; 1378 1379 compr_blocks = f2fs_compressed_blocks(cc); 1380 if (compr_blocks < 0) { 1381 err = compr_blocks; 1382 goto out_err; 1383 } 1384 1385 for (i = 0; i < cc->cluster_size; i++) { 1386 if (!cc->rpages[i]) 1387 continue; 1388 retry_write: 1389 if (cc->rpages[i]->mapping != mapping) { 1390 unlock_page(cc->rpages[i]); 1391 continue; 1392 } 1393 1394 BUG_ON(!PageLocked(cc->rpages[i])); 1395 1396 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, 1397 NULL, NULL, wbc, io_type, 1398 compr_blocks); 1399 if (ret) { 1400 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1401 unlock_page(cc->rpages[i]); 1402 ret = 0; 1403 } else if (ret == -EAGAIN) { 1404 /* 1405 * for quota file, just redirty left pages to 1406 * avoid deadlock caused by cluster update race 1407 * from foreground operation. 1408 */ 1409 if (IS_NOQUOTA(cc->inode)) { 1410 err = 0; 1411 goto out_err; 1412 } 1413 ret = 0; 1414 cond_resched(); 1415 congestion_wait(BLK_RW_ASYNC, 1416 DEFAULT_IO_TIMEOUT); 1417 lock_page(cc->rpages[i]); 1418 1419 if (!PageDirty(cc->rpages[i])) { 1420 unlock_page(cc->rpages[i]); 1421 continue; 1422 } 1423 1424 clear_page_dirty_for_io(cc->rpages[i]); 1425 goto retry_write; 1426 } 1427 err = ret; 1428 goto out_err; 1429 } 1430 1431 *submitted += _submitted; 1432 } 1433 return 0; 1434 out_err: 1435 for (++i; i < cc->cluster_size; i++) { 1436 if (!cc->rpages[i]) 1437 continue; 1438 redirty_page_for_writepage(wbc, cc->rpages[i]); 1439 unlock_page(cc->rpages[i]); 1440 } 1441 return err; 1442 } 1443 1444 int f2fs_write_multi_pages(struct compress_ctx *cc, 1445 int *submitted, 1446 struct writeback_control *wbc, 1447 enum iostat_type io_type) 1448 { 1449 int err; 1450 1451 *submitted = 0; 1452 if (cluster_may_compress(cc)) { 1453 err = f2fs_compress_pages(cc); 1454 if (err == -EAGAIN) { 1455 goto write; 1456 } else if (err) { 1457 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1458 goto destroy_out; 1459 } 1460 1461 err = f2fs_write_compressed_pages(cc, submitted, 1462 wbc, io_type); 1463 if (!err) 1464 return 0; 1465 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1466 } 1467 write: 1468 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1469 1470 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1471 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1472 destroy_out: 1473 f2fs_destroy_compress_ctx(cc); 1474 return err; 1475 } 1476 1477 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1478 { 1479 struct decompress_io_ctx *dic; 1480 pgoff_t start_idx = start_idx_of_cluster(cc); 1481 int i; 1482 1483 dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS); 1484 if (!dic) 1485 return ERR_PTR(-ENOMEM); 1486 1487 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1488 if (!dic->rpages) { 1489 kmem_cache_free(dic_entry_slab, dic); 1490 return ERR_PTR(-ENOMEM); 1491 } 1492 1493 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1494 dic->inode = cc->inode; 1495 atomic_set(&dic->pending_pages, cc->nr_cpages); 1496 dic->cluster_idx = cc->cluster_idx; 1497 dic->cluster_size = cc->cluster_size; 1498 dic->log_cluster_size = cc->log_cluster_size; 1499 dic->nr_cpages = cc->nr_cpages; 1500 dic->failed = false; 1501 1502 for (i = 0; i < dic->cluster_size; i++) 1503 dic->rpages[i] = cc->rpages[i]; 1504 dic->nr_rpages = cc->cluster_size; 1505 1506 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1507 if (!dic->cpages) 1508 goto out_free; 1509 1510 for (i = 0; i < dic->nr_cpages; i++) { 1511 struct page *page; 1512 1513 page = f2fs_compress_alloc_page(); 1514 if (!page) 1515 goto out_free; 1516 1517 f2fs_set_compressed_page(page, cc->inode, 1518 start_idx + i + 1, dic); 1519 dic->cpages[i] = page; 1520 } 1521 1522 return dic; 1523 1524 out_free: 1525 f2fs_free_dic(dic); 1526 return ERR_PTR(-ENOMEM); 1527 } 1528 1529 void f2fs_free_dic(struct decompress_io_ctx *dic) 1530 { 1531 int i; 1532 1533 if (dic->tpages) { 1534 for (i = 0; i < dic->cluster_size; i++) { 1535 if (dic->rpages[i]) 1536 continue; 1537 if (!dic->tpages[i]) 1538 continue; 1539 f2fs_compress_free_page(dic->tpages[i]); 1540 } 1541 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1542 } 1543 1544 if (dic->cpages) { 1545 for (i = 0; i < dic->nr_cpages; i++) { 1546 if (!dic->cpages[i]) 1547 continue; 1548 f2fs_compress_free_page(dic->cpages[i]); 1549 } 1550 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1551 } 1552 1553 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1554 kmem_cache_free(dic_entry_slab, dic); 1555 } 1556 1557 void f2fs_decompress_end_io(struct page **rpages, 1558 unsigned int cluster_size, bool err, bool verity) 1559 { 1560 int i; 1561 1562 for (i = 0; i < cluster_size; i++) { 1563 struct page *rpage = rpages[i]; 1564 1565 if (!rpage) 1566 continue; 1567 1568 if (err || PageError(rpage)) 1569 goto clear_uptodate; 1570 1571 if (!verity || fsverity_verify_page(rpage)) { 1572 SetPageUptodate(rpage); 1573 goto unlock; 1574 } 1575 clear_uptodate: 1576 ClearPageUptodate(rpage); 1577 ClearPageError(rpage); 1578 unlock: 1579 unlock_page(rpage); 1580 } 1581 } 1582 1583 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1584 { 1585 dev_t dev = sbi->sb->s_bdev->bd_dev; 1586 char slab_name[32]; 1587 1588 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1589 1590 sbi->page_array_slab_size = sizeof(struct page *) << 1591 F2FS_OPTION(sbi).compress_log_size; 1592 1593 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1594 sbi->page_array_slab_size); 1595 if (!sbi->page_array_slab) 1596 return -ENOMEM; 1597 return 0; 1598 } 1599 1600 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 1601 { 1602 kmem_cache_destroy(sbi->page_array_slab); 1603 } 1604 1605 static int __init f2fs_init_cic_cache(void) 1606 { 1607 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 1608 sizeof(struct compress_io_ctx)); 1609 if (!cic_entry_slab) 1610 return -ENOMEM; 1611 return 0; 1612 } 1613 1614 static void f2fs_destroy_cic_cache(void) 1615 { 1616 kmem_cache_destroy(cic_entry_slab); 1617 } 1618 1619 static int __init f2fs_init_dic_cache(void) 1620 { 1621 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 1622 sizeof(struct decompress_io_ctx)); 1623 if (!dic_entry_slab) 1624 return -ENOMEM; 1625 return 0; 1626 } 1627 1628 static void f2fs_destroy_dic_cache(void) 1629 { 1630 kmem_cache_destroy(dic_entry_slab); 1631 } 1632 1633 int __init f2fs_init_compress_cache(void) 1634 { 1635 int err; 1636 1637 err = f2fs_init_cic_cache(); 1638 if (err) 1639 goto out; 1640 err = f2fs_init_dic_cache(); 1641 if (err) 1642 goto free_cic; 1643 return 0; 1644 free_cic: 1645 f2fs_destroy_cic_cache(); 1646 out: 1647 return -ENOMEM; 1648 } 1649 1650 void f2fs_destroy_compress_cache(void) 1651 { 1652 f2fs_destroy_dic_cache(); 1653 f2fs_destroy_cic_cache(); 1654 } 1655