xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision fe76b796)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
67 		.old_blkaddr = index,
68 		.new_blkaddr = index,
69 		.encrypted_page = NULL,
70 	};
71 
72 	if (unlikely(!is_meta))
73 		fio.rw &= ~REQ_META;
74 repeat:
75 	page = f2fs_grab_cache_page(mapping, index, false);
76 	if (!page) {
77 		cond_resched();
78 		goto repeat;
79 	}
80 	if (PageUptodate(page))
81 		goto out;
82 
83 	fio.page = page;
84 
85 	if (f2fs_submit_page_bio(&fio)) {
86 		f2fs_put_page(page, 1);
87 		goto repeat;
88 	}
89 
90 	lock_page(page);
91 	if (unlikely(page->mapping != mapping)) {
92 		f2fs_put_page(page, 1);
93 		goto repeat;
94 	}
95 
96 	/*
97 	 * if there is any IO error when accessing device, make our filesystem
98 	 * readonly and make sure do not write checkpoint with non-uptodate
99 	 * meta page.
100 	 */
101 	if (unlikely(!PageUptodate(page)))
102 		f2fs_stop_checkpoint(sbi, false);
103 out:
104 	return page;
105 }
106 
107 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109 	return __get_meta_page(sbi, index, true);
110 }
111 
112 /* for POR only */
113 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115 	return __get_meta_page(sbi, index, false);
116 }
117 
118 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
119 {
120 	switch (type) {
121 	case META_NAT:
122 		break;
123 	case META_SIT:
124 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
125 			return false;
126 		break;
127 	case META_SSA:
128 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
129 			blkaddr < SM_I(sbi)->ssa_blkaddr))
130 			return false;
131 		break;
132 	case META_CP:
133 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
134 			blkaddr < __start_cp_addr(sbi)))
135 			return false;
136 		break;
137 	case META_POR:
138 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
139 			blkaddr < MAIN_BLKADDR(sbi)))
140 			return false;
141 		break;
142 	default:
143 		BUG();
144 	}
145 
146 	return true;
147 }
148 
149 /*
150  * Readahead CP/NAT/SIT/SSA pages
151  */
152 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
153 							int type, bool sync)
154 {
155 	struct page *page;
156 	block_t blkno = start;
157 	struct f2fs_io_info fio = {
158 		.sbi = sbi,
159 		.type = META,
160 		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
161 		.encrypted_page = NULL,
162 	};
163 	struct blk_plug plug;
164 
165 	if (unlikely(type == META_POR))
166 		fio.rw &= ~REQ_META;
167 
168 	blk_start_plug(&plug);
169 	for (; nrpages-- > 0; blkno++) {
170 
171 		if (!is_valid_blkaddr(sbi, blkno, type))
172 			goto out;
173 
174 		switch (type) {
175 		case META_NAT:
176 			if (unlikely(blkno >=
177 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
178 				blkno = 0;
179 			/* get nat block addr */
180 			fio.new_blkaddr = current_nat_addr(sbi,
181 					blkno * NAT_ENTRY_PER_BLOCK);
182 			break;
183 		case META_SIT:
184 			/* get sit block addr */
185 			fio.new_blkaddr = current_sit_addr(sbi,
186 					blkno * SIT_ENTRY_PER_BLOCK);
187 			break;
188 		case META_SSA:
189 		case META_CP:
190 		case META_POR:
191 			fio.new_blkaddr = blkno;
192 			break;
193 		default:
194 			BUG();
195 		}
196 
197 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
198 						fio.new_blkaddr, false);
199 		if (!page)
200 			continue;
201 		if (PageUptodate(page)) {
202 			f2fs_put_page(page, 1);
203 			continue;
204 		}
205 
206 		fio.page = page;
207 		fio.old_blkaddr = fio.new_blkaddr;
208 		f2fs_submit_page_mbio(&fio);
209 		f2fs_put_page(page, 0);
210 	}
211 out:
212 	f2fs_submit_merged_bio(sbi, META, READ);
213 	blk_finish_plug(&plug);
214 	return blkno - start;
215 }
216 
217 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
218 {
219 	struct page *page;
220 	bool readahead = false;
221 
222 	page = find_get_page(META_MAPPING(sbi), index);
223 	if (!page || !PageUptodate(page))
224 		readahead = true;
225 	f2fs_put_page(page, 0);
226 
227 	if (readahead)
228 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
229 }
230 
231 static int f2fs_write_meta_page(struct page *page,
232 				struct writeback_control *wbc)
233 {
234 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
235 
236 	trace_f2fs_writepage(page, META);
237 
238 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
239 		goto redirty_out;
240 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
241 		goto redirty_out;
242 	if (unlikely(f2fs_cp_error(sbi)))
243 		goto redirty_out;
244 
245 	write_meta_page(sbi, page);
246 	dec_page_count(sbi, F2FS_DIRTY_META);
247 
248 	if (wbc->for_reclaim)
249 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
250 
251 	unlock_page(page);
252 
253 	if (unlikely(f2fs_cp_error(sbi)))
254 		f2fs_submit_merged_bio(sbi, META, WRITE);
255 
256 	return 0;
257 
258 redirty_out:
259 	redirty_page_for_writepage(wbc, page);
260 	return AOP_WRITEPAGE_ACTIVATE;
261 }
262 
263 static int f2fs_write_meta_pages(struct address_space *mapping,
264 				struct writeback_control *wbc)
265 {
266 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
267 	long diff, written;
268 
269 	/* collect a number of dirty meta pages and write together */
270 	if (wbc->for_kupdate ||
271 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
272 		goto skip_write;
273 
274 	trace_f2fs_writepages(mapping->host, wbc, META);
275 
276 	/* if mounting is failed, skip writing node pages */
277 	mutex_lock(&sbi->cp_mutex);
278 	diff = nr_pages_to_write(sbi, META, wbc);
279 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
280 	mutex_unlock(&sbi->cp_mutex);
281 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
282 	return 0;
283 
284 skip_write:
285 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
286 	trace_f2fs_writepages(mapping->host, wbc, META);
287 	return 0;
288 }
289 
290 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
291 						long nr_to_write)
292 {
293 	struct address_space *mapping = META_MAPPING(sbi);
294 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
295 	struct pagevec pvec;
296 	long nwritten = 0;
297 	struct writeback_control wbc = {
298 		.for_reclaim = 0,
299 	};
300 	struct blk_plug plug;
301 
302 	pagevec_init(&pvec, 0);
303 
304 	blk_start_plug(&plug);
305 
306 	while (index <= end) {
307 		int i, nr_pages;
308 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
309 				PAGECACHE_TAG_DIRTY,
310 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
311 		if (unlikely(nr_pages == 0))
312 			break;
313 
314 		for (i = 0; i < nr_pages; i++) {
315 			struct page *page = pvec.pages[i];
316 
317 			if (prev == ULONG_MAX)
318 				prev = page->index - 1;
319 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
320 				pagevec_release(&pvec);
321 				goto stop;
322 			}
323 
324 			lock_page(page);
325 
326 			if (unlikely(page->mapping != mapping)) {
327 continue_unlock:
328 				unlock_page(page);
329 				continue;
330 			}
331 			if (!PageDirty(page)) {
332 				/* someone wrote it for us */
333 				goto continue_unlock;
334 			}
335 
336 			f2fs_wait_on_page_writeback(page, META, true);
337 
338 			BUG_ON(PageWriteback(page));
339 			if (!clear_page_dirty_for_io(page))
340 				goto continue_unlock;
341 
342 			if (mapping->a_ops->writepage(page, &wbc)) {
343 				unlock_page(page);
344 				break;
345 			}
346 			nwritten++;
347 			prev = page->index;
348 			if (unlikely(nwritten >= nr_to_write))
349 				break;
350 		}
351 		pagevec_release(&pvec);
352 		cond_resched();
353 	}
354 stop:
355 	if (nwritten)
356 		f2fs_submit_merged_bio(sbi, type, WRITE);
357 
358 	blk_finish_plug(&plug);
359 
360 	return nwritten;
361 }
362 
363 static int f2fs_set_meta_page_dirty(struct page *page)
364 {
365 	trace_f2fs_set_page_dirty(page, META);
366 
367 	SetPageUptodate(page);
368 	if (!PageDirty(page)) {
369 		f2fs_set_page_dirty_nobuffers(page);
370 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
371 		SetPagePrivate(page);
372 		f2fs_trace_pid(page);
373 		return 1;
374 	}
375 	return 0;
376 }
377 
378 const struct address_space_operations f2fs_meta_aops = {
379 	.writepage	= f2fs_write_meta_page,
380 	.writepages	= f2fs_write_meta_pages,
381 	.set_page_dirty	= f2fs_set_meta_page_dirty,
382 	.invalidatepage = f2fs_invalidate_page,
383 	.releasepage	= f2fs_release_page,
384 };
385 
386 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
387 {
388 	struct inode_management *im = &sbi->im[type];
389 	struct ino_entry *e, *tmp;
390 
391 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
392 retry:
393 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
394 
395 	spin_lock(&im->ino_lock);
396 	e = radix_tree_lookup(&im->ino_root, ino);
397 	if (!e) {
398 		e = tmp;
399 		if (radix_tree_insert(&im->ino_root, ino, e)) {
400 			spin_unlock(&im->ino_lock);
401 			radix_tree_preload_end();
402 			goto retry;
403 		}
404 		memset(e, 0, sizeof(struct ino_entry));
405 		e->ino = ino;
406 
407 		list_add_tail(&e->list, &im->ino_list);
408 		if (type != ORPHAN_INO)
409 			im->ino_num++;
410 	}
411 	spin_unlock(&im->ino_lock);
412 	radix_tree_preload_end();
413 
414 	if (e != tmp)
415 		kmem_cache_free(ino_entry_slab, tmp);
416 }
417 
418 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
419 {
420 	struct inode_management *im = &sbi->im[type];
421 	struct ino_entry *e;
422 
423 	spin_lock(&im->ino_lock);
424 	e = radix_tree_lookup(&im->ino_root, ino);
425 	if (e) {
426 		list_del(&e->list);
427 		radix_tree_delete(&im->ino_root, ino);
428 		im->ino_num--;
429 		spin_unlock(&im->ino_lock);
430 		kmem_cache_free(ino_entry_slab, e);
431 		return;
432 	}
433 	spin_unlock(&im->ino_lock);
434 }
435 
436 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
437 {
438 	/* add new dirty ino entry into list */
439 	__add_ino_entry(sbi, ino, type);
440 }
441 
442 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
443 {
444 	/* remove dirty ino entry from list */
445 	__remove_ino_entry(sbi, ino, type);
446 }
447 
448 /* mode should be APPEND_INO or UPDATE_INO */
449 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
450 {
451 	struct inode_management *im = &sbi->im[mode];
452 	struct ino_entry *e;
453 
454 	spin_lock(&im->ino_lock);
455 	e = radix_tree_lookup(&im->ino_root, ino);
456 	spin_unlock(&im->ino_lock);
457 	return e ? true : false;
458 }
459 
460 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
461 {
462 	struct ino_entry *e, *tmp;
463 	int i;
464 
465 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
466 		struct inode_management *im = &sbi->im[i];
467 
468 		spin_lock(&im->ino_lock);
469 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
470 			list_del(&e->list);
471 			radix_tree_delete(&im->ino_root, e->ino);
472 			kmem_cache_free(ino_entry_slab, e);
473 			im->ino_num--;
474 		}
475 		spin_unlock(&im->ino_lock);
476 	}
477 }
478 
479 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
480 {
481 	struct inode_management *im = &sbi->im[ORPHAN_INO];
482 	int err = 0;
483 
484 	spin_lock(&im->ino_lock);
485 
486 #ifdef CONFIG_F2FS_FAULT_INJECTION
487 	if (time_to_inject(FAULT_ORPHAN)) {
488 		spin_unlock(&im->ino_lock);
489 		return -ENOSPC;
490 	}
491 #endif
492 	if (unlikely(im->ino_num >= sbi->max_orphans))
493 		err = -ENOSPC;
494 	else
495 		im->ino_num++;
496 	spin_unlock(&im->ino_lock);
497 
498 	return err;
499 }
500 
501 void release_orphan_inode(struct f2fs_sb_info *sbi)
502 {
503 	struct inode_management *im = &sbi->im[ORPHAN_INO];
504 
505 	spin_lock(&im->ino_lock);
506 	f2fs_bug_on(sbi, im->ino_num == 0);
507 	im->ino_num--;
508 	spin_unlock(&im->ino_lock);
509 }
510 
511 void add_orphan_inode(struct inode *inode)
512 {
513 	/* add new orphan ino entry into list */
514 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
515 	update_inode_page(inode);
516 }
517 
518 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
519 {
520 	/* remove orphan entry from orphan list */
521 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
522 }
523 
524 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
525 {
526 	struct inode *inode;
527 
528 	inode = f2fs_iget(sbi->sb, ino);
529 	if (IS_ERR(inode)) {
530 		/*
531 		 * there should be a bug that we can't find the entry
532 		 * to orphan inode.
533 		 */
534 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
535 		return PTR_ERR(inode);
536 	}
537 
538 	clear_nlink(inode);
539 
540 	/* truncate all the data during iput */
541 	iput(inode);
542 	return 0;
543 }
544 
545 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
546 {
547 	block_t start_blk, orphan_blocks, i, j;
548 	int err;
549 
550 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
551 		return 0;
552 
553 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
554 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
555 
556 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
557 
558 	for (i = 0; i < orphan_blocks; i++) {
559 		struct page *page = get_meta_page(sbi, start_blk + i);
560 		struct f2fs_orphan_block *orphan_blk;
561 
562 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
563 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
564 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
565 			err = recover_orphan_inode(sbi, ino);
566 			if (err) {
567 				f2fs_put_page(page, 1);
568 				return err;
569 			}
570 		}
571 		f2fs_put_page(page, 1);
572 	}
573 	/* clear Orphan Flag */
574 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
575 	return 0;
576 }
577 
578 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
579 {
580 	struct list_head *head;
581 	struct f2fs_orphan_block *orphan_blk = NULL;
582 	unsigned int nentries = 0;
583 	unsigned short index = 1;
584 	unsigned short orphan_blocks;
585 	struct page *page = NULL;
586 	struct ino_entry *orphan = NULL;
587 	struct inode_management *im = &sbi->im[ORPHAN_INO];
588 
589 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
590 
591 	/*
592 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
593 	 * orphan inode operations are covered under f2fs_lock_op().
594 	 * And, spin_lock should be avoided due to page operations below.
595 	 */
596 	head = &im->ino_list;
597 
598 	/* loop for each orphan inode entry and write them in Jornal block */
599 	list_for_each_entry(orphan, head, list) {
600 		if (!page) {
601 			page = grab_meta_page(sbi, start_blk++);
602 			orphan_blk =
603 				(struct f2fs_orphan_block *)page_address(page);
604 			memset(orphan_blk, 0, sizeof(*orphan_blk));
605 		}
606 
607 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
608 
609 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
610 			/*
611 			 * an orphan block is full of 1020 entries,
612 			 * then we need to flush current orphan blocks
613 			 * and bring another one in memory
614 			 */
615 			orphan_blk->blk_addr = cpu_to_le16(index);
616 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
617 			orphan_blk->entry_count = cpu_to_le32(nentries);
618 			set_page_dirty(page);
619 			f2fs_put_page(page, 1);
620 			index++;
621 			nentries = 0;
622 			page = NULL;
623 		}
624 	}
625 
626 	if (page) {
627 		orphan_blk->blk_addr = cpu_to_le16(index);
628 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
629 		orphan_blk->entry_count = cpu_to_le32(nentries);
630 		set_page_dirty(page);
631 		f2fs_put_page(page, 1);
632 	}
633 }
634 
635 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
636 				block_t cp_addr, unsigned long long *version)
637 {
638 	struct page *cp_page_1, *cp_page_2 = NULL;
639 	unsigned long blk_size = sbi->blocksize;
640 	struct f2fs_checkpoint *cp_block;
641 	unsigned long long cur_version = 0, pre_version = 0;
642 	size_t crc_offset;
643 	__u32 crc = 0;
644 
645 	/* Read the 1st cp block in this CP pack */
646 	cp_page_1 = get_meta_page(sbi, cp_addr);
647 
648 	/* get the version number */
649 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
650 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
651 	if (crc_offset >= blk_size)
652 		goto invalid_cp1;
653 
654 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
655 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
656 		goto invalid_cp1;
657 
658 	pre_version = cur_cp_version(cp_block);
659 
660 	/* Read the 2nd cp block in this CP pack */
661 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
662 	cp_page_2 = get_meta_page(sbi, cp_addr);
663 
664 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
665 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
666 	if (crc_offset >= blk_size)
667 		goto invalid_cp2;
668 
669 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
670 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
671 		goto invalid_cp2;
672 
673 	cur_version = cur_cp_version(cp_block);
674 
675 	if (cur_version == pre_version) {
676 		*version = cur_version;
677 		f2fs_put_page(cp_page_2, 1);
678 		return cp_page_1;
679 	}
680 invalid_cp2:
681 	f2fs_put_page(cp_page_2, 1);
682 invalid_cp1:
683 	f2fs_put_page(cp_page_1, 1);
684 	return NULL;
685 }
686 
687 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
688 {
689 	struct f2fs_checkpoint *cp_block;
690 	struct f2fs_super_block *fsb = sbi->raw_super;
691 	struct page *cp1, *cp2, *cur_page;
692 	unsigned long blk_size = sbi->blocksize;
693 	unsigned long long cp1_version = 0, cp2_version = 0;
694 	unsigned long long cp_start_blk_no;
695 	unsigned int cp_blks = 1 + __cp_payload(sbi);
696 	block_t cp_blk_no;
697 	int i;
698 
699 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
700 	if (!sbi->ckpt)
701 		return -ENOMEM;
702 	/*
703 	 * Finding out valid cp block involves read both
704 	 * sets( cp pack1 and cp pack 2)
705 	 */
706 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
707 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
708 
709 	/* The second checkpoint pack should start at the next segment */
710 	cp_start_blk_no += ((unsigned long long)1) <<
711 				le32_to_cpu(fsb->log_blocks_per_seg);
712 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
713 
714 	if (cp1 && cp2) {
715 		if (ver_after(cp2_version, cp1_version))
716 			cur_page = cp2;
717 		else
718 			cur_page = cp1;
719 	} else if (cp1) {
720 		cur_page = cp1;
721 	} else if (cp2) {
722 		cur_page = cp2;
723 	} else {
724 		goto fail_no_cp;
725 	}
726 
727 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
728 	memcpy(sbi->ckpt, cp_block, blk_size);
729 
730 	/* Sanity checking of checkpoint */
731 	if (sanity_check_ckpt(sbi))
732 		goto fail_no_cp;
733 
734 	if (cp_blks <= 1)
735 		goto done;
736 
737 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
738 	if (cur_page == cp2)
739 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
740 
741 	for (i = 1; i < cp_blks; i++) {
742 		void *sit_bitmap_ptr;
743 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
744 
745 		cur_page = get_meta_page(sbi, cp_blk_no + i);
746 		sit_bitmap_ptr = page_address(cur_page);
747 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
748 		f2fs_put_page(cur_page, 1);
749 	}
750 done:
751 	f2fs_put_page(cp1, 1);
752 	f2fs_put_page(cp2, 1);
753 	return 0;
754 
755 fail_no_cp:
756 	kfree(sbi->ckpt);
757 	return -EINVAL;
758 }
759 
760 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
761 {
762 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
763 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
764 
765 	if (is_inode_flag_set(inode, flag))
766 		return;
767 
768 	set_inode_flag(inode, flag);
769 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
770 	stat_inc_dirty_inode(sbi, type);
771 }
772 
773 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
774 {
775 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
776 
777 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
778 		return;
779 
780 	list_del_init(&F2FS_I(inode)->dirty_list);
781 	clear_inode_flag(inode, flag);
782 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
783 }
784 
785 void update_dirty_page(struct inode *inode, struct page *page)
786 {
787 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
788 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
789 
790 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
791 			!S_ISLNK(inode->i_mode))
792 		return;
793 
794 	spin_lock(&sbi->inode_lock[type]);
795 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
796 		__add_dirty_inode(inode, type);
797 	inode_inc_dirty_pages(inode);
798 	spin_unlock(&sbi->inode_lock[type]);
799 
800 	SetPagePrivate(page);
801 	f2fs_trace_pid(page);
802 }
803 
804 void remove_dirty_inode(struct inode *inode)
805 {
806 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
807 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
808 
809 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
810 			!S_ISLNK(inode->i_mode))
811 		return;
812 
813 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
814 		return;
815 
816 	spin_lock(&sbi->inode_lock[type]);
817 	__remove_dirty_inode(inode, type);
818 	spin_unlock(&sbi->inode_lock[type]);
819 }
820 
821 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
822 {
823 	struct list_head *head;
824 	struct inode *inode;
825 	struct f2fs_inode_info *fi;
826 	bool is_dir = (type == DIR_INODE);
827 
828 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
829 				get_pages(sbi, is_dir ?
830 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
831 retry:
832 	if (unlikely(f2fs_cp_error(sbi)))
833 		return -EIO;
834 
835 	spin_lock(&sbi->inode_lock[type]);
836 
837 	head = &sbi->inode_list[type];
838 	if (list_empty(head)) {
839 		spin_unlock(&sbi->inode_lock[type]);
840 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
841 				get_pages(sbi, is_dir ?
842 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
843 		return 0;
844 	}
845 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
846 	inode = igrab(&fi->vfs_inode);
847 	spin_unlock(&sbi->inode_lock[type]);
848 	if (inode) {
849 		filemap_fdatawrite(inode->i_mapping);
850 		iput(inode);
851 	} else {
852 		/*
853 		 * We should submit bio, since it exists several
854 		 * wribacking dentry pages in the freeing inode.
855 		 */
856 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
857 		cond_resched();
858 	}
859 	goto retry;
860 }
861 
862 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
863 {
864 	struct list_head *head = &sbi->inode_list[DIRTY_META];
865 	struct inode *inode;
866 	struct f2fs_inode_info *fi;
867 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
868 
869 	while (total--) {
870 		if (unlikely(f2fs_cp_error(sbi)))
871 			return -EIO;
872 
873 		spin_lock(&sbi->inode_lock[DIRTY_META]);
874 		if (list_empty(head)) {
875 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
876 			return 0;
877 		}
878 		fi = list_entry(head->next, struct f2fs_inode_info,
879 							gdirty_list);
880 		inode = igrab(&fi->vfs_inode);
881 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
882 		if (inode) {
883 			update_inode_page(inode);
884 			iput(inode);
885 		}
886 	};
887 	return 0;
888 }
889 
890 /*
891  * Freeze all the FS-operations for checkpoint.
892  */
893 static int block_operations(struct f2fs_sb_info *sbi)
894 {
895 	struct writeback_control wbc = {
896 		.sync_mode = WB_SYNC_ALL,
897 		.nr_to_write = LONG_MAX,
898 		.for_reclaim = 0,
899 	};
900 	int err = 0;
901 
902 retry_flush_dents:
903 	f2fs_lock_all(sbi);
904 	/* write all the dirty dentry pages */
905 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
906 		f2fs_unlock_all(sbi);
907 		err = sync_dirty_inodes(sbi, DIR_INODE);
908 		if (err)
909 			goto out;
910 		goto retry_flush_dents;
911 	}
912 
913 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
914 		f2fs_unlock_all(sbi);
915 		err = f2fs_sync_inode_meta(sbi);
916 		if (err)
917 			goto out;
918 		goto retry_flush_dents;
919 	}
920 
921 	/*
922 	 * POR: we should ensure that there are no dirty node pages
923 	 * until finishing nat/sit flush.
924 	 */
925 retry_flush_nodes:
926 	down_write(&sbi->node_write);
927 
928 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
929 		up_write(&sbi->node_write);
930 		err = sync_node_pages(sbi, &wbc);
931 		if (err) {
932 			f2fs_unlock_all(sbi);
933 			goto out;
934 		}
935 		goto retry_flush_nodes;
936 	}
937 out:
938 	return err;
939 }
940 
941 static void unblock_operations(struct f2fs_sb_info *sbi)
942 {
943 	up_write(&sbi->node_write);
944 
945 	build_free_nids(sbi);
946 	f2fs_unlock_all(sbi);
947 }
948 
949 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
950 {
951 	DEFINE_WAIT(wait);
952 
953 	for (;;) {
954 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
955 
956 		if (!atomic_read(&sbi->nr_wb_bios))
957 			break;
958 
959 		io_schedule_timeout(5*HZ);
960 	}
961 	finish_wait(&sbi->cp_wait, &wait);
962 }
963 
964 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
965 {
966 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
967 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
968 	struct f2fs_nm_info *nm_i = NM_I(sbi);
969 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
970 	nid_t last_nid = nm_i->next_scan_nid;
971 	block_t start_blk;
972 	unsigned int data_sum_blocks, orphan_blocks;
973 	__u32 crc32 = 0;
974 	int i;
975 	int cp_payload_blks = __cp_payload(sbi);
976 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
977 	bool invalidate = false;
978 	struct super_block *sb = sbi->sb;
979 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
980 	u64 kbytes_written;
981 
982 	/*
983 	 * This avoids to conduct wrong roll-forward operations and uses
984 	 * metapages, so should be called prior to sync_meta_pages below.
985 	 */
986 	if (!test_opt(sbi, LFS) && discard_next_dnode(sbi, discard_blk))
987 		invalidate = true;
988 
989 	/* Flush all the NAT/SIT pages */
990 	while (get_pages(sbi, F2FS_DIRTY_META)) {
991 		sync_meta_pages(sbi, META, LONG_MAX);
992 		if (unlikely(f2fs_cp_error(sbi)))
993 			return -EIO;
994 	}
995 
996 	next_free_nid(sbi, &last_nid);
997 
998 	/*
999 	 * modify checkpoint
1000 	 * version number is already updated
1001 	 */
1002 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1003 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1004 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1005 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1006 		ckpt->cur_node_segno[i] =
1007 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1008 		ckpt->cur_node_blkoff[i] =
1009 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1010 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1011 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1012 	}
1013 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1014 		ckpt->cur_data_segno[i] =
1015 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1016 		ckpt->cur_data_blkoff[i] =
1017 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1018 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1019 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1020 	}
1021 
1022 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1023 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1024 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1025 
1026 	/* 2 cp  + n data seg summary + orphan inode blocks */
1027 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1028 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1029 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1030 	else
1031 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1032 
1033 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1034 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1035 			orphan_blocks);
1036 
1037 	if (__remain_node_summaries(cpc->reason))
1038 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1039 				cp_payload_blks + data_sum_blocks +
1040 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1041 	else
1042 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1043 				cp_payload_blks + data_sum_blocks +
1044 				orphan_blocks);
1045 
1046 	if (cpc->reason == CP_UMOUNT)
1047 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1048 	else
1049 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1050 
1051 	if (cpc->reason == CP_FASTBOOT)
1052 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1053 	else
1054 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1055 
1056 	if (orphan_num)
1057 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1058 	else
1059 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1060 
1061 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1062 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1063 
1064 	/* update SIT/NAT bitmap */
1065 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1066 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1067 
1068 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1069 	*((__le32 *)((unsigned char *)ckpt +
1070 				le32_to_cpu(ckpt->checksum_offset)))
1071 				= cpu_to_le32(crc32);
1072 
1073 	start_blk = __start_cp_addr(sbi);
1074 
1075 	/* need to wait for end_io results */
1076 	wait_on_all_pages_writeback(sbi);
1077 	if (unlikely(f2fs_cp_error(sbi)))
1078 		return -EIO;
1079 
1080 	/* write out checkpoint buffer at block 0 */
1081 	update_meta_page(sbi, ckpt, start_blk++);
1082 
1083 	for (i = 1; i < 1 + cp_payload_blks; i++)
1084 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1085 							start_blk++);
1086 
1087 	if (orphan_num) {
1088 		write_orphan_inodes(sbi, start_blk);
1089 		start_blk += orphan_blocks;
1090 	}
1091 
1092 	write_data_summaries(sbi, start_blk);
1093 	start_blk += data_sum_blocks;
1094 
1095 	/* Record write statistics in the hot node summary */
1096 	kbytes_written = sbi->kbytes_written;
1097 	if (sb->s_bdev->bd_part)
1098 		kbytes_written += BD_PART_WRITTEN(sbi);
1099 
1100 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1101 
1102 	if (__remain_node_summaries(cpc->reason)) {
1103 		write_node_summaries(sbi, start_blk);
1104 		start_blk += NR_CURSEG_NODE_TYPE;
1105 	}
1106 
1107 	/* writeout checkpoint block */
1108 	update_meta_page(sbi, ckpt, start_blk);
1109 
1110 	/* wait for previous submitted node/meta pages writeback */
1111 	wait_on_all_pages_writeback(sbi);
1112 
1113 	if (unlikely(f2fs_cp_error(sbi)))
1114 		return -EIO;
1115 
1116 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1117 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1118 
1119 	/* update user_block_counts */
1120 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1121 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1122 
1123 	/* Here, we only have one bio having CP pack */
1124 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1125 
1126 	/* wait for previous submitted meta pages writeback */
1127 	wait_on_all_pages_writeback(sbi);
1128 
1129 	/*
1130 	 * invalidate meta page which is used temporarily for zeroing out
1131 	 * block at the end of warm node chain.
1132 	 */
1133 	if (invalidate)
1134 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1135 								discard_blk);
1136 
1137 	release_ino_entry(sbi, false);
1138 
1139 	if (unlikely(f2fs_cp_error(sbi)))
1140 		return -EIO;
1141 
1142 	clear_prefree_segments(sbi, cpc);
1143 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1144 
1145 	return 0;
1146 }
1147 
1148 /*
1149  * We guarantee that this checkpoint procedure will not fail.
1150  */
1151 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1152 {
1153 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1154 	unsigned long long ckpt_ver;
1155 	int err = 0;
1156 
1157 	mutex_lock(&sbi->cp_mutex);
1158 
1159 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1160 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1161 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1162 		goto out;
1163 	if (unlikely(f2fs_cp_error(sbi))) {
1164 		err = -EIO;
1165 		goto out;
1166 	}
1167 	if (f2fs_readonly(sbi->sb)) {
1168 		err = -EROFS;
1169 		goto out;
1170 	}
1171 
1172 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1173 
1174 	err = block_operations(sbi);
1175 	if (err)
1176 		goto out;
1177 
1178 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1179 
1180 	f2fs_flush_merged_bios(sbi);
1181 
1182 	/*
1183 	 * update checkpoint pack index
1184 	 * Increase the version number so that
1185 	 * SIT entries and seg summaries are written at correct place
1186 	 */
1187 	ckpt_ver = cur_cp_version(ckpt);
1188 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1189 
1190 	/* write cached NAT/SIT entries to NAT/SIT area */
1191 	flush_nat_entries(sbi);
1192 	flush_sit_entries(sbi, cpc);
1193 
1194 	/* unlock all the fs_lock[] in do_checkpoint() */
1195 	err = do_checkpoint(sbi, cpc);
1196 
1197 	unblock_operations(sbi);
1198 	stat_inc_cp_count(sbi->stat_info);
1199 
1200 	if (cpc->reason == CP_RECOVERY)
1201 		f2fs_msg(sbi->sb, KERN_NOTICE,
1202 			"checkpoint: version = %llx", ckpt_ver);
1203 
1204 	/* do checkpoint periodically */
1205 	f2fs_update_time(sbi, CP_TIME);
1206 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1207 out:
1208 	mutex_unlock(&sbi->cp_mutex);
1209 	return err;
1210 }
1211 
1212 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1213 {
1214 	int i;
1215 
1216 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1217 		struct inode_management *im = &sbi->im[i];
1218 
1219 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1220 		spin_lock_init(&im->ino_lock);
1221 		INIT_LIST_HEAD(&im->ino_list);
1222 		im->ino_num = 0;
1223 	}
1224 
1225 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1226 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1227 				F2FS_ORPHANS_PER_BLOCK;
1228 }
1229 
1230 int __init create_checkpoint_caches(void)
1231 {
1232 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1233 			sizeof(struct ino_entry));
1234 	if (!ino_entry_slab)
1235 		return -ENOMEM;
1236 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1237 			sizeof(struct inode_entry));
1238 	if (!inode_entry_slab) {
1239 		kmem_cache_destroy(ino_entry_slab);
1240 		return -ENOMEM;
1241 	}
1242 	return 0;
1243 }
1244 
1245 void destroy_checkpoint_caches(void)
1246 {
1247 	kmem_cache_destroy(ino_entry_slab);
1248 	kmem_cache_destroy(inode_entry_slab);
1249 }
1250