xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision fc56da79)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = READ_SYNC | REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 	};
166 	struct blk_plug plug;
167 
168 	if (unlikely(type == META_POR))
169 		fio.op_flags &= ~REQ_META;
170 
171 	blk_start_plug(&plug);
172 	for (; nrpages-- > 0; blkno++) {
173 
174 		if (!is_valid_blkaddr(sbi, blkno, type))
175 			goto out;
176 
177 		switch (type) {
178 		case META_NAT:
179 			if (unlikely(blkno >=
180 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 				blkno = 0;
182 			/* get nat block addr */
183 			fio.new_blkaddr = current_nat_addr(sbi,
184 					blkno * NAT_ENTRY_PER_BLOCK);
185 			break;
186 		case META_SIT:
187 			/* get sit block addr */
188 			fio.new_blkaddr = current_sit_addr(sbi,
189 					blkno * SIT_ENTRY_PER_BLOCK);
190 			break;
191 		case META_SSA:
192 		case META_CP:
193 		case META_POR:
194 			fio.new_blkaddr = blkno;
195 			break;
196 		default:
197 			BUG();
198 		}
199 
200 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 						fio.new_blkaddr, false);
202 		if (!page)
203 			continue;
204 		if (PageUptodate(page)) {
205 			f2fs_put_page(page, 1);
206 			continue;
207 		}
208 
209 		fio.page = page;
210 		fio.old_blkaddr = fio.new_blkaddr;
211 		f2fs_submit_page_mbio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	f2fs_submit_merged_bio(sbi, META, READ);
216 	blk_finish_plug(&plug);
217 	return blkno - start;
218 }
219 
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 	struct page *page;
223 	bool readahead = false;
224 
225 	page = find_get_page(META_MAPPING(sbi), index);
226 	if (!page || !PageUptodate(page))
227 		readahead = true;
228 	f2fs_put_page(page, 0);
229 
230 	if (readahead)
231 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
232 }
233 
234 static int f2fs_write_meta_page(struct page *page,
235 				struct writeback_control *wbc)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 
239 	trace_f2fs_writepage(page, META);
240 
241 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 		goto redirty_out;
243 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 		goto redirty_out;
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 
248 	write_meta_page(sbi, page);
249 	dec_page_count(sbi, F2FS_DIRTY_META);
250 
251 	if (wbc->for_reclaim)
252 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
253 
254 	unlock_page(page);
255 
256 	if (unlikely(f2fs_cp_error(sbi)))
257 		f2fs_submit_merged_bio(sbi, META, WRITE);
258 
259 	return 0;
260 
261 redirty_out:
262 	redirty_page_for_writepage(wbc, page);
263 	return AOP_WRITEPAGE_ACTIVATE;
264 }
265 
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267 				struct writeback_control *wbc)
268 {
269 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270 	struct blk_plug plug;
271 	long diff, written;
272 
273 	/* collect a number of dirty meta pages and write together */
274 	if (wbc->for_kupdate ||
275 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276 		goto skip_write;
277 
278 	trace_f2fs_writepages(mapping->host, wbc, META);
279 
280 	/* if mounting is failed, skip writing node pages */
281 	mutex_lock(&sbi->cp_mutex);
282 	diff = nr_pages_to_write(sbi, META, wbc);
283 	blk_start_plug(&plug);
284 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
285 	blk_finish_plug(&plug);
286 	mutex_unlock(&sbi->cp_mutex);
287 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
288 	return 0;
289 
290 skip_write:
291 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
292 	trace_f2fs_writepages(mapping->host, wbc, META);
293 	return 0;
294 }
295 
296 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
297 						long nr_to_write)
298 {
299 	struct address_space *mapping = META_MAPPING(sbi);
300 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
301 	struct pagevec pvec;
302 	long nwritten = 0;
303 	struct writeback_control wbc = {
304 		.for_reclaim = 0,
305 	};
306 	struct blk_plug plug;
307 
308 	pagevec_init(&pvec, 0);
309 
310 	blk_start_plug(&plug);
311 
312 	while (index <= end) {
313 		int i, nr_pages;
314 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
315 				PAGECACHE_TAG_DIRTY,
316 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
317 		if (unlikely(nr_pages == 0))
318 			break;
319 
320 		for (i = 0; i < nr_pages; i++) {
321 			struct page *page = pvec.pages[i];
322 
323 			if (prev == ULONG_MAX)
324 				prev = page->index - 1;
325 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
326 				pagevec_release(&pvec);
327 				goto stop;
328 			}
329 
330 			lock_page(page);
331 
332 			if (unlikely(page->mapping != mapping)) {
333 continue_unlock:
334 				unlock_page(page);
335 				continue;
336 			}
337 			if (!PageDirty(page)) {
338 				/* someone wrote it for us */
339 				goto continue_unlock;
340 			}
341 
342 			f2fs_wait_on_page_writeback(page, META, true);
343 
344 			BUG_ON(PageWriteback(page));
345 			if (!clear_page_dirty_for_io(page))
346 				goto continue_unlock;
347 
348 			if (mapping->a_ops->writepage(page, &wbc)) {
349 				unlock_page(page);
350 				break;
351 			}
352 			nwritten++;
353 			prev = page->index;
354 			if (unlikely(nwritten >= nr_to_write))
355 				break;
356 		}
357 		pagevec_release(&pvec);
358 		cond_resched();
359 	}
360 stop:
361 	if (nwritten)
362 		f2fs_submit_merged_bio(sbi, type, WRITE);
363 
364 	blk_finish_plug(&plug);
365 
366 	return nwritten;
367 }
368 
369 static int f2fs_set_meta_page_dirty(struct page *page)
370 {
371 	trace_f2fs_set_page_dirty(page, META);
372 
373 	if (!PageUptodate(page))
374 		SetPageUptodate(page);
375 	if (!PageDirty(page)) {
376 		f2fs_set_page_dirty_nobuffers(page);
377 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
378 		SetPagePrivate(page);
379 		f2fs_trace_pid(page);
380 		return 1;
381 	}
382 	return 0;
383 }
384 
385 const struct address_space_operations f2fs_meta_aops = {
386 	.writepage	= f2fs_write_meta_page,
387 	.writepages	= f2fs_write_meta_pages,
388 	.set_page_dirty	= f2fs_set_meta_page_dirty,
389 	.invalidatepage = f2fs_invalidate_page,
390 	.releasepage	= f2fs_release_page,
391 };
392 
393 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
394 {
395 	struct inode_management *im = &sbi->im[type];
396 	struct ino_entry *e, *tmp;
397 
398 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
399 retry:
400 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
401 
402 	spin_lock(&im->ino_lock);
403 	e = radix_tree_lookup(&im->ino_root, ino);
404 	if (!e) {
405 		e = tmp;
406 		if (radix_tree_insert(&im->ino_root, ino, e)) {
407 			spin_unlock(&im->ino_lock);
408 			radix_tree_preload_end();
409 			goto retry;
410 		}
411 		memset(e, 0, sizeof(struct ino_entry));
412 		e->ino = ino;
413 
414 		list_add_tail(&e->list, &im->ino_list);
415 		if (type != ORPHAN_INO)
416 			im->ino_num++;
417 	}
418 	spin_unlock(&im->ino_lock);
419 	radix_tree_preload_end();
420 
421 	if (e != tmp)
422 		kmem_cache_free(ino_entry_slab, tmp);
423 }
424 
425 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
426 {
427 	struct inode_management *im = &sbi->im[type];
428 	struct ino_entry *e;
429 
430 	spin_lock(&im->ino_lock);
431 	e = radix_tree_lookup(&im->ino_root, ino);
432 	if (e) {
433 		list_del(&e->list);
434 		radix_tree_delete(&im->ino_root, ino);
435 		im->ino_num--;
436 		spin_unlock(&im->ino_lock);
437 		kmem_cache_free(ino_entry_slab, e);
438 		return;
439 	}
440 	spin_unlock(&im->ino_lock);
441 }
442 
443 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
444 {
445 	/* add new dirty ino entry into list */
446 	__add_ino_entry(sbi, ino, type);
447 }
448 
449 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
450 {
451 	/* remove dirty ino entry from list */
452 	__remove_ino_entry(sbi, ino, type);
453 }
454 
455 /* mode should be APPEND_INO or UPDATE_INO */
456 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
457 {
458 	struct inode_management *im = &sbi->im[mode];
459 	struct ino_entry *e;
460 
461 	spin_lock(&im->ino_lock);
462 	e = radix_tree_lookup(&im->ino_root, ino);
463 	spin_unlock(&im->ino_lock);
464 	return e ? true : false;
465 }
466 
467 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
468 {
469 	struct ino_entry *e, *tmp;
470 	int i;
471 
472 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
473 		struct inode_management *im = &sbi->im[i];
474 
475 		spin_lock(&im->ino_lock);
476 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
477 			list_del(&e->list);
478 			radix_tree_delete(&im->ino_root, e->ino);
479 			kmem_cache_free(ino_entry_slab, e);
480 			im->ino_num--;
481 		}
482 		spin_unlock(&im->ino_lock);
483 	}
484 }
485 
486 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
487 {
488 	struct inode_management *im = &sbi->im[ORPHAN_INO];
489 	int err = 0;
490 
491 	spin_lock(&im->ino_lock);
492 
493 #ifdef CONFIG_F2FS_FAULT_INJECTION
494 	if (time_to_inject(FAULT_ORPHAN)) {
495 		spin_unlock(&im->ino_lock);
496 		return -ENOSPC;
497 	}
498 #endif
499 	if (unlikely(im->ino_num >= sbi->max_orphans))
500 		err = -ENOSPC;
501 	else
502 		im->ino_num++;
503 	spin_unlock(&im->ino_lock);
504 
505 	return err;
506 }
507 
508 void release_orphan_inode(struct f2fs_sb_info *sbi)
509 {
510 	struct inode_management *im = &sbi->im[ORPHAN_INO];
511 
512 	spin_lock(&im->ino_lock);
513 	f2fs_bug_on(sbi, im->ino_num == 0);
514 	im->ino_num--;
515 	spin_unlock(&im->ino_lock);
516 }
517 
518 void add_orphan_inode(struct inode *inode)
519 {
520 	/* add new orphan ino entry into list */
521 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
522 	update_inode_page(inode);
523 }
524 
525 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
526 {
527 	/* remove orphan entry from orphan list */
528 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
529 }
530 
531 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533 	struct inode *inode;
534 
535 	inode = f2fs_iget(sbi->sb, ino);
536 	if (IS_ERR(inode)) {
537 		/*
538 		 * there should be a bug that we can't find the entry
539 		 * to orphan inode.
540 		 */
541 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
542 		return PTR_ERR(inode);
543 	}
544 
545 	clear_nlink(inode);
546 
547 	/* truncate all the data during iput */
548 	iput(inode);
549 	return 0;
550 }
551 
552 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
553 {
554 	block_t start_blk, orphan_blocks, i, j;
555 	int err;
556 
557 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
558 		return 0;
559 
560 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
561 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
562 
563 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
564 
565 	for (i = 0; i < orphan_blocks; i++) {
566 		struct page *page = get_meta_page(sbi, start_blk + i);
567 		struct f2fs_orphan_block *orphan_blk;
568 
569 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
570 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
571 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
572 			err = recover_orphan_inode(sbi, ino);
573 			if (err) {
574 				f2fs_put_page(page, 1);
575 				return err;
576 			}
577 		}
578 		f2fs_put_page(page, 1);
579 	}
580 	/* clear Orphan Flag */
581 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
582 	return 0;
583 }
584 
585 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
586 {
587 	struct list_head *head;
588 	struct f2fs_orphan_block *orphan_blk = NULL;
589 	unsigned int nentries = 0;
590 	unsigned short index = 1;
591 	unsigned short orphan_blocks;
592 	struct page *page = NULL;
593 	struct ino_entry *orphan = NULL;
594 	struct inode_management *im = &sbi->im[ORPHAN_INO];
595 
596 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
597 
598 	/*
599 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
600 	 * orphan inode operations are covered under f2fs_lock_op().
601 	 * And, spin_lock should be avoided due to page operations below.
602 	 */
603 	head = &im->ino_list;
604 
605 	/* loop for each orphan inode entry and write them in Jornal block */
606 	list_for_each_entry(orphan, head, list) {
607 		if (!page) {
608 			page = grab_meta_page(sbi, start_blk++);
609 			orphan_blk =
610 				(struct f2fs_orphan_block *)page_address(page);
611 			memset(orphan_blk, 0, sizeof(*orphan_blk));
612 		}
613 
614 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
615 
616 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
617 			/*
618 			 * an orphan block is full of 1020 entries,
619 			 * then we need to flush current orphan blocks
620 			 * and bring another one in memory
621 			 */
622 			orphan_blk->blk_addr = cpu_to_le16(index);
623 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
624 			orphan_blk->entry_count = cpu_to_le32(nentries);
625 			set_page_dirty(page);
626 			f2fs_put_page(page, 1);
627 			index++;
628 			nentries = 0;
629 			page = NULL;
630 		}
631 	}
632 
633 	if (page) {
634 		orphan_blk->blk_addr = cpu_to_le16(index);
635 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
636 		orphan_blk->entry_count = cpu_to_le32(nentries);
637 		set_page_dirty(page);
638 		f2fs_put_page(page, 1);
639 	}
640 }
641 
642 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
643 				block_t cp_addr, unsigned long long *version)
644 {
645 	struct page *cp_page_1, *cp_page_2 = NULL;
646 	unsigned long blk_size = sbi->blocksize;
647 	struct f2fs_checkpoint *cp_block;
648 	unsigned long long cur_version = 0, pre_version = 0;
649 	size_t crc_offset;
650 	__u32 crc = 0;
651 
652 	/* Read the 1st cp block in this CP pack */
653 	cp_page_1 = get_meta_page(sbi, cp_addr);
654 
655 	/* get the version number */
656 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
657 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
658 	if (crc_offset >= blk_size)
659 		goto invalid_cp1;
660 
661 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
662 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
663 		goto invalid_cp1;
664 
665 	pre_version = cur_cp_version(cp_block);
666 
667 	/* Read the 2nd cp block in this CP pack */
668 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
669 	cp_page_2 = get_meta_page(sbi, cp_addr);
670 
671 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
672 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
673 	if (crc_offset >= blk_size)
674 		goto invalid_cp2;
675 
676 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
677 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
678 		goto invalid_cp2;
679 
680 	cur_version = cur_cp_version(cp_block);
681 
682 	if (cur_version == pre_version) {
683 		*version = cur_version;
684 		f2fs_put_page(cp_page_2, 1);
685 		return cp_page_1;
686 	}
687 invalid_cp2:
688 	f2fs_put_page(cp_page_2, 1);
689 invalid_cp1:
690 	f2fs_put_page(cp_page_1, 1);
691 	return NULL;
692 }
693 
694 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
695 {
696 	struct f2fs_checkpoint *cp_block;
697 	struct f2fs_super_block *fsb = sbi->raw_super;
698 	struct page *cp1, *cp2, *cur_page;
699 	unsigned long blk_size = sbi->blocksize;
700 	unsigned long long cp1_version = 0, cp2_version = 0;
701 	unsigned long long cp_start_blk_no;
702 	unsigned int cp_blks = 1 + __cp_payload(sbi);
703 	block_t cp_blk_no;
704 	int i;
705 
706 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
707 	if (!sbi->ckpt)
708 		return -ENOMEM;
709 	/*
710 	 * Finding out valid cp block involves read both
711 	 * sets( cp pack1 and cp pack 2)
712 	 */
713 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
714 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
715 
716 	/* The second checkpoint pack should start at the next segment */
717 	cp_start_blk_no += ((unsigned long long)1) <<
718 				le32_to_cpu(fsb->log_blocks_per_seg);
719 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
720 
721 	if (cp1 && cp2) {
722 		if (ver_after(cp2_version, cp1_version))
723 			cur_page = cp2;
724 		else
725 			cur_page = cp1;
726 	} else if (cp1) {
727 		cur_page = cp1;
728 	} else if (cp2) {
729 		cur_page = cp2;
730 	} else {
731 		goto fail_no_cp;
732 	}
733 
734 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
735 	memcpy(sbi->ckpt, cp_block, blk_size);
736 
737 	/* Sanity checking of checkpoint */
738 	if (sanity_check_ckpt(sbi))
739 		goto fail_no_cp;
740 
741 	if (cp_blks <= 1)
742 		goto done;
743 
744 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
745 	if (cur_page == cp2)
746 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
747 
748 	for (i = 1; i < cp_blks; i++) {
749 		void *sit_bitmap_ptr;
750 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
751 
752 		cur_page = get_meta_page(sbi, cp_blk_no + i);
753 		sit_bitmap_ptr = page_address(cur_page);
754 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
755 		f2fs_put_page(cur_page, 1);
756 	}
757 done:
758 	f2fs_put_page(cp1, 1);
759 	f2fs_put_page(cp2, 1);
760 	return 0;
761 
762 fail_no_cp:
763 	kfree(sbi->ckpt);
764 	return -EINVAL;
765 }
766 
767 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
768 {
769 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
770 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
771 
772 	if (is_inode_flag_set(inode, flag))
773 		return;
774 
775 	set_inode_flag(inode, flag);
776 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
777 	stat_inc_dirty_inode(sbi, type);
778 }
779 
780 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
781 {
782 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
783 
784 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
785 		return;
786 
787 	list_del_init(&F2FS_I(inode)->dirty_list);
788 	clear_inode_flag(inode, flag);
789 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
790 }
791 
792 void update_dirty_page(struct inode *inode, struct page *page)
793 {
794 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
795 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
796 
797 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
798 			!S_ISLNK(inode->i_mode))
799 		return;
800 
801 	spin_lock(&sbi->inode_lock[type]);
802 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
803 		__add_dirty_inode(inode, type);
804 	inode_inc_dirty_pages(inode);
805 	spin_unlock(&sbi->inode_lock[type]);
806 
807 	SetPagePrivate(page);
808 	f2fs_trace_pid(page);
809 }
810 
811 void remove_dirty_inode(struct inode *inode)
812 {
813 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
815 
816 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
817 			!S_ISLNK(inode->i_mode))
818 		return;
819 
820 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
821 		return;
822 
823 	spin_lock(&sbi->inode_lock[type]);
824 	__remove_dirty_inode(inode, type);
825 	spin_unlock(&sbi->inode_lock[type]);
826 }
827 
828 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
829 {
830 	struct list_head *head;
831 	struct inode *inode;
832 	struct f2fs_inode_info *fi;
833 	bool is_dir = (type == DIR_INODE);
834 
835 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
836 				get_pages(sbi, is_dir ?
837 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
838 retry:
839 	if (unlikely(f2fs_cp_error(sbi)))
840 		return -EIO;
841 
842 	spin_lock(&sbi->inode_lock[type]);
843 
844 	head = &sbi->inode_list[type];
845 	if (list_empty(head)) {
846 		spin_unlock(&sbi->inode_lock[type]);
847 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
848 				get_pages(sbi, is_dir ?
849 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
850 		return 0;
851 	}
852 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
853 	inode = igrab(&fi->vfs_inode);
854 	spin_unlock(&sbi->inode_lock[type]);
855 	if (inode) {
856 		filemap_fdatawrite(inode->i_mapping);
857 		iput(inode);
858 	} else {
859 		/*
860 		 * We should submit bio, since it exists several
861 		 * wribacking dentry pages in the freeing inode.
862 		 */
863 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
864 		cond_resched();
865 	}
866 	goto retry;
867 }
868 
869 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
870 {
871 	struct list_head *head = &sbi->inode_list[DIRTY_META];
872 	struct inode *inode;
873 	struct f2fs_inode_info *fi;
874 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
875 
876 	while (total--) {
877 		if (unlikely(f2fs_cp_error(sbi)))
878 			return -EIO;
879 
880 		spin_lock(&sbi->inode_lock[DIRTY_META]);
881 		if (list_empty(head)) {
882 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
883 			return 0;
884 		}
885 		fi = list_entry(head->next, struct f2fs_inode_info,
886 							gdirty_list);
887 		inode = igrab(&fi->vfs_inode);
888 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
889 		if (inode) {
890 			update_inode_page(inode);
891 			iput(inode);
892 		}
893 	};
894 	return 0;
895 }
896 
897 /*
898  * Freeze all the FS-operations for checkpoint.
899  */
900 static int block_operations(struct f2fs_sb_info *sbi)
901 {
902 	struct writeback_control wbc = {
903 		.sync_mode = WB_SYNC_ALL,
904 		.nr_to_write = LONG_MAX,
905 		.for_reclaim = 0,
906 	};
907 	struct blk_plug plug;
908 	int err = 0;
909 
910 	blk_start_plug(&plug);
911 
912 retry_flush_dents:
913 	f2fs_lock_all(sbi);
914 	/* write all the dirty dentry pages */
915 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
916 		f2fs_unlock_all(sbi);
917 		err = sync_dirty_inodes(sbi, DIR_INODE);
918 		if (err)
919 			goto out;
920 		goto retry_flush_dents;
921 	}
922 
923 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
924 		f2fs_unlock_all(sbi);
925 		err = f2fs_sync_inode_meta(sbi);
926 		if (err)
927 			goto out;
928 		goto retry_flush_dents;
929 	}
930 
931 	/*
932 	 * POR: we should ensure that there are no dirty node pages
933 	 * until finishing nat/sit flush.
934 	 */
935 retry_flush_nodes:
936 	down_write(&sbi->node_write);
937 
938 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
939 		up_write(&sbi->node_write);
940 		err = sync_node_pages(sbi, &wbc);
941 		if (err) {
942 			f2fs_unlock_all(sbi);
943 			goto out;
944 		}
945 		goto retry_flush_nodes;
946 	}
947 out:
948 	blk_finish_plug(&plug);
949 	return err;
950 }
951 
952 static void unblock_operations(struct f2fs_sb_info *sbi)
953 {
954 	up_write(&sbi->node_write);
955 
956 	build_free_nids(sbi);
957 	f2fs_unlock_all(sbi);
958 }
959 
960 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
961 {
962 	DEFINE_WAIT(wait);
963 
964 	for (;;) {
965 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
966 
967 		if (!atomic_read(&sbi->nr_wb_bios))
968 			break;
969 
970 		io_schedule_timeout(5*HZ);
971 	}
972 	finish_wait(&sbi->cp_wait, &wait);
973 }
974 
975 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
976 {
977 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
978 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
979 	struct f2fs_nm_info *nm_i = NM_I(sbi);
980 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
981 	nid_t last_nid = nm_i->next_scan_nid;
982 	block_t start_blk;
983 	unsigned int data_sum_blocks, orphan_blocks;
984 	__u32 crc32 = 0;
985 	int i;
986 	int cp_payload_blks = __cp_payload(sbi);
987 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
988 	bool invalidate = false;
989 	struct super_block *sb = sbi->sb;
990 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
991 	u64 kbytes_written;
992 
993 	/*
994 	 * This avoids to conduct wrong roll-forward operations and uses
995 	 * metapages, so should be called prior to sync_meta_pages below.
996 	 */
997 	if (!test_opt(sbi, LFS) && discard_next_dnode(sbi, discard_blk))
998 		invalidate = true;
999 
1000 	/* Flush all the NAT/SIT pages */
1001 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1002 		sync_meta_pages(sbi, META, LONG_MAX);
1003 		if (unlikely(f2fs_cp_error(sbi)))
1004 			return -EIO;
1005 	}
1006 
1007 	next_free_nid(sbi, &last_nid);
1008 
1009 	/*
1010 	 * modify checkpoint
1011 	 * version number is already updated
1012 	 */
1013 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1014 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1015 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1016 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1017 		ckpt->cur_node_segno[i] =
1018 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1019 		ckpt->cur_node_blkoff[i] =
1020 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1021 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1022 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1023 	}
1024 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1025 		ckpt->cur_data_segno[i] =
1026 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1027 		ckpt->cur_data_blkoff[i] =
1028 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1029 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1030 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1031 	}
1032 
1033 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1034 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1035 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1036 
1037 	/* 2 cp  + n data seg summary + orphan inode blocks */
1038 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1039 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1040 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1041 	else
1042 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1043 
1044 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1045 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1046 			orphan_blocks);
1047 
1048 	if (__remain_node_summaries(cpc->reason))
1049 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1050 				cp_payload_blks + data_sum_blocks +
1051 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1052 	else
1053 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1054 				cp_payload_blks + data_sum_blocks +
1055 				orphan_blocks);
1056 
1057 	if (cpc->reason == CP_UMOUNT)
1058 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1059 	else
1060 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1061 
1062 	if (cpc->reason == CP_FASTBOOT)
1063 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1064 	else
1065 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1066 
1067 	if (orphan_num)
1068 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1069 	else
1070 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1071 
1072 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1073 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1074 
1075 	/* update SIT/NAT bitmap */
1076 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1077 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1078 
1079 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1080 	*((__le32 *)((unsigned char *)ckpt +
1081 				le32_to_cpu(ckpt->checksum_offset)))
1082 				= cpu_to_le32(crc32);
1083 
1084 	start_blk = __start_cp_addr(sbi);
1085 
1086 	/* need to wait for end_io results */
1087 	wait_on_all_pages_writeback(sbi);
1088 	if (unlikely(f2fs_cp_error(sbi)))
1089 		return -EIO;
1090 
1091 	/* write out checkpoint buffer at block 0 */
1092 	update_meta_page(sbi, ckpt, start_blk++);
1093 
1094 	for (i = 1; i < 1 + cp_payload_blks; i++)
1095 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1096 							start_blk++);
1097 
1098 	if (orphan_num) {
1099 		write_orphan_inodes(sbi, start_blk);
1100 		start_blk += orphan_blocks;
1101 	}
1102 
1103 	write_data_summaries(sbi, start_blk);
1104 	start_blk += data_sum_blocks;
1105 
1106 	/* Record write statistics in the hot node summary */
1107 	kbytes_written = sbi->kbytes_written;
1108 	if (sb->s_bdev->bd_part)
1109 		kbytes_written += BD_PART_WRITTEN(sbi);
1110 
1111 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1112 
1113 	if (__remain_node_summaries(cpc->reason)) {
1114 		write_node_summaries(sbi, start_blk);
1115 		start_blk += NR_CURSEG_NODE_TYPE;
1116 	}
1117 
1118 	/* writeout checkpoint block */
1119 	update_meta_page(sbi, ckpt, start_blk);
1120 
1121 	/* wait for previous submitted node/meta pages writeback */
1122 	wait_on_all_pages_writeback(sbi);
1123 
1124 	if (unlikely(f2fs_cp_error(sbi)))
1125 		return -EIO;
1126 
1127 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1128 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1129 
1130 	/* update user_block_counts */
1131 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1132 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1133 
1134 	/* Here, we only have one bio having CP pack */
1135 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1136 
1137 	/* wait for previous submitted meta pages writeback */
1138 	wait_on_all_pages_writeback(sbi);
1139 
1140 	/*
1141 	 * invalidate meta page which is used temporarily for zeroing out
1142 	 * block at the end of warm node chain.
1143 	 */
1144 	if (invalidate)
1145 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1146 								discard_blk);
1147 
1148 	release_ino_entry(sbi, false);
1149 
1150 	if (unlikely(f2fs_cp_error(sbi)))
1151 		return -EIO;
1152 
1153 	clear_prefree_segments(sbi, cpc);
1154 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1155 
1156 	return 0;
1157 }
1158 
1159 /*
1160  * We guarantee that this checkpoint procedure will not fail.
1161  */
1162 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1163 {
1164 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1165 	unsigned long long ckpt_ver;
1166 	int err = 0;
1167 
1168 	mutex_lock(&sbi->cp_mutex);
1169 
1170 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1171 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1172 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1173 		goto out;
1174 	if (unlikely(f2fs_cp_error(sbi))) {
1175 		err = -EIO;
1176 		goto out;
1177 	}
1178 	if (f2fs_readonly(sbi->sb)) {
1179 		err = -EROFS;
1180 		goto out;
1181 	}
1182 
1183 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1184 
1185 	err = block_operations(sbi);
1186 	if (err)
1187 		goto out;
1188 
1189 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1190 
1191 	f2fs_flush_merged_bios(sbi);
1192 
1193 	/*
1194 	 * update checkpoint pack index
1195 	 * Increase the version number so that
1196 	 * SIT entries and seg summaries are written at correct place
1197 	 */
1198 	ckpt_ver = cur_cp_version(ckpt);
1199 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1200 
1201 	/* write cached NAT/SIT entries to NAT/SIT area */
1202 	flush_nat_entries(sbi);
1203 	flush_sit_entries(sbi, cpc);
1204 
1205 	/* unlock all the fs_lock[] in do_checkpoint() */
1206 	err = do_checkpoint(sbi, cpc);
1207 
1208 	unblock_operations(sbi);
1209 	stat_inc_cp_count(sbi->stat_info);
1210 
1211 	if (cpc->reason == CP_RECOVERY)
1212 		f2fs_msg(sbi->sb, KERN_NOTICE,
1213 			"checkpoint: version = %llx", ckpt_ver);
1214 
1215 	/* do checkpoint periodically */
1216 	f2fs_update_time(sbi, CP_TIME);
1217 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1218 out:
1219 	mutex_unlock(&sbi->cp_mutex);
1220 	return err;
1221 }
1222 
1223 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1224 {
1225 	int i;
1226 
1227 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1228 		struct inode_management *im = &sbi->im[i];
1229 
1230 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1231 		spin_lock_init(&im->ino_lock);
1232 		INIT_LIST_HEAD(&im->ino_list);
1233 		im->ino_num = 0;
1234 	}
1235 
1236 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1237 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1238 				F2FS_ORPHANS_PER_BLOCK;
1239 }
1240 
1241 int __init create_checkpoint_caches(void)
1242 {
1243 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1244 			sizeof(struct ino_entry));
1245 	if (!ino_entry_slab)
1246 		return -ENOMEM;
1247 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1248 			sizeof(struct inode_entry));
1249 	if (!inode_entry_slab) {
1250 		kmem_cache_destroy(ino_entry_slab);
1251 		return -ENOMEM;
1252 	}
1253 	return 0;
1254 }
1255 
1256 void destroy_checkpoint_caches(void)
1257 {
1258 	kmem_cache_destroy(ino_entry_slab);
1259 	kmem_cache_destroy(inode_entry_slab);
1260 }
1261