1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 if (!end_io) 33 f2fs_flush_merged_writes(sbi); 34 } 35 36 /* 37 * We guarantee no failure on the returned page. 38 */ 39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 40 { 41 struct address_space *mapping = META_MAPPING(sbi); 42 struct page *page = NULL; 43 repeat: 44 page = f2fs_grab_cache_page(mapping, index, false); 45 if (!page) { 46 cond_resched(); 47 goto repeat; 48 } 49 f2fs_wait_on_page_writeback(page, META, true); 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ 58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .op = REQ_OP_READ, 67 .op_flags = REQ_META | REQ_PRIO, 68 .old_blkaddr = index, 69 .new_blkaddr = index, 70 .encrypted_page = NULL, 71 }; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 if (f2fs_submit_page_bio(&fio)) { 87 f2fs_put_page(page, 1); 88 goto repeat; 89 } 90 91 lock_page(page); 92 if (unlikely(page->mapping != mapping)) { 93 f2fs_put_page(page, 1); 94 goto repeat; 95 } 96 97 /* 98 * if there is any IO error when accessing device, make our filesystem 99 * readonly and make sure do not write checkpoint with non-uptodate 100 * meta page. 101 */ 102 if (unlikely(!PageUptodate(page))) 103 f2fs_stop_checkpoint(sbi, false); 104 out: 105 return page; 106 } 107 108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 109 { 110 return __get_meta_page(sbi, index, true); 111 } 112 113 /* for POR only */ 114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 115 { 116 return __get_meta_page(sbi, index, false); 117 } 118 119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 120 { 121 switch (type) { 122 case META_NAT: 123 break; 124 case META_SIT: 125 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 126 return false; 127 break; 128 case META_SSA: 129 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 130 blkaddr < SM_I(sbi)->ssa_blkaddr)) 131 return false; 132 break; 133 case META_CP: 134 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 135 blkaddr < __start_cp_addr(sbi))) 136 return false; 137 break; 138 case META_POR: 139 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 140 blkaddr < MAIN_BLKADDR(sbi))) 141 return false; 142 break; 143 default: 144 BUG(); 145 } 146 147 return true; 148 } 149 150 /* 151 * Readahead CP/NAT/SIT/SSA pages 152 */ 153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 154 int type, bool sync) 155 { 156 struct page *page; 157 block_t blkno = start; 158 struct f2fs_io_info fio = { 159 .sbi = sbi, 160 .type = META, 161 .op = REQ_OP_READ, 162 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 163 .encrypted_page = NULL, 164 .in_list = false, 165 }; 166 struct blk_plug plug; 167 168 if (unlikely(type == META_POR)) 169 fio.op_flags &= ~REQ_META; 170 171 blk_start_plug(&plug); 172 for (; nrpages-- > 0; blkno++) { 173 174 if (!is_valid_blkaddr(sbi, blkno, type)) 175 goto out; 176 177 switch (type) { 178 case META_NAT: 179 if (unlikely(blkno >= 180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 181 blkno = 0; 182 /* get nat block addr */ 183 fio.new_blkaddr = current_nat_addr(sbi, 184 blkno * NAT_ENTRY_PER_BLOCK); 185 break; 186 case META_SIT: 187 /* get sit block addr */ 188 fio.new_blkaddr = current_sit_addr(sbi, 189 blkno * SIT_ENTRY_PER_BLOCK); 190 break; 191 case META_SSA: 192 case META_CP: 193 case META_POR: 194 fio.new_blkaddr = blkno; 195 break; 196 default: 197 BUG(); 198 } 199 200 page = f2fs_grab_cache_page(META_MAPPING(sbi), 201 fio.new_blkaddr, false); 202 if (!page) 203 continue; 204 if (PageUptodate(page)) { 205 f2fs_put_page(page, 1); 206 continue; 207 } 208 209 fio.page = page; 210 f2fs_submit_page_bio(&fio); 211 f2fs_put_page(page, 0); 212 } 213 out: 214 blk_finish_plug(&plug); 215 return blkno - start; 216 } 217 218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 219 { 220 struct page *page; 221 bool readahead = false; 222 223 page = find_get_page(META_MAPPING(sbi), index); 224 if (!page || !PageUptodate(page)) 225 readahead = true; 226 f2fs_put_page(page, 0); 227 228 if (readahead) 229 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 230 } 231 232 static int __f2fs_write_meta_page(struct page *page, 233 struct writeback_control *wbc, 234 enum iostat_type io_type) 235 { 236 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 237 238 trace_f2fs_writepage(page, META); 239 240 if (unlikely(f2fs_cp_error(sbi))) { 241 dec_page_count(sbi, F2FS_DIRTY_META); 242 unlock_page(page); 243 return 0; 244 } 245 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 246 goto redirty_out; 247 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 248 goto redirty_out; 249 250 write_meta_page(sbi, page, io_type); 251 dec_page_count(sbi, F2FS_DIRTY_META); 252 253 if (wbc->for_reclaim) 254 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 255 0, page->index, META); 256 257 unlock_page(page); 258 259 if (unlikely(f2fs_cp_error(sbi))) 260 f2fs_submit_merged_write(sbi, META); 261 262 return 0; 263 264 redirty_out: 265 redirty_page_for_writepage(wbc, page); 266 return AOP_WRITEPAGE_ACTIVATE; 267 } 268 269 static int f2fs_write_meta_page(struct page *page, 270 struct writeback_control *wbc) 271 { 272 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 273 } 274 275 static int f2fs_write_meta_pages(struct address_space *mapping, 276 struct writeback_control *wbc) 277 { 278 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 279 long diff, written; 280 281 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 282 goto skip_write; 283 284 /* collect a number of dirty meta pages and write together */ 285 if (wbc->for_kupdate || 286 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 287 goto skip_write; 288 289 /* if locked failed, cp will flush dirty pages instead */ 290 if (!mutex_trylock(&sbi->cp_mutex)) 291 goto skip_write; 292 293 trace_f2fs_writepages(mapping->host, wbc, META); 294 diff = nr_pages_to_write(sbi, META, wbc); 295 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 296 mutex_unlock(&sbi->cp_mutex); 297 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 298 return 0; 299 300 skip_write: 301 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 302 trace_f2fs_writepages(mapping->host, wbc, META); 303 return 0; 304 } 305 306 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 307 long nr_to_write, enum iostat_type io_type) 308 { 309 struct address_space *mapping = META_MAPPING(sbi); 310 pgoff_t index = 0, prev = ULONG_MAX; 311 struct pagevec pvec; 312 long nwritten = 0; 313 int nr_pages; 314 struct writeback_control wbc = { 315 .for_reclaim = 0, 316 }; 317 struct blk_plug plug; 318 319 pagevec_init(&pvec); 320 321 blk_start_plug(&plug); 322 323 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 324 PAGECACHE_TAG_DIRTY))) { 325 int i; 326 327 for (i = 0; i < nr_pages; i++) { 328 struct page *page = pvec.pages[i]; 329 330 if (prev == ULONG_MAX) 331 prev = page->index - 1; 332 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 333 pagevec_release(&pvec); 334 goto stop; 335 } 336 337 lock_page(page); 338 339 if (unlikely(page->mapping != mapping)) { 340 continue_unlock: 341 unlock_page(page); 342 continue; 343 } 344 if (!PageDirty(page)) { 345 /* someone wrote it for us */ 346 goto continue_unlock; 347 } 348 349 f2fs_wait_on_page_writeback(page, META, true); 350 351 BUG_ON(PageWriteback(page)); 352 if (!clear_page_dirty_for_io(page)) 353 goto continue_unlock; 354 355 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 356 unlock_page(page); 357 break; 358 } 359 nwritten++; 360 prev = page->index; 361 if (unlikely(nwritten >= nr_to_write)) 362 break; 363 } 364 pagevec_release(&pvec); 365 cond_resched(); 366 } 367 stop: 368 if (nwritten) 369 f2fs_submit_merged_write(sbi, type); 370 371 blk_finish_plug(&plug); 372 373 return nwritten; 374 } 375 376 static int f2fs_set_meta_page_dirty(struct page *page) 377 { 378 trace_f2fs_set_page_dirty(page, META); 379 380 if (!PageUptodate(page)) 381 SetPageUptodate(page); 382 if (!PageDirty(page)) { 383 f2fs_set_page_dirty_nobuffers(page); 384 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 385 SetPagePrivate(page); 386 f2fs_trace_pid(page); 387 return 1; 388 } 389 return 0; 390 } 391 392 const struct address_space_operations f2fs_meta_aops = { 393 .writepage = f2fs_write_meta_page, 394 .writepages = f2fs_write_meta_pages, 395 .set_page_dirty = f2fs_set_meta_page_dirty, 396 .invalidatepage = f2fs_invalidate_page, 397 .releasepage = f2fs_release_page, 398 #ifdef CONFIG_MIGRATION 399 .migratepage = f2fs_migrate_page, 400 #endif 401 }; 402 403 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 404 unsigned int devidx, int type) 405 { 406 struct inode_management *im = &sbi->im[type]; 407 struct ino_entry *e, *tmp; 408 409 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 410 411 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 412 413 spin_lock(&im->ino_lock); 414 e = radix_tree_lookup(&im->ino_root, ino); 415 if (!e) { 416 e = tmp; 417 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 418 f2fs_bug_on(sbi, 1); 419 420 memset(e, 0, sizeof(struct ino_entry)); 421 e->ino = ino; 422 423 list_add_tail(&e->list, &im->ino_list); 424 if (type != ORPHAN_INO) 425 im->ino_num++; 426 } 427 428 if (type == FLUSH_INO) 429 f2fs_set_bit(devidx, (char *)&e->dirty_device); 430 431 spin_unlock(&im->ino_lock); 432 radix_tree_preload_end(); 433 434 if (e != tmp) 435 kmem_cache_free(ino_entry_slab, tmp); 436 } 437 438 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 439 { 440 struct inode_management *im = &sbi->im[type]; 441 struct ino_entry *e; 442 443 spin_lock(&im->ino_lock); 444 e = radix_tree_lookup(&im->ino_root, ino); 445 if (e) { 446 list_del(&e->list); 447 radix_tree_delete(&im->ino_root, ino); 448 im->ino_num--; 449 spin_unlock(&im->ino_lock); 450 kmem_cache_free(ino_entry_slab, e); 451 return; 452 } 453 spin_unlock(&im->ino_lock); 454 } 455 456 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 457 { 458 /* add new dirty ino entry into list */ 459 __add_ino_entry(sbi, ino, 0, type); 460 } 461 462 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 463 { 464 /* remove dirty ino entry from list */ 465 __remove_ino_entry(sbi, ino, type); 466 } 467 468 /* mode should be APPEND_INO or UPDATE_INO */ 469 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 470 { 471 struct inode_management *im = &sbi->im[mode]; 472 struct ino_entry *e; 473 474 spin_lock(&im->ino_lock); 475 e = radix_tree_lookup(&im->ino_root, ino); 476 spin_unlock(&im->ino_lock); 477 return e ? true : false; 478 } 479 480 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 481 { 482 struct ino_entry *e, *tmp; 483 int i; 484 485 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 486 struct inode_management *im = &sbi->im[i]; 487 488 spin_lock(&im->ino_lock); 489 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 490 list_del(&e->list); 491 radix_tree_delete(&im->ino_root, e->ino); 492 kmem_cache_free(ino_entry_slab, e); 493 im->ino_num--; 494 } 495 spin_unlock(&im->ino_lock); 496 } 497 } 498 499 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 500 unsigned int devidx, int type) 501 { 502 __add_ino_entry(sbi, ino, devidx, type); 503 } 504 505 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 506 unsigned int devidx, int type) 507 { 508 struct inode_management *im = &sbi->im[type]; 509 struct ino_entry *e; 510 bool is_dirty = false; 511 512 spin_lock(&im->ino_lock); 513 e = radix_tree_lookup(&im->ino_root, ino); 514 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 515 is_dirty = true; 516 spin_unlock(&im->ino_lock); 517 return is_dirty; 518 } 519 520 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 521 { 522 struct inode_management *im = &sbi->im[ORPHAN_INO]; 523 int err = 0; 524 525 spin_lock(&im->ino_lock); 526 527 #ifdef CONFIG_F2FS_FAULT_INJECTION 528 if (time_to_inject(sbi, FAULT_ORPHAN)) { 529 spin_unlock(&im->ino_lock); 530 f2fs_show_injection_info(FAULT_ORPHAN); 531 return -ENOSPC; 532 } 533 #endif 534 if (unlikely(im->ino_num >= sbi->max_orphans)) 535 err = -ENOSPC; 536 else 537 im->ino_num++; 538 spin_unlock(&im->ino_lock); 539 540 return err; 541 } 542 543 void release_orphan_inode(struct f2fs_sb_info *sbi) 544 { 545 struct inode_management *im = &sbi->im[ORPHAN_INO]; 546 547 spin_lock(&im->ino_lock); 548 f2fs_bug_on(sbi, im->ino_num == 0); 549 im->ino_num--; 550 spin_unlock(&im->ino_lock); 551 } 552 553 void add_orphan_inode(struct inode *inode) 554 { 555 /* add new orphan ino entry into list */ 556 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 557 update_inode_page(inode); 558 } 559 560 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 561 { 562 /* remove orphan entry from orphan list */ 563 __remove_ino_entry(sbi, ino, ORPHAN_INO); 564 } 565 566 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 567 { 568 struct inode *inode; 569 struct node_info ni; 570 int err = acquire_orphan_inode(sbi); 571 572 if (err) { 573 set_sbi_flag(sbi, SBI_NEED_FSCK); 574 f2fs_msg(sbi->sb, KERN_WARNING, 575 "%s: orphan failed (ino=%x), run fsck to fix.", 576 __func__, ino); 577 return err; 578 } 579 580 __add_ino_entry(sbi, ino, 0, ORPHAN_INO); 581 582 inode = f2fs_iget_retry(sbi->sb, ino); 583 if (IS_ERR(inode)) { 584 /* 585 * there should be a bug that we can't find the entry 586 * to orphan inode. 587 */ 588 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 589 return PTR_ERR(inode); 590 } 591 592 clear_nlink(inode); 593 594 /* truncate all the data during iput */ 595 iput(inode); 596 597 get_node_info(sbi, ino, &ni); 598 599 /* ENOMEM was fully retried in f2fs_evict_inode. */ 600 if (ni.blk_addr != NULL_ADDR) { 601 set_sbi_flag(sbi, SBI_NEED_FSCK); 602 f2fs_msg(sbi->sb, KERN_WARNING, 603 "%s: orphan failed (ino=%x) by kernel, retry mount.", 604 __func__, ino); 605 return -EIO; 606 } 607 __remove_ino_entry(sbi, ino, ORPHAN_INO); 608 return 0; 609 } 610 611 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 612 { 613 block_t start_blk, orphan_blocks, i, j; 614 unsigned int s_flags = sbi->sb->s_flags; 615 int err = 0; 616 #ifdef CONFIG_QUOTA 617 int quota_enabled; 618 #endif 619 620 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 621 return 0; 622 623 if (s_flags & SB_RDONLY) { 624 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 625 sbi->sb->s_flags &= ~SB_RDONLY; 626 } 627 628 #ifdef CONFIG_QUOTA 629 /* Needed for iput() to work correctly and not trash data */ 630 sbi->sb->s_flags |= SB_ACTIVE; 631 632 /* Turn on quotas so that they are updated correctly */ 633 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 634 #endif 635 636 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 637 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 638 639 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 640 641 for (i = 0; i < orphan_blocks; i++) { 642 struct page *page = get_meta_page(sbi, start_blk + i); 643 struct f2fs_orphan_block *orphan_blk; 644 645 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 646 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 647 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 648 err = recover_orphan_inode(sbi, ino); 649 if (err) { 650 f2fs_put_page(page, 1); 651 goto out; 652 } 653 } 654 f2fs_put_page(page, 1); 655 } 656 /* clear Orphan Flag */ 657 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 658 out: 659 #ifdef CONFIG_QUOTA 660 /* Turn quotas off */ 661 if (quota_enabled) 662 f2fs_quota_off_umount(sbi->sb); 663 #endif 664 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 665 666 return err; 667 } 668 669 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 670 { 671 struct list_head *head; 672 struct f2fs_orphan_block *orphan_blk = NULL; 673 unsigned int nentries = 0; 674 unsigned short index = 1; 675 unsigned short orphan_blocks; 676 struct page *page = NULL; 677 struct ino_entry *orphan = NULL; 678 struct inode_management *im = &sbi->im[ORPHAN_INO]; 679 680 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 681 682 /* 683 * we don't need to do spin_lock(&im->ino_lock) here, since all the 684 * orphan inode operations are covered under f2fs_lock_op(). 685 * And, spin_lock should be avoided due to page operations below. 686 */ 687 head = &im->ino_list; 688 689 /* loop for each orphan inode entry and write them in Jornal block */ 690 list_for_each_entry(orphan, head, list) { 691 if (!page) { 692 page = grab_meta_page(sbi, start_blk++); 693 orphan_blk = 694 (struct f2fs_orphan_block *)page_address(page); 695 memset(orphan_blk, 0, sizeof(*orphan_blk)); 696 } 697 698 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 699 700 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 701 /* 702 * an orphan block is full of 1020 entries, 703 * then we need to flush current orphan blocks 704 * and bring another one in memory 705 */ 706 orphan_blk->blk_addr = cpu_to_le16(index); 707 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 708 orphan_blk->entry_count = cpu_to_le32(nentries); 709 set_page_dirty(page); 710 f2fs_put_page(page, 1); 711 index++; 712 nentries = 0; 713 page = NULL; 714 } 715 } 716 717 if (page) { 718 orphan_blk->blk_addr = cpu_to_le16(index); 719 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 720 orphan_blk->entry_count = cpu_to_le32(nentries); 721 set_page_dirty(page); 722 f2fs_put_page(page, 1); 723 } 724 } 725 726 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 727 struct f2fs_checkpoint **cp_block, struct page **cp_page, 728 unsigned long long *version) 729 { 730 unsigned long blk_size = sbi->blocksize; 731 size_t crc_offset = 0; 732 __u32 crc = 0; 733 734 *cp_page = get_meta_page(sbi, cp_addr); 735 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 736 737 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 738 if (crc_offset > (blk_size - sizeof(__le32))) { 739 f2fs_msg(sbi->sb, KERN_WARNING, 740 "invalid crc_offset: %zu", crc_offset); 741 return -EINVAL; 742 } 743 744 crc = cur_cp_crc(*cp_block); 745 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 746 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 747 return -EINVAL; 748 } 749 750 *version = cur_cp_version(*cp_block); 751 return 0; 752 } 753 754 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 755 block_t cp_addr, unsigned long long *version) 756 { 757 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 758 struct f2fs_checkpoint *cp_block = NULL; 759 unsigned long long cur_version = 0, pre_version = 0; 760 int err; 761 762 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 763 &cp_page_1, version); 764 if (err) 765 goto invalid_cp1; 766 pre_version = *version; 767 768 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 769 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 770 &cp_page_2, version); 771 if (err) 772 goto invalid_cp2; 773 cur_version = *version; 774 775 if (cur_version == pre_version) { 776 *version = cur_version; 777 f2fs_put_page(cp_page_2, 1); 778 return cp_page_1; 779 } 780 invalid_cp2: 781 f2fs_put_page(cp_page_2, 1); 782 invalid_cp1: 783 f2fs_put_page(cp_page_1, 1); 784 return NULL; 785 } 786 787 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 788 { 789 struct f2fs_checkpoint *cp_block; 790 struct f2fs_super_block *fsb = sbi->raw_super; 791 struct page *cp1, *cp2, *cur_page; 792 unsigned long blk_size = sbi->blocksize; 793 unsigned long long cp1_version = 0, cp2_version = 0; 794 unsigned long long cp_start_blk_no; 795 unsigned int cp_blks = 1 + __cp_payload(sbi); 796 block_t cp_blk_no; 797 int i; 798 799 sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL); 800 if (!sbi->ckpt) 801 return -ENOMEM; 802 /* 803 * Finding out valid cp block involves read both 804 * sets( cp pack1 and cp pack 2) 805 */ 806 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 807 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 808 809 /* The second checkpoint pack should start at the next segment */ 810 cp_start_blk_no += ((unsigned long long)1) << 811 le32_to_cpu(fsb->log_blocks_per_seg); 812 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 813 814 if (cp1 && cp2) { 815 if (ver_after(cp2_version, cp1_version)) 816 cur_page = cp2; 817 else 818 cur_page = cp1; 819 } else if (cp1) { 820 cur_page = cp1; 821 } else if (cp2) { 822 cur_page = cp2; 823 } else { 824 goto fail_no_cp; 825 } 826 827 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 828 memcpy(sbi->ckpt, cp_block, blk_size); 829 830 /* Sanity checking of checkpoint */ 831 if (sanity_check_ckpt(sbi)) 832 goto free_fail_no_cp; 833 834 if (cur_page == cp1) 835 sbi->cur_cp_pack = 1; 836 else 837 sbi->cur_cp_pack = 2; 838 839 if (cp_blks <= 1) 840 goto done; 841 842 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 843 if (cur_page == cp2) 844 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 845 846 for (i = 1; i < cp_blks; i++) { 847 void *sit_bitmap_ptr; 848 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 849 850 cur_page = get_meta_page(sbi, cp_blk_no + i); 851 sit_bitmap_ptr = page_address(cur_page); 852 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 853 f2fs_put_page(cur_page, 1); 854 } 855 done: 856 f2fs_put_page(cp1, 1); 857 f2fs_put_page(cp2, 1); 858 return 0; 859 860 free_fail_no_cp: 861 f2fs_put_page(cp1, 1); 862 f2fs_put_page(cp2, 1); 863 fail_no_cp: 864 kfree(sbi->ckpt); 865 return -EINVAL; 866 } 867 868 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 869 { 870 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 871 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 872 873 if (is_inode_flag_set(inode, flag)) 874 return; 875 876 set_inode_flag(inode, flag); 877 if (!f2fs_is_volatile_file(inode)) 878 list_add_tail(&F2FS_I(inode)->dirty_list, 879 &sbi->inode_list[type]); 880 stat_inc_dirty_inode(sbi, type); 881 } 882 883 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 884 { 885 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 886 887 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 888 return; 889 890 list_del_init(&F2FS_I(inode)->dirty_list); 891 clear_inode_flag(inode, flag); 892 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 893 } 894 895 void update_dirty_page(struct inode *inode, struct page *page) 896 { 897 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 898 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 899 900 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 901 !S_ISLNK(inode->i_mode)) 902 return; 903 904 spin_lock(&sbi->inode_lock[type]); 905 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 906 __add_dirty_inode(inode, type); 907 inode_inc_dirty_pages(inode); 908 spin_unlock(&sbi->inode_lock[type]); 909 910 SetPagePrivate(page); 911 f2fs_trace_pid(page); 912 } 913 914 void remove_dirty_inode(struct inode *inode) 915 { 916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 917 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 918 919 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 920 !S_ISLNK(inode->i_mode)) 921 return; 922 923 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 924 return; 925 926 spin_lock(&sbi->inode_lock[type]); 927 __remove_dirty_inode(inode, type); 928 spin_unlock(&sbi->inode_lock[type]); 929 } 930 931 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 932 { 933 struct list_head *head; 934 struct inode *inode; 935 struct f2fs_inode_info *fi; 936 bool is_dir = (type == DIR_INODE); 937 unsigned long ino = 0; 938 939 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 940 get_pages(sbi, is_dir ? 941 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 942 retry: 943 if (unlikely(f2fs_cp_error(sbi))) 944 return -EIO; 945 946 spin_lock(&sbi->inode_lock[type]); 947 948 head = &sbi->inode_list[type]; 949 if (list_empty(head)) { 950 spin_unlock(&sbi->inode_lock[type]); 951 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 952 get_pages(sbi, is_dir ? 953 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 954 return 0; 955 } 956 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 957 inode = igrab(&fi->vfs_inode); 958 spin_unlock(&sbi->inode_lock[type]); 959 if (inode) { 960 unsigned long cur_ino = inode->i_ino; 961 962 if (is_dir) 963 F2FS_I(inode)->cp_task = current; 964 965 filemap_fdatawrite(inode->i_mapping); 966 967 if (is_dir) 968 F2FS_I(inode)->cp_task = NULL; 969 970 iput(inode); 971 /* We need to give cpu to another writers. */ 972 if (ino == cur_ino) { 973 congestion_wait(BLK_RW_ASYNC, HZ/50); 974 cond_resched(); 975 } else { 976 ino = cur_ino; 977 } 978 } else { 979 /* 980 * We should submit bio, since it exists several 981 * wribacking dentry pages in the freeing inode. 982 */ 983 f2fs_submit_merged_write(sbi, DATA); 984 cond_resched(); 985 } 986 goto retry; 987 } 988 989 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 990 { 991 struct list_head *head = &sbi->inode_list[DIRTY_META]; 992 struct inode *inode; 993 struct f2fs_inode_info *fi; 994 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 995 996 while (total--) { 997 if (unlikely(f2fs_cp_error(sbi))) 998 return -EIO; 999 1000 spin_lock(&sbi->inode_lock[DIRTY_META]); 1001 if (list_empty(head)) { 1002 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1003 return 0; 1004 } 1005 fi = list_first_entry(head, struct f2fs_inode_info, 1006 gdirty_list); 1007 inode = igrab(&fi->vfs_inode); 1008 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1009 if (inode) { 1010 sync_inode_metadata(inode, 0); 1011 1012 /* it's on eviction */ 1013 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1014 update_inode_page(inode); 1015 iput(inode); 1016 } 1017 } 1018 return 0; 1019 } 1020 1021 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1022 { 1023 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1024 struct f2fs_nm_info *nm_i = NM_I(sbi); 1025 nid_t last_nid = nm_i->next_scan_nid; 1026 1027 next_free_nid(sbi, &last_nid); 1028 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1029 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1030 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1031 ckpt->next_free_nid = cpu_to_le32(last_nid); 1032 } 1033 1034 /* 1035 * Freeze all the FS-operations for checkpoint. 1036 */ 1037 static int block_operations(struct f2fs_sb_info *sbi) 1038 { 1039 struct writeback_control wbc = { 1040 .sync_mode = WB_SYNC_ALL, 1041 .nr_to_write = LONG_MAX, 1042 .for_reclaim = 0, 1043 }; 1044 struct blk_plug plug; 1045 int err = 0; 1046 1047 blk_start_plug(&plug); 1048 1049 retry_flush_dents: 1050 f2fs_lock_all(sbi); 1051 /* write all the dirty dentry pages */ 1052 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1053 f2fs_unlock_all(sbi); 1054 err = sync_dirty_inodes(sbi, DIR_INODE); 1055 if (err) 1056 goto out; 1057 cond_resched(); 1058 goto retry_flush_dents; 1059 } 1060 1061 /* 1062 * POR: we should ensure that there are no dirty node pages 1063 * until finishing nat/sit flush. inode->i_blocks can be updated. 1064 */ 1065 down_write(&sbi->node_change); 1066 1067 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1068 up_write(&sbi->node_change); 1069 f2fs_unlock_all(sbi); 1070 err = f2fs_sync_inode_meta(sbi); 1071 if (err) 1072 goto out; 1073 cond_resched(); 1074 goto retry_flush_dents; 1075 } 1076 1077 retry_flush_nodes: 1078 down_write(&sbi->node_write); 1079 1080 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1081 up_write(&sbi->node_write); 1082 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1083 if (err) { 1084 up_write(&sbi->node_change); 1085 f2fs_unlock_all(sbi); 1086 goto out; 1087 } 1088 cond_resched(); 1089 goto retry_flush_nodes; 1090 } 1091 1092 /* 1093 * sbi->node_change is used only for AIO write_begin path which produces 1094 * dirty node blocks and some checkpoint values by block allocation. 1095 */ 1096 __prepare_cp_block(sbi); 1097 up_write(&sbi->node_change); 1098 out: 1099 blk_finish_plug(&plug); 1100 return err; 1101 } 1102 1103 static void unblock_operations(struct f2fs_sb_info *sbi) 1104 { 1105 up_write(&sbi->node_write); 1106 f2fs_unlock_all(sbi); 1107 } 1108 1109 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1110 { 1111 DEFINE_WAIT(wait); 1112 1113 for (;;) { 1114 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1115 1116 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1117 break; 1118 1119 io_schedule_timeout(5*HZ); 1120 } 1121 finish_wait(&sbi->cp_wait, &wait); 1122 } 1123 1124 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1125 { 1126 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1127 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1128 unsigned long flags; 1129 1130 spin_lock_irqsave(&sbi->cp_lock, flags); 1131 1132 if ((cpc->reason & CP_UMOUNT) && 1133 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1134 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1135 disable_nat_bits(sbi, false); 1136 1137 if (cpc->reason & CP_TRIMMED) 1138 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1139 1140 if (cpc->reason & CP_UMOUNT) 1141 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1142 else 1143 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1144 1145 if (cpc->reason & CP_FASTBOOT) 1146 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1147 else 1148 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1149 1150 if (orphan_num) 1151 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1152 else 1153 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1154 1155 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1156 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1157 1158 /* set this flag to activate crc|cp_ver for recovery */ 1159 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1160 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1161 1162 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1163 } 1164 1165 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1166 { 1167 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1168 struct f2fs_nm_info *nm_i = NM_I(sbi); 1169 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1170 block_t start_blk; 1171 unsigned int data_sum_blocks, orphan_blocks; 1172 __u32 crc32 = 0; 1173 int i; 1174 int cp_payload_blks = __cp_payload(sbi); 1175 struct super_block *sb = sbi->sb; 1176 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1177 u64 kbytes_written; 1178 int err; 1179 1180 /* Flush all the NAT/SIT pages */ 1181 while (get_pages(sbi, F2FS_DIRTY_META)) { 1182 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1183 if (unlikely(f2fs_cp_error(sbi))) 1184 return -EIO; 1185 } 1186 1187 /* 1188 * modify checkpoint 1189 * version number is already updated 1190 */ 1191 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1192 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1193 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1194 ckpt->cur_node_segno[i] = 1195 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1196 ckpt->cur_node_blkoff[i] = 1197 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1198 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1199 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1200 } 1201 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1202 ckpt->cur_data_segno[i] = 1203 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1204 ckpt->cur_data_blkoff[i] = 1205 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1206 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1207 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1208 } 1209 1210 /* 2 cp + n data seg summary + orphan inode blocks */ 1211 data_sum_blocks = npages_for_summary_flush(sbi, false); 1212 spin_lock_irqsave(&sbi->cp_lock, flags); 1213 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1214 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1215 else 1216 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1217 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1218 1219 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1220 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1221 orphan_blocks); 1222 1223 if (__remain_node_summaries(cpc->reason)) 1224 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1225 cp_payload_blks + data_sum_blocks + 1226 orphan_blocks + NR_CURSEG_NODE_TYPE); 1227 else 1228 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1229 cp_payload_blks + data_sum_blocks + 1230 orphan_blocks); 1231 1232 /* update ckpt flag for checkpoint */ 1233 update_ckpt_flags(sbi, cpc); 1234 1235 /* update SIT/NAT bitmap */ 1236 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1237 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1238 1239 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1240 *((__le32 *)((unsigned char *)ckpt + 1241 le32_to_cpu(ckpt->checksum_offset))) 1242 = cpu_to_le32(crc32); 1243 1244 start_blk = __start_cp_next_addr(sbi); 1245 1246 /* write nat bits */ 1247 if (enabled_nat_bits(sbi, cpc)) { 1248 __u64 cp_ver = cur_cp_version(ckpt); 1249 block_t blk; 1250 1251 cp_ver |= ((__u64)crc32 << 32); 1252 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1253 1254 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1255 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1256 update_meta_page(sbi, nm_i->nat_bits + 1257 (i << F2FS_BLKSIZE_BITS), blk + i); 1258 1259 /* Flush all the NAT BITS pages */ 1260 while (get_pages(sbi, F2FS_DIRTY_META)) { 1261 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1262 if (unlikely(f2fs_cp_error(sbi))) 1263 return -EIO; 1264 } 1265 } 1266 1267 /* need to wait for end_io results */ 1268 wait_on_all_pages_writeback(sbi); 1269 if (unlikely(f2fs_cp_error(sbi))) 1270 return -EIO; 1271 1272 /* flush all device cache */ 1273 err = f2fs_flush_device_cache(sbi); 1274 if (err) 1275 return err; 1276 1277 /* write out checkpoint buffer at block 0 */ 1278 update_meta_page(sbi, ckpt, start_blk++); 1279 1280 for (i = 1; i < 1 + cp_payload_blks; i++) 1281 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1282 start_blk++); 1283 1284 if (orphan_num) { 1285 write_orphan_inodes(sbi, start_blk); 1286 start_blk += orphan_blocks; 1287 } 1288 1289 write_data_summaries(sbi, start_blk); 1290 start_blk += data_sum_blocks; 1291 1292 /* Record write statistics in the hot node summary */ 1293 kbytes_written = sbi->kbytes_written; 1294 if (sb->s_bdev->bd_part) 1295 kbytes_written += BD_PART_WRITTEN(sbi); 1296 1297 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1298 1299 if (__remain_node_summaries(cpc->reason)) { 1300 write_node_summaries(sbi, start_blk); 1301 start_blk += NR_CURSEG_NODE_TYPE; 1302 } 1303 1304 /* writeout checkpoint block */ 1305 update_meta_page(sbi, ckpt, start_blk); 1306 1307 /* wait for previous submitted node/meta pages writeback */ 1308 wait_on_all_pages_writeback(sbi); 1309 1310 if (unlikely(f2fs_cp_error(sbi))) 1311 return -EIO; 1312 1313 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1314 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1315 1316 /* update user_block_counts */ 1317 sbi->last_valid_block_count = sbi->total_valid_block_count; 1318 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1319 1320 /* Here, we only have one bio having CP pack */ 1321 sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO); 1322 1323 /* wait for previous submitted meta pages writeback */ 1324 wait_on_all_pages_writeback(sbi); 1325 1326 release_ino_entry(sbi, false); 1327 1328 if (unlikely(f2fs_cp_error(sbi))) 1329 return -EIO; 1330 1331 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1332 clear_sbi_flag(sbi, SBI_NEED_CP); 1333 __set_cp_next_pack(sbi); 1334 1335 /* 1336 * redirty superblock if metadata like node page or inode cache is 1337 * updated during writing checkpoint. 1338 */ 1339 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1340 get_pages(sbi, F2FS_DIRTY_IMETA)) 1341 set_sbi_flag(sbi, SBI_IS_DIRTY); 1342 1343 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1344 1345 return 0; 1346 } 1347 1348 /* 1349 * We guarantee that this checkpoint procedure will not fail. 1350 */ 1351 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1352 { 1353 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1354 unsigned long long ckpt_ver; 1355 int err = 0; 1356 1357 mutex_lock(&sbi->cp_mutex); 1358 1359 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1360 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1361 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1362 goto out; 1363 if (unlikely(f2fs_cp_error(sbi))) { 1364 err = -EIO; 1365 goto out; 1366 } 1367 if (f2fs_readonly(sbi->sb)) { 1368 err = -EROFS; 1369 goto out; 1370 } 1371 1372 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1373 1374 err = block_operations(sbi); 1375 if (err) 1376 goto out; 1377 1378 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1379 1380 f2fs_flush_merged_writes(sbi); 1381 1382 /* this is the case of multiple fstrims without any changes */ 1383 if (cpc->reason & CP_DISCARD) { 1384 if (!exist_trim_candidates(sbi, cpc)) { 1385 unblock_operations(sbi); 1386 goto out; 1387 } 1388 1389 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1390 SIT_I(sbi)->dirty_sentries == 0 && 1391 prefree_segments(sbi) == 0) { 1392 flush_sit_entries(sbi, cpc); 1393 clear_prefree_segments(sbi, cpc); 1394 unblock_operations(sbi); 1395 goto out; 1396 } 1397 } 1398 1399 /* 1400 * update checkpoint pack index 1401 * Increase the version number so that 1402 * SIT entries and seg summaries are written at correct place 1403 */ 1404 ckpt_ver = cur_cp_version(ckpt); 1405 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1406 1407 /* write cached NAT/SIT entries to NAT/SIT area */ 1408 flush_nat_entries(sbi, cpc); 1409 flush_sit_entries(sbi, cpc); 1410 1411 /* unlock all the fs_lock[] in do_checkpoint() */ 1412 err = do_checkpoint(sbi, cpc); 1413 if (err) 1414 release_discard_addrs(sbi); 1415 else 1416 clear_prefree_segments(sbi, cpc); 1417 1418 unblock_operations(sbi); 1419 stat_inc_cp_count(sbi->stat_info); 1420 1421 if (cpc->reason & CP_RECOVERY) 1422 f2fs_msg(sbi->sb, KERN_NOTICE, 1423 "checkpoint: version = %llx", ckpt_ver); 1424 1425 /* do checkpoint periodically */ 1426 f2fs_update_time(sbi, CP_TIME); 1427 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1428 out: 1429 mutex_unlock(&sbi->cp_mutex); 1430 return err; 1431 } 1432 1433 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1434 { 1435 int i; 1436 1437 for (i = 0; i < MAX_INO_ENTRY; i++) { 1438 struct inode_management *im = &sbi->im[i]; 1439 1440 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1441 spin_lock_init(&im->ino_lock); 1442 INIT_LIST_HEAD(&im->ino_list); 1443 im->ino_num = 0; 1444 } 1445 1446 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1447 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1448 F2FS_ORPHANS_PER_BLOCK; 1449 } 1450 1451 int __init create_checkpoint_caches(void) 1452 { 1453 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1454 sizeof(struct ino_entry)); 1455 if (!ino_entry_slab) 1456 return -ENOMEM; 1457 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1458 sizeof(struct inode_entry)); 1459 if (!inode_entry_slab) { 1460 kmem_cache_destroy(ino_entry_slab); 1461 return -ENOMEM; 1462 } 1463 return 0; 1464 } 1465 1466 void destroy_checkpoint_caches(void) 1467 { 1468 kmem_cache_destroy(ino_entry_slab); 1469 kmem_cache_destroy(inode_entry_slab); 1470 } 1471