1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs compress support 4 * 5 * Copyright (c) 2019 Chao Yu <chao@kernel.org> 6 */ 7 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/moduleparam.h> 11 #include <linux/writeback.h> 12 #include <linux/backing-dev.h> 13 #include <linux/lzo.h> 14 #include <linux/lz4.h> 15 #include <linux/zstd.h> 16 #include <linux/pagevec.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *cic_entry_slab; 24 static struct kmem_cache *dic_entry_slab; 25 26 static void *page_array_alloc(struct inode *inode, int nr) 27 { 28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 29 unsigned int size = sizeof(struct page *) * nr; 30 31 if (likely(size <= sbi->page_array_slab_size)) 32 return f2fs_kmem_cache_alloc(sbi->page_array_slab, 33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode)); 34 return f2fs_kzalloc(sbi, size, GFP_NOFS); 35 } 36 37 static void page_array_free(struct inode *inode, void *pages, int nr) 38 { 39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 40 unsigned int size = sizeof(struct page *) * nr; 41 42 if (!pages) 43 return; 44 45 if (likely(size <= sbi->page_array_slab_size)) 46 kmem_cache_free(sbi->page_array_slab, pages); 47 else 48 kfree(pages); 49 } 50 51 struct f2fs_compress_ops { 52 int (*init_compress_ctx)(struct compress_ctx *cc); 53 void (*destroy_compress_ctx)(struct compress_ctx *cc); 54 int (*compress_pages)(struct compress_ctx *cc); 55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic); 56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); 57 int (*decompress_pages)(struct decompress_io_ctx *dic); 58 bool (*is_level_valid)(int level); 59 }; 60 61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) 62 { 63 return index & (cc->cluster_size - 1); 64 } 65 66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) 67 { 68 return index >> cc->log_cluster_size; 69 } 70 71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) 72 { 73 return cc->cluster_idx << cc->log_cluster_size; 74 } 75 76 bool f2fs_is_compressed_page(struct page *page) 77 { 78 if (!PagePrivate(page)) 79 return false; 80 if (!page_private(page)) 81 return false; 82 if (page_private_nonpointer(page)) 83 return false; 84 85 f2fs_bug_on(F2FS_M_SB(page->mapping), 86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); 87 return true; 88 } 89 90 static void f2fs_set_compressed_page(struct page *page, 91 struct inode *inode, pgoff_t index, void *data) 92 { 93 attach_page_private(page, (void *)data); 94 95 /* i_crypto_info and iv index */ 96 page->index = index; 97 page->mapping = inode->i_mapping; 98 } 99 100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) 101 { 102 int i; 103 104 for (i = 0; i < len; i++) { 105 if (!cc->rpages[i]) 106 continue; 107 if (unlock) 108 unlock_page(cc->rpages[i]); 109 else 110 put_page(cc->rpages[i]); 111 } 112 } 113 114 static void f2fs_put_rpages(struct compress_ctx *cc) 115 { 116 f2fs_drop_rpages(cc, cc->cluster_size, false); 117 } 118 119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) 120 { 121 f2fs_drop_rpages(cc, len, true); 122 } 123 124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc, 125 struct writeback_control *wbc, bool redirty, int unlock) 126 { 127 unsigned int i; 128 129 for (i = 0; i < cc->cluster_size; i++) { 130 if (!cc->rpages[i]) 131 continue; 132 if (redirty) 133 redirty_page_for_writepage(wbc, cc->rpages[i]); 134 f2fs_put_page(cc->rpages[i], unlock); 135 } 136 } 137 138 struct page *f2fs_compress_control_page(struct page *page) 139 { 140 return ((struct compress_io_ctx *)page_private(page))->rpages[0]; 141 } 142 143 int f2fs_init_compress_ctx(struct compress_ctx *cc) 144 { 145 if (cc->rpages) 146 return 0; 147 148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); 149 return cc->rpages ? 0 : -ENOMEM; 150 } 151 152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse) 153 { 154 page_array_free(cc->inode, cc->rpages, cc->cluster_size); 155 cc->rpages = NULL; 156 cc->nr_rpages = 0; 157 cc->nr_cpages = 0; 158 cc->valid_nr_cpages = 0; 159 if (!reuse) 160 cc->cluster_idx = NULL_CLUSTER; 161 } 162 163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) 164 { 165 unsigned int cluster_ofs; 166 167 if (!f2fs_cluster_can_merge_page(cc, page->index)) 168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1); 169 170 cluster_ofs = offset_in_cluster(cc, page->index); 171 cc->rpages[cluster_ofs] = page; 172 cc->nr_rpages++; 173 cc->cluster_idx = cluster_idx(cc, page->index); 174 } 175 176 #ifdef CONFIG_F2FS_FS_LZO 177 static int lzo_init_compress_ctx(struct compress_ctx *cc) 178 { 179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 180 LZO1X_MEM_COMPRESS, GFP_NOFS); 181 if (!cc->private) 182 return -ENOMEM; 183 184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); 185 return 0; 186 } 187 188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc) 189 { 190 kvfree(cc->private); 191 cc->private = NULL; 192 } 193 194 static int lzo_compress_pages(struct compress_ctx *cc) 195 { 196 int ret; 197 198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 199 &cc->clen, cc->private); 200 if (ret != LZO_E_OK) { 201 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 202 "lzo compress failed, ret:%d", ret); 203 return -EIO; 204 } 205 return 0; 206 } 207 208 static int lzo_decompress_pages(struct decompress_io_ctx *dic) 209 { 210 int ret; 211 212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, 213 dic->rbuf, &dic->rlen); 214 if (ret != LZO_E_OK) { 215 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 216 "lzo decompress failed, ret:%d", ret); 217 return -EIO; 218 } 219 220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { 221 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 222 "lzo invalid rlen:%zu, expected:%lu", 223 dic->rlen, PAGE_SIZE << dic->log_cluster_size); 224 return -EIO; 225 } 226 return 0; 227 } 228 229 static const struct f2fs_compress_ops f2fs_lzo_ops = { 230 .init_compress_ctx = lzo_init_compress_ctx, 231 .destroy_compress_ctx = lzo_destroy_compress_ctx, 232 .compress_pages = lzo_compress_pages, 233 .decompress_pages = lzo_decompress_pages, 234 }; 235 #endif 236 237 #ifdef CONFIG_F2FS_FS_LZ4 238 static int lz4_init_compress_ctx(struct compress_ctx *cc) 239 { 240 unsigned int size = LZ4_MEM_COMPRESS; 241 242 #ifdef CONFIG_F2FS_FS_LZ4HC 243 if (F2FS_I(cc->inode)->i_compress_level) 244 size = LZ4HC_MEM_COMPRESS; 245 #endif 246 247 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); 248 if (!cc->private) 249 return -ENOMEM; 250 251 /* 252 * we do not change cc->clen to LZ4_compressBound(inputsize) to 253 * adapt worst compress case, because lz4 compressor can handle 254 * output budget properly. 255 */ 256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 257 return 0; 258 } 259 260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc) 261 { 262 kvfree(cc->private); 263 cc->private = NULL; 264 } 265 266 static int lz4_compress_pages(struct compress_ctx *cc) 267 { 268 int len = -EINVAL; 269 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 270 271 if (!level) 272 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, 273 cc->clen, cc->private); 274 #ifdef CONFIG_F2FS_FS_LZ4HC 275 else 276 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, 277 cc->clen, level, cc->private); 278 #endif 279 if (len < 0) 280 return len; 281 if (!len) 282 return -EAGAIN; 283 284 cc->clen = len; 285 return 0; 286 } 287 288 static int lz4_decompress_pages(struct decompress_io_ctx *dic) 289 { 290 int ret; 291 292 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, 293 dic->clen, dic->rlen); 294 if (ret < 0) { 295 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 296 "lz4 decompress failed, ret:%d", ret); 297 return -EIO; 298 } 299 300 if (ret != PAGE_SIZE << dic->log_cluster_size) { 301 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 302 "lz4 invalid ret:%d, expected:%lu", 303 ret, PAGE_SIZE << dic->log_cluster_size); 304 return -EIO; 305 } 306 return 0; 307 } 308 309 static bool lz4_is_level_valid(int lvl) 310 { 311 #ifdef CONFIG_F2FS_FS_LZ4HC 312 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL); 313 #else 314 return lvl == 0; 315 #endif 316 } 317 318 static const struct f2fs_compress_ops f2fs_lz4_ops = { 319 .init_compress_ctx = lz4_init_compress_ctx, 320 .destroy_compress_ctx = lz4_destroy_compress_ctx, 321 .compress_pages = lz4_compress_pages, 322 .decompress_pages = lz4_decompress_pages, 323 .is_level_valid = lz4_is_level_valid, 324 }; 325 #endif 326 327 #ifdef CONFIG_F2FS_FS_ZSTD 328 static int zstd_init_compress_ctx(struct compress_ctx *cc) 329 { 330 zstd_parameters params; 331 zstd_cstream *stream; 332 void *workspace; 333 unsigned int workspace_size; 334 unsigned char level = F2FS_I(cc->inode)->i_compress_level; 335 336 /* Need to remain this for backward compatibility */ 337 if (!level) 338 level = F2FS_ZSTD_DEFAULT_CLEVEL; 339 340 params = zstd_get_params(level, cc->rlen); 341 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams); 342 343 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), 344 workspace_size, GFP_NOFS); 345 if (!workspace) 346 return -ENOMEM; 347 348 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size); 349 if (!stream) { 350 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 351 "%s zstd_init_cstream failed", __func__); 352 kvfree(workspace); 353 return -EIO; 354 } 355 356 cc->private = workspace; 357 cc->private2 = stream; 358 359 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; 360 return 0; 361 } 362 363 static void zstd_destroy_compress_ctx(struct compress_ctx *cc) 364 { 365 kvfree(cc->private); 366 cc->private = NULL; 367 cc->private2 = NULL; 368 } 369 370 static int zstd_compress_pages(struct compress_ctx *cc) 371 { 372 zstd_cstream *stream = cc->private2; 373 zstd_in_buffer inbuf; 374 zstd_out_buffer outbuf; 375 int src_size = cc->rlen; 376 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; 377 int ret; 378 379 inbuf.pos = 0; 380 inbuf.src = cc->rbuf; 381 inbuf.size = src_size; 382 383 outbuf.pos = 0; 384 outbuf.dst = cc->cbuf->cdata; 385 outbuf.size = dst_size; 386 387 ret = zstd_compress_stream(stream, &outbuf, &inbuf); 388 if (zstd_is_error(ret)) { 389 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 390 "%s zstd_compress_stream failed, ret: %d", 391 __func__, zstd_get_error_code(ret)); 392 return -EIO; 393 } 394 395 ret = zstd_end_stream(stream, &outbuf); 396 if (zstd_is_error(ret)) { 397 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 398 "%s zstd_end_stream returned %d", 399 __func__, zstd_get_error_code(ret)); 400 return -EIO; 401 } 402 403 /* 404 * there is compressed data remained in intermediate buffer due to 405 * no more space in cbuf.cdata 406 */ 407 if (ret) 408 return -EAGAIN; 409 410 cc->clen = outbuf.pos; 411 return 0; 412 } 413 414 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) 415 { 416 zstd_dstream *stream; 417 void *workspace; 418 unsigned int workspace_size; 419 unsigned int max_window_size = 420 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); 421 422 workspace_size = zstd_dstream_workspace_bound(max_window_size); 423 424 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), 425 workspace_size, GFP_NOFS); 426 if (!workspace) 427 return -ENOMEM; 428 429 stream = zstd_init_dstream(max_window_size, workspace, workspace_size); 430 if (!stream) { 431 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 432 "%s zstd_init_dstream failed", __func__); 433 kvfree(workspace); 434 return -EIO; 435 } 436 437 dic->private = workspace; 438 dic->private2 = stream; 439 440 return 0; 441 } 442 443 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) 444 { 445 kvfree(dic->private); 446 dic->private = NULL; 447 dic->private2 = NULL; 448 } 449 450 static int zstd_decompress_pages(struct decompress_io_ctx *dic) 451 { 452 zstd_dstream *stream = dic->private2; 453 zstd_in_buffer inbuf; 454 zstd_out_buffer outbuf; 455 int ret; 456 457 inbuf.pos = 0; 458 inbuf.src = dic->cbuf->cdata; 459 inbuf.size = dic->clen; 460 461 outbuf.pos = 0; 462 outbuf.dst = dic->rbuf; 463 outbuf.size = dic->rlen; 464 465 ret = zstd_decompress_stream(stream, &outbuf, &inbuf); 466 if (zstd_is_error(ret)) { 467 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 468 "%s zstd_decompress_stream failed, ret: %d", 469 __func__, zstd_get_error_code(ret)); 470 return -EIO; 471 } 472 473 if (dic->rlen != outbuf.pos) { 474 f2fs_err_ratelimited(F2FS_I_SB(dic->inode), 475 "%s ZSTD invalid rlen:%zu, expected:%lu", 476 __func__, dic->rlen, 477 PAGE_SIZE << dic->log_cluster_size); 478 return -EIO; 479 } 480 481 return 0; 482 } 483 484 static bool zstd_is_level_valid(int lvl) 485 { 486 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel(); 487 } 488 489 static const struct f2fs_compress_ops f2fs_zstd_ops = { 490 .init_compress_ctx = zstd_init_compress_ctx, 491 .destroy_compress_ctx = zstd_destroy_compress_ctx, 492 .compress_pages = zstd_compress_pages, 493 .init_decompress_ctx = zstd_init_decompress_ctx, 494 .destroy_decompress_ctx = zstd_destroy_decompress_ctx, 495 .decompress_pages = zstd_decompress_pages, 496 .is_level_valid = zstd_is_level_valid, 497 }; 498 #endif 499 500 #ifdef CONFIG_F2FS_FS_LZO 501 #ifdef CONFIG_F2FS_FS_LZORLE 502 static int lzorle_compress_pages(struct compress_ctx *cc) 503 { 504 int ret; 505 506 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, 507 &cc->clen, cc->private); 508 if (ret != LZO_E_OK) { 509 f2fs_err_ratelimited(F2FS_I_SB(cc->inode), 510 "lzo-rle compress failed, ret:%d", ret); 511 return -EIO; 512 } 513 return 0; 514 } 515 516 static const struct f2fs_compress_ops f2fs_lzorle_ops = { 517 .init_compress_ctx = lzo_init_compress_ctx, 518 .destroy_compress_ctx = lzo_destroy_compress_ctx, 519 .compress_pages = lzorle_compress_pages, 520 .decompress_pages = lzo_decompress_pages, 521 }; 522 #endif 523 #endif 524 525 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { 526 #ifdef CONFIG_F2FS_FS_LZO 527 &f2fs_lzo_ops, 528 #else 529 NULL, 530 #endif 531 #ifdef CONFIG_F2FS_FS_LZ4 532 &f2fs_lz4_ops, 533 #else 534 NULL, 535 #endif 536 #ifdef CONFIG_F2FS_FS_ZSTD 537 &f2fs_zstd_ops, 538 #else 539 NULL, 540 #endif 541 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) 542 &f2fs_lzorle_ops, 543 #else 544 NULL, 545 #endif 546 }; 547 548 bool f2fs_is_compress_backend_ready(struct inode *inode) 549 { 550 if (!f2fs_compressed_file(inode)) 551 return true; 552 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; 553 } 554 555 bool f2fs_is_compress_level_valid(int alg, int lvl) 556 { 557 const struct f2fs_compress_ops *cops = f2fs_cops[alg]; 558 559 if (cops->is_level_valid) 560 return cops->is_level_valid(lvl); 561 562 return lvl == 0; 563 } 564 565 static mempool_t *compress_page_pool; 566 static int num_compress_pages = 512; 567 module_param(num_compress_pages, uint, 0444); 568 MODULE_PARM_DESC(num_compress_pages, 569 "Number of intermediate compress pages to preallocate"); 570 571 int __init f2fs_init_compress_mempool(void) 572 { 573 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); 574 return compress_page_pool ? 0 : -ENOMEM; 575 } 576 577 void f2fs_destroy_compress_mempool(void) 578 { 579 mempool_destroy(compress_page_pool); 580 } 581 582 static struct page *f2fs_compress_alloc_page(void) 583 { 584 struct page *page; 585 586 page = mempool_alloc(compress_page_pool, GFP_NOFS); 587 lock_page(page); 588 589 return page; 590 } 591 592 static void f2fs_compress_free_page(struct page *page) 593 { 594 if (!page) 595 return; 596 detach_page_private(page); 597 page->mapping = NULL; 598 unlock_page(page); 599 mempool_free(page, compress_page_pool); 600 } 601 602 #define MAX_VMAP_RETRIES 3 603 604 static void *f2fs_vmap(struct page **pages, unsigned int count) 605 { 606 int i; 607 void *buf = NULL; 608 609 for (i = 0; i < MAX_VMAP_RETRIES; i++) { 610 buf = vm_map_ram(pages, count, -1); 611 if (buf) 612 break; 613 vm_unmap_aliases(); 614 } 615 return buf; 616 } 617 618 static int f2fs_compress_pages(struct compress_ctx *cc) 619 { 620 struct f2fs_inode_info *fi = F2FS_I(cc->inode); 621 const struct f2fs_compress_ops *cops = 622 f2fs_cops[fi->i_compress_algorithm]; 623 unsigned int max_len, new_nr_cpages; 624 u32 chksum = 0; 625 int i, ret; 626 627 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, 628 cc->cluster_size, fi->i_compress_algorithm); 629 630 if (cops->init_compress_ctx) { 631 ret = cops->init_compress_ctx(cc); 632 if (ret) 633 goto out; 634 } 635 636 max_len = COMPRESS_HEADER_SIZE + cc->clen; 637 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); 638 cc->valid_nr_cpages = cc->nr_cpages; 639 640 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); 641 if (!cc->cpages) { 642 ret = -ENOMEM; 643 goto destroy_compress_ctx; 644 } 645 646 for (i = 0; i < cc->nr_cpages; i++) 647 cc->cpages[i] = f2fs_compress_alloc_page(); 648 649 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); 650 if (!cc->rbuf) { 651 ret = -ENOMEM; 652 goto out_free_cpages; 653 } 654 655 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); 656 if (!cc->cbuf) { 657 ret = -ENOMEM; 658 goto out_vunmap_rbuf; 659 } 660 661 ret = cops->compress_pages(cc); 662 if (ret) 663 goto out_vunmap_cbuf; 664 665 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; 666 667 if (cc->clen > max_len) { 668 ret = -EAGAIN; 669 goto out_vunmap_cbuf; 670 } 671 672 cc->cbuf->clen = cpu_to_le32(cc->clen); 673 674 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM)) 675 chksum = f2fs_crc32(F2FS_I_SB(cc->inode), 676 cc->cbuf->cdata, cc->clen); 677 cc->cbuf->chksum = cpu_to_le32(chksum); 678 679 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) 680 cc->cbuf->reserved[i] = cpu_to_le32(0); 681 682 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); 683 684 /* zero out any unused part of the last page */ 685 memset(&cc->cbuf->cdata[cc->clen], 0, 686 (new_nr_cpages * PAGE_SIZE) - 687 (cc->clen + COMPRESS_HEADER_SIZE)); 688 689 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 690 vm_unmap_ram(cc->rbuf, cc->cluster_size); 691 692 for (i = new_nr_cpages; i < cc->nr_cpages; i++) { 693 f2fs_compress_free_page(cc->cpages[i]); 694 cc->cpages[i] = NULL; 695 } 696 697 if (cops->destroy_compress_ctx) 698 cops->destroy_compress_ctx(cc); 699 700 cc->valid_nr_cpages = new_nr_cpages; 701 702 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 703 cc->clen, ret); 704 return 0; 705 706 out_vunmap_cbuf: 707 vm_unmap_ram(cc->cbuf, cc->nr_cpages); 708 out_vunmap_rbuf: 709 vm_unmap_ram(cc->rbuf, cc->cluster_size); 710 out_free_cpages: 711 for (i = 0; i < cc->nr_cpages; i++) { 712 if (cc->cpages[i]) 713 f2fs_compress_free_page(cc->cpages[i]); 714 } 715 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 716 cc->cpages = NULL; 717 destroy_compress_ctx: 718 if (cops->destroy_compress_ctx) 719 cops->destroy_compress_ctx(cc); 720 out: 721 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, 722 cc->clen, ret); 723 return ret; 724 } 725 726 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 727 bool pre_alloc); 728 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 729 bool bypass_destroy_callback, bool pre_alloc); 730 731 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) 732 { 733 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 734 struct f2fs_inode_info *fi = F2FS_I(dic->inode); 735 const struct f2fs_compress_ops *cops = 736 f2fs_cops[fi->i_compress_algorithm]; 737 bool bypass_callback = false; 738 int ret; 739 740 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, 741 dic->cluster_size, fi->i_compress_algorithm); 742 743 if (dic->failed) { 744 ret = -EIO; 745 goto out_end_io; 746 } 747 748 ret = f2fs_prepare_decomp_mem(dic, false); 749 if (ret) { 750 bypass_callback = true; 751 goto out_release; 752 } 753 754 dic->clen = le32_to_cpu(dic->cbuf->clen); 755 dic->rlen = PAGE_SIZE << dic->log_cluster_size; 756 757 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { 758 ret = -EFSCORRUPTED; 759 760 /* Avoid f2fs_commit_super in irq context */ 761 if (!in_task) 762 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION); 763 else 764 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION); 765 goto out_release; 766 } 767 768 ret = cops->decompress_pages(dic); 769 770 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) { 771 u32 provided = le32_to_cpu(dic->cbuf->chksum); 772 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); 773 774 if (provided != calculated) { 775 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { 776 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); 777 f2fs_info_ratelimited(sbi, 778 "checksum invalid, nid = %lu, %x vs %x", 779 dic->inode->i_ino, 780 provided, calculated); 781 } 782 set_sbi_flag(sbi, SBI_NEED_FSCK); 783 } 784 } 785 786 out_release: 787 f2fs_release_decomp_mem(dic, bypass_callback, false); 788 789 out_end_io: 790 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, 791 dic->clen, ret); 792 f2fs_decompress_end_io(dic, ret, in_task); 793 } 794 795 /* 796 * This is called when a page of a compressed cluster has been read from disk 797 * (or failed to be read from disk). It checks whether this page was the last 798 * page being waited on in the cluster, and if so, it decompresses the cluster 799 * (or in the case of a failure, cleans up without actually decompressing). 800 */ 801 void f2fs_end_read_compressed_page(struct page *page, bool failed, 802 block_t blkaddr, bool in_task) 803 { 804 struct decompress_io_ctx *dic = 805 (struct decompress_io_ctx *)page_private(page); 806 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); 807 808 dec_page_count(sbi, F2FS_RD_DATA); 809 810 if (failed) 811 WRITE_ONCE(dic->failed, true); 812 else if (blkaddr && in_task) 813 f2fs_cache_compressed_page(sbi, page, 814 dic->inode->i_ino, blkaddr); 815 816 if (atomic_dec_and_test(&dic->remaining_pages)) 817 f2fs_decompress_cluster(dic, in_task); 818 } 819 820 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) 821 { 822 if (cc->cluster_idx == NULL_CLUSTER) 823 return true; 824 return cc->cluster_idx == cluster_idx(cc, index); 825 } 826 827 bool f2fs_cluster_is_empty(struct compress_ctx *cc) 828 { 829 return cc->nr_rpages == 0; 830 } 831 832 static bool f2fs_cluster_is_full(struct compress_ctx *cc) 833 { 834 return cc->cluster_size == cc->nr_rpages; 835 } 836 837 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) 838 { 839 if (f2fs_cluster_is_empty(cc)) 840 return true; 841 return is_page_in_cluster(cc, index); 842 } 843 844 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 845 int index, int nr_pages, bool uptodate) 846 { 847 unsigned long pgidx = pages[index]->index; 848 int i = uptodate ? 0 : 1; 849 850 /* 851 * when uptodate set to true, try to check all pages in cluster is 852 * uptodate or not. 853 */ 854 if (uptodate && (pgidx % cc->cluster_size)) 855 return false; 856 857 if (nr_pages - index < cc->cluster_size) 858 return false; 859 860 for (; i < cc->cluster_size; i++) { 861 if (pages[index + i]->index != pgidx + i) 862 return false; 863 if (uptodate && !PageUptodate(pages[index + i])) 864 return false; 865 } 866 867 return true; 868 } 869 870 static bool cluster_has_invalid_data(struct compress_ctx *cc) 871 { 872 loff_t i_size = i_size_read(cc->inode); 873 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); 874 int i; 875 876 for (i = 0; i < cc->cluster_size; i++) { 877 struct page *page = cc->rpages[i]; 878 879 f2fs_bug_on(F2FS_I_SB(cc->inode), !page); 880 881 /* beyond EOF */ 882 if (page->index >= nr_pages) 883 return true; 884 } 885 return false; 886 } 887 888 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) 889 { 890 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 891 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 892 bool compressed = dn->data_blkaddr == COMPRESS_ADDR; 893 int cluster_end = 0; 894 int i; 895 char *reason = ""; 896 897 if (!compressed) 898 return false; 899 900 /* [..., COMPR_ADDR, ...] */ 901 if (dn->ofs_in_node % cluster_size) { 902 reason = "[*|C|*|*]"; 903 goto out; 904 } 905 906 for (i = 1; i < cluster_size; i++) { 907 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 908 dn->ofs_in_node + i); 909 910 /* [COMPR_ADDR, ..., COMPR_ADDR] */ 911 if (blkaddr == COMPRESS_ADDR) { 912 reason = "[C|*|C|*]"; 913 goto out; 914 } 915 if (!__is_valid_data_blkaddr(blkaddr)) { 916 if (!cluster_end) 917 cluster_end = i; 918 continue; 919 } 920 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */ 921 if (cluster_end) { 922 reason = "[C|N|N|V]"; 923 goto out; 924 } 925 } 926 return false; 927 out: 928 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s", 929 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason); 930 set_sbi_flag(sbi, SBI_NEED_FSCK); 931 return true; 932 } 933 934 static int __f2fs_cluster_blocks(struct inode *inode, 935 unsigned int cluster_idx, bool compr) 936 { 937 struct dnode_of_data dn; 938 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 939 unsigned int start_idx = cluster_idx << 940 F2FS_I(inode)->i_log_cluster_size; 941 int ret; 942 943 set_new_dnode(&dn, inode, NULL, NULL, 0); 944 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 945 if (ret) { 946 if (ret == -ENOENT) 947 ret = 0; 948 goto fail; 949 } 950 951 if (f2fs_sanity_check_cluster(&dn)) { 952 ret = -EFSCORRUPTED; 953 f2fs_handle_error(F2FS_I_SB(inode), ERROR_CORRUPTED_CLUSTER); 954 goto fail; 955 } 956 957 if (dn.data_blkaddr == COMPRESS_ADDR) { 958 int i; 959 960 ret = 1; 961 for (i = 1; i < cluster_size; i++) { 962 block_t blkaddr; 963 964 blkaddr = data_blkaddr(dn.inode, 965 dn.node_page, dn.ofs_in_node + i); 966 if (compr) { 967 if (__is_valid_data_blkaddr(blkaddr)) 968 ret++; 969 } else { 970 if (blkaddr != NULL_ADDR) 971 ret++; 972 } 973 } 974 975 f2fs_bug_on(F2FS_I_SB(inode), 976 !compr && ret != cluster_size && 977 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)); 978 } 979 fail: 980 f2fs_put_dnode(&dn); 981 return ret; 982 } 983 984 /* return # of compressed blocks in compressed cluster */ 985 static int f2fs_compressed_blocks(struct compress_ctx *cc) 986 { 987 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true); 988 } 989 990 /* return # of valid blocks in compressed cluster */ 991 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) 992 { 993 return __f2fs_cluster_blocks(inode, 994 index >> F2FS_I(inode)->i_log_cluster_size, 995 false); 996 } 997 998 static bool cluster_may_compress(struct compress_ctx *cc) 999 { 1000 if (!f2fs_need_compress_data(cc->inode)) 1001 return false; 1002 if (f2fs_is_atomic_file(cc->inode)) 1003 return false; 1004 if (!f2fs_cluster_is_full(cc)) 1005 return false; 1006 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) 1007 return false; 1008 return !cluster_has_invalid_data(cc); 1009 } 1010 1011 static void set_cluster_writeback(struct compress_ctx *cc) 1012 { 1013 int i; 1014 1015 for (i = 0; i < cc->cluster_size; i++) { 1016 if (cc->rpages[i]) 1017 set_page_writeback(cc->rpages[i]); 1018 } 1019 } 1020 1021 static void set_cluster_dirty(struct compress_ctx *cc) 1022 { 1023 int i; 1024 1025 for (i = 0; i < cc->cluster_size; i++) 1026 if (cc->rpages[i]) { 1027 set_page_dirty(cc->rpages[i]); 1028 set_page_private_gcing(cc->rpages[i]); 1029 } 1030 } 1031 1032 static int prepare_compress_overwrite(struct compress_ctx *cc, 1033 struct page **pagep, pgoff_t index, void **fsdata) 1034 { 1035 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1036 struct address_space *mapping = cc->inode->i_mapping; 1037 struct page *page; 1038 sector_t last_block_in_bio; 1039 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; 1040 pgoff_t start_idx = start_idx_of_cluster(cc); 1041 int i, ret; 1042 1043 retry: 1044 ret = f2fs_is_compressed_cluster(cc->inode, start_idx); 1045 if (ret <= 0) 1046 return ret; 1047 1048 ret = f2fs_init_compress_ctx(cc); 1049 if (ret) 1050 return ret; 1051 1052 /* keep page reference to avoid page reclaim */ 1053 for (i = 0; i < cc->cluster_size; i++) { 1054 page = f2fs_pagecache_get_page(mapping, start_idx + i, 1055 fgp_flag, GFP_NOFS); 1056 if (!page) { 1057 ret = -ENOMEM; 1058 goto unlock_pages; 1059 } 1060 1061 if (PageUptodate(page)) 1062 f2fs_put_page(page, 1); 1063 else 1064 f2fs_compress_ctx_add_page(cc, page); 1065 } 1066 1067 if (!f2fs_cluster_is_empty(cc)) { 1068 struct bio *bio = NULL; 1069 1070 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, 1071 &last_block_in_bio, false, true); 1072 f2fs_put_rpages(cc); 1073 f2fs_destroy_compress_ctx(cc, true); 1074 if (ret) 1075 goto out; 1076 if (bio) 1077 f2fs_submit_read_bio(sbi, bio, DATA); 1078 1079 ret = f2fs_init_compress_ctx(cc); 1080 if (ret) 1081 goto out; 1082 } 1083 1084 for (i = 0; i < cc->cluster_size; i++) { 1085 f2fs_bug_on(sbi, cc->rpages[i]); 1086 1087 page = find_lock_page(mapping, start_idx + i); 1088 if (!page) { 1089 /* page can be truncated */ 1090 goto release_and_retry; 1091 } 1092 1093 f2fs_wait_on_page_writeback(page, DATA, true, true); 1094 f2fs_compress_ctx_add_page(cc, page); 1095 1096 if (!PageUptodate(page)) { 1097 release_and_retry: 1098 f2fs_put_rpages(cc); 1099 f2fs_unlock_rpages(cc, i + 1); 1100 f2fs_destroy_compress_ctx(cc, true); 1101 goto retry; 1102 } 1103 } 1104 1105 if (likely(!ret)) { 1106 *fsdata = cc->rpages; 1107 *pagep = cc->rpages[offset_in_cluster(cc, index)]; 1108 return cc->cluster_size; 1109 } 1110 1111 unlock_pages: 1112 f2fs_put_rpages(cc); 1113 f2fs_unlock_rpages(cc, i); 1114 f2fs_destroy_compress_ctx(cc, true); 1115 out: 1116 return ret; 1117 } 1118 1119 int f2fs_prepare_compress_overwrite(struct inode *inode, 1120 struct page **pagep, pgoff_t index, void **fsdata) 1121 { 1122 struct compress_ctx cc = { 1123 .inode = inode, 1124 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1125 .cluster_size = F2FS_I(inode)->i_cluster_size, 1126 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, 1127 .rpages = NULL, 1128 .nr_rpages = 0, 1129 }; 1130 1131 return prepare_compress_overwrite(&cc, pagep, index, fsdata); 1132 } 1133 1134 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 1135 pgoff_t index, unsigned copied) 1136 1137 { 1138 struct compress_ctx cc = { 1139 .inode = inode, 1140 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 1141 .cluster_size = F2FS_I(inode)->i_cluster_size, 1142 .rpages = fsdata, 1143 }; 1144 bool first_index = (index == cc.rpages[0]->index); 1145 1146 if (copied) 1147 set_cluster_dirty(&cc); 1148 1149 f2fs_put_rpages_wbc(&cc, NULL, false, 1); 1150 f2fs_destroy_compress_ctx(&cc, false); 1151 1152 return first_index; 1153 } 1154 1155 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) 1156 { 1157 void *fsdata = NULL; 1158 struct page *pagep; 1159 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 1160 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << 1161 log_cluster_size; 1162 int err; 1163 1164 err = f2fs_is_compressed_cluster(inode, start_idx); 1165 if (err < 0) 1166 return err; 1167 1168 /* truncate normal cluster */ 1169 if (!err) 1170 return f2fs_do_truncate_blocks(inode, from, lock); 1171 1172 /* truncate compressed cluster */ 1173 err = f2fs_prepare_compress_overwrite(inode, &pagep, 1174 start_idx, &fsdata); 1175 1176 /* should not be a normal cluster */ 1177 f2fs_bug_on(F2FS_I_SB(inode), err == 0); 1178 1179 if (err <= 0) 1180 return err; 1181 1182 if (err > 0) { 1183 struct page **rpages = fsdata; 1184 int cluster_size = F2FS_I(inode)->i_cluster_size; 1185 int i; 1186 1187 for (i = cluster_size - 1; i >= 0; i--) { 1188 loff_t start = rpages[i]->index << PAGE_SHIFT; 1189 1190 if (from <= start) { 1191 zero_user_segment(rpages[i], 0, PAGE_SIZE); 1192 } else { 1193 zero_user_segment(rpages[i], from - start, 1194 PAGE_SIZE); 1195 break; 1196 } 1197 } 1198 1199 f2fs_compress_write_end(inode, fsdata, start_idx, true); 1200 } 1201 return 0; 1202 } 1203 1204 static int f2fs_write_compressed_pages(struct compress_ctx *cc, 1205 int *submitted, 1206 struct writeback_control *wbc, 1207 enum iostat_type io_type) 1208 { 1209 struct inode *inode = cc->inode; 1210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1211 struct f2fs_inode_info *fi = F2FS_I(inode); 1212 struct f2fs_io_info fio = { 1213 .sbi = sbi, 1214 .ino = cc->inode->i_ino, 1215 .type = DATA, 1216 .op = REQ_OP_WRITE, 1217 .op_flags = wbc_to_write_flags(wbc), 1218 .old_blkaddr = NEW_ADDR, 1219 .page = NULL, 1220 .encrypted_page = NULL, 1221 .compressed_page = NULL, 1222 .submitted = 0, 1223 .io_type = io_type, 1224 .io_wbc = wbc, 1225 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ? 1226 1 : 0, 1227 }; 1228 struct dnode_of_data dn; 1229 struct node_info ni; 1230 struct compress_io_ctx *cic; 1231 pgoff_t start_idx = start_idx_of_cluster(cc); 1232 unsigned int last_index = cc->cluster_size - 1; 1233 loff_t psize; 1234 int i, err; 1235 bool quota_inode = IS_NOQUOTA(inode); 1236 1237 /* we should bypass data pages to proceed the kworker jobs */ 1238 if (unlikely(f2fs_cp_error(sbi))) { 1239 mapping_set_error(cc->rpages[0]->mapping, -EIO); 1240 goto out_free; 1241 } 1242 1243 if (quota_inode) { 1244 /* 1245 * We need to wait for node_write to avoid block allocation during 1246 * checkpoint. This can only happen to quota writes which can cause 1247 * the below discard race condition. 1248 */ 1249 f2fs_down_read(&sbi->node_write); 1250 } else if (!f2fs_trylock_op(sbi)) { 1251 goto out_free; 1252 } 1253 1254 set_new_dnode(&dn, cc->inode, NULL, NULL, 0); 1255 1256 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 1257 if (err) 1258 goto out_unlock_op; 1259 1260 for (i = 0; i < cc->cluster_size; i++) { 1261 if (data_blkaddr(dn.inode, dn.node_page, 1262 dn.ofs_in_node + i) == NULL_ADDR) 1263 goto out_put_dnode; 1264 } 1265 1266 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; 1267 1268 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1269 if (err) 1270 goto out_put_dnode; 1271 1272 fio.version = ni.version; 1273 1274 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1275 if (!cic) 1276 goto out_put_dnode; 1277 1278 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1279 cic->inode = inode; 1280 atomic_set(&cic->pending_pages, cc->valid_nr_cpages); 1281 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1282 if (!cic->rpages) 1283 goto out_put_cic; 1284 1285 cic->nr_rpages = cc->cluster_size; 1286 1287 for (i = 0; i < cc->valid_nr_cpages; i++) { 1288 f2fs_set_compressed_page(cc->cpages[i], inode, 1289 cc->rpages[i + 1]->index, cic); 1290 fio.compressed_page = cc->cpages[i]; 1291 1292 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, 1293 dn.ofs_in_node + i + 1); 1294 1295 /* wait for GCed page writeback via META_MAPPING */ 1296 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); 1297 1298 if (fio.encrypted) { 1299 fio.page = cc->rpages[i + 1]; 1300 err = f2fs_encrypt_one_page(&fio); 1301 if (err) 1302 goto out_destroy_crypt; 1303 cc->cpages[i] = fio.encrypted_page; 1304 } 1305 } 1306 1307 set_cluster_writeback(cc); 1308 1309 for (i = 0; i < cc->cluster_size; i++) 1310 cic->rpages[i] = cc->rpages[i]; 1311 1312 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { 1313 block_t blkaddr; 1314 1315 blkaddr = f2fs_data_blkaddr(&dn); 1316 fio.page = cc->rpages[i]; 1317 fio.old_blkaddr = blkaddr; 1318 1319 /* cluster header */ 1320 if (i == 0) { 1321 if (blkaddr == COMPRESS_ADDR) 1322 fio.compr_blocks++; 1323 if (__is_valid_data_blkaddr(blkaddr)) 1324 f2fs_invalidate_blocks(sbi, blkaddr); 1325 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); 1326 goto unlock_continue; 1327 } 1328 1329 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) 1330 fio.compr_blocks++; 1331 1332 if (i > cc->valid_nr_cpages) { 1333 if (__is_valid_data_blkaddr(blkaddr)) { 1334 f2fs_invalidate_blocks(sbi, blkaddr); 1335 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 1336 } 1337 goto unlock_continue; 1338 } 1339 1340 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); 1341 1342 if (fio.encrypted) 1343 fio.encrypted_page = cc->cpages[i - 1]; 1344 else 1345 fio.compressed_page = cc->cpages[i - 1]; 1346 1347 cc->cpages[i - 1] = NULL; 1348 f2fs_outplace_write_data(&dn, &fio); 1349 (*submitted)++; 1350 unlock_continue: 1351 inode_dec_dirty_pages(cc->inode); 1352 unlock_page(fio.page); 1353 } 1354 1355 if (fio.compr_blocks) 1356 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); 1357 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true); 1358 add_compr_block_stat(inode, cc->valid_nr_cpages); 1359 1360 set_inode_flag(cc->inode, FI_APPEND_WRITE); 1361 1362 f2fs_put_dnode(&dn); 1363 if (quota_inode) 1364 f2fs_up_read(&sbi->node_write); 1365 else 1366 f2fs_unlock_op(sbi); 1367 1368 spin_lock(&fi->i_size_lock); 1369 if (fi->last_disk_size < psize) 1370 fi->last_disk_size = psize; 1371 spin_unlock(&fi->i_size_lock); 1372 1373 f2fs_put_rpages(cc); 1374 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1375 cc->cpages = NULL; 1376 f2fs_destroy_compress_ctx(cc, false); 1377 return 0; 1378 1379 out_destroy_crypt: 1380 page_array_free(cc->inode, cic->rpages, cc->cluster_size); 1381 1382 for (--i; i >= 0; i--) 1383 fscrypt_finalize_bounce_page(&cc->cpages[i]); 1384 out_put_cic: 1385 kmem_cache_free(cic_entry_slab, cic); 1386 out_put_dnode: 1387 f2fs_put_dnode(&dn); 1388 out_unlock_op: 1389 if (quota_inode) 1390 f2fs_up_read(&sbi->node_write); 1391 else 1392 f2fs_unlock_op(sbi); 1393 out_free: 1394 for (i = 0; i < cc->valid_nr_cpages; i++) { 1395 f2fs_compress_free_page(cc->cpages[i]); 1396 cc->cpages[i] = NULL; 1397 } 1398 page_array_free(cc->inode, cc->cpages, cc->nr_cpages); 1399 cc->cpages = NULL; 1400 return -EAGAIN; 1401 } 1402 1403 void f2fs_compress_write_end_io(struct bio *bio, struct page *page) 1404 { 1405 struct f2fs_sb_info *sbi = bio->bi_private; 1406 struct compress_io_ctx *cic = 1407 (struct compress_io_ctx *)page_private(page); 1408 enum count_type type = WB_DATA_TYPE(page, 1409 f2fs_is_compressed_page(page)); 1410 int i; 1411 1412 if (unlikely(bio->bi_status)) 1413 mapping_set_error(cic->inode->i_mapping, -EIO); 1414 1415 f2fs_compress_free_page(page); 1416 1417 dec_page_count(sbi, type); 1418 1419 if (atomic_dec_return(&cic->pending_pages)) 1420 return; 1421 1422 for (i = 0; i < cic->nr_rpages; i++) { 1423 WARN_ON(!cic->rpages[i]); 1424 clear_page_private_gcing(cic->rpages[i]); 1425 end_page_writeback(cic->rpages[i]); 1426 } 1427 1428 page_array_free(cic->inode, cic->rpages, cic->nr_rpages); 1429 kmem_cache_free(cic_entry_slab, cic); 1430 } 1431 1432 static int f2fs_write_raw_pages(struct compress_ctx *cc, 1433 int *submitted_p, 1434 struct writeback_control *wbc, 1435 enum iostat_type io_type) 1436 { 1437 struct address_space *mapping = cc->inode->i_mapping; 1438 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1439 int submitted, compr_blocks, i; 1440 int ret = 0; 1441 1442 compr_blocks = f2fs_compressed_blocks(cc); 1443 1444 for (i = 0; i < cc->cluster_size; i++) { 1445 if (!cc->rpages[i]) 1446 continue; 1447 1448 redirty_page_for_writepage(wbc, cc->rpages[i]); 1449 unlock_page(cc->rpages[i]); 1450 } 1451 1452 if (compr_blocks < 0) 1453 return compr_blocks; 1454 1455 /* overwrite compressed cluster w/ normal cluster */ 1456 if (compr_blocks > 0) 1457 f2fs_lock_op(sbi); 1458 1459 for (i = 0; i < cc->cluster_size; i++) { 1460 if (!cc->rpages[i]) 1461 continue; 1462 retry_write: 1463 lock_page(cc->rpages[i]); 1464 1465 if (cc->rpages[i]->mapping != mapping) { 1466 continue_unlock: 1467 unlock_page(cc->rpages[i]); 1468 continue; 1469 } 1470 1471 if (!PageDirty(cc->rpages[i])) 1472 goto continue_unlock; 1473 1474 if (PageWriteback(cc->rpages[i])) { 1475 if (wbc->sync_mode == WB_SYNC_NONE) 1476 goto continue_unlock; 1477 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true); 1478 } 1479 1480 if (!clear_page_dirty_for_io(cc->rpages[i])) 1481 goto continue_unlock; 1482 1483 ret = f2fs_write_single_data_page(cc->rpages[i], &submitted, 1484 NULL, NULL, wbc, io_type, 1485 compr_blocks, false); 1486 if (ret) { 1487 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1488 unlock_page(cc->rpages[i]); 1489 ret = 0; 1490 } else if (ret == -EAGAIN) { 1491 ret = 0; 1492 /* 1493 * for quota file, just redirty left pages to 1494 * avoid deadlock caused by cluster update race 1495 * from foreground operation. 1496 */ 1497 if (IS_NOQUOTA(cc->inode)) 1498 goto out; 1499 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1500 goto retry_write; 1501 } 1502 goto out; 1503 } 1504 1505 *submitted_p += submitted; 1506 } 1507 1508 out: 1509 if (compr_blocks > 0) 1510 f2fs_unlock_op(sbi); 1511 1512 f2fs_balance_fs(sbi, true); 1513 return ret; 1514 } 1515 1516 int f2fs_write_multi_pages(struct compress_ctx *cc, 1517 int *submitted, 1518 struct writeback_control *wbc, 1519 enum iostat_type io_type) 1520 { 1521 int err; 1522 1523 *submitted = 0; 1524 if (cluster_may_compress(cc)) { 1525 err = f2fs_compress_pages(cc); 1526 if (err == -EAGAIN) { 1527 add_compr_block_stat(cc->inode, cc->cluster_size); 1528 goto write; 1529 } else if (err) { 1530 f2fs_put_rpages_wbc(cc, wbc, true, 1); 1531 goto destroy_out; 1532 } 1533 1534 err = f2fs_write_compressed_pages(cc, submitted, 1535 wbc, io_type); 1536 if (!err) 1537 return 0; 1538 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); 1539 } 1540 write: 1541 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); 1542 1543 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); 1544 f2fs_put_rpages_wbc(cc, wbc, false, 0); 1545 destroy_out: 1546 f2fs_destroy_compress_ctx(cc, false); 1547 return err; 1548 } 1549 1550 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi, 1551 bool pre_alloc) 1552 { 1553 return pre_alloc ^ f2fs_low_mem_mode(sbi); 1554 } 1555 1556 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic, 1557 bool pre_alloc) 1558 { 1559 const struct f2fs_compress_ops *cops = 1560 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1561 int i; 1562 1563 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1564 return 0; 1565 1566 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); 1567 if (!dic->tpages) 1568 return -ENOMEM; 1569 1570 for (i = 0; i < dic->cluster_size; i++) { 1571 if (dic->rpages[i]) { 1572 dic->tpages[i] = dic->rpages[i]; 1573 continue; 1574 } 1575 1576 dic->tpages[i] = f2fs_compress_alloc_page(); 1577 } 1578 1579 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); 1580 if (!dic->rbuf) 1581 return -ENOMEM; 1582 1583 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); 1584 if (!dic->cbuf) 1585 return -ENOMEM; 1586 1587 if (cops->init_decompress_ctx) 1588 return cops->init_decompress_ctx(dic); 1589 1590 return 0; 1591 } 1592 1593 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic, 1594 bool bypass_destroy_callback, bool pre_alloc) 1595 { 1596 const struct f2fs_compress_ops *cops = 1597 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm]; 1598 1599 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc)) 1600 return; 1601 1602 if (!bypass_destroy_callback && cops->destroy_decompress_ctx) 1603 cops->destroy_decompress_ctx(dic); 1604 1605 if (dic->cbuf) 1606 vm_unmap_ram(dic->cbuf, dic->nr_cpages); 1607 1608 if (dic->rbuf) 1609 vm_unmap_ram(dic->rbuf, dic->cluster_size); 1610 } 1611 1612 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1613 bool bypass_destroy_callback); 1614 1615 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) 1616 { 1617 struct decompress_io_ctx *dic; 1618 pgoff_t start_idx = start_idx_of_cluster(cc); 1619 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); 1620 int i, ret; 1621 1622 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi); 1623 if (!dic) 1624 return ERR_PTR(-ENOMEM); 1625 1626 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); 1627 if (!dic->rpages) { 1628 kmem_cache_free(dic_entry_slab, dic); 1629 return ERR_PTR(-ENOMEM); 1630 } 1631 1632 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; 1633 dic->inode = cc->inode; 1634 atomic_set(&dic->remaining_pages, cc->nr_cpages); 1635 dic->cluster_idx = cc->cluster_idx; 1636 dic->cluster_size = cc->cluster_size; 1637 dic->log_cluster_size = cc->log_cluster_size; 1638 dic->nr_cpages = cc->nr_cpages; 1639 refcount_set(&dic->refcnt, 1); 1640 dic->failed = false; 1641 dic->need_verity = f2fs_need_verity(cc->inode, start_idx); 1642 1643 for (i = 0; i < dic->cluster_size; i++) 1644 dic->rpages[i] = cc->rpages[i]; 1645 dic->nr_rpages = cc->cluster_size; 1646 1647 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); 1648 if (!dic->cpages) { 1649 ret = -ENOMEM; 1650 goto out_free; 1651 } 1652 1653 for (i = 0; i < dic->nr_cpages; i++) { 1654 struct page *page; 1655 1656 page = f2fs_compress_alloc_page(); 1657 f2fs_set_compressed_page(page, cc->inode, 1658 start_idx + i + 1, dic); 1659 dic->cpages[i] = page; 1660 } 1661 1662 ret = f2fs_prepare_decomp_mem(dic, true); 1663 if (ret) 1664 goto out_free; 1665 1666 return dic; 1667 1668 out_free: 1669 f2fs_free_dic(dic, true); 1670 return ERR_PTR(ret); 1671 } 1672 1673 static void f2fs_free_dic(struct decompress_io_ctx *dic, 1674 bool bypass_destroy_callback) 1675 { 1676 int i; 1677 1678 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true); 1679 1680 if (dic->tpages) { 1681 for (i = 0; i < dic->cluster_size; i++) { 1682 if (dic->rpages[i]) 1683 continue; 1684 if (!dic->tpages[i]) 1685 continue; 1686 f2fs_compress_free_page(dic->tpages[i]); 1687 } 1688 page_array_free(dic->inode, dic->tpages, dic->cluster_size); 1689 } 1690 1691 if (dic->cpages) { 1692 for (i = 0; i < dic->nr_cpages; i++) { 1693 if (!dic->cpages[i]) 1694 continue; 1695 f2fs_compress_free_page(dic->cpages[i]); 1696 } 1697 page_array_free(dic->inode, dic->cpages, dic->nr_cpages); 1698 } 1699 1700 page_array_free(dic->inode, dic->rpages, dic->nr_rpages); 1701 kmem_cache_free(dic_entry_slab, dic); 1702 } 1703 1704 static void f2fs_late_free_dic(struct work_struct *work) 1705 { 1706 struct decompress_io_ctx *dic = 1707 container_of(work, struct decompress_io_ctx, free_work); 1708 1709 f2fs_free_dic(dic, false); 1710 } 1711 1712 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task) 1713 { 1714 if (refcount_dec_and_test(&dic->refcnt)) { 1715 if (in_task) { 1716 f2fs_free_dic(dic, false); 1717 } else { 1718 INIT_WORK(&dic->free_work, f2fs_late_free_dic); 1719 queue_work(F2FS_I_SB(dic->inode)->post_read_wq, 1720 &dic->free_work); 1721 } 1722 } 1723 } 1724 1725 static void f2fs_verify_cluster(struct work_struct *work) 1726 { 1727 struct decompress_io_ctx *dic = 1728 container_of(work, struct decompress_io_ctx, verity_work); 1729 int i; 1730 1731 /* Verify, update, and unlock the decompressed pages. */ 1732 for (i = 0; i < dic->cluster_size; i++) { 1733 struct page *rpage = dic->rpages[i]; 1734 1735 if (!rpage) 1736 continue; 1737 1738 if (fsverity_verify_page(rpage)) 1739 SetPageUptodate(rpage); 1740 else 1741 ClearPageUptodate(rpage); 1742 unlock_page(rpage); 1743 } 1744 1745 f2fs_put_dic(dic, true); 1746 } 1747 1748 /* 1749 * This is called when a compressed cluster has been decompressed 1750 * (or failed to be read and/or decompressed). 1751 */ 1752 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 1753 bool in_task) 1754 { 1755 int i; 1756 1757 if (!failed && dic->need_verity) { 1758 /* 1759 * Note that to avoid deadlocks, the verity work can't be done 1760 * on the decompression workqueue. This is because verifying 1761 * the data pages can involve reading metadata pages from the 1762 * file, and these metadata pages may be compressed. 1763 */ 1764 INIT_WORK(&dic->verity_work, f2fs_verify_cluster); 1765 fsverity_enqueue_verify_work(&dic->verity_work); 1766 return; 1767 } 1768 1769 /* Update and unlock the cluster's pagecache pages. */ 1770 for (i = 0; i < dic->cluster_size; i++) { 1771 struct page *rpage = dic->rpages[i]; 1772 1773 if (!rpage) 1774 continue; 1775 1776 if (failed) 1777 ClearPageUptodate(rpage); 1778 else 1779 SetPageUptodate(rpage); 1780 unlock_page(rpage); 1781 } 1782 1783 /* 1784 * Release the reference to the decompress_io_ctx that was being held 1785 * for I/O completion. 1786 */ 1787 f2fs_put_dic(dic, in_task); 1788 } 1789 1790 /* 1791 * Put a reference to a compressed page's decompress_io_ctx. 1792 * 1793 * This is called when the page is no longer needed and can be freed. 1794 */ 1795 void f2fs_put_page_dic(struct page *page, bool in_task) 1796 { 1797 struct decompress_io_ctx *dic = 1798 (struct decompress_io_ctx *)page_private(page); 1799 1800 f2fs_put_dic(dic, in_task); 1801 } 1802 1803 /* 1804 * check whether cluster blocks are contiguous, and add extent cache entry 1805 * only if cluster blocks are logically and physically contiguous. 1806 */ 1807 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 1808 unsigned int ofs_in_node) 1809 { 1810 bool compressed = data_blkaddr(dn->inode, dn->node_page, 1811 ofs_in_node) == COMPRESS_ADDR; 1812 int i = compressed ? 1 : 0; 1813 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 1814 ofs_in_node + i); 1815 1816 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) { 1817 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page, 1818 ofs_in_node + i); 1819 1820 if (!__is_valid_data_blkaddr(blkaddr)) 1821 break; 1822 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr) 1823 return 0; 1824 } 1825 1826 return compressed ? i - 1 : i; 1827 } 1828 1829 const struct address_space_operations f2fs_compress_aops = { 1830 .release_folio = f2fs_release_folio, 1831 .invalidate_folio = f2fs_invalidate_folio, 1832 .migrate_folio = filemap_migrate_folio, 1833 }; 1834 1835 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi) 1836 { 1837 return sbi->compress_inode->i_mapping; 1838 } 1839 1840 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) 1841 { 1842 if (!sbi->compress_inode) 1843 return; 1844 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr); 1845 } 1846 1847 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1848 nid_t ino, block_t blkaddr) 1849 { 1850 struct page *cpage; 1851 int ret; 1852 1853 if (!test_opt(sbi, COMPRESS_CACHE)) 1854 return; 1855 1856 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1857 return; 1858 1859 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE)) 1860 return; 1861 1862 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr); 1863 if (cpage) { 1864 f2fs_put_page(cpage, 0); 1865 return; 1866 } 1867 1868 cpage = alloc_page(__GFP_NOWARN | __GFP_IO); 1869 if (!cpage) 1870 return; 1871 1872 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi), 1873 blkaddr, GFP_NOFS); 1874 if (ret) { 1875 f2fs_put_page(cpage, 0); 1876 return; 1877 } 1878 1879 set_page_private_data(cpage, ino); 1880 1881 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ)) 1882 goto out; 1883 1884 memcpy(page_address(cpage), page_address(page), PAGE_SIZE); 1885 SetPageUptodate(cpage); 1886 out: 1887 f2fs_put_page(cpage, 1); 1888 } 1889 1890 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 1891 block_t blkaddr) 1892 { 1893 struct page *cpage; 1894 bool hitted = false; 1895 1896 if (!test_opt(sbi, COMPRESS_CACHE)) 1897 return false; 1898 1899 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi), 1900 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS); 1901 if (cpage) { 1902 if (PageUptodate(cpage)) { 1903 atomic_inc(&sbi->compress_page_hit); 1904 memcpy(page_address(page), 1905 page_address(cpage), PAGE_SIZE); 1906 hitted = true; 1907 } 1908 f2fs_put_page(cpage, 1); 1909 } 1910 1911 return hitted; 1912 } 1913 1914 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) 1915 { 1916 struct address_space *mapping = COMPRESS_MAPPING(sbi); 1917 struct folio_batch fbatch; 1918 pgoff_t index = 0; 1919 pgoff_t end = MAX_BLKADDR(sbi); 1920 1921 if (!mapping->nrpages) 1922 return; 1923 1924 folio_batch_init(&fbatch); 1925 1926 do { 1927 unsigned int nr, i; 1928 1929 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch); 1930 if (!nr) 1931 break; 1932 1933 for (i = 0; i < nr; i++) { 1934 struct folio *folio = fbatch.folios[i]; 1935 1936 folio_lock(folio); 1937 if (folio->mapping != mapping) { 1938 folio_unlock(folio); 1939 continue; 1940 } 1941 1942 if (ino != get_page_private_data(&folio->page)) { 1943 folio_unlock(folio); 1944 continue; 1945 } 1946 1947 generic_error_remove_page(mapping, &folio->page); 1948 folio_unlock(folio); 1949 } 1950 folio_batch_release(&fbatch); 1951 cond_resched(); 1952 } while (index < end); 1953 } 1954 1955 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) 1956 { 1957 struct inode *inode; 1958 1959 if (!test_opt(sbi, COMPRESS_CACHE)) 1960 return 0; 1961 1962 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi)); 1963 if (IS_ERR(inode)) 1964 return PTR_ERR(inode); 1965 sbi->compress_inode = inode; 1966 1967 sbi->compress_percent = COMPRESS_PERCENT; 1968 sbi->compress_watermark = COMPRESS_WATERMARK; 1969 1970 atomic_set(&sbi->compress_page_hit, 0); 1971 1972 return 0; 1973 } 1974 1975 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) 1976 { 1977 if (!sbi->compress_inode) 1978 return; 1979 iput(sbi->compress_inode); 1980 sbi->compress_inode = NULL; 1981 } 1982 1983 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) 1984 { 1985 dev_t dev = sbi->sb->s_bdev->bd_dev; 1986 char slab_name[35]; 1987 1988 if (!f2fs_sb_has_compression(sbi)) 1989 return 0; 1990 1991 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); 1992 1993 sbi->page_array_slab_size = sizeof(struct page *) << 1994 F2FS_OPTION(sbi).compress_log_size; 1995 1996 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, 1997 sbi->page_array_slab_size); 1998 return sbi->page_array_slab ? 0 : -ENOMEM; 1999 } 2000 2001 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) 2002 { 2003 kmem_cache_destroy(sbi->page_array_slab); 2004 } 2005 2006 int __init f2fs_init_compress_cache(void) 2007 { 2008 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", 2009 sizeof(struct compress_io_ctx)); 2010 if (!cic_entry_slab) 2011 return -ENOMEM; 2012 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", 2013 sizeof(struct decompress_io_ctx)); 2014 if (!dic_entry_slab) 2015 goto free_cic; 2016 return 0; 2017 free_cic: 2018 kmem_cache_destroy(cic_entry_slab); 2019 return -ENOMEM; 2020 } 2021 2022 void f2fs_destroy_compress_cache(void) 2023 { 2024 kmem_cache_destroy(dic_entry_slab); 2025 kmem_cache_destroy(cic_entry_slab); 2026 } 2027