1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ 58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .rw = READ_SYNC | REQ_META | REQ_PRIO, 67 .old_blkaddr = index, 68 .new_blkaddr = index, 69 .encrypted_page = NULL, 70 }; 71 72 if (unlikely(!is_meta)) 73 fio.rw &= ~REQ_META; 74 repeat: 75 page = f2fs_grab_cache_page(mapping, index, false); 76 if (!page) { 77 cond_resched(); 78 goto repeat; 79 } 80 if (PageUptodate(page)) 81 goto out; 82 83 fio.page = page; 84 85 if (f2fs_submit_page_bio(&fio)) { 86 f2fs_put_page(page, 1); 87 goto repeat; 88 } 89 90 lock_page(page); 91 if (unlikely(page->mapping != mapping)) { 92 f2fs_put_page(page, 1); 93 goto repeat; 94 } 95 96 /* 97 * if there is any IO error when accessing device, make our filesystem 98 * readonly and make sure do not write checkpoint with non-uptodate 99 * meta page. 100 */ 101 if (unlikely(!PageUptodate(page))) 102 f2fs_stop_checkpoint(sbi, false); 103 out: 104 return page; 105 } 106 107 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 108 { 109 return __get_meta_page(sbi, index, true); 110 } 111 112 /* for POR only */ 113 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 return __get_meta_page(sbi, index, false); 116 } 117 118 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 119 { 120 switch (type) { 121 case META_NAT: 122 break; 123 case META_SIT: 124 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 125 return false; 126 break; 127 case META_SSA: 128 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 129 blkaddr < SM_I(sbi)->ssa_blkaddr)) 130 return false; 131 break; 132 case META_CP: 133 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 134 blkaddr < __start_cp_addr(sbi))) 135 return false; 136 break; 137 case META_POR: 138 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 139 blkaddr < MAIN_BLKADDR(sbi))) 140 return false; 141 break; 142 default: 143 BUG(); 144 } 145 146 return true; 147 } 148 149 /* 150 * Readahead CP/NAT/SIT/SSA pages 151 */ 152 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 153 int type, bool sync) 154 { 155 struct page *page; 156 block_t blkno = start; 157 struct f2fs_io_info fio = { 158 .sbi = sbi, 159 .type = META, 160 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA, 161 .encrypted_page = NULL, 162 }; 163 struct blk_plug plug; 164 165 if (unlikely(type == META_POR)) 166 fio.rw &= ~REQ_META; 167 168 blk_start_plug(&plug); 169 for (; nrpages-- > 0; blkno++) { 170 171 if (!is_valid_blkaddr(sbi, blkno, type)) 172 goto out; 173 174 switch (type) { 175 case META_NAT: 176 if (unlikely(blkno >= 177 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 178 blkno = 0; 179 /* get nat block addr */ 180 fio.new_blkaddr = current_nat_addr(sbi, 181 blkno * NAT_ENTRY_PER_BLOCK); 182 break; 183 case META_SIT: 184 /* get sit block addr */ 185 fio.new_blkaddr = current_sit_addr(sbi, 186 blkno * SIT_ENTRY_PER_BLOCK); 187 break; 188 case META_SSA: 189 case META_CP: 190 case META_POR: 191 fio.new_blkaddr = blkno; 192 break; 193 default: 194 BUG(); 195 } 196 197 page = f2fs_grab_cache_page(META_MAPPING(sbi), 198 fio.new_blkaddr, false); 199 if (!page) 200 continue; 201 if (PageUptodate(page)) { 202 f2fs_put_page(page, 1); 203 continue; 204 } 205 206 fio.page = page; 207 fio.old_blkaddr = fio.new_blkaddr; 208 f2fs_submit_page_mbio(&fio); 209 f2fs_put_page(page, 0); 210 } 211 out: 212 f2fs_submit_merged_bio(sbi, META, READ); 213 blk_finish_plug(&plug); 214 return blkno - start; 215 } 216 217 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 218 { 219 struct page *page; 220 bool readahead = false; 221 222 page = find_get_page(META_MAPPING(sbi), index); 223 if (!page || !PageUptodate(page)) 224 readahead = true; 225 f2fs_put_page(page, 0); 226 227 if (readahead) 228 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true); 229 } 230 231 static int f2fs_write_meta_page(struct page *page, 232 struct writeback_control *wbc) 233 { 234 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 235 236 trace_f2fs_writepage(page, META); 237 238 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 239 goto redirty_out; 240 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 241 goto redirty_out; 242 if (unlikely(f2fs_cp_error(sbi))) 243 goto redirty_out; 244 245 write_meta_page(sbi, page); 246 dec_page_count(sbi, F2FS_DIRTY_META); 247 248 if (wbc->for_reclaim) 249 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE); 250 251 unlock_page(page); 252 253 if (unlikely(f2fs_cp_error(sbi))) 254 f2fs_submit_merged_bio(sbi, META, WRITE); 255 256 return 0; 257 258 redirty_out: 259 redirty_page_for_writepage(wbc, page); 260 return AOP_WRITEPAGE_ACTIVATE; 261 } 262 263 static int f2fs_write_meta_pages(struct address_space *mapping, 264 struct writeback_control *wbc) 265 { 266 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 267 long diff, written; 268 269 /* collect a number of dirty meta pages and write together */ 270 if (wbc->for_kupdate || 271 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 272 goto skip_write; 273 274 trace_f2fs_writepages(mapping->host, wbc, META); 275 276 /* if mounting is failed, skip writing node pages */ 277 mutex_lock(&sbi->cp_mutex); 278 diff = nr_pages_to_write(sbi, META, wbc); 279 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 280 mutex_unlock(&sbi->cp_mutex); 281 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 282 return 0; 283 284 skip_write: 285 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 286 trace_f2fs_writepages(mapping->host, wbc, META); 287 return 0; 288 } 289 290 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 291 long nr_to_write) 292 { 293 struct address_space *mapping = META_MAPPING(sbi); 294 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 295 struct pagevec pvec; 296 long nwritten = 0; 297 struct writeback_control wbc = { 298 .for_reclaim = 0, 299 }; 300 struct blk_plug plug; 301 302 pagevec_init(&pvec, 0); 303 304 blk_start_plug(&plug); 305 306 while (index <= end) { 307 int i, nr_pages; 308 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 309 PAGECACHE_TAG_DIRTY, 310 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 311 if (unlikely(nr_pages == 0)) 312 break; 313 314 for (i = 0; i < nr_pages; i++) { 315 struct page *page = pvec.pages[i]; 316 317 if (prev == ULONG_MAX) 318 prev = page->index - 1; 319 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 320 pagevec_release(&pvec); 321 goto stop; 322 } 323 324 lock_page(page); 325 326 if (unlikely(page->mapping != mapping)) { 327 continue_unlock: 328 unlock_page(page); 329 continue; 330 } 331 if (!PageDirty(page)) { 332 /* someone wrote it for us */ 333 goto continue_unlock; 334 } 335 336 f2fs_wait_on_page_writeback(page, META, true); 337 338 BUG_ON(PageWriteback(page)); 339 if (!clear_page_dirty_for_io(page)) 340 goto continue_unlock; 341 342 if (mapping->a_ops->writepage(page, &wbc)) { 343 unlock_page(page); 344 break; 345 } 346 nwritten++; 347 prev = page->index; 348 if (unlikely(nwritten >= nr_to_write)) 349 break; 350 } 351 pagevec_release(&pvec); 352 cond_resched(); 353 } 354 stop: 355 if (nwritten) 356 f2fs_submit_merged_bio(sbi, type, WRITE); 357 358 blk_finish_plug(&plug); 359 360 return nwritten; 361 } 362 363 static int f2fs_set_meta_page_dirty(struct page *page) 364 { 365 trace_f2fs_set_page_dirty(page, META); 366 367 SetPageUptodate(page); 368 if (!PageDirty(page)) { 369 f2fs_set_page_dirty_nobuffers(page); 370 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 371 SetPagePrivate(page); 372 f2fs_trace_pid(page); 373 return 1; 374 } 375 return 0; 376 } 377 378 const struct address_space_operations f2fs_meta_aops = { 379 .writepage = f2fs_write_meta_page, 380 .writepages = f2fs_write_meta_pages, 381 .set_page_dirty = f2fs_set_meta_page_dirty, 382 .invalidatepage = f2fs_invalidate_page, 383 .releasepage = f2fs_release_page, 384 }; 385 386 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 387 { 388 struct inode_management *im = &sbi->im[type]; 389 struct ino_entry *e, *tmp; 390 391 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 392 retry: 393 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 394 395 spin_lock(&im->ino_lock); 396 e = radix_tree_lookup(&im->ino_root, ino); 397 if (!e) { 398 e = tmp; 399 if (radix_tree_insert(&im->ino_root, ino, e)) { 400 spin_unlock(&im->ino_lock); 401 radix_tree_preload_end(); 402 goto retry; 403 } 404 memset(e, 0, sizeof(struct ino_entry)); 405 e->ino = ino; 406 407 list_add_tail(&e->list, &im->ino_list); 408 if (type != ORPHAN_INO) 409 im->ino_num++; 410 } 411 spin_unlock(&im->ino_lock); 412 radix_tree_preload_end(); 413 414 if (e != tmp) 415 kmem_cache_free(ino_entry_slab, tmp); 416 } 417 418 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 419 { 420 struct inode_management *im = &sbi->im[type]; 421 struct ino_entry *e; 422 423 spin_lock(&im->ino_lock); 424 e = radix_tree_lookup(&im->ino_root, ino); 425 if (e) { 426 list_del(&e->list); 427 radix_tree_delete(&im->ino_root, ino); 428 im->ino_num--; 429 spin_unlock(&im->ino_lock); 430 kmem_cache_free(ino_entry_slab, e); 431 return; 432 } 433 spin_unlock(&im->ino_lock); 434 } 435 436 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 437 { 438 /* add new dirty ino entry into list */ 439 __add_ino_entry(sbi, ino, type); 440 } 441 442 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 443 { 444 /* remove dirty ino entry from list */ 445 __remove_ino_entry(sbi, ino, type); 446 } 447 448 /* mode should be APPEND_INO or UPDATE_INO */ 449 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 450 { 451 struct inode_management *im = &sbi->im[mode]; 452 struct ino_entry *e; 453 454 spin_lock(&im->ino_lock); 455 e = radix_tree_lookup(&im->ino_root, ino); 456 spin_unlock(&im->ino_lock); 457 return e ? true : false; 458 } 459 460 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 461 { 462 struct ino_entry *e, *tmp; 463 int i; 464 465 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 466 struct inode_management *im = &sbi->im[i]; 467 468 spin_lock(&im->ino_lock); 469 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 470 list_del(&e->list); 471 radix_tree_delete(&im->ino_root, e->ino); 472 kmem_cache_free(ino_entry_slab, e); 473 im->ino_num--; 474 } 475 spin_unlock(&im->ino_lock); 476 } 477 } 478 479 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 480 { 481 struct inode_management *im = &sbi->im[ORPHAN_INO]; 482 int err = 0; 483 484 spin_lock(&im->ino_lock); 485 486 #ifdef CONFIG_F2FS_FAULT_INJECTION 487 if (time_to_inject(FAULT_ORPHAN)) { 488 spin_unlock(&im->ino_lock); 489 return -ENOSPC; 490 } 491 #endif 492 if (unlikely(im->ino_num >= sbi->max_orphans)) 493 err = -ENOSPC; 494 else 495 im->ino_num++; 496 spin_unlock(&im->ino_lock); 497 498 return err; 499 } 500 501 void release_orphan_inode(struct f2fs_sb_info *sbi) 502 { 503 struct inode_management *im = &sbi->im[ORPHAN_INO]; 504 505 spin_lock(&im->ino_lock); 506 f2fs_bug_on(sbi, im->ino_num == 0); 507 im->ino_num--; 508 spin_unlock(&im->ino_lock); 509 } 510 511 void add_orphan_inode(struct inode *inode) 512 { 513 /* add new orphan ino entry into list */ 514 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 515 update_inode_page(inode); 516 } 517 518 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 519 { 520 /* remove orphan entry from orphan list */ 521 __remove_ino_entry(sbi, ino, ORPHAN_INO); 522 } 523 524 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 525 { 526 struct inode *inode; 527 528 inode = f2fs_iget(sbi->sb, ino); 529 if (IS_ERR(inode)) { 530 /* 531 * there should be a bug that we can't find the entry 532 * to orphan inode. 533 */ 534 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 535 return PTR_ERR(inode); 536 } 537 538 clear_nlink(inode); 539 540 /* truncate all the data during iput */ 541 iput(inode); 542 return 0; 543 } 544 545 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 546 { 547 block_t start_blk, orphan_blocks, i, j; 548 int err; 549 550 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 551 return 0; 552 553 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 554 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 555 556 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 557 558 for (i = 0; i < orphan_blocks; i++) { 559 struct page *page = get_meta_page(sbi, start_blk + i); 560 struct f2fs_orphan_block *orphan_blk; 561 562 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 563 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 564 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 565 err = recover_orphan_inode(sbi, ino); 566 if (err) { 567 f2fs_put_page(page, 1); 568 return err; 569 } 570 } 571 f2fs_put_page(page, 1); 572 } 573 /* clear Orphan Flag */ 574 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 575 return 0; 576 } 577 578 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 579 { 580 struct list_head *head; 581 struct f2fs_orphan_block *orphan_blk = NULL; 582 unsigned int nentries = 0; 583 unsigned short index = 1; 584 unsigned short orphan_blocks; 585 struct page *page = NULL; 586 struct ino_entry *orphan = NULL; 587 struct inode_management *im = &sbi->im[ORPHAN_INO]; 588 589 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 590 591 /* 592 * we don't need to do spin_lock(&im->ino_lock) here, since all the 593 * orphan inode operations are covered under f2fs_lock_op(). 594 * And, spin_lock should be avoided due to page operations below. 595 */ 596 head = &im->ino_list; 597 598 /* loop for each orphan inode entry and write them in Jornal block */ 599 list_for_each_entry(orphan, head, list) { 600 if (!page) { 601 page = grab_meta_page(sbi, start_blk++); 602 orphan_blk = 603 (struct f2fs_orphan_block *)page_address(page); 604 memset(orphan_blk, 0, sizeof(*orphan_blk)); 605 } 606 607 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 608 609 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 610 /* 611 * an orphan block is full of 1020 entries, 612 * then we need to flush current orphan blocks 613 * and bring another one in memory 614 */ 615 orphan_blk->blk_addr = cpu_to_le16(index); 616 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 617 orphan_blk->entry_count = cpu_to_le32(nentries); 618 set_page_dirty(page); 619 f2fs_put_page(page, 1); 620 index++; 621 nentries = 0; 622 page = NULL; 623 } 624 } 625 626 if (page) { 627 orphan_blk->blk_addr = cpu_to_le16(index); 628 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 629 orphan_blk->entry_count = cpu_to_le32(nentries); 630 set_page_dirty(page); 631 f2fs_put_page(page, 1); 632 } 633 } 634 635 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 636 block_t cp_addr, unsigned long long *version) 637 { 638 struct page *cp_page_1, *cp_page_2 = NULL; 639 unsigned long blk_size = sbi->blocksize; 640 struct f2fs_checkpoint *cp_block; 641 unsigned long long cur_version = 0, pre_version = 0; 642 size_t crc_offset; 643 __u32 crc = 0; 644 645 /* Read the 1st cp block in this CP pack */ 646 cp_page_1 = get_meta_page(sbi, cp_addr); 647 648 /* get the version number */ 649 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 650 crc_offset = le32_to_cpu(cp_block->checksum_offset); 651 if (crc_offset >= blk_size) 652 goto invalid_cp1; 653 654 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 655 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 656 goto invalid_cp1; 657 658 pre_version = cur_cp_version(cp_block); 659 660 /* Read the 2nd cp block in this CP pack */ 661 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 662 cp_page_2 = get_meta_page(sbi, cp_addr); 663 664 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 665 crc_offset = le32_to_cpu(cp_block->checksum_offset); 666 if (crc_offset >= blk_size) 667 goto invalid_cp2; 668 669 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 670 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 671 goto invalid_cp2; 672 673 cur_version = cur_cp_version(cp_block); 674 675 if (cur_version == pre_version) { 676 *version = cur_version; 677 f2fs_put_page(cp_page_2, 1); 678 return cp_page_1; 679 } 680 invalid_cp2: 681 f2fs_put_page(cp_page_2, 1); 682 invalid_cp1: 683 f2fs_put_page(cp_page_1, 1); 684 return NULL; 685 } 686 687 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 688 { 689 struct f2fs_checkpoint *cp_block; 690 struct f2fs_super_block *fsb = sbi->raw_super; 691 struct page *cp1, *cp2, *cur_page; 692 unsigned long blk_size = sbi->blocksize; 693 unsigned long long cp1_version = 0, cp2_version = 0; 694 unsigned long long cp_start_blk_no; 695 unsigned int cp_blks = 1 + __cp_payload(sbi); 696 block_t cp_blk_no; 697 int i; 698 699 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 700 if (!sbi->ckpt) 701 return -ENOMEM; 702 /* 703 * Finding out valid cp block involves read both 704 * sets( cp pack1 and cp pack 2) 705 */ 706 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 707 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 708 709 /* The second checkpoint pack should start at the next segment */ 710 cp_start_blk_no += ((unsigned long long)1) << 711 le32_to_cpu(fsb->log_blocks_per_seg); 712 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 713 714 if (cp1 && cp2) { 715 if (ver_after(cp2_version, cp1_version)) 716 cur_page = cp2; 717 else 718 cur_page = cp1; 719 } else if (cp1) { 720 cur_page = cp1; 721 } else if (cp2) { 722 cur_page = cp2; 723 } else { 724 goto fail_no_cp; 725 } 726 727 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 728 memcpy(sbi->ckpt, cp_block, blk_size); 729 730 /* Sanity checking of checkpoint */ 731 if (sanity_check_ckpt(sbi)) 732 goto fail_no_cp; 733 734 if (cp_blks <= 1) 735 goto done; 736 737 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 738 if (cur_page == cp2) 739 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 740 741 for (i = 1; i < cp_blks; i++) { 742 void *sit_bitmap_ptr; 743 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 744 745 cur_page = get_meta_page(sbi, cp_blk_no + i); 746 sit_bitmap_ptr = page_address(cur_page); 747 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 748 f2fs_put_page(cur_page, 1); 749 } 750 done: 751 f2fs_put_page(cp1, 1); 752 f2fs_put_page(cp2, 1); 753 return 0; 754 755 fail_no_cp: 756 kfree(sbi->ckpt); 757 return -EINVAL; 758 } 759 760 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 761 { 762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 763 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 764 765 if (is_inode_flag_set(inode, flag)) 766 return; 767 768 set_inode_flag(inode, flag); 769 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 770 stat_inc_dirty_inode(sbi, type); 771 } 772 773 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 774 { 775 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 776 777 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 778 return; 779 780 list_del_init(&F2FS_I(inode)->dirty_list); 781 clear_inode_flag(inode, flag); 782 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 783 } 784 785 void update_dirty_page(struct inode *inode, struct page *page) 786 { 787 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 788 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 789 790 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 791 !S_ISLNK(inode->i_mode)) 792 return; 793 794 spin_lock(&sbi->inode_lock[type]); 795 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 796 __add_dirty_inode(inode, type); 797 inode_inc_dirty_pages(inode); 798 spin_unlock(&sbi->inode_lock[type]); 799 800 SetPagePrivate(page); 801 f2fs_trace_pid(page); 802 } 803 804 void remove_dirty_inode(struct inode *inode) 805 { 806 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 807 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 808 809 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 810 !S_ISLNK(inode->i_mode)) 811 return; 812 813 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 814 return; 815 816 spin_lock(&sbi->inode_lock[type]); 817 __remove_dirty_inode(inode, type); 818 spin_unlock(&sbi->inode_lock[type]); 819 } 820 821 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 822 { 823 struct list_head *head; 824 struct inode *inode; 825 struct f2fs_inode_info *fi; 826 bool is_dir = (type == DIR_INODE); 827 828 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 829 get_pages(sbi, is_dir ? 830 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 831 retry: 832 if (unlikely(f2fs_cp_error(sbi))) 833 return -EIO; 834 835 spin_lock(&sbi->inode_lock[type]); 836 837 head = &sbi->inode_list[type]; 838 if (list_empty(head)) { 839 spin_unlock(&sbi->inode_lock[type]); 840 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 841 get_pages(sbi, is_dir ? 842 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 843 return 0; 844 } 845 fi = list_entry(head->next, struct f2fs_inode_info, dirty_list); 846 inode = igrab(&fi->vfs_inode); 847 spin_unlock(&sbi->inode_lock[type]); 848 if (inode) { 849 filemap_fdatawrite(inode->i_mapping); 850 iput(inode); 851 } else { 852 /* 853 * We should submit bio, since it exists several 854 * wribacking dentry pages in the freeing inode. 855 */ 856 f2fs_submit_merged_bio(sbi, DATA, WRITE); 857 cond_resched(); 858 } 859 goto retry; 860 } 861 862 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 863 { 864 struct list_head *head = &sbi->inode_list[DIRTY_META]; 865 struct inode *inode; 866 struct f2fs_inode_info *fi; 867 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 868 869 while (total--) { 870 if (unlikely(f2fs_cp_error(sbi))) 871 return -EIO; 872 873 spin_lock(&sbi->inode_lock[DIRTY_META]); 874 if (list_empty(head)) { 875 spin_unlock(&sbi->inode_lock[DIRTY_META]); 876 return 0; 877 } 878 fi = list_entry(head->next, struct f2fs_inode_info, 879 gdirty_list); 880 inode = igrab(&fi->vfs_inode); 881 spin_unlock(&sbi->inode_lock[DIRTY_META]); 882 if (inode) { 883 update_inode_page(inode); 884 iput(inode); 885 } 886 }; 887 return 0; 888 } 889 890 /* 891 * Freeze all the FS-operations for checkpoint. 892 */ 893 static int block_operations(struct f2fs_sb_info *sbi) 894 { 895 struct writeback_control wbc = { 896 .sync_mode = WB_SYNC_ALL, 897 .nr_to_write = LONG_MAX, 898 .for_reclaim = 0, 899 }; 900 int err = 0; 901 902 retry_flush_dents: 903 f2fs_lock_all(sbi); 904 /* write all the dirty dentry pages */ 905 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 906 f2fs_unlock_all(sbi); 907 err = sync_dirty_inodes(sbi, DIR_INODE); 908 if (err) 909 goto out; 910 goto retry_flush_dents; 911 } 912 913 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 914 f2fs_unlock_all(sbi); 915 err = f2fs_sync_inode_meta(sbi); 916 if (err) 917 goto out; 918 goto retry_flush_dents; 919 } 920 921 /* 922 * POR: we should ensure that there are no dirty node pages 923 * until finishing nat/sit flush. 924 */ 925 retry_flush_nodes: 926 down_write(&sbi->node_write); 927 928 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 929 up_write(&sbi->node_write); 930 err = sync_node_pages(sbi, &wbc); 931 if (err) { 932 f2fs_unlock_all(sbi); 933 goto out; 934 } 935 goto retry_flush_nodes; 936 } 937 out: 938 return err; 939 } 940 941 static void unblock_operations(struct f2fs_sb_info *sbi) 942 { 943 up_write(&sbi->node_write); 944 945 build_free_nids(sbi); 946 f2fs_unlock_all(sbi); 947 } 948 949 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 950 { 951 DEFINE_WAIT(wait); 952 953 for (;;) { 954 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 955 956 if (!atomic_read(&sbi->nr_wb_bios)) 957 break; 958 959 io_schedule_timeout(5*HZ); 960 } 961 finish_wait(&sbi->cp_wait, &wait); 962 } 963 964 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 965 { 966 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 967 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 968 struct f2fs_nm_info *nm_i = NM_I(sbi); 969 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 970 nid_t last_nid = nm_i->next_scan_nid; 971 block_t start_blk; 972 unsigned int data_sum_blocks, orphan_blocks; 973 __u32 crc32 = 0; 974 int i; 975 int cp_payload_blks = __cp_payload(sbi); 976 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg); 977 bool invalidate = false; 978 struct super_block *sb = sbi->sb; 979 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 980 u64 kbytes_written; 981 982 /* 983 * This avoids to conduct wrong roll-forward operations and uses 984 * metapages, so should be called prior to sync_meta_pages below. 985 */ 986 if (!test_opt(sbi, LFS) && discard_next_dnode(sbi, discard_blk)) 987 invalidate = true; 988 989 /* Flush all the NAT/SIT pages */ 990 while (get_pages(sbi, F2FS_DIRTY_META)) { 991 sync_meta_pages(sbi, META, LONG_MAX); 992 if (unlikely(f2fs_cp_error(sbi))) 993 return -EIO; 994 } 995 996 next_free_nid(sbi, &last_nid); 997 998 /* 999 * modify checkpoint 1000 * version number is already updated 1001 */ 1002 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1003 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1004 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1005 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1006 ckpt->cur_node_segno[i] = 1007 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1008 ckpt->cur_node_blkoff[i] = 1009 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1010 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1011 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1012 } 1013 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1014 ckpt->cur_data_segno[i] = 1015 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1016 ckpt->cur_data_blkoff[i] = 1017 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1018 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1019 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1020 } 1021 1022 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1023 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1024 ckpt->next_free_nid = cpu_to_le32(last_nid); 1025 1026 /* 2 cp + n data seg summary + orphan inode blocks */ 1027 data_sum_blocks = npages_for_summary_flush(sbi, false); 1028 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1029 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1030 else 1031 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1032 1033 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1034 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1035 orphan_blocks); 1036 1037 if (__remain_node_summaries(cpc->reason)) 1038 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1039 cp_payload_blks + data_sum_blocks + 1040 orphan_blocks + NR_CURSEG_NODE_TYPE); 1041 else 1042 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1043 cp_payload_blks + data_sum_blocks + 1044 orphan_blocks); 1045 1046 if (cpc->reason == CP_UMOUNT) 1047 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1048 else 1049 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1050 1051 if (cpc->reason == CP_FASTBOOT) 1052 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1053 else 1054 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1055 1056 if (orphan_num) 1057 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1058 else 1059 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1060 1061 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1062 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1063 1064 /* update SIT/NAT bitmap */ 1065 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1066 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1067 1068 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1069 *((__le32 *)((unsigned char *)ckpt + 1070 le32_to_cpu(ckpt->checksum_offset))) 1071 = cpu_to_le32(crc32); 1072 1073 start_blk = __start_cp_addr(sbi); 1074 1075 /* need to wait for end_io results */ 1076 wait_on_all_pages_writeback(sbi); 1077 if (unlikely(f2fs_cp_error(sbi))) 1078 return -EIO; 1079 1080 /* write out checkpoint buffer at block 0 */ 1081 update_meta_page(sbi, ckpt, start_blk++); 1082 1083 for (i = 1; i < 1 + cp_payload_blks; i++) 1084 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1085 start_blk++); 1086 1087 if (orphan_num) { 1088 write_orphan_inodes(sbi, start_blk); 1089 start_blk += orphan_blocks; 1090 } 1091 1092 write_data_summaries(sbi, start_blk); 1093 start_blk += data_sum_blocks; 1094 1095 /* Record write statistics in the hot node summary */ 1096 kbytes_written = sbi->kbytes_written; 1097 if (sb->s_bdev->bd_part) 1098 kbytes_written += BD_PART_WRITTEN(sbi); 1099 1100 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1101 1102 if (__remain_node_summaries(cpc->reason)) { 1103 write_node_summaries(sbi, start_blk); 1104 start_blk += NR_CURSEG_NODE_TYPE; 1105 } 1106 1107 /* writeout checkpoint block */ 1108 update_meta_page(sbi, ckpt, start_blk); 1109 1110 /* wait for previous submitted node/meta pages writeback */ 1111 wait_on_all_pages_writeback(sbi); 1112 1113 if (unlikely(f2fs_cp_error(sbi))) 1114 return -EIO; 1115 1116 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1117 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1118 1119 /* update user_block_counts */ 1120 sbi->last_valid_block_count = sbi->total_valid_block_count; 1121 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1122 1123 /* Here, we only have one bio having CP pack */ 1124 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1125 1126 /* wait for previous submitted meta pages writeback */ 1127 wait_on_all_pages_writeback(sbi); 1128 1129 /* 1130 * invalidate meta page which is used temporarily for zeroing out 1131 * block at the end of warm node chain. 1132 */ 1133 if (invalidate) 1134 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk, 1135 discard_blk); 1136 1137 release_ino_entry(sbi, false); 1138 1139 if (unlikely(f2fs_cp_error(sbi))) 1140 return -EIO; 1141 1142 clear_prefree_segments(sbi, cpc); 1143 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1144 1145 return 0; 1146 } 1147 1148 /* 1149 * We guarantee that this checkpoint procedure will not fail. 1150 */ 1151 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1152 { 1153 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1154 unsigned long long ckpt_ver; 1155 int err = 0; 1156 1157 mutex_lock(&sbi->cp_mutex); 1158 1159 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1160 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1161 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1162 goto out; 1163 if (unlikely(f2fs_cp_error(sbi))) { 1164 err = -EIO; 1165 goto out; 1166 } 1167 if (f2fs_readonly(sbi->sb)) { 1168 err = -EROFS; 1169 goto out; 1170 } 1171 1172 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1173 1174 err = block_operations(sbi); 1175 if (err) 1176 goto out; 1177 1178 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1179 1180 f2fs_flush_merged_bios(sbi); 1181 1182 /* 1183 * update checkpoint pack index 1184 * Increase the version number so that 1185 * SIT entries and seg summaries are written at correct place 1186 */ 1187 ckpt_ver = cur_cp_version(ckpt); 1188 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1189 1190 /* write cached NAT/SIT entries to NAT/SIT area */ 1191 flush_nat_entries(sbi); 1192 flush_sit_entries(sbi, cpc); 1193 1194 /* unlock all the fs_lock[] in do_checkpoint() */ 1195 err = do_checkpoint(sbi, cpc); 1196 1197 unblock_operations(sbi); 1198 stat_inc_cp_count(sbi->stat_info); 1199 1200 if (cpc->reason == CP_RECOVERY) 1201 f2fs_msg(sbi->sb, KERN_NOTICE, 1202 "checkpoint: version = %llx", ckpt_ver); 1203 1204 /* do checkpoint periodically */ 1205 f2fs_update_time(sbi, CP_TIME); 1206 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1207 out: 1208 mutex_unlock(&sbi->cp_mutex); 1209 return err; 1210 } 1211 1212 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1213 { 1214 int i; 1215 1216 for (i = 0; i < MAX_INO_ENTRY; i++) { 1217 struct inode_management *im = &sbi->im[i]; 1218 1219 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1220 spin_lock_init(&im->ino_lock); 1221 INIT_LIST_HEAD(&im->ino_list); 1222 im->ino_num = 0; 1223 } 1224 1225 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1226 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1227 F2FS_ORPHANS_PER_BLOCK; 1228 } 1229 1230 int __init create_checkpoint_caches(void) 1231 { 1232 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1233 sizeof(struct ino_entry)); 1234 if (!ino_entry_slab) 1235 return -ENOMEM; 1236 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1237 sizeof(struct inode_entry)); 1238 if (!inode_entry_slab) { 1239 kmem_cache_destroy(ino_entry_slab); 1240 return -ENOMEM; 1241 } 1242 return 0; 1243 } 1244 1245 void destroy_checkpoint_caches(void) 1246 { 1247 kmem_cache_destroy(ino_entry_slab); 1248 kmem_cache_destroy(inode_entry_slab); 1249 } 1250